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OSCILIATING IN SUPERSONIC POTENTIAL FIOW

By H. J. Cunningham
SUMMARY

Expressions based on linegarized supersonic potential theory are
given for the total 1ift and moment coefficients of thin arrowhead wings
osclillating in pitch and vertical translation. The arrowhead plan form
a8 treated herein includes all polnted-tip wings; the delta plan form
with an unswept trailing edge 1s a special case. A restriction is that
the camponent of flow normal to the tralling edge must be supersonic or
sonic. The total coefficients have been obtalned by integration of the
section coefficients given in NACA Report 1099 for the subsonic-leading-
edge wing (to the fifth power of the frequency) and in NACA Technicel
Note 2494 for the supersonic-leading-edge wing (to the third power of
the frequency). The accuracy of these expressions extends to sufficiently
high frequencies to make them potentially useful in flutter applications.

A correlation of coefficient notation is given for the present flut-
ter coefficlents, for dynamic stabllity coefficients, and for the exact
flutter coefficients developed by Miles for the supersonic-leading-edge
delta plan form. For the supersonic-leading-edge delbta wing, curves are
glven to show the comparison of these three types of coefficients. The
relative importance of higher order frequency terms as compared with the
lowest order frequency term in each flutter coefficient decreases rather
rapidly with the following parametric changes: increasing Mach number,
increasing leading-edge sweep angle (except for the supersonic-leading-
edge delta wing), and decreasing trailing-edge sweep angle. These para-
metric changes have the concurrent result that the accuracy of the approxi-
mate coefficlents increases for any given reduced frequency.

Sweeping the trailing edge back has, in general, sn unfavorable or
destabllizing effect on the damping of pitching oscillations. An unstable
damping in pitch, however, does not necessarlly imply an instability of
the wing if the wing is also free to translate vertically. For these two
degrees of freedom, examples are given of requirements on mass ratio and
pitching radius of gyration for the condition of no elastic restraint,
that is, with the wing in free flight.
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INTRODUCTION

The present paper is concerned with the integrated or total aero-
dynamic forces and pitching moments on thin oscillating arrowhead wings
in linearized supersoniec potential flow. The class of wing plen form
treated includes all arrowhead wings with subsonic or supersonic swept-
back leading edges and. superscnic sweptback or sweptforward trailing
edges meeting st pointed tips. The delta wing with an unswept trailing
edge 1is a speclal case.

The total forces and pltching moments on these arrowhead plan forms
can be useful in several applications including the following: dJdynamic
stability analysis of tallless arrowhead-wing configurations extending
to very-short-period oselllatlons, flutter analysis of arrowhead wings
or talls involving rigid-body components of motion, analysis of the
oscillations of a system consisting of a rigid wing or tail mounted on
a flexible fuselage, and analysis of oscillations of a rigid all-movable
control surface which either has a full-span arrowhead plan form or 1s a
helf-span surfece mounted on a body which acts as a reflection plane.

References 1 and 2 give expressions for total 1ift and moment on
rigld delta plan forms with all edges supersonic, and these expressions
apply to all frequencies of osclllation. Expressions for section 1lift
and moment of the more general arrowhead plan form are given in refer-
ence 3 for subsonic leading edges and in reference L4 for supersonic
leading edges. The expressions of references 3 and 4 were developed on
the baslis of an expansion of the velocity potential as a power series in
the frequency of oscillatlion and retention of the first few terms in the
series. Reference 3 retains the £ifth power of the frequency and refer-
ence &4 retains the third power. The total forces and moments of the
present peper are the spanwlse integrals of the expressions for the sec-
tion forces and moments of references 3 and L.

References 5 to 8 give various longitudinal static and dynamic sta-
billity coefficients for the errowhead plan form based on the retention
of terms for only the zero and first powers of the frequency of oscllla-
tion. Reference 5 deels with the subsonic-leadlng-edge arrowhead wing,
and references 6, 7, and 8 deal with the supersonic-leading-edge arrow-
head wing, a8 well a5 & more general plan form with a taper ratioc greaber
than zero.

Because of some confusion which exists with regard to the relstion
of flutter and stability coefficients, a correlation is presented herein
of the notation of the flutter coefflclents of the present paper, the
exact flutter coefficients of reference 1, and the dynamic stability
coefficlents as glven in reference 5. Furthermore, in order to permit
agsessment of the accuracy of the first-order frequency coefficlents of



NACA TN 3433 3

references 5 to 8 and of the higher order frequency coefficients of the
present paper in comparison with the exact coefficients of references 1
and 2, examples of these three types of coefflclents are given in the
form of curves as functlons of the frequency parameter @ for sonic-
and supersonic-leading-edge delta wings.

SYMBOLS

Ay, Pj’ Qﬂ’ RJ constents depending on PBC, expressed and tabulated
in reference 3; 1 =0, 1, 2, and 3 and
j=l,2,..-20

b semichord of wing et root or at midspan

e]]

mean aerodynamic chord

C =cot A =tan €

Cr ', Cr.', C1, !
o » “Ig » “Iq ?| 1longitudinel stability coefficients referred to
. . . stability axes, defined in reference 5
Cn's Cmg'> cmq

D= tan.ATE

Bans Funs) ‘
2 Tmn ) gection funcbions of B, v, and trailing-edge coordl-

e [ nate, defined in reference 4

Gons Bmn

- - e e e

Enns Fun ,W spanwise Integrals of Emn’ an s Gy, and

_ > given by equations (A12), (A1T7), (A23), and (Azh),

Gy K e respectively

h vertlcal displacement of axis of rotation, positive downward,

hoeﬂﬂt

= dh/3t

0 amplitude of vertical dlsplacement of axls of rotation
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m

I
2,n ’ “3,n’ spanwlse integrals defined by equations (Al) to
(A11) end (A18) to (A22)

Iy I

1 1
15,n 3 Ih,n’ Ih,n

k reduced frequency, bw/V
K ] » K:l 14
1,n sn’? spanwise integrals defined by equations (Alk)
. " to (A16)
Ké,n ’ K2,n

Li, My camponents of section lift and moment coefficients for a pitch
and moment axis at [y, appearing in equations (1) and (2)

L + 1L, complex lift coefficient due to vertical translation, posi-~
tive In 1ndicates 1ift acts upward for positive h (111t

opposes h) and positive L, indicates 1ift acts upward
for positive h (1ift opposes or demps h)

L5 + 1Ly complex 1ift coefficient due to pitching oscillstion, posi-
tlve L3 indicates 1lift acts upward for positive o and

positive 1Ij 1indicates 1lift acts upward for positive &

M1 + iM2 complex moment coefficient due to vertical translaetion, posi-
tive Mi indicates moment acts leading edge down for posi-

tive h and positive M, indicates moment acts leading
edge down for positive h

M3 + 1My, complex moment coefficlent due to pitching oscillation, posi-
tive M5 indicates moment acts leading edge down for posi-

tive o (moment opposes o) and positive Mﬂ indicates

moment acts leading edge down for positive & (moment
opposes or damps &)

