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ON SLENDER DELTA WINGS WITH LEADING-EDGE SEPARATION 

By Clinton E. Brown and William H. Michael, Jr. 

SUMMARY 

The slender-body approximation of linearized compressible flow is 
applied to the problem of a delta wing in which flow separation occurs 
at the leading edges. The vortex sheets found in the real flow are 
approximated by concentrated vortices with feeding lattices, and a 
plausible adaptation of Kelvin's theorem is applied to simulate the 
force-free nature of the vortex sheet. 

The computations show that leading-edge separation produces an 
increase in lift over that given by the Jones slender-wing theory and 
that the lift does not vary linearly with angle of attack. Computed 
pressure distributions and span loadings are presented and the theo­
retical lift results are compared with the results of simple force tests 
made at a Mach number of 1.9. 

INTRODUCTION 

A large number of fluid flows are affected to the first order by 
the fluid viscosity and yet do not constitute motions having restrictive 
amounts of viscous dissipation. Such fluid flows may be treated as 
special cases of irrotational or potential flows; thus their simplifica­
tion and ultimate solution are possible by well-known analytical methods. 
Kirchhoff (see ref. 1, p. 94) was probably the first to suggest this 
approach when he proposed that the drag of flat plates might be estimated 
by assuming that the flow separated from the sharp edges and formed a 
vortex wake behind the plate. Von Karman (see ref. 1, p. 225) later 
calculated the asymptotic form of the wake also by assuming that the 
dissipation due to viscosity was small. There is little in the liter­
ature which concerns the details of separated flows; however, Prandtl 
(ref. 2) has discussed the formation of spiral vortex sheets at the 
edges of flat plates in two dimensions, and Anton (ref. 3) has computed 
the position of the spiral as a function of time for a plate suddenly 
set in motion. The emphasis of references 2 and 3 was primarily on the 
vortex behavior and no attempt was made to estimate the forces acting 
on the plate. 
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In the present paper, the flow over a slender delta wing is con­
sidered and leading-edge separation is assumed. The physical flow field 
over the wing is expected to look like the schematic drawing shown in 
figure l(a), at least for vanishing aspect ratiOS; that is, separation 
occurs on the leading edge and produces the two spiral vortex sheets 
across which the pressure is continuous but the tangential velocity is 
discontinuous. For the slender delta wing in supersonic flow, the field 
is conical inasmuch as there is no characteristic dimension on which to 
base variations of any quantity along conical rays through the origin. 
Within the limits of slender-body theory, the model in figure l(a) is 
also applicable to subsonic flows. The only contribution of viscosity 
in these flows is to fix the separation point at the leading edge for 
reasons exactly analogous to those justifying the use of the Kutta 
condition at SUbsonic trailing edges. Solution of the problem consid­
ering the spiral vortex sheet was found to be too difficult; hence, a 
simplified model, more amenable to calculation, was adopted. This 
model, shown in figure l(b), replaces the spiral sheet with two concen­
trated line vortices above the wing and two feeding vortex sheets 
connecting the source of vorticity (leading edge) and the concentrated 
line vortices. It is expected that the results of the simplified-model 
calculations should give a fair estimate of the forces acting on the 
wing and indicate the important features of flows involving separated 
leading edges. 

A paper by Legendre (ref. 4) dealing with the same problem has been 
discussed by Adams (ref. 5). Adams pointed out that Legendre's solution 
failed to account properly for the forces on the feeding vortex sheet 
and that inclusion of the sheet forces produced a result which in effect 
left an uncanceled finite force in the flow field over the wing. This 
difficulty was encountered by Dr. Adams and the senior author in a 
preliminary investigation of the problem, and acknowledgment is made 
to Dr. Adams for his contributions in the early stages of the work. In 
the present paper, the previously found difficulty is resolved by use 
of more appropriate boundary conditions. Clarification of this point 
is made in the analysis. Work of essentially the same result as the 
present report has also been discussed by Edwards in reference 6. 

