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TECHNICAL NOTE 3609

LINEARIZED LIFTING-SURFACE AND LIFTING-LINE EVALUATTIONS
OF SIDEWASH BEHIND ROLLING TRIANGULAR
WINGS AT SUPERSONIC SPEEDS

By Percy J. Bobbitt
SUMMARY

The lifting-surface sidewash behind rolling triangular wings has
been derived for a range of supersonic Mach numbers for which the wing
leading edges remain swept behind the Mach cone emanating from the wing
apex. Variations of the sidewash with longitudinal distance in the
vertical plane of symmetry are presented in graphical form.

An approximate expression for the sidewash has been developed by
means of an approach using a horseshoe-vortex approximate-lifting-line
theory. By use of this approximate expression, sidewash may be computed
for wings of arbitrary plan form and spen loading. A comparison of the
sldewash computed by lifting-surface and lifting-line expressions for
the trianguler wing showed good agreement except in the vicinity of the
tralling edge when the leading edge approached the sonic condition.

An illustrative calculation has been made of the force induced by

the wing sidewash on a vertical tail located in various longitudinal
positions.

INTRODUCTION

In order to make reliable estimates of the total forces and moments
acting on an alrcraft, accurate evaluations are required of the loadings
on the individual isolated components and of the interference effects
between components. Although considerable effort has been expended in
recent years to supply much of this needed informstion for the supersonic
speed range, many important problems remain. Among these is the induced
effect of the wing flow field or, more precisely, the wing sidewash on the
vertical tall. The only specific numerical results of this nature obtained
to date have been for the angle-of-attack motion. In the vertical plane of
symmetry for this case, however, the sidewash is zero and tail surfaces
located in this plane are unaffected. This is not the situation for the

PR e e e e L e e e ey e e e T L e < ———— o e e o e e " Y e s e o e e -



2 ' NACA TN 3609

rolling, yewing, and sideslipping motions where the sidewash in the ver-
tical plane of symmetry is finite and the load induced on the vertical
tail can be appreciasble. Evaluation of the sidewash for these motions
would, therefore, be important in the prediction of the lateral stability
of supersonic aircraft.

The present paper presents the derivation of the sidewash behind
steady rolling, triangular wings with subsonic leading edges. Both lifting-
surface and lifting-line methods, previously applied primarily to determine
downwash, are utilized and comparisons are made of the sidewash computed
by the two methods in order to give an indication of the worth of the more
easlly obtainsble lifting-line results. The lifting-surface sidewash is
determined by using the doublet-distribution method of reference 1, and
the lifting-line values are obtained by use of the lifting-line approach
glven in reference 2.

An illustrative calculation using the derived sidewash is made of the
force induced on a half-delta tail operating behind a rolling triangular
wing, and this force is contrasted to the force that would act on the tail
if it were rolling in the undisturbed strean.

The material presented in this paper was submitted to the University

of Virginia as a thesis in partial fulfillment of the requirements for
the degree of Master of Science in Aeronsutical Engineering.

SYMBOIS

The positive directions of forces, moments, and velocities are shown
in figure 1.
X, ¥, 2 Cartesian coordinates of field point

X1, Y9, 27 Cartesian coordinates of doublet or line-vortex position

u, v, w perturbation velocities along x-, y-, and z-axis, respectively

A wing aspect ratio, b2/S
b wing span
Cn ’ ~ yawing-moment coefficient, Yawing moment

qsSb
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aCn
R
po\dad
20
C side-force coefficient, M
Y as
oy = | XX
YP Bﬂ
2Vlp—0
c wing root chord
d distance from wing trailing edge to a point downstream
h displacement of vortex sheet below wing trailing edge

hy, hy limits of yl-integra'bion

1 varigble index used in sumations and as subscript
k constant
2 2,2
kl:J(x—xl) - B~z
9o%1.