Ly, My components of total 1ift and moment coefficients for a pitch
and moment axis at p,, appearing in equations (3) and (4),

obtalned by spanwise integration of Li and My;
i=1,2, 3, and 4

Iy', My' parts of Eﬁ and ﬁi, defined by equations (6) and (T);
i=1,2, 3, eand L
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M free-stresm Mach number, V/Speed of sound

Mo sectlon moment per unit span on wing strip parallel to main
stream, taken about exis of rotation pg, positive leading
edge up

M, total moment on wing about axis of rotation pg, positive
leading edge up, obtained by spanwise integration of My

P sectlon force per unit span on wing strip parallel to main
stream, positive downward

P total force on wing, positive downward, obtained by spanwise
integration of P

Tq redius of gyration of rigid wing about axlis at Hos nondimen-~
silonal in terms of semichord b

+ time

v velocity of main stream

a angular displacement about axis of rotation, positive leading
edge up, aoeiwt

& = du/3t

@p amplitude of angular displacement about axis of rotation

©y 5 Py, functions of M and leading-edge sweep angle, defined fol-
lowing equations (7)

1L, B4
-2 -1
€ helf apex angle (90° - A)

A, ATE swveep angles of leading edge and trailing edge, respectively,
positive for sweepback

By, V rectangular coordinstes moving in negetive p-direction with
average velocity of wing, nondimensional in terms of chord 2Zb

Ko value of p at axis of rotation and coilncident moment axis of
wing as shown in figure 1
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Moy mass ratio of wing, EEEﬁ_%EEE
8pb-C

w circular frequency of oscillation

m frequency parameter, 2kM2/be, nondimensional and equal to
2b times @ in references 3 and 4

o} alr density in maein stream

o = p3Ce - 1

UJ constants depending on BC and M, defined following equa-
tion (Bh); J =1, 2, . . . 20

EXPRESSIONS FOR TOTAL FORCE AND MOMENT

Expressions for the section 1ift and pitching moment for the thin
arrowhead wing in vertical translation and pitch are given in refer-
ence 3 for the subsonic-leading-edge (narrow-wing) case and in refer-
ence 4 for the supersonic-leading-edge (wide-wing) case. Total forces
and moments which can be useful in several applications, for example,
flutter analyses of arrowhead wings or taills involving rigid-body com-
ponents of motion, are cobtained in the present paper by spanwise integra-
tion of the section lift and moment expressions. The plan form treated
is that of the arrowhead wing shown in figure 1 with tralling edges swept
forward or back and meeting the leading edge et a polnted tip; however,
the component of flow velocity nmormal to the trailing edge must be super-
sonlc or et least sonic,

The notations of references 3 and 4 have been followed herein inso-
far as possible; compromises have been made when differences exist between
the two references. The section 1lift and the sectlon moment about the
axls p = Bo 8&re expressed by

P = -hpbv2ke " F%Q(Ll + iIp) + ag(Ls + ile)] ()
5 1ot [b
M_ = -bpbtVok 1 [b—o(ml + iM2) + a.O(M5 + iMlF)] (2)

(The axis sbout which the pitching oscillation takes place 1s also at
B o= poe)

The total 1ift and moment may be determined convenlently as twlce
the integral between the plane of symmetry and a wing tip and are
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) f e P2b dv = -89b2V2k2ewt [qu(—f'l + ii'2> + a,o(% + Eb'):l (3)

-
0
Hom2 [ g o - b [_hg(ﬁl o 1) + aglfly + jﬁh)} ()

Subsonic~-Leading-Edge Wing

Expressions for the section forces and moments are glven in refer-
ence 3 for the subsonic-leading-edge arrowhead wing. The total forces
and moments are the spanwise integrals of these section quantities. The
spanwise coordinate y of reference 3 1s replaced by v, and the coordi-
nate of the trailing edge X is denoted herein by 1 + Dv, where D 1s

the tangent of the tralling-edge sweep angle ATE' The three basic inte-

grals required, Il m’ 12 nm’ and 13 n? are given in the appendix.

) ’ ;
With these integrals the coefficients of total force and moment (divided
by C, the cotangent of the leading-edge sweep angle) can be wrltten as

-E:f .]:_1—6_1/
c Span [
_C_
1-CD Iy
2 2 "
_ Moy -9 O A o M 2(2 0
= BE 12,1 +C—213,2+k ?;éﬁ C!'3 - }-I-M205)12’5 +

2 0% 2 2 1 2.2
(lpﬁ a - ;2- - &M 66)12,1 - EE<05 + 4p“C 04)13,1I-] +

R YA O, hf o 1 2

k;§3(6;5012-0912,5 +324M015+?09-6ﬁ01012,5+
2[y2s . a2 L 2 2

328 (M Ulh B cll)I 2,1 + " (09 + 2B<C 10 *

b b L
8g'c crll)(Ig,l + 5—2 13,6) (58)
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I, v A 2 O 4 f22 2
Rl LA Bg[ 5(#20) - 3M2o;)1, ,° - 3EE(}M oy + 01)Ip off +
16 2 2 2
k3 Mg 16 (5M209 - B 05)12 oo+ (15M20 010 + o5 - 5[320 66)12,2 +
BO 582 5c_
2.2 b
—E(]jMEB Cloyp + 205 + 5B°C 06)12,0] (5b)

L 1 _1'_2 2 0 i g 2 2
2 MH 16 (a2 o 16 2.2 22 2
K EELBE(B o, - 5M2°15)12,4 - 15_02_(1514 CToyg + og + 5B°C 08)12,2 +
L
?517(53 c? g - 207 - 15M2;3 C cl7> 5 04] - 2uy _Cl (5e)

K3 Mol16 (o
B6|3p2

“15)12,5

(620, Bo)25°+—§@fba - 68520, ¢ +

3C

2 2 2 b2 2.2
+ 328 (M2020 -B 017)12,1 + 55615 + 2B7C%0¢ +

Lk L3
8pg°C GlT)(IE,l + — I5 6):‘ - 2]-’-0

aly!