Experiments are described which allow comparison of the theoreti­
cally predicted forces with the test results, and a discussion is given 
of some factors affecting the overall problem of leading-edge separa­
tion on sweptback wings. The essential theoretical work reported herein 
was presented in a more condensed form in reference 7. 
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SYMBOLS 

half-wing span at any chordwise station x 

L 
lift coeffi cient, 

P~ (Wing area) 

lift 

M3.ch number 

apparent mas s 

pressure 

Plocal - Pfree stream 

!pv2 
2 

free - stream velocity 

disturbance velocities in y - and z-directions, 
respectively 

mean normal flow velocity over vortex 

complex velocity potential 

coordinate along wing in direction of free stream 

coordinate along wing normal to free stream 

coordinate normal to wing surface 

angle of attack 

vortex- core strength 

semivertex angle of wing 

imaginary part of 9 

vector -point coordinate (see fig. 2), S + i~ 

complex conjugate of 9, S - i~ 

3 
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real part of e 

p free-stream density 

a vector-point coordinate (see fig. 2), Y + iz 

complex conjugate of a, y - iz 

cp disturbance velocity potential 

Subscripts : 

o value at vortex position 

1 flow condition with right vortex removed 

Partial differentiation is indicated by subscripts; that is, ~ 

ANALYSIS 

Computation of Flow Field 

The problem to be considered is that of potential flow about a 
slender delta wing on which leading-edge separation exists; that is, 
the streamlines of the flow which wet the wing do not pass from the 
lower to the upper surface but rather come from both surfaces and leave 
at the leading edge. In reality, such a condition would produce a 
conical spiral vortex sheet above the wing, and the boundary conditions 
of the problem would be that no fluid pass through the wing surface and 
that the pressure across the vortex sheet be continuous. Clearly this 
situation represents a difficult problem because the solution must 
provide both the shape and strength of the sheet. Past experience with 
vortex sheets leads to the hope that the main features of the flow can 
be obtained by replacing the spiral sheet by a concentrated vortex near 
the center of the spiral. For conical flow, however, the net vorticity 
in the spiral is linearly increasing in the downstream direction; hence, 
the concentrated vortex must also be of linearly increasing strength. 
The increase in strength must be accomplished by a feeding vortex sheet 
in order to satisfy Kelvin's theorem; thus, the model shown in figure l(b) 
seems to be the most appropriate flow field amenable to simple calculation. 

The equation of motion to be satisfied represents a slightly per­
turbed main stream of velocity V and corresponding Mach number M: 

( 1) 
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where cp is the disturbance velocity potential and x, y, and z are 
Cartesian coordinates fixed to the wing. (The coordinate z is 
measured perpendicular to the flat wing surface, y is tangential to 
the wing surface but normal to the free-stream velocity vector, and x 
is measured in the flow direction along the wing.) If the flow is 
further restricted to highly swept wings, the term (1 - M2)~ may 

be neglected and the equation of motion becomes Laplace's equation in 
y and z: 

qyy + CPzz == 0 (2) 

With this assumption, the well-known slender-body theory can be used; 
hence, subsequent discussion will generally be related to the two­
dimensional flow field. 

Boundary conditions.- The boundary conditions at the plate are 
that the plate is solid and hence the normal velocities are zero and 
that the flow separates tangentially at the plate edges. The boundary 
conditions in the field are that the disturbances vanish at infinity 
and that the fluid pressure is continuous. In the real flow the last 
condition is satisfied by the fact that vortex elements lie along 
streamlines. The last condition is, however, impossible to satisfy 
with the assumed model and hence must be replaced with one which is 
more compatible. The difficulty lies in the presence of the feeding 
vortex sheet across which a pressure discontinuity must exist (because 
there is a component of the velocity through the sheet), but since the 
assumed vortex system represents the true spiral only at a distance, 
it is to be expected that, in the small regions near the system, viola­
tion of natural conditions might occur. It is, therefore, necessary 
to make the last boundary condition less detailed and hence to require 
only that the integral of pressure around the assumed vortex system 
vanish. In simpler terms, as a final condition the assumed vortex 
system (feeding sheet and concentrated vortex) must have zero net 
force acting since only the wing and not the fluid can sustain forces. 
Application of this idea to the model then requires that the forces 
on the feeding vortex sheet be cancelled by equal but opposite forces 
on the concentrated vortex; thus the concentrated vortex is not force 
free as was assumed in the Legendre solution (ref. 4). The mathemati­
cal formulation of the preceding boundary condition is as follows: At 
a given station x where the half-wing span is a, introduce the 
quantity a == y + iz, the vector distance to a point (y,z). The 
feeding sheet is assumed to be composed of filaments stretching from 
the leading edge to the vortex core as shown in figure l(b). The 
vector force on each filament representing the vorticity lying between 
x and a point x + dx can be expressed as 

dr 
ipV -( CJo - a) 

dx 
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because r, the vortex-core strength, is a linearly increasing function 

of x and hence ~ is constant for all values of x. (Note that 

cosines of small angles are taken equal to unity . ) The vector force on 
the concentrated vortex must be produced by a fluid flow normal to the 
vortex and of vector velocity v*. The vector force would be 

-ipv*r 

Setting the vector sum of the two forces equal to zero in ac'cordance 
with the previous discussion thus yields 

where E = §: and 
x 

v* V 
df 0 0 - a 00 - a 

--'--- = VE 
dx f a 

r = x dr because the vortex strength is linear in 
dx 

x. 