2 _ 52,2
k =\Kx—c) - B°z
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6,C
= o)
Kr0 =
\/(x - ¢)2 - p2;2
= 2
k2 ,o' =\ -k 4,0
M free-stream Mach number, V/Velocity of sound in free stream
m slope of lifting line
P static pressure
AP = PZ - Pu
D angular velocity of roll, radians/sec
o] ’ free-stream dynamic pressure, %F)V2
S wing area
Mg = Uy - 1y
v free-stream velocity
vp sldewash induced by doublets distributed over plan form
Yy sidewash induced by doublets distributed over wake
X=x - Xl
Xi =X - Xq
X, = L
b/2

_ X

¥o = ¢

XlL,0 = ¢
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Y=¥-¥1
Yi=y-%
¥y
Y =
i,o b/2
= J
Iy
A = .L
° p/2
o3 angle of attack, radians
p=y -1
r circulation at any spanwise station
€ angle of downwash measured in xz-plane, between trailing
vortex sheet and axis parallel to free-stream direction,
radians
8p = ﬁyég (= %? for triangular wings)
A angle through which vortex sheet rotates in moving from wing

tralling edge,to a point which is 4 distance downstream

density of free-stream air

1) perturbation velocity potential
A¢s = Fu - ¢Z
]
Bz 20
E complete elliptic integral of second kind with modulus k,

(]TL Vl - k2s2 dsi ,
0 Jl - g2
K complete elliptic integral of first kind with modulus k,

j’l s
0 1 - k22 |1 - &2
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E(t,k) incomplete elliptic integral of second kind with argument +

and modulus k, r ds
0 1 -x22 |1 -2

F(t,k) incomplete elliptic integral of first kind with argument +t

£
/ 2.2
and modulus k, f 1 - Ks” ds
0 \/1—52

X - Jeoexz + 13222(1—902)

= 5

1 - 6,

2 2 2
_xo-eo\/xo + 24 (1-90)

1 - 852

G( ,o)L‘) = 2‘:2" + (KQ,O - E2,O>F(COt—l ;]:;’ k?,O) - K2,OE(COt-l ;l;’ kQ,O)

6(00) = 27 %8 (00) - % 51(ay)

1 - 82 1 - 6o°
op
H= —=
B26(8,)
L.E. leading edge
T.E. trailing edge

| sign denoting finite part of integral

Al

Ty
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Subscripts:

D conditions in region D (fig. 2)

B conditions in region E (fig. 2)

1 pertaining to lower side of surface

P plan form

8 conditions on surface of discontinuity (at 2] = O)
u pertaining to upper side of surface

W wake

The subscripts 1,2, 1,0, and 2,0 on the elliptic functions E
and K indicate the modulus of the elliptic function; that 1s,

Ky = K(g, kl)

E2,o = E(g7k2,c)

ANATLYSTS

General Remarks

The problem to be considered herein is that of determining the
perturbation sidewash velocity behind a rolling triangular wing for a
range of supersonic Mach numbers for which the leading edges of the
wing are subsonic. The analysis is based on an application of linearized
supersonic-flow theory and, hence, the results obtained will be valid
within the limitations of linear theory.

In the analysis which follows, several assumptions are made con-
cerning the trailing vortex sheet. These assumptions are that the vortex
sheet must remain flat behind the wing and that the rotation of the
vortex sheet 1s small enough to be neglected. 1In addition, the nonre-
gtrictive stipulation is made that the rolling wings be at zero angle of
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attack. Further discussion of these points will be found in the section
entitled "Discussion."

In flight, a steady rolling motion will usually be mainteined by
differentially deflected ailerons that create a sidewash opposed to the
wing sidewash. Calculation of aileron sidewash, which may be of the

seme order of magnitude as the wing sidewash, will not be considered in
the present paper.

Boundary Conditions

The boundary conditions for the proposed problem may be prescribed
on the 2z =0 plane and are similar to those given for the angle-of-attack
motion in reference 1.