—= (54)
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) _l__.‘*_(amzo -BEA)I o, % (Mc +BA)1202+1£2M)+16(1LM25 +
T 3g2 1 0/72,2 3202 1 C B6 )
o 16 L 2 2 2.2 2
5205)12’4 - 15_C-(B 05 - 58 C o) + M 05 + 1M=B=C 66)12 o *

"
6(503+5Bh00')_,_+2h&0' +5M2[.3CO‘6) J+kh'M8[6)+<Bc

l5Ch'
o 2 4.2 2.2.2 2
6M2012)12,6 + ;:%2-63 0'9 - T8°C O * M2012 + 2&4 B=C 613)12,4 | +
ok (lLB g, + TB C c - 55]36(3 11 * )+M26 + m25202015 +
105011'

- b 6l L
4 2 6 4 B 2 H2 iR

(5e)
—c& = %EO(I2,10 * E;l’é 15,2)] " fg[a(ﬁec’l - 5M2°5)12,3 - "(B o *

M205 + thﬁecach)(Ia,la + Elg 13,4)] + 10 M6E-6 (5M e ~ B 05)12 50 +

2 4y 2 2,242 2, 2 /[2
;lé-é(ﬁ 05-65006+M209+18MBEC 010>12,3 +EE@ O +

\ _
2131‘0206 + Mo + 2M2ﬁ202610 + 81423401*611) (12 1+ ie 13,6)] - 2u, -CLE
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172, 2 frm2 2 Y 2
k¢ ""(m 9 - P Al)IZ,B B202(B Ay + Mooy - e A3)(I2:l ¥
Az b2 M -1-6-(520 - 5%, V1. O - i-(seo + 6p*c20, +
o2 5,4) BV T 15/72,5 ~ 3c2\ T 8
2 2
Mo _ + 18M2B202016) I 5 - EEE(B o - 2;31‘0208 + M2615 + 21-12[32(!2016 +

! o2 (ﬁl L5 I
8M“BTC 017)(12,1 + = 15,6)] - 2pg TrEt 2p.0 T (5e)

— i, .
B N R e 0,1 ié( . ) 0
-5 + k[B (.2I2’2 + 510 )j'+ kléEE B o, e oo Iz,lr +

c®

2

_L_'(.g%a - 5gal*c2A3 - M207 + 1@42;320208)(12 o+ = 12,01‘) +

6
% - )] - Bl - o)

- 8% o6 * Mecr + 28M2p°0° ) 2,&2 L 6k (452015 +

T80 - 555604017 + o g + 7M2B202019 + 70M25“04020)(12,21* +

2 6 61»32( 4 2,2 6 7
ST ) = Moy, + Yoy, - MO 020)12,0]- 2p0(—02 +

T L
__h'. + 2“0 ._2..) (51'1)

where
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The quantities Ay, Py, Q,'j , and Rj are defined and tebulasted in

reference 3.

Supersonic-leading~Edge Wing

Expressions for the section forces and moments are given in refer-
ence 4 for the supersonic-leading-edge arrowhead wing. The spanwise
integrals of these section quantities are the total forces and moments.
The section coefficlents are expressed in terms of the spanwlise varia-
bles E., Fpn®, Gpns end Hy®. Their spanwise integrals EByp, Fpno»
amn’ end Emne are given in the appendix. The coefficients of total

force and moment can be written as

L'+ 1T )

Ll+ iL2

Ip + i = L' + 1Ty - (% " 2“0)(—1'-1 ' i-f?) (6)

My + 1My =M + 1My - 2“O(LJ. * ﬂ‘e)

My + i, = ﬁ5' + 1My ' - EpO(TB' + ifh') - (ij;"' 2;.10)('121 + :Lﬁe)

J

where

2Ly = aqBy + Bifior + Bfge + K7 (“2%2 + aslyg + aFys +
5 = 0, .5 O
o, + By + BTy, ) (7a)

- = 0

25D = - L G e a® - AR =z O
anly = B Fy £ k(“l%l aoBoo = dzfsg + BoHoo

- ‘535030) (o)
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= ~ - - - 0 ~ 1 - 0
=2ls’ = 716y + 75Eq, + 7320 + 8181y + 8Hy + sy, +

- 0 - 0 .

eyt = -1y E Fo+8F tuag O g g
2:th = k(ylEOl + SlFll + 821?01 + 85F02 ) + k(72G02 + 73G20 -

- - ~ 0 = 0 - 0 - 1 - 0
Mloz = VsByy + ByH 7+ Ostos = BgFys - 5Fo03 - 8F04)

(7a)
~onM, ! = E G, 5.0 7,0 -8 ° 2la,G.
h' = “1( 02 = 01) + By + B.2(}?1.2 - Hop ) + kT lanGhs +
a.G. +a(ﬁ'-§)+ (ﬁ -5)+5_ .
5721 T “\oy - Go3) + ax(By, - Gy 33
—~ 0 - 0o
By (FC - Bol )] (Te)
= (— 0 = 0\1 - — - - =
-eny' = By (Hoy - Fyy ); + Ko Gop + “2(%2 - EOB) + a5(Cpo - Eal) ¥
= 0 = 0 =~ 0
Botho * '35(“05 - T3 )] (7£)

_e,tﬁ'—5+<— G, G AP

553120 * 54@22'0 B Eleo) * 8 (FBO - E050) (Te)
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oMt =1 G.. - E +8§0-F 0)+5<E1-F 1)+
& 171\ o1 02 1\"11 21 o\"o1 11

75(621 Ezg) ¥ 54H220 * 55H130 + 56<§130 - fzﬁo) +
a7(ﬁ031 . )+ 58(304 ) Flb,o)]

where, as in reference l, but with C replacing A,

- M
sl 820

_ _M2c. b2
GE—ED-:WO—Z-E&(LI—U-FS)-‘-U]

_ M2C (a2
oz = 65202(5M +.0)

@, = ;NEE_E@(J_BUZ + 310 + 15) + 30(50 + 3)]
728%

-Mb’C 2
= M~(38c + 45) + 3c(4c + 9)
5 - 5l )
M
By = % Bz = W@a(ac + 3) + c]
M2C

2
o e M=(20c + 5) + 3
Pa 20}/2 Blp !832 7/2 ( ) °]

13

(Tn)
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c M2C
71 = T ')’5 = _;E_
75 = -ue (¢ + 3) 7, = _:szgi_ M2(202 + 190 + 15) + o(o + 3)]
3p20° | ohpTg
75 = [ (260 + 45) + 96:'
2)+B cr
B = ek 5. = M (20 + 3)
1 0572 5 6;572
2 —
8y =8y b¢ = __}54_775@2(% +5) + (5 - U)J
48g<¢
2c 2 [2e .
8., = B C_ ) =_M_._lrM(20+5)+5ch
7 A
2 22 4820 7/2
_ M3 _M*c
D')+ = ——37—2- 58 7/2(20 + 5)

20

It 1s to be noted for the supérsonic-leading-edge wing that, as the
sonic-leading~-edge limit is approached, all the coefficients Oy 5 By

74, and B4 epproach infinite values because o approaches zero. For

the condition, therefore, of a slightly supersonic leading edge, a large
number of significant figures would have to be used because of the loss
of significant figures at the final step (eqs. (7)). For the limiting
condition the force and moment coefficlents of equations (7) are finite
differences of infinite quantities and their numerical determination by
the present expressions cannot be made. The sonic-leading-edge wing
remains entirely tractable, however, as a limlting condition of the
subsonic~leading-edge wing.

In this section on the supersonic-leading-edge wing, a polnt con-
cerning only the delts plan form, made in references 1l and I, bears

repesting; namely, the total coefficilents divided by C ( C, L2/C
etc.) are dependent only on Mach mmber and not on C. This means that,
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for Mach numbers at which it may be inconvenlent to. obtaln the exact
results of reference 1, flutter coefficients (divided by C) can be
obtained to the fifth power of the frequency as follows: At the Mach num-
ber of interest, calculate the coefficlents, Ll/b’ end so forth, for a

delta wing with sonic leadlng edges from the expressions for the subsonic-
leading-edge wing. For constant M +these quantities remain unchanged
for ell the wider supersonic-leading-edge wings. This same observation
does not apply to the totel coefficlents 1f the trailing edge is swept,
nor does it apply to the section force and moment coefficlents for any
arrowhead plan form.

