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SOME EFFECTS OF SYSTEM NONLINEARTTTIES
IN THE PROBLEM OF ATRCRAFT FLUTTER

By Donald S. Woolston, Harry L. Runysan,
and Thomaes A. Byrdsong

SUMMARY

This paper presents the results of a preliminary investigation of
the effect of nonlinear structural terms on the flubtter of a two-degree-
of-freedom system. The three types of nonlinegrities investigated were
a flat spot, hysteresis, and a cubic spring. Calculations were made on
an analog computer. For one case, the flat spot, an experimental inves-
tigation was also made and good correlation with theory was found.

In general, it was found that the linear flutter speed did not
change for small disturbance angles; however, for larger disturbance or
input angles, the flutter speed usually decreased. One exception was
the cubic hard spring, for which a limited-smplitude flutter was found
to exist well above the linear flubtter speed.

INTRODUCTION

Until fairly recently the problem of aircraft flubter has been
treated analytically as a purely linear phenomenon. Potentially, how-
ever, many sources of nonlinearities exist and their possible effects
are receiving more and more attention. It is thought, for example,
that meny of the limited-amplitude oscillations are assoclated with
nonlinearities.

In the flutter problem three types of forces - the inertia, the
damping, and the elastic - are involved. ZEach of these forces may arise
from either the aerodynamics of the problem or from the structure. Non-
linearities associated with the aerodynemics may arise, for example.
from the effects of thickness or flow separation or from the variation in
hinge moments with emplitude. Some serodynamic effects of thickness
have been studied analytically by Van Dyke (ref. 1). He has treated the
case of two-dimensional, supersonic flow and has found, except near a
Mach number of 1, that thickness effects for this case are moderate.

The structural side of the problem may also give rise to nonlin-
earities in the inertial, damping, and elastic forces. The present
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investigation is concerned with nonlinearities in the elastic forces, and
three types of nonlinear springs have been considered. Their effects on
flutter have been examined in the investigation of a two-dimensional, two-
degree-of -freedom system. A part of the investigation has been made on an
electronic analog computer. The analog representation of the problem is
discussed in the appendix.

SYMBOLS

W natural frequency in translation, radians/sec

Wy, natural frequency in pitch for besic linear system, radians/sec

I, mass moment of lnertia about elastic axis per unit lengbth of
span, slug-fta/ft

Kg spring constant of linear system, ft-lb/radian

M moment, £t-1b

m mass per unit length, slugs/ft

Sq, mass static unbalance per unit length, referred to elastic
axls, slug-£t/ft

v flutter speed

ViIy flutter speed of linear system ‘

Xcg coordinate of center of gravity measured from leading edge,
percent chord

Xeag coordinate of elastic axls measured from leading edge, per-
cent chord '

B angular free play, deg

6 angle of rotation, deg unless indicated otherwise

P fluid density, slugs/cu £t

a nondimensional distance of pitch axis from midchord measured
in helf-chords, positive for positions of pitch axis behind
midchord, a = 2Xgg - 1

b wing semichord, £t

h vertical displacement from equilibrium, £t

t time, sec

Dot over quantity indicates differentiation with respect to time.
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TYPES OF NONLINEAR SPRINGS INVESTIGATED

Nonlinearities in the elastic forces can arise in many possible
ways. Three types of nonlinear springs have been considered, and
thelr characteristics are shown as plots of the force or moment required
to produce a given displacement. (See fig. 1.)

Shown at the left of the figure is a flat spot. This may be con-
sidered to represent the condition of free play in the hinge or linksage
of a control system.

At the right of the figure is one type of hysteresis. As force or
moment is increased, displacement varies in a linear manner until a
point is reached at which a Jump occurs, after which the system is again
linear. On the return path, a corresponding jump occurs at a negative
value of the force, A nonlinearity of this type may occur in the case
of a control surface with free play if frictlon exists at some point in
the linkage, or it may occur through the action of power servos. In
the case of a wing, this type of nonlinearity might represent the effect
of rivet slip.