The downwash boundary condition on the rolling wing is

In order to analyze the quasi-steady rolling problem by use of steady-
flow theory, the rolling wing is considered fixed in spproximately the

z = 0 plane but twisted linearly in the spanwlse direction. Only small
linear twists are allowable, however, in order not to violate the assump-
tions of small-perturbation linearized theory; hence, the rate of roll is
necesgarily small (approaching zero).

Pressures on the wing and pressure differences across the wing surface
are finite and, for a great variety of plan forms, have already been
obtained. (See, for exemple, refs. 3 and 4.) OFff the wing and in the

plane of the wing, the pressure, and hence the pressure difference, must
be zero.

In the 2z =0 plane, the local pressure difference is directly pro-
portional to the streamwise component of the perturbation veloeity and is
glven simply as

8P(x,¥1) 2 dug(xp,¥7)
q - v

(1)
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By consideration of the relationship between the perturbation velocity
potential and the streamwise velocity component; that is,

. Jd A s
¢Sg§i 1) = Aus(xl,yl) (2)

an expression giving the jump in velocity potential across the xy-plane
in terms of the local pressure difference may be written as

P

- x ‘)
M (x11) = %J;;Aﬂi%)— x (3)

Since, from equations (1) and (2),

AP(Xl’yl) -2 9 A¢S (xl’y]i . (ll-)
g \'A axl

and since ¢S(xl,y1) is an odd function in =z, it is clear that, beyond
the trailing edge, A¢s must be independent of x; to satisfy the zero-

pressure condition in the wake. The integration indicated in equation (3)
should, therefore, be made from the wing leading edge to the trailing edge
to obtain A@y in the wake.

Solution to Boundary-Value Problem

The linearized partial-differential equation which the perturbation
velocity potential must satisfy in supersonlic flow 1s

0 %P P%F Fg _
22028 Mo (5)

——- o e e e e - R A —— e i e e e
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For the problem being considered herein, the solution to equation (5) may
be written as

£y

2 ) AP (%7 ,57.)8x, Ay
¢ (x,y,2) I s( 1 J_) 7 Wy

2 2
Plan form [(x - x1)2 - Ba(y - yl)z - ‘3222]3/

== e )

Wake [(x - x)2 - B2y - ¥)? - 6% 3/2

This expression represents the potential in space due to a distribution
of doublets in the xy-plane with strengths that are governed by the N
potential jump across the 2z = 0 plane.

The symbol l indicates that the finite parts of the infinite ¥
integrals are to be taken when they appear.

Application to Triangular Wings

The loading over a rolling delte wing with subsonic leading edges
has been found in reference 4 to be

bpx10 ,2py:
AP - 10 PV
T(xl’yl) R o 2x.2 _ g2y 2 "
v2e (o, \/90 %2 - B2y
where
2 e02 t 902 1
G(8o) = —El - (o) - —41 o2 (65)
- - Y0
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and

tzj =
-~ -‘\ Cann)
(<] [«
O
S ~—r
i I
b= b=
Paman)
O |2 T
A -
l—l
! ]
[«2] [e»]
O o}
\v]
S’ S’

From equations (3) and (7) the potential jump across the wing surface is

A¢s(xl,yl = HByy r le - Bayl (8)
and in the wake
o8 (vy) = Eyy \[Boe® - B2y, (9)
where
H= 22 _ (10)
826 (0o)

The velocity potential in space may now be wrlitten as the sum of the
two expressions (see eq. (6))

g, ff By, [0,2%,% - 8%y, %ax; ay; )

Plan fTorm [x..xl "B( ) B223/2
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and

ZHBQ L[L[) 531_J472 2 . Baylzdxl dyy (lé)
x - xp)2 - B2y - y)? - g2 3/2

As previously stated, the primary purpose of this paper is -the
determination of the velocity perturbated behind the wing parallel to
the y-axis (or the sidewash). This flow velocity may be obtained by
- taking the partial derivative of the velocity potential with respect
to y, or p