The sectlons to follow give some observations drawn from determina-
tion and use of the flutter coefficients obtained from the expressions
of this and the preceding sections.

RESULTS AND DISCUSSION

Effects of Mach Number, Plan Form, and Piltech-Axis Location

In order that some effects of psrameter varlations can be observed,
sets of force and moment coefficlents are presented in tables I to III.
Table I is arranged in the order of increasing Mach number for a specific
wing plan form. Tables II(a) and II(b) are arranged in the order of
increasing leading-edge sweep engle, with Mach number and trailing-edge
sweep angle held constant (or essentially constant). Table IIT is
arranged in the order of decreasing trailing-edge sweep angle (sweepback
is positive) with Mach number and leading-edge sweep angle held constant.
The purpose of the arrangement of the tables is to show that, for any
given reduced frequenecy k, the higher order frequency terms became prao-
gressively less Important compared with the lowest order frequency term
for any of the following parasmetric changes: increasing Mach number,
increasing leading-edge sweep angle (except for the supersonic-leading-
edge delta wing, as noted previously), or decreasing trailing-edge sweep

angle.

In order to show some effects of Mach number, plan form, and pitch-
axis location on single-degree pitching instability, figure 2 is pre-~
sented. Boundaries separating stable and umstable regions of Mach number
and pitch-axis location are given for arrowhead wings with 45° sweptback
leading edges and with five different trailing-edge sweeps, including
0° sweep obtained from figure T of reference 3. The reglions of possible
pitching instability lie below the respective curves and sweepback of the
tralling edge 1s seen to be unfavorable or destabilizing, whereas sweep-~
forwerd has the opposlite effect. The various curves have not been
extended below the Mach number at whlch the trailing edge is sonic. The
curves apply to slow oscillations for which terms in ﬂh other than the
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l/k term are negligible. If the frequency were to increase, the unsta-
ble reglon would shrink downward.

In order to provide some insight into the reason why sweepback of
the tralling edge can have a destabilizing effect, figure 3 shows the
regions on arrowhead wings whilch experience a destabilizing pressure
component for low-frequency pitching oscillations; that is, at the
instant 1n a cycle of a pitching osclllabtlon when the pltching veloeity
is a positive maximum (and displacement 1s zero), the hatched regions
of figure 3 have a pressure difference acting in the direction of the
local translational velocity of the surface. These reglons may also be
sald to have & pressure which leads the pltching displacement. For con-
venience, only one-half of the wing is shown, because the pressure dis-
tribution is symmetric sbout the root chord.

Wings with two different leading-edge sweep angles are shown, 450
and 60°, for & Mach number of 10/9 and with various pitch-axis locations
as Ilndicated in figure 3. It 1s to be noted from the figure that, for an
axis location behind the 49 percent root chord on the 45° wing end behind
the T3 percent root chord on the 60° wing, essentially all wing ares added -
between the pitch axis and tralling edge by sweeplng the tralling edge
back is destabllizing. For more forwerd axis locations, some stabilizing
and some destebilizing area is added by traillng-edge sweepback, with the .
net contribution belng in the destabilizing directlon unless the piteh
axls is well forward, as would be the case, for example, for a noncanard
horizontal tail.

As has been polnted out, figure 2 shows regions of possible pitching
instability for certain plan forms. Before & pitching instability of an
arrowhead-wing aircraft (without an oscillating control surface) can
actually occur, however, other conditions on mass, mass moment, and elas-
tic restraint must be satisflied. In order to illustrate some of these
conditions, the simple case of a rigid arrowhead wing flying freely has
been anslyzed and the results are presented in figure 4 for a Mach num-
ber of approximately 1.25 with the center of gravity (and pitch and
moment axis) at the root midchord (“O = 0.5). The conditions on the

wing are that it has two longltudinal degrees of freedom, pltching and
vertical translation (but no freedom to vary its speed in the fore-and-
aft direction), and is not elastically restrained; also, no effects of
gravity, thrust, or aerodynsmic forces due to a fuselage or to the thick-
ness of the wing are consldered. The dynamical equations of equilibrium
for harmonic oscillations about the center of gravity can be expressed
simply in matrix form as
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[~ aAr 7 -
= T I h
L .5 ) L*P) 2o
”W'(?*iﬁ‘) '<c+i'0' b °
: = (8)
M —Me) 2 (@g Mlp)
<+ 1 -= - + 1 =]l 0
c C Yo v T\T c/l°] L
The quantities and an &are the complex eamplitudes of harmonic motion

of vertlcal translation and of piteh, respectively; p, and r, are
described in the next paragraph.

The nontrivial solution of equation (8) can be obtained by setting
the determinasnt of the four-element square metrix equal to zero. The
sbscissa p, of figure 4 is the ratio of the mass of the wing to the

mass of eir p(2b)5C. As an slrplane galns altitude, 1ts mess ratio

moves to the right in figure 4. The ordinate Ty is the radius of

gyration in piteh of the subject arrowhead wing, nondimenslonelized in
terms of the root semlchord; that is, r, is unity if the radius of

gyretion is equal to the semichord b. The three plan forms represented
in figure 4 have subsonic or sonic leading edges, and the solid curves
are the result of uslng coefficients which include the f£ifth power of
the frequency.

The unstable reglons are inside and to the right of the respective
curves. The lower right-hand curve applies to a delta wing with a
leading-edge sweep angle of 45°, When the trailing edge is swept back
20°, with the leading-edge sweep angle held at 45°, the unstable region
expands upward to the highest curve shown. (Fig. 2 also has curves for
these two plan.forms.) If, instead of the trailing-edge sweep angle
being increased, the leading-edge sweep angle is decreased to the point
where that edge is sonic (A = 36.8°), the region of instebility extends
outward to the curve farthest to the left. (The short-dash curve lsbeled
"Exact (ref. 1)" and the long-dash curve resulting from first-order fre-
quency coefficients for the same plan form are discussed in the next
section.) If the Mach number changes from that of figure 4, the unstable
reglons expand to the left as M decreases and shrink to the right and
eventually vanish as M iIncreases. ILocation of the pitch axis also
affects the extent of the unsteble region. No unstable region exists in
a plot of the type of figure L4 unless the wing has a plan form, a Mach
number, and & pitch-axis location which fell in a region of possible
instebility in a plot of the type of figure 2. A rigid arrowhead wing
flying at supersonic speed wlth the two specified degrees of freedom
therefore can experience an oscillatory instabllity only if it falls in
unstable regions of plots of the types of both figure 2 and figure L.
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Comparisons Wilth Other Work

Comparisons of results from the expressions of the present paper
can be made with the exact results of reference 1 only for the case of

the supersonic-leading-edge (wide) delts plan form. (In ref. 1 the tgb-
uleted values of the Schwarz function f) are incorrect and, as a result,

the coefficlents Ry, -(l/k)IMa, and -I1¢ ere inaccuraste. In the

present psaper wherever numerical resulis from the theoreticel analysis
of ref. 1 are plotted, corrected values are used.