Equation (3) thus requires that the resultant flow velocity normal to 
the concentrated vortex filament be a function of the vortex position 
and the wing semivertex angle E. The complex velocity v* is, however, 
produced by the component of the main stream normal to the concentrated 
vortex plus the normal component of the velocity due to the disturbance 
velocity potential ~. The disturbance velocity is singular at the 
vortex position; however, v* can be expressed as 

(4) 

and hence, 

where the velocity (v + iW)l evaluated at 0 = 0 0 represents the 
average stream velocity over the vortex position and is easily computed 
in the usual manner by subtracting the velocity field of the vortex 
(purely circulatory about 00 ) from the complex velocity and then by 
taking the limit as 0 approaches 0 0 . 

Potential solution.- A solution of equation (2) is now sought 
which satisfies the aforementioned boundary conditions. The unknowns 
in the problem are the location and strength of the concentrated vortex 
and the lift on the plate. The complex velocity potential W(o,a) is 
now introduced and is composed of the sum ~ + i~ where ~ is a 
function similar to a stream function but has no physical significance 
with respect to the three-dimensional streamlines of the flow. The 
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dependence of the solution on x lies only in the relationship between 
x and a because, according to the slender-body concept, a gradual 
longitudinal deviation from a two-dimensional flow pattern changes the 
crossflow velocity field negligibly. For the same reason, the transverse 
vorticity on the wing and in the feeding vortex sheet does not contri­
bute to the complex potential function in the crossflow plane. The 
solution of interest is derived by conformal mapping of the flmr past 
two symmetrically placed vortices of equal but opposite strength. Thus, 
in the 8-plane (see fig. 2) 

w( e) ir 8 - 80 ( 6) loge 
80 

- iVa..e 
2n e + 

Transforming equation (6) to the a-plane by the substitution 8 Ja2 _ a2 

yields 

Ji 2 
Vao 

2 a2 
iva../i w( a) ir - a 2 

( 7) loge a 
2n Ji 2 J- 2 2 

- a + ao - a 

Equation (7), which was also given by Riabouchinsky (see ref. 8, 
p. 254), thus represents the flow normal to an impermeable flat plate 
having two symmetrically placed vortices of equal but opposite strengths 
located at positions ao and -Go' 

The boundary condition that the flow leave the plate tangentially 
at the edges yields the following relationship between r and v~: 

2jfV~ ---r 
( 8) 

This equation is easily obtained in the 8-plane by requiring the presence 
of a stagnation point at the origin. 

The final boundary condition to be applied (eq. (5)) requires the 
calculation of the mean velocity at the vortex location; hence, the 
effect of the complex function w(a) less the complex potential function 
of the right-hand vortex must be considered, or 

Differentiating equation (9) with respect to a and setting a equal 
to ao yields the conjugate of the complex velocity, or (v - iW)I' at 
the vortex location. 
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Rearranging real and imaginary parts of equation (5) yields 

(10) 

and combining equations (7) to (10) results in 

!~ ~-O-2 -_-a-2 -+-;r.( er=o=:=o -==a=2)=(:;::a=o=2 =-==a 2=;) 

(11) 

Equation (11) gives the means of finding the vortex location ero 
because the real and imaginary parts give two equations in the unknown 
coordinates Yo and zoo Upon separation of equation (11) into its 
real and imaginary parts, the simultaneous equations were found to be 
greatly expanded and not amenable to analytic solution. Consequently, 
the equations were solved in a numerical manner by choosing a value of 
Zo and finding the value Yo which would give an equal value of the 
common parameter rivE for the two equations. Equation (11) was also 
solved approximately by assuming the absolute value of ero to be nearly 
equal to a and expanding the radicals in power series. A solution 
was thus obtained which was valid to the second order in the param-

ero - a 
eter This simplified approach gives an analytic expression a 
for the position of the vortex which is 

( 12) 

The approximate solution is plotted, together with the exact solu­
tion of equation (11), in figure 3. It is seen that the path of the 
vortex center of gravity moves inboard and up as is already known to be 
the correct physical motion, and the center of vorticity appears to 
become asymptotic to a vertical line at about 84 percent of the semispan. 
The agreement between the approximate and exact solutions is excellent. 