<
1]
Y

With
¢ - b + &,

the sidewash in the xz-plane from equations (11) and (12) will be given
by the sum of

Cyem ZEB2 3 e en® - Ban an
y—0 21 dy|, . [(x - x)2 - B3(y - 31)? - 2 3/2
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end
@
T Jy—0
= - 1im _E 9 ﬂ BY1 \]goaca - Bzylzﬁxl dyy (14)
y—>0 21 Jy oy [x - x)2 - p2(y - ¥1)2 - p2e2 3/2

Subsequently it will be convenient for computational purposes to
derive expressions for the sidewash which has been .nendimensionalized by
pb/2 s0 that

v Vp M7

pb/2 pb72 pb/2

When v 1s written in & slightly different, though equivalent, form

v/V
pb/2V

it can be recognized that the nondimensional sidewash paramefer mey .
be defined as the induced angle of sidewash per unit wing tip helix
angle pb/av.

The rest of this section is devoted to the evaluation of equa-
tions (13) and (14) at points in the following two regions of the
xz-plane (see fig. 2):

(1) The region lying between the Mach lines emanating from the wing
trailing edge and the line of intersection of the two cones from the
trailing-edge tips.
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(2) The region which extends from the line of intersection of the
two cones from the tralling-edge tips downstream to infinity.

These two regions are denoted, as in reference 1, by E and D,
respectively. The contributions of the doublets distributed over the

plan form and the weke to the sidewash In regions E and D are con-
sidered separately.

Sidewash due to doublets distributed on plan form in region D.-~
In region D the sidewash contributed by the doublets distributed on the
plan form is

Bep _  pn f‘ J" By (0,75 ° - BPnyPayy axy \
R y—0 aﬂ ay 9oxl x - xl)2 - Be(y - 31)2 - B2zé]3€7

In order to facilitate the Integrations involved in determining Vp 2 it
2

is convenlent to carry out the differentiation and limiting processes
first. This procedure gives

eoxl
3ZH52J1 L[’ B3Y12 Joc?x,? - 8223y (16)
2
- x1)2 - B2yy2 - B222]5/

When the following substltutions are made,

2 B?'le

87 = —
902]{12

o 0,22

oo = (x _ xl)e _ 2,2

1

r
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VP’D becomes

18
oo 3oEgR [P pan [T 21 2, (17)
P,D © Jo 8o%x1 Jo (1 _ k2252)572

which, by the use of partial fractions, may be written in the more
amenable form

328p2 f © kpdxy f ! ds
VP,D = - +
’ T Jo 8cXii o \/l - 52 \/1 - 1,22

2—k2

;/1 J: k22 2)3/ 2

(- x?) J; ' % (18)

1 - s2(1 - k2232)5/ 2

The integrals in equation (18) may be reduced to stendard elliptic
forms by use of the Jacoblan transformation, s = sn u (refs. 5 and 6),
and readily integrated to give

2 [4 2 - 2
vp,p = 22 J; 91;2{1 -2 + I__EéEQ dx; (19)

By replacing H by its equivalent and nondimensionalizing 'xl, x, end
2, equation (19) becomes
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v B ' 2
P,D.- 2z ks 2 - kp
= -2K, + ——EF|dx) (20)
pb/2 G(eo)n'j: 80%1,0 1 - kp? ’
where
L2, 2 . '
2 . ,eo X1 _ 002)(]_,0

ko™ = - f = —
(x - x.l)2 - 5222_ (xo - xl,o)2 - 902202

Sidewash due to doublets distributed on plan form in region E.-

The portion of the wing area over which the integration in equation (13)

is to be performed is different for each position of the field point in
region E. This fact is evidenced by the appearance of the field-point
coordinates x, ¥y, and 2z in the 1limits of integration. It is expedient
in determining Vp R to follow the same procedure used in determining

Vp,D (differentiating before integrating). This is allowable since it can
be shown that the expression for the potential ¢P,E can be differentiated

with respect to y without regard to the variable limits when the evalua-
tion of the derivative is made at y = O.