Comparisons of the present results can also be made with the first-
order frequency coefflcients generally used in dynsmic-stability work.
It can be shown that the stability coefficients are identical with coef-
ficlents resulting from e frequency power-serles expansion of the veloclty
potential which includes only the zero and first power of the frequency
{(and the second power for vertical translation since the unit of transla-
tion here ig h and not h); these zero- snd first-power terms therefore
result in the steady-state and steady-rate-of-change coefficlents,
respectively. In the force and moment coefficients of equations (5)
and (7) the zero-order-of-the-frequency or static stability coefficients
are the terms involving 1/k2 in Iz and M3 (& kP-multiplier is taken

outside in egs. (3) and (4)) and those involving 1/k in I, and Mo.
" (Tbe latter terms would also involve l/k? if the unit of translation
were the tremslational velocity h as in sirplane stebility work rather
than the translational displacement h used in flutter work.) Addition
of the terms involving 1/k in Tj and My and those involving k to

the zero power in I3 and ﬁi gives the first-order-of-the-frequency

or quasi-steady dynamic stebility coefficients. Equations (5) and (7)
include 81l terms to the £ifth power and the third power, respectively,
of the frequency.

Table IV lists the notation for the coefficlents of the present
paper elong with the corresponding notation of reference 1 and of ref-
erence 5 for an arbltrary fore-snd-aft locetion of pltch and moment axis.
The quantities on any one line approach exact numerical equelilty as the
frequency of cscillation spproaches zero. It should be pointed out that
the reference length in the present flutter work is the root chord 2b,
whereas the reference length in stability work 1s the mean aerodynamic
chord € which, for arrowhead wings, is (2/3)(2b).

The accuracy of the approximste coefficients extending to the third
and to the fifth powers of the frequency can be compared with the exact
results of reference 1. The frequency range in which the approximate
coefficients are sufficiently accurate is the smallest for low supersonic
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Mach numbers. For this reason one Mach number chosen as a basis of
comparison is M = 10/9; comparison is also made at M = 10/7. The
results are presented In figure 5 as functlons of the frequency param-

o1M2
eter ® = ————— for a pitch-axis location gt the root midchord
M2 - 1
(UO = 0.5). The accuracy can be assessed from the figure and it can be

readily seen thet, for each force and moment coefficlent, the more terms
carried I1n the power series, the more closely the approximate curve fol~
Tows the exact curve. The lowest order frequency term, represented by

a horizontal line in each pert of figure 5, 1llustrates the correspording
coefficlent of dynamic-stability work, useful Pfor sufficiently low fre-
quencies. If an inaccuracy of 10 percent from the exact values can be
tolerated, the approximations adequately represent the exact theory in
ranges of the frequency parameter @ as follows: For expansion of the

velocity potentisl to s the renge of usefulness is gbout O S3% 1.k
For expeansion to @, the range is limited by M3 to about 0 < TE 1.7T.

For the dynamic stability coefficients (expansion to @) the range is
gbout 0 S @ £ 0.7, which, for this Mach number of 10/9, represents an
oscillation as rapid as 95 root chords (142 mean aerodynsmic chords)

per cycle. The wave length in root chords is equal to x/k. (It should
be understood thet for certain combinations of plan form, Mach number,
and pitch-axis location (for exsmple, as shown in fig. 2) the first-order
approximation to the damping in pitch Ff)+ can be zero or near zero, in
which case the higher order contributions even at low frequencies can be
a large percent of the flrst-order contribution. The fact remains, how-
ever, that the higher order contributiomns are small in ebsolute amount
for low frequencies and vanish at the limit of zero frequency.)

As the Mach number decreases toward unity, the useful range of
M2 - 1)
. 2M2
more, the usefulness of the linearized theory itself becomes questionable
as M approaches unity. Conversely, as M increases, the useful range
of k increases even if the useful range of @ remalns constant. The
useful range of « may increase, however, as M increases, as is illus-
trated in figure 5 by comparison of the coefficilent curves for M = lO/T
with those for M = 10/9 , both cases being for the supersonic-leading--
edge delta wing. Tt can be seen that for the higher Mach number the
approximste curves are more closely grouped sbout the exact curve for
most of the coefficients, notsbly ki, /c and kﬁ3/c.

reduced frequency k decreases toward zero since Xk = 3 further-

A point to be noted from the curves of mﬁ/c is that this quantity,
representing the damping of pitching osclillations, increases with an
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increase in frequency; thils result indicates that higher reduced fre-
quencies have a stabllizing effect on the pltching degree of freedom.

The lmmedistely preceding paragraphs discussing figure 5 are con-
cerned with the accuracy of the spproximaete coefficients specifically
for the sonlc- and supersonic-leading-edge delta plan forms at M = 10/9
and M = 10/7. In a broader vein 1t was pointed out in the preceding
section with the ald of tables I, IT, and IIT that, for the arrowhead
wing in general, increasing the Mach number, increasing the leading-edge
sweep angle (except for the supersonic-leading-edge delts wing), or
decreasing the tralling-edge sweep angle has the effect of decreasing
the relative lmportance of the higher order frequency terms in comparison
with the lowest order frequency term in each flubtter coefficient. A
concurrent result is, of course, that any of these given parametric
changes brings about an increased accuracy for the approximate coeffi-
clents of the present paper as well as for the results of references 3
to 8.

In figure 4 a short-dash curve is included for comparison; this
curve results from use of the exact coefficients of reference 1 for the
case of the sonic-leading-edge delta wing at M = 1.25. The wing plan
form and Mach number for the short-dash curve and the assoclated solid
curve are ldenticel, end 1t may be seen that the approximste curve
(fifth power of the frequency) is very close to the exact curve. As a
matter of interest, the long-dash curve labeled "@" shows the corresponding
result of applying first-power-of-the-frequency coefficients. As this
long-dash curve extends to the left, 1t shows to an increasing extent
a result of misapplying the first-power frequency coefficients to too

high values of oscillation frequency.
CONCLUDING REMARKS

Expressions based on lineasrized supersonic potential theory sre
given for the total forces and moments on thin rigid arrowhead wings
oscillaeting harmonically in pitch and vertical translaetion. These expres-
sions are based on an expansion of the wvelocity potential as a power
series 1n terms of the frequency of osclllation and extend to the fifth
power of the frequency for the subsonic-leading-edge wing and to the
third power for the supersonic-leading-edge wing. Flgures are presented
from which the accuracy of these expressions can be assessed.

