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SUMMARY 

Two-dimensional tests of eight 6-percent-thick symmetrical airfoils 
of the supersonic and subsonic types were conducted in the Langley 
rectangular high-speed turmel. Static pressures along the surfaces of 
each airfoil were measured over a Mach number range from 0.3 to the 
choking Mach number (about 0.92 at a = 00 ) at angles of attack from 00 

to 200
• Total-pressure surveys in the wake were obtained for the same 

Mach number range at angles of attack from. 00 to 8 0
• Schlieren photo

graphs of the air flow were also obtained for representative conditions. 

The aerodynamic characteristics of each of the airfoils have been 
determined from the measured pressure data. These results showed that 
the lift-curve slope of each of the airfoils decreased rapidly to a 
positive value approaching zero at angles of attack near 90 and roughly 
maintained this value up to the highest angle of attack tested. 

When the maximum thickness was located at the 0.3-chord station 
rather than at the 0.7-chord station, the circular-arc and wedge-type 
airfoils produced higher lift-curve slopes and maximum lift coeffi
cients, lower drag coefficients for a given lift coefficient, and 
improved pitching-moment characteristics. The variations with Mach 
number of the lift, drag, and pitching-moment coefficients are generally 
similar for the various types of airfoils tested. There appeared to be 
no factors which would prohibit the use of the sharp-leading-edge type of 
profiles at the subsonic speeds tested. 

INTRODUCTION 

The development of airfoil profiles having sharp leading edges, 
designed to minimize the wave resistance, has increased the feasibility 
of sustained flight of aircraft at supersonic speeds. Since any profile 
intended for supersonic flight must first traverse the subsonic speed 

lSupersedes recently declassified NACA RM L9E19, 1949. 



2 NACA TN 3424 

range, it is imperative that its force characteristics permit steady 
and controllable flight throughout this range. Further, in many 
applications the aerodynamic characteristics of the supersonic profiles 
must permit subsonic maneuvering and landing. 

The available results of previous investigations at subsonic Mach 
numbers on 6-percent-thick airfoils having sharp leading edges are 
limi ted to a high Reynolds number study of a circular-arc airfoil 
section in the Langley two-dimensional low-turbulence tunnel (refer
ence 1), an investigation of a double-wedge airfoil by the Ames 
Laboratory (reference 2), and a low-angle-of-attack investigation of 
seven of the models studied herein (reference 3). The purpose of this 
investigation is to provide information on the force characteristics 
of thin subsonic- and supersonic-type profiles at high angles of attack 
by extending the tests of reference 3. 

Eight 6-percent-thick symmetrical airfoils were tested at angles 
of attack from 00 to 200 • Test data were obtained by means of static
pressure measurements along the surfaces of the airfoils and total
pressure surveys in the wake. 
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APP.ARATUS AND TESTS 

The tests were conducted in the Langley rectangular high-speed 
tunnel, which was a 4-inch by l8-inch closed-throat induction-t,ype 
tunnel that draws air from the atmosphere. 

Each airfoil was of 4-inch chord and completely spanned the test 
section alqng the 4-inch dimension. The models were supported by large 
circular end plates which were fitted into the tunnel walls in such a 
way as to rotate with the model and. to retain continuity of the tunnel
wall surface. Between 36 and 40 static-pressure orifices were 
installed in the surfaces of each airfoil in two chordwise rows 
l/4 inch from and on either side of the model center line. The number 
of orifices that could be installed depended on the shape of the model 
and its absolute thickness and, hence, was a minimum for the wedge-type 
airfoils. The two types of airfoils had the following profiles: 

Subsonic : 
NACA 0006- 63 
NACA l6-006 
NACA 66-006 

Supersonic (reference 3): 
NACA 2S-(30) (03)-(30)(03) 
NACA 2S-(50) (03)-(50)(03) 
NACA 2S-(70) (03)-(70)(03) 
NACA 18-(30)(03)-(30)(03) 
NACA 18-(70)(03)-(70)(03) 

(reference 4) 
(reference 5) 
(reference 5) 

Designated herein: 
C-3 
C-5 
C-7 
W-3 
W-7 

In the supersonic-profile designation the letter C indicates the air
foil was of a circular-arc type, the letter W indicates the airfoil 
was of the wedge type, and the number following the letter indicates 
the location of maximum thickness in tenths of the chord from the 
leading edge. The profiles, with the static-pressure-orifice loca
tions, are shown in figure l. 