Differentiating ¢P B with respect to y and then setting y equal
J
to zero yields

0%y 002%
£ B yle\/ o 21 _ ylzdyl
vp g = 2 ax '
0 (x - x)2 - p2P 5/2
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where

e X -\/g;éxg + Beze(l - eéa)

1 -842

17

The y,-integration in the first double integral of equation (21) is

identical to the y;-integration in equation (16); hence, only the second
term of equation (21) remains to be consildered.

In the integration

sz~xl)2_ﬁzzz

B

let

2, 2
2 [80%1 2
J1 —B—é——-yldy

2

(x - xlle - pez° 512
p2 e

9 2x,2

0 X1y 242 - 2

where
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This substituion results in the expression

t%/l - k;2tPat
B (22)

8o%1K;2 | JO (1 )5[

which, except for the use of the finite-part concept, may be integrated

in a manner similar to that used for equation (L7). Performing the

integration in expression (22) allows Vp @ (eq. (21)) to be written as
J

AN
_HLf%xl 2K2+ - k2

2 M gx 1 - 2k,2
zHB =1 1 Ky + AR (23)

Equation (23) for VP’E doegs not lend itself readlly to numerical cal-
culations because, at the point x; =1, k; and k, become equal to

1 and give rise to first-order infinities in the integrands. Appendix A
shows how this difficulty is eliminated by a parts integration of the

terms containing the singularities. After the first-order infinity has
been treated and the x;-, x-, and z-lengths nondimensionalized, equa-

tion (23) is
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VPE _ 2% To dxy o ) qul 1,0 Ky + B
/2 70, {j; 8ox1,0 o(#e + B) + £, 9o*1,0 K2

o somt| (L7 %)M ,0 j
eo\lxoz + 20211 - 852 I-eo(Ea - Kel - k2KQLX° - x1:°):'ldx

1,0
k 0% ?
2 2 2 2 1,0
eo'ﬁ‘o + Zq (1—90)

ltanh"lI: -(1 - 902)le° + X ;\ ‘
T e, ol

' 9 K, 2
£, 90\["02 + 22 (l - 902) 01,051

ﬂJxoa -0 02z°2 X

coth~t ° +
290Jx;2 + 202(1 - 902) 90\/;02 + 202(1 - 902)
E1,0 tanh-1 ’(1 - 902) + Xo (24)
Jxoa + zoa(l - 902) 90,’/;02 + zoe(l - 902)

where

. _ Xo - GOJ;OQ + 202(} - 902)
o =
1 - 062

Numerical calculations may be made by using equation (24) for all
values of 6, except 8,5 =1 vhere f, becomes indeterminate and the

arc hyperbolic functions become infinite. The indeterminscy when
evaluated yields

- 85729
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Thus, an integration by parts of the singular terms of equation (23)
gimilar to that made to obtain equation (24), using now (fo)e _ and
o=

expressions for k3 and ko 1in which 8, has been set equal to 1,
yields

dxl,o

'B,E _ 50
£ %) ok12
o *1,0%1

2z o dx) o
P'b/2 B T[G(GZ) J;f xl’o 2(-2K2 + E2) +

('Kl + E]_) +

1 © -
Ex: f —:!.Oge (-Zcoxl’o + x02 - 2,02) {E_%Q— -

Xy - X -\ 1
kKp(%o - *1,0) By o+ e loge(E X o -
X ) 2% s
1,0 J ° Jfo

2+ 202) « - (B - Kl?g(xo - %1 o) axy o -
X X] .0

»O:

E (k =,/ix -12-z2 )
1V 1 o ) 2 {log, (2x0 - x02 + zoe) +
2x,

ﬁ{ 5,2
o X 2 logg (}:02 - Zoa) (25)

(o]