The importance of higher order frequency terms in the flutter coef-
ficients in comparison with the lowest order frequency term decreases
in general as the following parametric changes occur: I1ncreasing Mach
number, increasing leading-edge sweep angle (except for the supersonic-
leading-edge delta wing), and decreasing trailing-edge sweep angle.
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Such paremetric changes have the concurrent result that the approximate
results of the present paper, as well as those of NACA Technical Note 249L
and NACA Report 1099 (which give section coefficients for supersonic-

and subsonic-leading-edge arrowhead wings, respectively), become
increasingly accurate for any given reduced frequency.

With regard to dynemic instability in pitch, for a given Mach number,
pitch-axis location, and leading-edge sweep angle, an arrowhead wing is
more steble (or less unstable) if the trailing edge is sweptforward and
less stable 1f the tralling edge is sweptback. The wlng also tends to
be more stable at higher frequencies than at low frequencies. An insta-
bility in pitch, however, does not necessarily imply an instebility if the
wing is also free to translate vertically. Examples are shown of require-
ments on mass ratio and radius of gyration for the condition of no elastic
restraint, that is, with the wing flying freely, with these two degrees
of freedom.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., Februsry 3, 1955.
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APPENDIX

SPANWISE INTEGRALS

Subsonic-Leading-Edge Wing

For use in equations (5a) to (5h), several spanwise integrals are
required. The first is

c
o]
Il,m=2j; vm\ﬁ+ 2Dy + (1)2--(313)v2 av (A1)

where C = cot A and D = tan Apg. By use of a recursion formula,

_ 1 c2 ' ] >
Ti,m= =25 T ooe Eﬁn + 1)PIy,py + (m - 1)I3 pp (m = 2) (a2)

with

c2 - (x + sin'-lC'D) +D (m = 0) (a3)

15,0 =
s T 22 2
1-CoB\ o cEDZ\

T =l—£-—(2 T ) -  (ab
1,1 3T o2 + 2DI1,0 (m = 1) (Ab)

Another integrel needed is
c

1D
Ip,n" = afo V(1 + DV)™ 1 + 2Dv + (De - ciz)vE av (85)
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which can be determined from combinstions of various values of Il,m

when (1 + Dv)® 1s expanded or, for the case of m = 0, can be found by
uge of the recursion formula

& _
1-CD N
Ig,no=2f (L+Dv)? 1+ 20v +[D? - =|v2 av
0 c
2 1
= C 5 —2-[(211 + 1)12,n_l° - (n - 1)12,n_20] + 2D
(n+2)(l - ¢ ) C
(n 2 1) (46)
and, for B =0, I2,00 = Il,O'
The third integral needed is
e
Iy, = 2 f A cosh~t ST DY) 4, (AT)
4 v
o}
Through integration by parts,
S
. ____2__fl'CD vBdv I S (28)
50" m ¥ 1 T n+ 1 Oom

° l/l+2Dv+(D2--é%>v2

Use can be made of the recursion formula
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c
T-CD
r VndV
I3,n = 2"/; -
\/1 + 2Dy + <D2 - }—)va
o2
_1_C® o ' - ' 2
== T czDz[(an l)DIB,n-l + (n -l)IB,n-2] (n 2) (Ag)
and of
Lo = ____?C__(’é‘. + sin-_lcn) (n = 0) (410)
\/1 - ¢2p?
t 2 ¢
I, = c 5 2(2 + DI3’O) (n=1) (A11)
1 - C7p

Supersonic-Leading-Edge Wing

The spanwise integral of By, is (with the cotangent of the leading-

edge sweep angle designated by C in the present paper rather than by A
as in ref. 4)

_c_
1-CD
Epp = ZR.P.fO getntl ey 4 py)® \/1 + 2Dv + (D2 - g2)v2 dv  (A12)

where R.P. means the real part of the quantity to follow. The quan-
tities Ep, are seen to equal 2N+l fimes Io,n@ of equation (A5),

provided that C i1s replaced by 1/ in the integrand and in the upper
limit of equation (A5); thus, E,, can be evaluated by use of equa-

tions (A3) and (A6) once the substitution of 1/8 for C 1is made.
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The spanwise integral of ane is

¢

_ T e n R, 1+ (D+p%)v
g e me fo I {(ﬁacv) (1 + 0w + (o0 + 1)y] cos e

(-p2cv)e(1 + Dv)m[c + (cD - l)v]ngos-l ﬁjlfc++(](30; fzi; :]} dv (A13)

Through integration by parts, it can be determined that

c
,n 10D + 52
1’n,. = R.P. f [c + (CD % 1)1,}%08-1 1+ (D% peC)v av
- Ky,n 0 B[C + (D + l)v]
= ;Cn-*-lcos-l(l/ﬁc) - ] K2,n' (A1)

(n+ 2)(2 % cD) (n+ 1)(2 xcp) Kz,n"

where the upper quantity Kl,n' is associated with Kz,n' and the
upper of the alternate signs * or 3, and the lower quantity Kl,n"

with Kp n" eand the lower of the alternate signs. The quantities Ko n'
and Kz,n" can be determined by the recursion formule

* ‘—_%5 n
{KE,n } - RD. f‘l fo + (o0 £ 1)v] ey
0

Epn" \ﬁ.+ZDv+(D2-ﬁ2)v2

a—2 _ on-lep £ 1) + (2n - 1)(p2C D) K"”“'ln -(a -~ e Ke'”'a,, (n€1) (M5)
n{p? - p?) ,n-1 Kz2,n-2
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and.

Ks o
T Tl e Q) (a = 0) (826)
K2,0 B2 - p2 B

The quantities Fpn® (needed for forces and moments to the third
power of the frequency) can be expressed as

N\

§On0 = 2n+l<Kl,nu + Kl,n") _
Ky ' + DK ', " LIK "
Fy, 0 = 22 i,n — C;’ml a2 - c;’nﬂ
= 1
F2no = 2> ———————-2<Kl,n' + ZDKl,n-}-ll + DzKl,n+2') +
(1 + cp)
1 ' :
'———2<K1,n" - 2Ky pya" + DPKy nap ') (A7)
(1 - cp) (
1 1 1 1
Fopl = 2n+2g2c( il Kin'  Kima - Kin
1+ CD 1-0CD
= 1 1 .
Fia' = 2% (1 + CD)a['CK:L,n' + (1 - CD)Ky g1’ + DKy pyo J +
l C.K " (l CD)K 1 DK "]
2
(1 - cp)
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The remaining required integral is

c

1-CD
Iy,n = ER.P.L/N W2 cosh~l LEDVY 4,
0 Bv

1

B-D |
2U/\ Wt cosh-1 E—E;EX dv (A18)
0

which, after integration by parts, is the same as I3,n if C 1is
replaced by 1/ in equstion (A8). Thus,

Thn = =7 Thn' (A19)
end
I)"';O!, - __2_._ % + sin-1 D (n = Q) (AEO)
2 _ 2 B
B= - D
1 l 1 l
Iy, = -———-<2 + DIy ) (n=1) (A21)
82 - p2 s0
t 1 t t >
= e———i(2n - 1)D - 1 = A22
Il[.’n n(BZ _ D2) [( ) Ill-,n—l + (Il )Il{.,n_a] (n 2) ( )