Pressure-distribution measurements were made at angles of attack 
from 00, to 200 over a Mach number range from 0.30 to the choking Mach 
number (about 0.92 at a. == 00 and 0.7l at a. == 200). Wake surveys 
were made for the same Mach number range at angles of attack from 00 

to 80. This Mach number range co~esponded approximately to a Reynolds 
number range from 0.70 to l.5 x lO. Schlier en photographs of the flow 
were also obtained for representative conditions. These photographs 
were taken with the knife edge perpendicular to the flow direction and 
with a spark of about 2-microsecond duration. 
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TUNNEL-WALL EFFECTS 

The data obtained from this investigation have been corrected for 
the influence of the tunnel walls by the method of reference 6, which 
takes account of both solid and wake blockage. This correction is 
generally considered to be applicable to that Mach number range in 
which the influence of the choking condition on the flow is small. 
Static-pressure surveys along the wall showed that for all Mach numbers 
except those within 0.030 of the choking value there were no exces
sively large pressure gradients; accordingly, up to this point the data 
are believed to be quantitatively significant . This value of 0.030 1s 
the same as that previously found in the low-angle-of-attack investi
gation of reference 3. The data within 0.030 of the choking Mach 
number are indicated in the figures in which they appear by dashed 
lines. 

RESULTS 

Representative aerodynamic data with corrected test points are 
presented in figure 2. The section-lift-coefficient data, obtained 
from the static-pressure distribution over the airfoils, are presented 
in figures 3 and 4. Near the leading edge, where it was impossible to 
install orifices on some of the profiles, the pressure distribution 
could not be defined exactly ; and although special care was taken in 
fairing the pressure distribution in this region, the resultant aero
dynamic characteristics are subject to some error . Variation of the 
effective maximum section lift coefficients with Mach nurriber and pro
file parameters is given in figure 5. For the purpose of this 
analysis, the maximum lift coefficients were taken at the lowest angle 

dc7, 
of attack for which the slope of the lift curve ---- became equal 

do. 
to 0.015. This criterion for the maximum lift, which is actually an 
effective maximum lift coefficient, was used because of the failure of 
several of the lift curves to attain zero slope for the angle-of-attack 
range of this investigation. The change in angle of attack for maximum 
lift coefficient with Mach number is shown in figure 6. 

The section-drag-coefficient data are plotted against Mach number 
in figure 7 and against section lift coefficient in figure 8. For the 
angle-of- attack range from 00 to 8°, the drag coefficients were com
puted by the wake- survey method of reference 7. Due to the extreme 
turbulence in the wake at angles of attack greater than 8° , the drag 
coefficients at these higher angles were computed from the surface 
pressure distributions. 
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The data for section-pitching-moment coefficient about quarter
chord location are presented as functions of Mach number and section 
lift coefficient in figures 9 and 10, respectively. Moment coefficient 
is defined herein as the coefficient of the moment of the normal force 
about the quarter-chord location; this is essentially the true quarter
chord pitching-moment coefficient because the chordwise force had 
little effect on the pitching moment. 

Representative pressure distributions and corresponding schlieren 
photographs are presented for the NACA 0006-63, C-3, and W-3 airfoils 
in figure ll. 

DJBCUSSION 

Lift Coefficient 

The variation of section lift coefficient with Mach number 
(fig. 3) is generally similar for both the suDsonic- and supersonic
type airfoils. For angles of attack up to about 60 , the rate of change 
of lift coefficient with Mach number increased continuously to a 
maximum at M Z 0.8; at higher Mach numbers the lift coefficient 
decreases rapidly. At angles of attack between 80 and 140

, the lift 
coefficient is erratic for Mach numbers less than about 0.55, then 
remains relatively constant until a Mach number of 0.70 is reached, 
after which the lift coefficient increases quite rapidly with Mach 
number to the limit of these tests. At higher angles of attack (160 

to 200
) the curves are quite irregular; however, the lift coefficient 

tends to increase with Mach number. 

At angles of attack up to about 60 (fig. 4), an increase in 1ift
dq 

curve slope do, with increaSing Mach number is observed. When the 

angle of attack reaches a value somewhere between 60 and 9°, the lift
curve slope decreased abruptly for all Mach numbers up to 0.75. For a 
Mach number of 0.80, the lift-curve slope in this angle-of-attack 
range tends to maintain a higher value than at the lower Mach numbers. 
Due to .tunnel constriction effects, however, a Mach number of 0.80 
could not be reached at higher angles of attack and this tendency 
could not be substantiated. Increasing the angle of attack beyond 90 

gives a lift curve which is erratic both in magnitude and direction. 
Low-speed data for the C-5 airfoil from reference 1 are in good agree
ment with the data presented herein for this profile at M = 0.40. 
The general increase of lift with increaSing angle of attack beyond 
the stall is contrary to the tendency of most thicker airfoils to 
stall with rapid loss in lift. 
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For the low angles of attack, the variation of lift-curve slope 

wi th Mach number is usually less for the supersonic-type than for the 

subsonic-type airfoils. The lift curves for the supersonic-type air

foils having a forward location of the maximun thickness have higher 

slopes than the airfoils with more rearward location of maximum. 

thickness. 