The variations of both vortex position and vortex strength with 
angle of attack were obtained by making use of the relationship between 
Zo and Yo and equations (8) and (11). These computations were per-

formed both approximately and exactly, and the results are given in 
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figures 4 and 5 . The approximate equations governing the angle of attack 
and vortex strength are 

2:= 4 Z~~ + ~(Zaot/3J E 

and 

r ~ ~t + ~(Z:t/~~ 2:rraVE 
(14) 

For small angles of attack the vortex cores lie in a plane inclined 
to the free stream at an angle three-fourths the angle of attack of 
the plate, and hence the vertical position of the cores is almost a 
linear function of the angle of attack. Figure 5 indicates that the 
vortex strength increases roughly linearly with angle of attack. 

Computation of I~ft and Pressure Distribution 

Lift results.- The lift is most easily obtained from momentum con­
siderations or by computing the flow of downward momentum through an 
infinite plane perpendicular to the stream at the trailing edge; thus, 

L = -pV If (CPZ - Va')dZ dy = -pV ~ cp dy (15) 

Here the contour is the wing trace plus the cuts connecting the wing tips 
and the vortex center. Note that cpz is the velocity component in a 
plane perpendicular to the wing surface and hence contains, in the present 
usage, the upwash contribution of the main stream. 

Equation (15) can be expressed in terms of the complex poten­
tial W( cr) because W( cr) = cp + i 1jr as 

( 16) 

where R.P. stands for the real part of the complex function. The inte­
gration of 1jr is zero around the closed curve since 1jr is single 
valued in the field and constant on the wing boundary. Furthermore, 
the function W(cr) is analytic in the field external to the contour; 
hence, the integral is independent of the path provided that it encloses 
the original contour. 
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The simplest integration is obtained by transforming equation (16) 
to the 8-plane; hence, 

L = 

Substituting equation (6) gives 

L= 

or, in lift-coefficient form, 

w(e)dcr del 
de J 

C 
- 2rE eo + 80 

L - Va a + 2rraE 

( 18) 

In this equation, the second term represents the lift which would be 
obtained in the absence of leading- edge separation (the lift as computed 
by Jones, ref. 9), and the first term represents the departure from the 

e + e 
o 0 is a function of alE, and 

a 
J ones value. The real function 

r is proportional to aVa times a function of a!E ; hence , the lift 
coefficient may be expressed as aEf(a!E) or its equivalent, E2f(a!E). 
The lift computations for all aspect ratios can therefore be given by a 
single curve which is presented in figure 6 for the exact solution of 
equation (19) along with two approximations thereof. The curve labeled 
"First order" was also obtained by Edwards in reference 6 and is computed 
as mentioned in the previous secti~n by expanding the equations in series 

cr - a form about the wing tip and retaining only first-order terms in 
a 

The second- order result is obtained by extending the analysis to include 
terms of the next highest order. In view of the obvious approximations 
involved in the fundamental assumptions of the theory, the small differ­
ences indicated in figure 6 are probably of little consequence. The 
analytical expression for the second-order result is 

(20) 

The Jones results are also included in figure 6 for comparative purposes . 

• 
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The calculations predict an increased lift when leading-edge 
separation is present. This result can be shown to hold true for the 
case in which the full spiral sheet is treated, and the Jones result 
representing a crossflow of minimum kinetic energy also represents the 
minimum lift or minimum crossflovT apparent mass. The lift and apparent 
mass are directly related according to Munk (ref. 10) and can be 
expressed by the equation 

L = V2am 

where m is the additional apparent mass of the flow field in a plane 
perpendicular to the main stream at the trailing edge of the wing. The 
proof of the minimum-lift theory is given in the appendix. 