The integrations in equation (25) may be handled by numerical methods.
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Sidewash due to doublets distributed in wake in region D.- In
region D, equation (14) takes the form

dxy

So¢ 2,2
_B -
woe s -] [ g, [T
¥y—0 v “eg_c : c [(x - o) - g2 - 5222]5/2

Carrying out the differentiation and then the first integration for y =0
gives

8,C

v zH(x - ¢) L[Tji— 36%y19/00°¢2 - Py 2
W,D = — % _
’ npe 0 (yl2 + ZQ)[(x - c)e - Beyle _ 6222]172

(x - 0)2323’]_2 90202 _ B2yl2

(122 + 2P - o) - 622 - 2P/

a(pyy) (27)

By making the variable substitution

2.2

y]_2=829-——0c

52

and defining
2.2

Bo°C . 2
- T2,0
<X-c)2-B222 2
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equation (27) reduces to

‘ 1
. _ 3H(x - q)eo3c5k2’o 521 - &2 as
W,D ~
’ np2z) 85°¢% o 2
1l 4+ —s8 1l -k, 8
2.2 2,0
z2 B
B(x - ¢)Pogeky 2 | *
. x-c 00k2,0 s2V1 - g2 ds (28)
2 2.2 2
1p2z) - 05°¢% 5 - 2.2 /2
0 2252 kz.’o

The expression for vy p given by equation (28) may be integrated (see
appendix B) to yield a closed-form solution for Vir,D- The nondimensional
Y,D

equé.tion for 2
pb/2

YWp_ 2 T _ -11 _
28 =iy B (oo Tl B

22,2 + 1 Kp ok of%o - 1)z

~ (29)
zo2 + 1 60(202 + l)

Kp, o (ot~ ’l_’ke,o')]

20
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Sldewash due to doublets distributed in wake of region E.- In

region E the derivation of the sidewash 1s simllar to that of region D
and ylelds

vi,E _ 2(% - 1)
pb/2 700G (80)

where

Sidewash at x-axis.- In the xy-plane (plane of the wake), only the

doublets distributed in the wake contribute to the sidewash. Equation (20)

v V.
P,D P,E
for 2 and equations (2%) and (2 for 2 approach zero as 2
WE q (k) (25) PWE Dp o

approaches zero, whereas equations (29) and (30) gilve

W,0 YW,E 3

pb/2  pb/2  G(8,) (1)




2k NACA TN 3609

This result is identical with that which would be obtained by use of the
formuls obtained in reference 7 by consldering the properties of vortex
sheets. This formula, for y = ¥y, =0, 1s

1 {4r
_7._(){ ,0,0%) = ; — (db’l)yl—o (32)
2

where

" - (oh)os ()

Sidewash at x = @ (Trefftz plane).- As x approaches infinity, the

contribution of the doublets distributed on the plan form to the sidewash
goes toO zero and the total sidewash is given by

(gt’%)x__;m ) (IT‘}E)X__)OO - T )(EZ— - zo> (34)

Equation (34) could also have been determined more directly by using the
formula

(-v_) = lim _z;__ifb/z e zm:7, )0, (35)
Po/2 )y 30 y—0 EﬁPb/? Y y-b/2 (y - yl)2 + z2
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which may be obtained from equation (26) by performing the first integra-
tion and then settlng x equal to infinity.

Lifting-Line Sidewash

The lifting-surface method by which the sidewash behind a rolling
delta wing was derived in the previous section is appliceble to wings of
arbitrary plan form; however, the integrations which would be required
before the potential or one of the perturbatlon velocities could be
obtained in a calculable form are extremely difficult to evaluate. It
1s of importance, therefore, to develop some approximate expressions
which may be easily evaluated either analytically or numerically. Refer-
ences 2 and 8 indicate that a lifting line and a lifting line approximated
by supersonic horseshoe vortices can be used as good approximations to
lifting-surface solutions for most downwash problems. It would seem that
a8 comparison of the sidewash behind the rolling delta wing calculated by
the lifting-surface method wilth that calculated by an approximate method
might glve some indication of the usefulness of the "approximate" approach
for sidewash problems.