The third type of nonlinearity treated has been termed a cubic
spring, where the force exerted depends on the usual linear power of
the displacement and, in addition, on a term containing the cube of the
displacement. This can be considered either as a hard spring, which
becomes stiffer as displacement increases, as shown by the solid line,
or as g soft spring, which becomes weaker as displacement increases, as
shown by the dashed line. In the case of a control surface, a hard-
spring effect might be associated with power controls. In the case of
a structure, a hardening effect is found when a thin wing, or perhaps
a propeller, is subjected to increasing amplitudes of torsion. A sofi-
spring effect may be assoclated with panel buckling.

EFFECTS OF NONLINEAR SPRINGS ON ATRCRAFT FLUTTER

These three types of nonlinearities bave been considered in the
flutter investigation of a two-dimensional, two-degree-of-freedom system,
free to oscillate in translation and in pitch., The flutter character-
istics of the system have been determined with an electronic anslog
computer, using incompressible, indicial air forces. The analog repre-
gentation of the fundamental linear flutter equations was based on the
work of Baird, Pines, and Winson (ref. 2). For the flat spot, in
addition to the analog results, experimental results have been obtained
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in the Langley 2~ by h-foot flutter research tunnel. The physical
characteristics of the systems treated for each of the three types of
nonlinear springs are given in table I.

In the flutter results to be discussed, one of the variebles to be
employed is an imput angle 6. The significance of this input angle is
given in the following discussion.

In obtaining results with the analog computer for a particular case,
a glven value of velocity is selected, the system is given an initial
displacement (for example 5, 8), and 1ts response to this displacement
is examined for stability. In general, the results to follow will show
that the response of the system becomes unsteble only when a sufficiently
large initial displacement is imposed. In the physical system, this
initial displacement corresponds to the effect of a gust or to an abrupt
movement of the control stick.

Flutter Results With the Cubic Spring

In figure 2, analog results are shown for the cubic spring in the
torsional degree of freedom. Results are shown in the form of the input
angle 0 required to induce flutter as a function of velocity. For
this case, the relation between moment and displacement was arbitrarily

assumed to be M = 140.56 + 40003, where M is the moment in foot-
pounds and 6 +the torsional displacement in radians, The coefficient
of the linear term in 6 represents the spring constant in foot-pounds
per radian of the linear system.

First, the flutter speed of the linear system was investigated and
was found to be around 270 feet per second. Then, both hard and soft
cubic springs were considered. Flubtter boundaries are shown by the solid
curve for the soft spring and by the dashed line for the hard spring.

In both cases, the flutter region lies to the right of the boundary.

For the hard spring, the flubter boundary is a straight line at the
flutter speed of the linear system. The soft spring in this case hed a
destabilizing effect in that flubter could be induced below the linear
flutter speed by making the initial displacement sufficiently large.
For the system treated herein, however, the deviation from the linear
Tlutter speed occurs only at fairly high initial displacements.

It is also of interest to consider the flubtbter amplitudes associated
with these results. For both the linear system and the soft spring,
the flutter oscillation was highly divergent at any velocity above the
flutter boundary. With the hard spring in the system, however, the
flutter amplitude is self limited. This limit amplitude is a function
of velocity, however, and increases as velocity is increased beyond the
Plutter boundary.
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In studying other configurations, cases have been found in which
g hard spring can be destabilizing, and it appears that the effects
produced by a cubic spring depend on the stiffnesses of the original
linear system. Generally, flutter speed decreases as the bending-
torsion frequency ratioc approasches unity. If a cubic spring, whether
hard or soft, tends to make this ratio epproach wmity, it will probably
be destabilizing.

Flutter Results With the Flat Spot

The second type of nonlinearity to be considered is the flat spot
and, as mentioned previously, both wind-tunnel and analog studies were
made. The main features of the model used in the wind-tunnel tests are
shown in figure 3. The sketch represents & two~dimensional model which
completely spans the test section and which is free to oscillate in
pitch and translaetion. The pitching degree of freedom is provided by
a bearing-supported shaft located slightly behind the quarter chord.
This system In turn is suspended between a palr of leaf springs on
elther side of the test section so that the entire mechanism is free
to translate. :

In translation the system is linear. The nonlinearity was intro-
duced. in the torsional degree of freedom in the manner shown in the
detail sketch. A leaf spring is clamped to the end of the torsion axis
and its free end extends upward between two set screws. The gap between
the screws can be closed completely to give a lineaer torsion spring or
opened. to provide any desired amount of angular free play, glving the
spring charascteristic shown to the right in figure 3.

