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Studies of various arrangements of wings and bodies designed to 
provide favorable wave interference at supersonic speeds lead to the 
problem of determining the minimum possible value of the wave resist- 
ance obtainable by any di~~osition of the elements of an aircraft within 
a definitely prescribed region. Under the assumptions that the total 
lift and the total volume of the aircraft are given, conditions that 
must be satisfied if the drag is to be a minimum are found. For arbi- 
trary regions the minimum value can be estimated by a simple formula 
giving a lower bound. 

DISCUSSION 

In 1935 Busemann (ref. 1) showed that the wave drag of two airfoils 
could be canceled by reflection. Later Ferrari (ref. 2) showed that the 
drag of a body of revolution could be canceled by the addition of a ring 
airfoil to catch the wave from the nose and reflect it back to the tail. 
Even if the investigation is limited to such completely self-contained 
wave systems, these examples are only two of an infinite number of 
possibilities. 

The examples in which the wave cancellation is complete are, however, 
limited to systems in which the net lift and lateral force are zero, 
Nevertheless, examples cited by Ferri (ref. 3) and by Graham (ref. 4) show 
that the wave drag associated with the lift can be diminished by various 
three-dimensional arrangements of wings and bodies. These examples lead 
to a search for some general statements or criteria regarding the wave 
drag of such three-dimensional arrangements. 

In order to put the question in a definite form it will be assumed 
that the airfoils and bodies are contained in the interior of a definite 
three-dimensional region R. The total lift L and the volume v are 
assumed to be given. It is supposed that the wave drag D depends some- 
how on the distribution of the. lift and the volume throughout R and that 
with distributions of a certain family (called "optimum" ones) the drag 
will have a minimum value. It is desired to find the optimum distribu- 
tions, or the conditions determining them, and the value of the minimum 
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drag. Problems of this type have been considered by E. W. Graham and 
his colleagues who give, for example, the optimiun distribution of lift 
within a spherical region. 

If the region R is restricted to the plan form S of a planar wing, 
then problems of a type previously discussed by the present writer are 
obtained (refs. 5 and 6). In cor-nection with the latter problems it was 
found that all distributions of lift or volume satisfying the given 
requirements could be characterized by relatively simple conditions. The 
present paper describes briefly the extension of these conditions to three- 
dimensional regions and the additional conditions required. 

As is usual in linearized-flow problems it will be assumed that the 
disturbance field of the airfoils and bodies can be produced by the action 
of a distribution of sources and "lifting elements" or horseshoe vortices. 
One of the difficulties associated with these problems is the determina- 
tion of the actual geometric shapes produced by the distribution of singu- 
larities. In the present analysis the relation between the body shapes 
and the singularities is not known nor determined in detail. For slender 
bodies or thin airfoils closed within the region R it can be assumed 
that the total volume is proportional to the first moment of the source 
distribution with respect to a plane perpendicular to the flight direc- 
tion, whereas the total lift is proportional to the total strength of 
the lifting elements. 

Suppose a region R together with a distribution of singularities 
such as sources or lifting vortices is given. (see fig. 1.) Then by 
Hayest theorem (ref. 7), the drag will be unchanged by a reversal of the 
whole system.  h he geometry of the flow, including that of the airfoils 
and bodies, will be changed by the reversal but the total lift and the 
total volume will not.) Then the drag may be computed by means of a fic- 
titious "combined disturbance field" obtained by superimposing the dis- 
turbances in the forward and the reversed motion. The perturbation veloc- 
ities in this combined field may be denoted by 

An arrangement of sources or lifting elements or their combination which 
yields the minimum drag is then characterized by the conditions 
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w = Constant 1 
v = o  

xi - = Constant 
ax 

throughout R. 

If conditions (1) are satisfied, then the integrated drag of the 
whole system will be given simply by 

The first term on the right-hand side of this expression will be recog- 
nized as the drag arising from a rearward inclination of the lift vector, 
whereas the second term is simply the product of the volume and the con- 
stant gradient of pressure in the combined flow field. 

These conditions may be verified by making use of a "mutual drag 
relation," essentially similar to the well-known Ursell-Ward reciprocal 
relation, which connects the drag of any two interfering distributions 
of singularities in the combined flow field. According to this relation 
the drag of distribution A caused by the interference of a second dis- 
tribution B is equal to the drag added to B by the interference of A. 
Now let A be a distribution within RA satisfying conditions (1). For 
B select a distribution having zero total lift and zero total volume. If 
RB is contained within RA, then the addition of B will amount simply 
to a redistribution,without changing the total lift L or the volume v, 
of A. The drag of A + B m y  then be written in shorthand notation 

Then, since by the mutual drag relation DAB is equal to D B ~ ,  this 
equation may be written as 

Here DBA is the drag of B in the combined disturbance field of A. 