References 2 and 8 together represent a fairly thorough study of the
lifting-line and approximate 1lifting-line methods, especially with regard
to downwash calculations, and show that the bent (swept) lifting lines
wlll probably give the best results for swept and triangular wings. The
potential due to a bent lifting line may be obtained from the errata of
reference 2 as

5T o o PG A
2n .z _ Y2
m m hl
1 "2 ar(yy -1 Z¢k2 82(¥2 + 12) ay (36)
2 2 Y2 1
1 2z
1 "m T m

where the equation of the 1ifting line 1is

yL+ k
=Sy
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and the circulation I' is defined by equation (33) as the ﬁotential Jump
across the surface evaluated at the trailing edge. (See fig. 3.) When

ar(yy )

is zero, equation (36) becomes
dyl

6o L sant 2B PP 4 2)|2
¥x - 22 _ Y2
) m m hy

(z7)

iy

which might be considered as the potential in space (at a point x, y, 2z)
of a finite bent vortex of constant strength. A number of finite bent
vortices distributed along a line can be used to epproximete the potential
in space of a lifting line with eny prescribed lift distribution.

From equation (37), the sidewash due to a bent vortex is readily

obtained by teking the derivative with respect to y. The following
result is obtained:

B
BT Zx® - g2y - p22) - ax(x® - p2eR) (38)
dy ©&n

2
Jxa - B2(12 + 29) [(ﬂ - gn?_ _ 1_;2?) “ 22(x2 - 2 - 3222)] oy

When m approaches infinity, equation (38) becomes the sidewash for a
rectangular horseshoe vortex and agrees with the equations glven in
references 9 and 10. ’

Since the loading on a rolling wing 1s antisymmetrical, the induced
sidewash from each panel is in the seame direction and equal in the

¥y = 0 plane. For this reason it is necessary to calculate the sldewash
only from one panel and double it.

Equation (38) can be utilized to formulate an approximate expression
for the sidewash due to a series of constant-strength horseshoe vortices
spaced along a line so as to represent as closely as possible some pre-
scribed span loading. This expression is



NACA TN 3609 27

Coey
) ) Bt o)
=0 Lx

L v.2\2
ina - p2y;2 - 22 [@ixi _ 53 _ }';_) . za(xie - f2y,2 - Beza)]

<

(39)

Yy + k

where Y{ =y -y, X1 =X - Xy, and xj = , the subscript i

takes on all integral values from O to n. Equation (39) in nondimen-
sional form is

-I‘ ¥ (Y. B Y. —
n ( 1+1) _ (‘i-ll] o ;i°(2x12 _ laa‘fi,o:e _ 52202) -z oii(fia - p2z°2)]

. . Z; p(o/2)2 " p(b/2)? ,
pb/2 _ 22 oy 2\
b f%2 - By 2 - pRzg? [(Yi,oxi % ;0 ) + zoe(iia - By 2 - Bazoa)

(40)

m m

In the application of equation (4O) to the calculation of sidewash,
some care should be exercised that the forecone from the field point
under consideration does not intersect the 1lifting line at a polint close
to the corner of g horseshoe vortex. When the forecone intersects the
lifting line near a cormner located within the forecone, the expression
under the radical in the denominator of equation (40) becomes small and
the sidewash becomes large. (See sketch 1 below.)

s Lifting line

™ ™~

4 4

\ \ d
\ { 4
\ \ \\\ A
\ i ~ N 7 /7
Intersection of forecones from Trailing vortices

field points with vortex sheet
Sketch 1 Sketch 2
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A zero value for the square root and an infinite value for the sidewash
result when the forecone intersects the corner. The abruptness of the
infinity varies with the distance of the field point from the corner.
Note that when x = «, the infinity no longer exists. The preferable
field-point locations have forecones intersecting the lifting line as
shown in sketch 2. The closeness of the forecone to the corner when the
corner is outside the Mach cone is obviously of no consequence because
only line vortices within the forecone from the field point contribute
to the sidewash at the point.