In figure 4, results obtained in the wind tumnel with this config-
uretion are compared with analog results, The ordinate of the figure
is again the input angle 6 din degrees. The abscissa is a flubtter-

speed ratio V/Vj ., where Vi p. is the flutter speed of the linear

system, and it 1s immediately seen that the flutter speeds have been
decreased. In the Investigation the angular free play &y was kept
constant at 0.5°. The solid curves and the regions lebeled steble, mild
flutter, and flutter refer to the analog results. The circles show wind-
tunnel experimental points.

In both the experiment and the analog results, a preload was incor-
porated into the system. This preload was comparable in effect to a
deflected tab and produced a moment which vaeried with the velocity. At
equilibrium, therefore, the model was not centered in the flat spot but
rether at some point on the linear arm of the diagram. This means that,
for small displacements from equilibrium, the system moved only on this
linear arm so that, at velocities below the linear flutter speed, the
system was stable,
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With displacements slightly greater than 0.5°, the effect of the
flat spot began to enter the plcture and a region of mild, limited-
amplitude flubter was encountered. Here the system oscillated about
1ts equilibrium position across only one knee of the flat spot and did
not traverse the full flat-spot width.

As an exsmple, at a value of the flutter-speed ratio of 0.6, the
flutter amplitude in this region of mild flutter was sbout 1°. Such
limited oscillations, when translated into the behavior of control
surfaces in flight, might not be dangerous in themselves but could be
significant from & fatlgue standpoint.

As Initial inputs were Increased still further, a much more violent
flutter was encountered in which the model oscillated completely through
the flat spot with large amplitude. The experimental wind-tumnel points
apply to this violent type of flutter and agreement with the analog
results is fairly good. Although not shown iIn the figure, it should be
noted that in the experimental tests, also, a region of mild flutter
was encountered at inltial displacements comparable to those indicated
by the analog.

In obtaining these results, only a single value of the preload has
been taken into sccount, and further studies in which the preload is
varied would be desirable. The destabllizing effect of the flat spot
in this case is probably associated with an effective reductlon in tor-
sional stiffness. In the absence of any preload, the torsional stiff-
ness at equilibrium would be reduced to zero, and presumably then one
would at least expect to encounter umnstable oscillations in the region
of the flat spot.

Flutter Results With Hysteresis

If, in addition to the free play, some source of static friction
exists, the hysteresis phenomenon occurs. As mentioned previously, a
hysteresis of the type described msy arise in the case of friction in
the hinge or linksge of a cantrol surface or, in the case of a wing,
might be associated with rivet slip,

Before considering the flutter results with hysteresis, scme purely
structural characteristics of the system with hysteresis should be exam-
ined. Shown in figure 5 1is the response of a system with hysteresis at
zero alrspeed. The upper and lower traces represent, respectively, the
displacement of the system and the variation in moment after release
from the initial displacement from equilibrium. The indentations on
the lower trace occur when the system passes through the flat spots of
the hysteresis box.
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The presence of this hysteresis in the system has two primary
effects on the structural characteristics. One is the introduction of
variable structural demping, shown by the lines drawn tangent to the
upper trace. At high amplitudes, the rate of decay is relatively small.
As the amplitude of the oscillation approaches the height of the hys-
teresis box, the damping is considerably greater. When the oscillation
is contained within the box, the structural damping in this illustration
is zero.

The second effect of the hysteresis on the structural properties
of the system is not apparent in this figure but is the introduction of
an effectively weaker spring. At high amplitudes the frequency of the
oscillation 1s less than the frequency at low amplitudes where the
system is linear.