Pressure distribution.- The first-order expression for the pressure 
coefficient is 

6p = (-2 CP.x: + a 2 _ qy2) 
q V V2 z=o 

( 21) 

on the wing surface. The second term on the right does not normally 
arise when coordinates fixed with respect to the free stream are used; 
however, it is necessary when the coordinates are tilted through an angle 
of attack, as is the case in the present analysis. This term does not 

da 
contribute to the lift. The factor ~ can be expressed as ~a dx 

where ~ = E, the semivertex angle . The velocity potentials appearing 

in equation (21) can be obtained from the complex potential function of 
equation (7) by differentiation and by using the definitions 

qy = R.P. dW 
dO" 

and 

R.P. dW 
%. 

da 

Therefore the pressure coefficient becomes 

6p = 
2 

2E~W) 2 1 (dW) (22) 
q - V da z=o + a - V2 dO" z=o 

Pressure distributions were calculated for a 150 semivertex-angle 
wing, and the results are plotted in figure 7. Results for other aspect 
ratios can be easily obtained since, for any given value of alE, both 
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lift and pressure distributions are proportional to E2. The very-low­
pressure region on the wing upper surface is caused by the presence of 
the vortex, and the negative pressure peak corresponds approximately to 
the lateral position of the vortex. 

Figure 8 shows the corresponding span loadings which are of interest 
in that a considerable deviation from the elliptical loading can be seen. 

GENERAL PHYSICAL CONSIDERATIONS 

The present theory should be considered a limiting one for van­
ishingly small values of the aspect ratio; hence, its primary usefulness 
is to give a better picture of what a real flow does in such a limiting 
case. When finite aspect ratios are contemplated, several important 
physical modifications arise. One of these modifications is evident 
from the pressure distributions (fig. 7) where, for E = 150

, the upper­
surface absolute pressure is calculated to be negative even for moderate 
Mach numbers. Clearly then, compressibility ef fects must modify those 
flow patterns, pressure distributions, and span loadings considerably 
when the pressures approach the vacuum condition. Just how the modifi­
cation occurs is not fully known; however, in some cases experiments 
have shown two distinct types of leading-edge behavior (ref. 11), one 
separated and the other unseparated, with a special shock system replacing 
the vortex sheet. 

Another physical modification which can occur is the breaking-up of 
the spiral vortex sheet into two or more spirals or regions of concentrated 
vorticity. The occurrence of such a pattern is dependent on the stability 
of the vortex sheet formed at the wing leading edge. Testing the three­
dimensional sheet for reaction to small disturbances is an extremely 
difficult problem, and even its two-dimensional counterpart, the formation 
of a Karman street behind an impulsively started flat plate, has not been 
solved. Finally, a pressure gradient which is conducive to boundary-
layer separation appears to be situated near the leading edge of the 
triangular wing with separated flow. In such a situation, a secondary 
vortex having a rotational direction opposite that of the main sheet 
would be produced; hence, a modification of the assumed physical-flow 
picture would result. (The existence of such a vortex was first pointed 
out to the authors by Professor N. Rott of Cornell University.) In the 
latter case, the presence of secondary separation should be dictated by 
the pressure gradients normal to the leading edge on the upper surface; 
hence, for wings with finite angles at the edge, a crossflow stagnation 
point should exist and the separation tendency should be more pronounced 
than on a flat plate or a cusped-leading-edge profile. 

• 
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Of some interest in the present theory are the stream surfaces in 
the three-dimensional flow. Clearly, the streamlines leaving the leading 
edge curl up into the center of the vortex spiral; however, one adjacent 
streamline passes over the spiral, impinges on the upper surface or 
plane of symmetry, and splits into two parts, one part passing almost 
straight backward on the upper wing surface and the other part passing 
into the vortex-spiral region to form the inner side of the vortex 
spiral. Such streamlines form a conical stream sheet which, when inter­
sected by a plane perpendicular to the free-stream velocity, looks like 
the sketches of figure 9. The surface ray along which the flow impinges 
has been calculated for the mmplified model and the results are given 
in figure 9. As the angle of attack increases, the impingement point 

moves inboard from the leading edge until, at a value of 

moves onto the plane of symmetry. 

EXPERIMENTS 

~ "" 1 it 
E ' 

Lift and pitching-moment data were obtained on three wings with 
semivertex angles of 5°, 7.50 , and 100 in a Mach number 1.9 blowdown 
jet of the Langley gas dynamics laboratory. The wings had sharp 10 wedge 
airfoil sections with 9-inch root chords and were semispan models mounted 
on a boundary-layer scoop-off plate, the leading edge of which was 

l~ inches forward of the wing apex. Although the wings were mounted on 

the scoop-off plate, a boundary layer with a thickness of 3 percent of the 
semispan of the smallest wing still existed. From unpublished data, the 
effect of this boundary layer on the lift results is believed to be 
negligible. Forces and moments were obtained from a strain-gage balance 
system and tests were conducted at a Reynolds number level of 1.6 x 106 
per inch. 