The data of figure 5 (a) show that the maximum lifts of the three 

subsonic airfoils were not affected in any consistent manner by 

variation of maximum-thickness location, but decreaSing the trailing

edge angle from 170 (NACA 16-006 airfoil) to 50 (NACA 66-006 airfoil) 

caused a consistent increase in effective maximum lift coefficient 

for the three airfoils. The absence of effect of maximum- thickness 

location on the maximum lift coefficient has been shown in low-speed 

tests of thin airfoils (reference 5), but the effect of change in 

trailing-edg~ angle at low speeds is not as well defined; for airfoils 

of 12- percent thickness (reference 8) no appreciable effect of 

trailing-edge angle was noticed, whereas for airfoils of lower thick

ness and sharp leading edges (reference 1) a decrease in trailing

edge angle increased the maximum lift coefficient . 

The effective maximum lift coefficient for the supersonic -type 

airfoils (fig . 5(b)) generally increased with forward movement of 

the maximum-thickness location and with decrease in trailing-edge 

angle and tended to increase with leading-edge angle. The effect of 

leading-edge angle was more pronounced when the circular-arc and 

wedge- type airfoils were considered independently 0 The increase of 

effective maximum lift coefficient with decrease in trailing-edge 

angle for sharp-nose airfoils is in agreement with the results of low

speed tests on 6- and 10-percent-thick circular-arc airfoils (refer

ence 1). (The leading-edge angles, trailing-edge angles, and maximum.

thickness locations presented herein are interrelated. Leading- and 

trailing-edge angles were determined from tangents at the 0- and 

100-percent-chord stations .) 

At Mach numbers up to about 0 .65 there is little variation of 

effective maximum. lift coefficient with Mach number (fig. 5(a)) for 

all airfoils except the wedge type. Beyond a Mach number of 0 .65 the 

maximum lifts of most of the airfoil s increase in a manner similar 

to that previously observed in references 2 and 9. The angle of attack 

for maximum lift coefficient (fig . 6) shows a general decrease with 

increasing Mach number for all of the airfoil sections. 

In general, it appears that for the subsonic-type airfoil sections 

tested in this investigation the best lift characteristics - that is, 

lift-curve slope and maximum section lift coefficient - were exhibited 

by the NACA 66-006 airfoil. For the supersonic-type sections, the best 

lift characteristics were obtained with the airfoils having their 
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maximum-thickness location at the most forward position tested. The 
general lift characteristics are similar for all of the profiles, and 
none of the supersonic -type profiles show peculiar lift characteristics 
which would prohibit their use in the subsonic speed range covered by 
these tests. 

Drag Coefficient 

The effects of compressibility on the section drag coefficients 
are shown by figure 7 to be generally the same for all of the airfoils 
tested and similar to previous test results for thin symmetrical air-
foils at low angles . At angles of attack from 100 to 20

0 
the curves 

are quite erratic throughout the Mach number range. 

In figure 8 differences in drag coefficient of the order of 0.005 
are evident for the various airfoils at very low lift coefficients 
(previously shown in reference 3) . The subsonic-type airfoils 
generally had the lowest drag coefficient and the wedge-type airfoils 
had the highest drag coefficient. At higher lift coefficients a 
general decrease in drag coefficient for a given lift coefficient 
occurs with forward movement of maximum-thickness location as a result 
of the improved lift characteristics previously discussed for those 
supersonic airfoils having their maximum-thickness location forward. 
A very rapid rise in drag coefficient occurs after the lift coefficient 
reaches a value near c, t (about 0.6 to 0.7), the rise generally 

~max 

occurring at a higher lift coefficient for the subsonic-type than for 
the supersonic-type airfoils. 

Increases in Mach number (within the range presented) have little 
effect on the data at very low lift coefficients but generally result 
in increases in lift-drag ratio at all lift coefficients below the 
stall. This effect of Mach number on lift-drag ratio is most pro
nounced for the NACA 16-006 and NACA 66-006 airfoils. The rapid 
increase in drag coefficient near maximum lift observed at all Mach 
numbers up to 0.70 is reduced considerably at a Mach number of 0.80. 