Anslog results for bending-torsion flutter with hysteresis 1in the
torsional degree of freedom are shown in figure 6. Results are again
presented In the form of the input angle 6 plotted against flutter
velocity. TIwo values of Bmp, the amount of free play in torsion or the

width of the hysteresis box, were considered. These were &p of 0.2°,
shown by the solid line, and &p = 0.4°, shown by the dashed line. The

height of the hysteresis box was held constant. In these results, the
flutter region lies above or to the right of the lines.

Consider first the results for &p of 0.2°, shown by the solid

curve. For very small inputs, the system oscillates on a line through
the center of the box with a linear spring constant, as shown by the
dashed line in the spring diagram. For this reason, the flutter bound-
ary at the highest velocity occurs at the flutter speed of the linear
system,

This boundary continues straight upward until an initial displace-
ment of 0.6° is imposed. Actuslly an initial displacement greater than
0.2° represents a displacement beyond the linear path within the hys-
teresis box. At low amplitudes, since the presence of the hysteresis
introduces a large amount of structural damping, for imputs up to 0.6°
the oscillation decays and the system oscillates at constant amplitude
within the hysteresis box. For larger displacements at the linear
flutter speed and at velocilties above the linear flutter speed, the
oscillation diverged raplidly.

As in the case of the flat-spot results, flutter could be induced
at velocities below the linear flutter speed by meking the inltial
displacements sufficiently large. A% the larger displacements, the
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hysteresis damping is smalier and the presence of the free play in the
system is producing an effectively weaker spring. Finally s velocity

is reached below which the -air forces will not sustain an oseillation
regardless of the magnitude of the initial displacement. For all veloc-
ities below the linear flutter speed, the flutter is of limited amplitude.

Results for the wider hysteresls box exhibit the same trends. At
velocities below the linear flutter speed, however, greater initial dis-
placements are required to inltiate flutter, since the wider hysteresis
box introduces more damping. At the same time, the Increased amount of
free play reduces the effective spring constant even more, and the
region of limited-amplitude flutter extends to a lower velocity.

CONCLUDING REMARKS

Little is known of the exact nature and magnitude of the nonlinear-
ities which exist in actual aircraft. The purpose herein has been to
meke a preliminary study of the effects of some nonlinearities which might
occur. The results shown are, of course, a function of the particular
configurations treated and are perhaps most closely related to the prob-
lem of control-surface flutter. They indicate, however, that in scme
cases nonlinear effects can be large and can be destabilizing. The
results indicate further that the stebility of a nonlinear system can
become a function of the magnitude of an external excitation; it is
also indicated that, when a nonlinear system becomes unstable, its
flutter may become less violent and self-limited.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

langley Field, Va., May 9, 1955.
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APPENDIX A
ANATOG REPRESENTATION OF NONLINEAR FIUTTER EQUATTONS

In this appendix the wiring diagrams for the various types-of non-
linearities which have been treated are considered. In figure T, a
dlagram 1s given which shows the wiring for the analog representation of
the equations of motion for the complete system with the dashed box indi-
cating the point at which the nonlinearities are introduced. Figures 8,
9, and-10 show, respectively, the wiring for the cubic spring, the flat
spot, and the hysteresis nonlinearity. The function 6, shown in fig-

ures 9 and 10 denotes the output of the nonlinear circuits.

The form of the baslic equatlions of motion used in the wiring is
essentlally that given by reference 2. In reference 2 the equations of
motion are general in. that they are written in terms of coupled modes of
vibration and provide for spanwise variations in structural properties
and in deflections. In the present analysis a two-dimensional system

oscillating in rigid modes of translation h and pitch © 1is considered.

For this case the equations of motion can be written in the following
form:

For the translatlonal degree of freedom,
2 o

—h——E—El h+Al.Lh+A126+A12é+A126+
A

ll JF T-T, (T-T ) dry + A12 Jf T-Ty (T-Tl) dry +
A u/\ =T, (T-Tl) dry + A12 JF ) T-Tl) (T-T ) dr, +

A 8(rI(0) + Ay, frIE(0) + A r)e(0) + A;_sémé(o)] (a2)
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and for the pitch degree of freedom,

- L 12 L O+ ato+ae+
-9 _TE\elh+A21h+A21h+ oo .