Tne experimental lift data are compared with the Jones slender-wing 
theory in figure 10. The data exhibit the same nonlinearity as pre­
dicted but fall progressively lower than the theoretical curve as the 
apex angle is increased. Compressibility effects as discussed in a 
previous section are believed to account for the decrease in actual 
lift over that predicted theoretically. Inasmuch as the compressibility 
effects should become less important with decrease in E or Mach number, 
the present tests at a constant Mach number of 1.9 should indicate a 
decrease in compressibility effects with smaller values of E. This is 
apparently what happens, since the predicted and measured values tend to 
converge as E approaches zero. 

Drag-due-to- lift results are not presented for these flat wings 
because the drag equals the lift times the angle of attack since there 
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is no leading- edge suction. The lack of leading-edge suction in the 
theory results directly from the application of the Kutta condition at 
the leading edge; hence, the edge velocities and pressures are required 
to be finite. The center of pressure is located at the two- thirds-root­
chord position, as would be expected for any conical flow. 

CONCLUSIONS 

An approximate theory for the flow over delta wings having separated 
flow at their leading edges leads to the following conclusions: 

1. The lift-curve slope of wings of low aspect ratio should be 
nonlinear and higher than the lift-curve slope obtained from slender­
wing theory in which leading-edge separation was not assumed. For the 
higher aspect ratios (apex angles), little change in lift-curve slope 
should be expected for the two cases. 

2. The span load distribution and wing pressure distribution are 
markedly affected by the presence of leading-edge separation. 

3. Experimental force measurements on very slender delta wings 
having semivertex angles of 50, 7 . 50, and 100 at a Mach number of 1 . 9 
indicate good agreement between theory and experiment for the most 
slender wing with gradually increasing discrepancies as the apex angle 
was increased. The data are as yet insufficient to show whether the 
fundamental assumptions of the theory are satisfied. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., January 14, 1955. 
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APPENDIX 

CALCUIATION OF MINIMUM LIFT OF DELTA WINGS 

The complete problem of the wing with a spiral vortex sheet is at 
present unsolved; however, certain limiting values of the lift may be 
established from fundamental considerations. For the continuous-spiral­
sheet problem, the lift may be written as (eq. (17)) 

(Al) 

where Wee) now represents the complex potential function and may be 
considered to be made up of two parts: one, the Jones solution (ref. 9), 
or that corresponding to irrotational motion of the fluid about the flat 
plate; and the other, the contribution of the spiral vortex sheet. The 
first part gives the lift pv2~a2 as in equation (18); the second gives 

the lift increment pV df(e * + 8 *)dT for each segment dT of the vortex dT 0 0 

sheet, where 80 * + 80 * is the lateral distance from the imaginary axis to 

a point on the vortex sheet and T is a distance measured along the sheet. 
The lift contributed by the vortex sheet is thus 

(A2) 

where the integration is performed along the sheet from the origin to 
the center of the spiral. 

The boundary condition requires that the flow separate tangent to 
the plate edges. In the e-plane this condition is equivalent to 
requiring a stagnation point at the origin. Thus, the boundary condition 
in the e-plane can be written as 

or, in detail, the velocity contribution from the spiral vortex sheet 
must oppose the velocity of the motion at the origin and, hence, must 
equal -V~. If these conditions are expressed in terms of the vortex 
elements of the sheet, 

Jd f _8-=o~*_+-,,-8...::o:.....* d T 
dT R2 

lv~ 
2 

(A4) 
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where R is the distance beuveen a point on the sheet and the origin 
and, as in equation (A2), the integration extends over the length of the 
spiral sheet. 

By comparing equations (A2) and (A4) it can be seen that, if df 
dT 

is of like sign everywhere, the lift contribution of the vortex system 

must be positive. However, the sign of df must be always the same 
dT 

because, in the conical flow, vorticity is generated uniformly at the 
leading edge of the wing and the vortex filaments pass back and into the 

spiral and change only their lateral spacing (and the magnitude of ~) 
but never cross and thus never change sign. It is proved then that, for 
the conditions stated, the vortex spiral contributes only positive lift 
over that contributed by the irrotational-flow (Jones) solution. Hence, 
the Jones lift result is the lower limit of lift for the complete spiral 
problem as well as for the approximation of the present report. 
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(a) Assumed flow f ield . (b) Approximated flow f ield . 

Figure 1 . - Schematic drawings of separated flow over slender delta wings . 
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Figure 4.- Relation between vortex positions and angle of attack. 
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Figure 6. - Calculated lift results . 
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