Although the drag coefficients of the supersonic-type airfoils are 
generally higher than those of the subsonic airfoils, the differences 
in drag coefficient are not so large that the use of the sharp-nose 
profiles would excessively affect the performance of supersonic air
craft within the subsonic speed range investigated. 
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Quarter-Chord Pitching-Moment Coefficient 

The variation of the section quarter-chord pitching-mnment coeffi
cient cmc/4 with stream. Mach nUlIlber (fig. 9) may best be discussed by 

considering two angle-of-attack ranges, one from 2 0 to 100 and the 
other from l20 to 20 0

• In the low angle-of-attack range, the variation 
of moment coefficient with Mach number (at constant angle of attack) is 
s.mall and regular until a Mach number of 0.70 or greater is reached. 
Wi th further increase in Mach nUlIlber, the moment coefficient increases 
negatively quite rapidly. For the higher angles, the moment curves are 
erratic throughout the Mach number range. The sharp increase in nega
tive slope is not present at the highest Mach numbers; however, there 
is a general negative trend throughout the Mach number range. The 
effect of Mach number on the variation of CIlle /4 with c l for these 
airfoils can best be seen in figure 10. For the subsonic-type air
foils, the effect of Mach number on pitching-moment coefficient is 
smallest for the NACA 0006-63 airfoil. The supersonic-type airfoils 
all show similar effects of Mach number on pitching-moment-coefficient 
behavior with the exception of the C-7 airfoil, which is definitely 
inferior. 

The effect of increaSing lift coefficient on pitching-moment 
coefficient can be shown by the moment polars of figure 10. Good 
agreement was found between the moment data for the C-5 profile of 
reference 1 and the M = 0.40 data presented in figure 10(e). At low 
lift coefficients the two supersonic-type airfoils having their maximum 
thickness at the 70-percent-chord station produced higher rates of 
change of moment coefficient with lift coefficient than did those air
foils whose IIl8ximum.-thickness locations were ahead of or at the 
50-percent-chord station. For lift coefficients near c &max , 
(about 0.6), a rapid rise in negative pitching-moment coefficient 
occurs for all of the airfoils. There is some indication that at a 
Mach number of 0.80 this sudden change in slope is diminished. For 
the subsonic-type profiles, the NACA 0006-63 seemed to give the most 
steady variation of pitching-moment coefficient with lift coefficient. 
For the supersonic-type sections, those airfoils having a forward 

dCmc/4 
location of the maximum thickness had smaller values of in the 

dCl 
lower angle-of-attack range and smoother variations of moment with 
lift. Although those sharp-nose airfoils having their maximum 
thickness at the 70-percent-chord station exhibit undesirable moment 
characteristics, it appears that the supersonic-type profiles with the 
more forward locations of maximum thickness would be generally as 
acceptable as the subsonic-type profile for practical applications 
within the speed range of these tests. 
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Schlieren Photographs and Pressure Distributions 

The schlieren photographs and pressure-distribution diagrams shown 
in figure 11 are representative of flow conditions over the airfoils 
investigated. The leading-edge attached-shock phenomenon, first 
reported in reference 3, is shown to occur at angles of attack as high 
as 8 0 and was observed at an angle of attack of 12 0 at the choking Mach 
number (not presented). At higher angles of attack only separation was 
observed, but the maximum attainable Mach number was reduced with 
increase in angle of attack. The pressure-distribution diagrams show 
that at high angles of attack this separation has eliminated the effect 
of change in upper-surface contour. These diagrams also show that the 
loading near the trailing edge is very high at angles of attack of 8 0 

or greater. 

CONCLUSIONS 

Two-dimensional tests of 6-percent-thick symmetrical airfoils of 
various circular-arc, wedge, and rounded leading-edge profiles at high 
subsonic Mach numbers indicate the following conclusions: 

1. At angles of attack near 90 the lift-curve slope of each of the 
airfoils decreased rapidly to a positive value approaching zero and 
roughly maintained this value up to the highest angle of attack tested. 

2. When the maximum thickness was located at the O.3-chord station 
rather than at the O.7-chord station, the circular-arc and wedge-type 
airfoils produced higher lift-curve slopes and maximum lift coeffi
cients, lower drag coefficients for a given lift coefficient, and 
improved pitching-moment characteristics. 

3. The variations with Mach number of the lift, drag, and 
pitching-moment coefficients are generally similar for the various 
type airfoils tested. There appeared to be no factors which would 
prohibit the use of the sharp-leading-edge-type profiles at the 
subsonic speeds tested. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., May 3, 1949. 
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Figure 1.- Airfoil profiles and static-pressure-orifice locations. 
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