The spanwise integrals of the quantities Gy, of reference 4 can
novw be expressed as follows:
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The spanwise integrals of the quantities ;W

L0 - 1%z, - 26y,)

Ep1 - 82Ty

o

e - %)

also be expressed ss follows:

NACA TN 3433

f (423)

)

of reference 4 can

- 0 - L
Hoy™ = Ei Fo20 - g VoIy 2 (A2ka)
HooO = 3% Foz0 - £ o Epp (A2hp)
Eoo=i_°-k\/3ﬁf + (30 + 5)1 (A2ke)
> Tic ok TV bk

Fu0_- 1w 0 8 = C%F,
Hoy” = 05~ = ==\ (20 + 5)Ey, + P (A244)

5C 15

= 0 3 = 0 — -
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- 0 =-1=,0,1=0 k\[o|5C8 =

S ——— — - _—_—-E

Hyp > Foy + 3 Fi3 > [16 oy + (50 + 5)1)_1_,)_[] (A24f)
= o0o_ L szo0,1F,0 U[ 2 ]

7.0 "t Fl 4 —F -__‘J(aaa+25)1«: + 11C°E Ahg
13 = 300 Tig T e 40 22 (a2kg)

z 0. L F,0. FHP 1= o _Lfo|i?g
H21—12(:5]?01; 3(}21@"15 + ¢ Fe2 503[16E21+(°+3)14,4 (A2k4h)

=
Y]
()]

I

= 0 i = O i1 =0 1 =20 Vo =
—— Fop5 =- —2 Fy +—=F - {302]322 + (60 + 5)E)+0} (A2h1)
3007 > 7 62 3 1562

Bor' = 55 Too - B Vo Beo (a243)
L - o 282= 26 — 2
.7 = ECB_ Tl + _g_ 70 - B2 20 - E_E_\éi(cﬁial + 16T, ) (A2kk)
- - 2 -
N L ﬁ[ceﬁza (20 + 11)%] (a2k1)

A few differences of exponents and multiplying factors can be noted
between the equations for certain of the Gy, 8and F..© above and the
gection quantities Gmn and Emne of reference 4. The printing errors
of reference 4 have been corrected in two erra‘_ba' notices; they were pres-

1 1
ent in Ggzs G20s By®, Hypo, 8nd Hoz o
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TABLE

AT e

TCTAL LIFT AND MOMENT FL

I

OEFFICIERTS FOR

AN ARROWHEAD WING WIIE pg = 0, A= 450,

AND g = 00 AT VARIOUS MACH NUMBERS

" 1o Tpfc Tl Tyfc e W[c e M, o
1.05687 |2, 8466 - {1.40M4(1/k) -|L.bob4(1/x®) -|-0.4339(1/k) +]6.2700 - |1.8726(1/k) -|1.B726(1/k®) -|-2.6509(1fk) +
76.050KE +]15.075k + g.8148 + 52,877k - 132.25k2 4 |24. 1167k + 15.704k + 93.67k -
174096 {304,017 201,582 1326, 307 3156.12k" | 962, h1%3 810.93k2 2h01. 5k7
1.15282{1.5085 - |1.2480(1fk) -|1.2480(1/kB) -|0.MOBM(1/k) + [2.262h -  |1.6640(1/k) -|1.6640(1/kB) -[0.6125(1/x) +
10.234k< 4 [. 2036k + 2.0420 + 5.3616k - 17.05T5k2 4|6, 7258k + 3.2670 + 8.9365k -
58,709k  |22.200K3 12.279K2 22. 2785 Th.952x*  {30.288K3 16.959K2 2. 791%3
1.20268(0.8999 - [2.0967(1/x) -[L.0967(1/k®) -|0.6385(3/k) + |1.3498 -  |1.h623(1/k) -[1.4623(1/%2) -|0.9576(1/k) +
2.50228k% +|1.6635k + 0.6268 + 0.9888k ~ b.20hok? + (2.6614Kk + 1.0028 & 1.6481k -
3.776Md |3, 50067 1. 572562 1.6115K3 6.6088%  |5.675k%3 2,3524%2 2. 8205k>
1.51421 10,6667 - |2.0000{1/k) -11.0000{1/%?) -(0.6667(1/K) + |1.0000 - 12.3333(1/k) -11.3333(2/%2) -|1.0000{1/k) +
1.2000k2 +|1.0000k +  [0.3333 + 0. 4000K - 2.0000k2 + [1.6000k + 0.5333 + 0.6667k +
Lot [1.ooem3  o.boam® 0. 368013 10005 |2.90953 0.7226x2 0.6763K>
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TARLE 1T

TOTAL LIFT AND MOMENT FLUFTER COEFFICIERTE FOR ARROWHEAD WINGS WITH p.oao AND

by = 0% FOR VARIOUS LEADING-EDCE SWEEP ANGLES

{a) M= 1l.15280

e | Tafe Tofe Izfc Tufe Hyfc Hafc Ws/c m/c
<29.8(3.5529 - |L.7h34{(1/k) ~ |L.7A3W(1/%R) - [-1.2083(1/K) +{5.3192 - |2.3246(1/x) ~ |2.3246(1/x%) - |-1.8269(1/x) +
27.570862 +|10. 7075k + 7.1739 + 18.8519k -~  [45.6509%2 +|17.1h00k + 114839 + 131k -
17893 |60.5701K3 12,3562 . 3363%3 2oh. 605Kt | 286. 320K7 £55.051x2 2, 48167
RS 11,5085 - |1.2080{1/k) - [1.2u80(1/k%) - |0.koBM(1/k) + |2.262h -  [1.66k0(1/k) - [1.6640(1/xB) - [0-61251(1fk) +
10.254%2 + |4.2036k + 2.0420 + 5.3616Kk - 17.0579k2 +|6.7258 + 5.2670 + 8.9365k -

38. 799k |22.20913 12.279%2 2327830 Toxzxt 30,2883 16,9592 42.791%5
59.60.39601 - [0.85745(1/x) - 10.83745(1/k2) «|1.0426(1/k) + j0.59400 - [1.1266{3/k) - [2.1266(1/x2) - |1.5640(1/x) +
2.5950K2 4 [1.13U0k ¢ 0.22268 + 0.7353%k = (h.32hTe® 4+ |L.815k 4+ 0.34917 + 12853k =
10.050kF  |5.35055 1. S0l &2 4, 07D 17.604c"  |9.172113 3. 24252 T.3372K3
75.21-0.08553 - [0.45725(1fk) - [0.45725(1/K2) - [0.945h1(1/E) +[0.12800 - |0.60965(1/k) -|0.60965(1/x2) -|1.bagu(1/x) +
0.27792k2 +[0.09640k + 0.053081. + 0.03235% ~ 0.46320k2 & |0.1542% + 0.08:93 + 0.05229k -

15052 lo. 5865 0. 129812 0. Bolih 3> 5678 |o.0g72K> 0.2226%2 2.4035%3
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TARLE II.- Concluded