Aoo

21 f T-T 'r--rl) drq + A22 f -Tl)e (T—Tl) dTl +

21f .“r-'r)d'r +A22f Tl)d'rl+

. o
Azlsﬁ('r)h(O) + A;‘1¢<T>h<o) + A22¢(T)e(0) + A22¢(T)e(0)] (A2)

where T = V'b/'b is a nondimensional time factor and T is the varia-

ble of integration. For the cases considered, the quantities appearing
in these equations are defined as

Ajal =m + Trpb2 Azl = Sa - :rpbsa )
A_}_l = 2rpb° A} = -enpb5(2 + a)
Ag)_]_ _ cn-%b )2m Agl .
A]‘g_‘2 = SCL - :tpb3a Age = Ia, + :tpbu(-:é—' + 32>
A:le = 2npbo(1 - &) AL, = Eztpbll'a(a - %)
Aie - 2rpb” Ag2 = (--“"L,;,—]")EICJL - 2upb (a. + 1 (42)
2 wo 2o
Aiz = —2tpb° AZQ = 2npb (a. + %)
A:l = —2pbe Agl = 2:rpb5( + %)
Aiz = -2npb5(525 - a) Age = arpbl‘(% - a2)
J
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The term @(7) is the "lift-deficiency function" obtained from the
approximate expression by Robert T. Jones (ref. 3) for Wagner's indicial
response function (ref. 4) and appears as

g(t) = a.leBlT + a,aeBgr (ak4)
where
a = 0.165 a, = 0.335
By = -0.0455 B, = -0.30

The nonlinearities were introduced in the pitch degree of freedom
and were represented by circuits which correspond to the spring-
characteristic diagrams in figure 1. The nonlinearities are associated

with the first term of Age. In the case of the cubic spring (fig. 8)

the torsional frequency , &appearing in Age
of the moment functiod M = Kq0 + 093 which wes assumed for the spring-

characteristic diagram of figure 2.

was expressed in terms

Potentiometer settings for the diagram of the equations of motion
in figure 7 are given in table II.
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TABLE I.- CHARACTERISTICS OF SYSTEMS
Systems
Parameter

Cubic Flat spot | Hysteresis
Semichord, £t 0.5 0.5 0.5
Xeg s percent chord 23.0 29.7 23.0
Xeg» Percent chord 25.6 31.8 25.6
m, slugs/ft 0.1489 0.2985 0.1489
Sy, slug-£t/ft 0.00387L | 0.00321 0.003871
I,, slug-£t2/ft 0.00893k | 0.01196 0.008934
@y, redians/sec gl .25 58.9k 66.60
a_)a’ radj_ans/sec 12.5.66 81-2,4- 125.66
p, slugs/cu £t 0.002378 | 0.00243 0.002378

13
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TABIE IT.- POTENTIOMETER SETTINGS
[S.F. = Scale factor = 2,000 volte/unit]
B e Setting Pﬂﬁﬁgter Betting
O ® | ooy
® 20“%./“32_1 -lOOalAlL-/A?l
@ | ALy ® a8, 2,
@ 2 A;z @ -5031A4 Azz
© | o, ® | s 2,
3 3
® 1oxama"‘/A22 @ ~0.52; E*uh(o); Alze(o)]s.p.
\ Ay
-10]2npb {a + 1
@ [ A2 ( 2)] @ 2Bl
22
3 3
0.2 @ "0'25&2E‘JJ£(°)2+ 1{129(01] S.F.
An
0.2 @ 0.125a, /a']_
0.0005h(0) X 8.F. ) 28,
@)

®O&® ® ® ® G

10,
10, 2,
o,
0.0018(0) x S.F.

1cml A2
22

3 2
250010, 15

®©® ®

-O.ﬁall}.;h(o) + Azae(o)] S.F.
2

Aon

2B1

-0.125a.2E\2_1h(0) + AZQG(O)] S.F.

2

Az
0'12532/31

2B2
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TYPES OF NONLINEAR SPRINGS INVESTIGATED
FORCE
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NONLINEAR FLUTTER MODEL
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WIRING DIAGRAM
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