Since F = Constant, 7 = 0, and = Constant in RA, this interfer- 
ax 

ence drag may be written as 
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However, since Lg and vB are zero, 
D~~ 

vanishes and the added drag 

is that of distribution B alone or DBBe Now the drag of a system alone, 

that is, without interference, cannot be negative; hence, D(A J- B) can- 
not be less than D(A) under conditions (1). 

On the other hand, suppose, for example, that the sidewash FA were 

not zero. A distribution of lateral forces could then be found which 
would result in z, negative interference drag, dominating the quadratic 
term DBB, SO that the total drag could be reduced. Hence, if the dxag 

of distribution A actually is a minimum value, conditions (1 ) must be 
complied with. 

, v = -  Since w = - a$ and - - - - b2@ 
3Y' 

it can be seen that condi- a, ax ax2' 

tions (1) do not agree with the linearized flow equation 

a;; aii 
in general, but only if - = 0. Since - is proportional to the drag ax ax 
per unit volume, one concludes that the drag cannot be minimized in an 
absolute sense unless the drag associated with the volume of the system 
is zero (or unless the distribution of singularities is continuous 
throughout R). Examples such as the Busemann biplane satisfy the former 

& condition, namely, - = 0. ax 
As Graham et al. have pointed out, distributions of the sort being 

considered here are not unique, since other solutions such'as those shown 
in figure 2 may be added to them without changing the lifk or the drag. 

It is interesting to note that conditions analogous to the condi- 
tions R = Constant and 7 = 0 were found by Munk in connection with 
the vortex drag of lifting systems at subsonic speeds. In that problem 
the conditions apply to the two-dimensional motion associated with the 
trace of the wing system in the Trefftz plane. If the idea of super- 
imposed flow fields is utilized in the subsonic problem, one finds that 
the cylindrical flow associated with the Trefftz plane extends along the 
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whole Plight path and hence includes the region R, Conditions (1) thus 
apply at both subsonic and supersonic speeds,but are unnecessarily 
restrictive at subsonic speeds. 

MunkPs conditions of constant downwash and zero sidewash were used 
by Hemke (ref. 8) to determine the effectiveness of end plates in reducing 
the vortex drag of a wing at low speeds. It will be interesting to see 
how the condition 7 = 0 might be used to determine an optimum setting 
and camber for such a surface under more general conditions. This appli- 
cation is illustrated in figure 3 for an end plate on the tip of a wing. 

With the wing in forward motion, the lateral velocity vf at the 
surface of the end plate is simply the lateral slope of the fin surface 
times the stream velocity. The condition 7 = 0 implies that vr = -vf, 
and this condition is obviously satisfied by keeping the geometry of the 
fin fixed when the flow is reversed. At the same time, however, recall 
that the distribution of lift and lateral force must be kept the same in 
forward and reversed flow. Hence, in order to achieve the minimum drag 
one must find the particular camber and setting of the fin that will yield 
the same distribution of lateral force for either direction of motion. 
At first it seems impossible to satisfy such a requirement since, for 
example, the direction of lift of an inclined surface is usually reversed 
by reversing the direction of flow. However, the form of the adjacent 
wing surface must, in general, change with reversal, since .ij # 0 and 
since the lift distribution on the wing must remain unchanged. Then it 
is evident that the conditions might be satisfied if the pressures on the 
fin surface were dominated by the wing pressures through interference. 

It must be admitted that the considerations have thus far been rather 
abstract. A more concrete result would yield the actual magnitudes of the 
minimum drag associated with various regions. Such results for distribu- 
tions of lift in spherical and ellipsoidal regions have been given in 
reference 4. A somewhat more general result, applicable to arbitrary 
regions R, can be obtained if merely a lower bound for the wave drag is 
sought rather than the actual minimum value. Since this lower bound coin- 
cides with the minimum value in the examples found thus far, it may be 
taken as an approximation to the actual drag in many cases. 

To obtain such a lower bound, we may use Hayes' formula (ref. 7) - 
or the formula of Lomax (ref. g), which expresses the drag more directly 
in terms of areas and pressures intercepted by characteristic planes. 
By utilizing Hayesq method of equivalent positions (ref. 7) or the present 
writer s method of superimposing plane waves ( ref. 6) , one can construct, 
at each angle 8 ,  three equivalent linear distributions, namely, a volume 
distribution, a lift distribution, and a side-force distribution. By a 
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harmonic analysis ( ref .  10) it is  possible t o  show that the drag  associated 
with the leading term i n  the expansion of the l i f t  dis t r ibut ion 2(x), pro- 
p o r t i o n a l t o  the t o t a l  l i f t  L, cannot be diminished by interference. The 
possibi l i ty ,  already known, that the drag associated with the volume can 
be eliminated appears i n  t h i s  a r d y s i s .  Hence, f o r  the lower bound the 
value given by the f i r s t  term i n  the expansion of the  l i f t  dis t r ibut ion i s  
used. This s tep amounts t o  the  assumption that each " l i f t i n g  l ine"  obtained 
by integrating the spa t i a l  l i f t  dis t r ibut ion over the intersect ing Mach 
planes i s  e l l i p t i c a l l y  loaded. For a single e l l i p t i c a l l y  loaded l i f t i n g  
l i n e  pa ra l l e l  t o  the f l i g h t  direction, the wave drag i s  