TOTAT, LIFT AND MOMENT FLUTTER COEFFICIERTS FOR ARROWHEAD WINGS WITH g = 0 AND

Acne
P4

nQ

annmn

ATIFIT TOY

LT = ks PO MRk NI GUATE DALGCE Al
(b) M= 1l.%0
bl L fc LE/G L3/c Lu/c My /C MQ/C Myfc o
£36.7(1.500) 1.1632 ~ {1.2039(1/k) ~[1.2039(1/%2) -|0.4420(1/k) +{1.7447 - |1.6051(1/k) -|1.6052{1/k?) -]0.6628(1/k) +

3.2199K° + [2.1366k + 0.9742 + 1.5172%k - 5.3%10K2 +| 3. 4651k + 1.5792 + 2.5051k -
yobosoit  |hol1emkd (19742 2.2751k?  |8.090Mc* |7.0502k3  |3.3854° 3.9801x%

45 [1.295(0.8999 - [1.0967(1/%) ~[1.0967(1/k®) -|0.6385(1/k) +{1.3498 « [1.4623(1/k) -|1.h623(1/x2) -[0.9578(1/K) +
2.5228K° + |1.6635k + 0.6268 + 0.9888k - 4.2049K2 +{2.661hk + 1.0028 + 1.6481k -
5. 76Tt [3.3006K3 15725k 1.6115k3 6.6088t  |5.6730K3 2,35242 2, 82057

50 [1.308{0.6258 - 0.9760(1/k) -|0.9760(1/2) - 0.7962(1/k) +[0.9367 » [1.3012(1/k) -{1.3012(1/x2) -|1.1943(1/k) +
162732 # .119hk +  |0.30422 + 0. 4727k - 2.8563k° +11.7910k + 0.4865 + 1.0407k -
. 2450t [2,0979K3 0.65% K2 0. 75kT3 3.9285K*  |5.ho60K3 109982 1.3208&3

60 [1.325[0.22291 - [0.7488(1/k) - [0.TBB(1/KE) +]0.9660(1/k) +{0.3335 - [0.9984(1/k) -[0.9984{1/k%} +|L.hh90(1 k) +
0.60722 +10.4329k 4+ 0.00467 + 0.01110k ~  [1.0120k% +|0.6927k + 0.007h2 + 0.01853k ~
0. 761K} 0. 72525 0. 0496112 0.08085k3  (L.353akt  |1.2435%5 0.08526K2 0. 14177
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A= L4590, ARD M = 1.5¢ FOR VARTOUS TRATLING-EDGE SWEEP ANGLES

AMPE,| - = = = — — — —
doe Ll/c 1.2/0 Lj/c Lh/c Ml/C Mz/c Mj/C Mu/c
20 {1.2179 - |21.5683(1/k) -[1.5683(1/%2) -{1.k0ok(1/k) +|2.5533 - |2.8391(1/x) -|2.8391(1/%?) -|2.7595(1/k) +
2.75%0k2 | 1.89%4k 0.1380 0.552Tk 5.2564K° [ 4.1086k 0.913h 1.2060k
R PR Py Ty N n amfeda Py A ALLOFe A e Anhs [ Ty T WY n el Z o de O T I ARY
10 10.7113 - 1.1305(1/k) ~(l.L000 1/ k") 10,5400 1/K) +}1.2240 - (1.TiO5\1/k) =}1i.TiO5\1/ks) -[1.5T05\1/k) +
1.1354k2 | 1.0080k 0.252k 0.2788k 2, 11092 1.8191k 0.4502 0.5162k
0 lo.b771 - |0.8944(1/k) -]0.89M(1/K?) -|0.7155(2/k) +]0.7156 - [1.1926(1/x) -[1.1926(1/K) -|1.0733(2/k) +
0.6871%2 +|0.6441k + 0.16T1 + 0-173%%k ~ 1.1452%% +|1.0306k + 0.267h + 0.2868k -
0. 48 |0.6162K3 0.1598K2 0.131613 0. 78t |1.05963 0.2730K2 0.2303k2
-10 {0.3431 - |0.7333(1/x) -|0.7531(1/x®) -|0.57a7{2/%) +|0.%629 - |0.8882(1/x) -|0.8882(1/K2) -l|0.7994(1/k) +
0.1663Kk2  |0.4508k 0.1191 0.1175k 0.7257x2 | 0.6636k 0.1759 0.1827k
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RELATTON BETWEEN FLUTTER ANKD STABILITY COEFFICIENT NOTATION

Flutter coefficients

Stability coefficients

Present paper Ref. 1 as in ref. 5
(=) (for delts wing only) (1)
I
1 1 1 t
fa'—é- -;ERLhta.ne -ch&
fak =< -%ILh ten 8 !]_;GLa,l
szz:é + a-liR tan 8 kY '
&5~ 3 3| Th 1,,01'0.
fh- 1 L 1 ' t
£k o E[1]-_“+ (a—-a—)ILt;‘tane g(CI.q "'Ol-a.)
M 1F i | 2
f&_cl ;5%+(3--3—)RLh'ban9 §.cm&'
ﬁe lr— -} | 1 1
£ .k c - RMG.+ a-; RLq"l‘mh'l'&—; I’h an © -S-Cma
ﬁh 1 'y 5\2 7 2 ' 1
fa_k-c— -EIMG.+(3_.3_)<IIG+1Mh +<e.—;)I-Lhten9 -§<Cmq +Cm&)

8The ares factor 2, = 1l -CD 18 unity for the delba wing.

h‘Zl_‘he fractiona in this colwmn would be different, in general, for nonarrowhead

wings.
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on pv-plane. C=cot A; D=tan Ay

(a) Projection of plan forms

(b} Section v=0

Figure 1.~ Sketch 1llustrating two arrowhead plan forms, coordinate system,
and the two degrees of freedom h and «.
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Figure 2.- Curves showing ranges of Mach mumber M and axie of rota-
tion ko for which the aerodynamic pitching moment vanishes for slow
oscillations of arrowhead wings with leading-edge sweepback of 450

and various tralling-edge sweep angles.
which trailing edge l1s sonic.
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Figure .- Curves separating stsble and unstable reglons of radius of
gyretion r, and mass ratio of wing u, for three arrowhead-wing

plan forms with two longltudinal degrees of freedom, pitch and ver-
ticel translation, at M~ 1.25 with Bo = 0.5.
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{t) Imagicary part of lift-curve slope associated with verticol translation of wing.

Figure 5.- Comparison of 1lift- and moment-c
exact and approximate theory as a function of frequency paramete
for sornic- and supersonic-leading-edge delta wings with pg = O,

moment-curve slopes cbhteined from

T

5

for M = 10/9 and 10/7. The power of & required to produce each

approximate curve is indiecated.
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(f) Imaginary part of moment-curve slope associated with vertical translation of wing.

Figure 5.- Continued.
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(h) Imaginary part of moment-curve slope associated with pitching of wing.

Figure 5.~ Concluded.
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