where 2 i s  the length of the l ine.  For the whole region R the fo l -  
lowing i s  obtained 

where 

and ~ ( 8 )  is  the projected length of R as  defined i n  figure 4, with 

p = 

It w i l l  be evident from equation (3) t ha t  the wave drag depends 
inversely on the square of an average projected length of the a i r f o i l  
system - just  as  the vortex drag depends inversely on the square of the 

2 span. However, because of the weighting factor  s in  0 the l a t e r a l  
dimensions of R are  re la t ive ly  unimportant compared t o  the dimension, 
or length, along the f l i g h t  direction. Figure 5 shows the magnitude 
of the error  made by using the actual  length 2 and equation (2) f o r  
the wave drag of several l i f t i n g  surfaces. 

Generally speaking, the losses associated with the production of a 
given force i n  a f r ic t ionless  f l u i d  a re  diminished by increasing the area 
involved i n  the production of the force and diminishing the pressure. 
Thus the wave drag i s  diminished by making the "areat' i2 a s  large as  
possible, The vortex drag is  diminished by making the square of the span 
as  large as possible. On the other hand, t o  diminish the  f r i c t i o n  drag 
the actual  area S of the wing system must be made as  small as possible, 
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At subsonic speeds the conditions are satisfied by making b2 large com- 
pared with S or using a wing of high aspect ratio. It is a matter of 
ordinary observation to see that this condition determines the rather 
special form of subsonic aircraft. At supersonic speeds, a large value 

-2 
2 of the "longitudinal aspect ratio" - is needed in addition. 
S 

At subsonic speeds, the elliptically loaded lifting line achieves 
the minimum value of the pressure drag for the whole area covered by the 
wake of the lifting line. At supersonic speeds such a lifting line 
develops, according to linear theory, an infinite drag. However, if the 
line is yawed behind the Mach angle the drag is finite and is actually 
the smallest value obtainable by any distribution within the region of 
the parallelogram ABCD shown in figure 6. Such an oblique lifting line 

b * i * maximizes both - and - simultaneously. At moderate supersonic Mach 
S S 

numbers, the results obtained with a V-shaped lifting line - approximating 
a swept wing - are nearly as good. 

When a wing is made narrower so as to approach a "lifting line" while 
maintaining a fixed total lift, the lifting'pressure must increase. Even- 
tually the-pressure, or the lift coefficient, will exceed the limitation 
imposed by the small-disturbance theory, or flow separation will occur. 
Beyond this point increases of aspect ratio either laterally or longi- 
tudinally will not necessarily increase the lift-drag ratio. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Nov. 1, 1955 
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CONDITIONS FOR MINIMUM DRAG 
DISTRIBUTIONS OF LlFT AND VOLUME IN REGION R 

MACH ENVELOPE 

\ 

Figure 1 

DISTRIBUTIONS OF L lFT  AND VOLUME WITH 
SELF-CONTAINED WAVE SYSTEMS 

RING VORTEX 7 
UNIFORMLY LOADED 

DISK +t 

ELLIPTICALLY LOADED 
LIFTING LINE - L  

Figure 2 
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USE OF CONDITION 8 = 0  TO DETERMINE OPTIMUM SETTING 
OF VERTICAL FIN ON WING TIP 

VERTICAL FIN 

Y LATERAL FORCE DISTRIBUTION 
ON FIN,Ap 

Ap, = Ap, ; LATERAL FORCE DISTRIBUTION UNCHANGED 

Vf = -Vr ; FIN GEOMETRY UNCHANGED 

Figure 3 

LOWER BOUND FOR WAVE DRAG ASSOCIATED 
WITH THE REGION R AND THE LIFT L 

MACH PLANE 
/ 

/ X-pyCOS8 -Bz SIN 8. CONST I 

/I 

/& i ( 8 ) ~  

Figure 4 
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APPROXIMATE EXPRESSION FOR WAVE DRAG OF 
LIFTING SURFACE 

~ 2 - I  ~2 
DWAVE= K-- 

2 7Tql2 

/ 

Figure 5 

IDEAL DISTRIBUTION OF L IFT  
FOR PARALLELOGRAM ABGD 

Figure 6 

NACA - Langley Field, Va. 