RESULTS AND DISCUSSION

Exact Sidewash

The exact linearized nondimensional sidewash has been calculated
for values of 6, of 1.00, 0.75, 0.50, 0.40, and 0.30; values of X5

from 1.2 to 2.4; and values of z, from O to 0.6 except where these
values are ahead of region E. Variations of the sidewash param-
eter Z;ZV with x, for 7 values of 2z, from O to 0.6 and for the
P
8o's glven are presented in figure h. Cross plots of figure 4 which
show the variation of the sidewash parameter with 2z, for 7 vaelues of

Xo from 1.2 to 2.4 are given as figure 5.

In order to depict the effect of Mach number and leading-edge sweep,
variations of the sidewash parameter with 2z, for values of 6, of 1.00,

0.75, 0.50, and 0.30 have been plotted for three longitudinal locations:
Xo = 1.6, x5 =2.0, and x, =« (fig. 6). (It should be noted at this

point that an increase in 6,5 may be interpreted as either an increase

in Mach number for a fixed leading-edge slope or an increase in the wing
semigpex angle for a specific Mach number.) The major difference to be
noted in the effects of changing 6, 1s that, when the longitudinal sta-

tion is shead of the line of intersection of the Mach cones from the
trailing-edge tips, an increase in 6o causes an increase in the sidewash

at the higher values of 2z,, whereas the sidewash at a station remaining
behind the intersection line during an increase in 6, experiences a

decrease in sidewash at all values of 25 which are unaffected by the

locglized infinity at the intersection line. By way of illustration it
can be seen at station xg = 1.6 that when 6, is increased from 0.75

to 1.00 the sidewash increases for values of 2z, greater than 0.2; for
values of 8, of 0.3 and 0.5, wvhen X, = 1.6 is behind the intersection
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line, the effect of increasing 6, 1is to decrease the sidewash at all
values of 2z, except at 25 = 0.6. This point is affected by the infin-
ity at the intersection line.

Approximate Sidewash

From the nature of the analytical and numericsl integrations required
to obtain the exact sidewash for triangular wings, it is apparent that for
wings with more complex potential-~jump expressions the derivation of exact
sidewash would be a difficult task. Herein lies the merit of the approxi-~
mate lifting-line method (eq. (40)) which is not encumbered by the com-
plexity of the wing-loading expression. The approximate method is, how-
ever, hindered to the extent that an area distribution of loading is
assumed concentrated on one or several lines. The penalty that this
assumption lmposes on the quality of the results cannot be ascertalned in
every case. For the triangular wing treated herein, comparisons may be
made between the results from the lifting-line and the lifting-surface
methods, and perhaps some indication may be obtained as to the reglons
whereln the approximate method may or may not give reliable values.

By use of equation (40), approximate lifting-line calculations of the
sidewash have been made for 6, = 1.00 and 0.40, values of x, from 1.2

to 2.4, and values of 1z, from 0.1 to 0.6. Sidewash values for z, = 0

were obtained from equation (32). A comparison of the sidewash calcu-
lated by the lifting-line and lifting-surface methods has been made in
figure 7, and the agreement is shown to be good everywhere except at the

high values of z, close behind the trailing edge for By = 1.00. The

agreement in this region is considerably better at 6, = 0.40 (fig. 7(b))
and indicates that as 0, 1s decreased from 1.00 the approximate calcu-

lations will become more reliasble at locations close behind the trailing
edge. .

Seventeen bent horseshoe vortices were used to approximate the
lifting line, with the concentration of vortices greater near the
tlp because of the rapid change in the span loading in this region.
The sheape of the bent lifting line used in the approximate calculations
was a palr of straight lines connecting the midpoint of the root chord
to the tips. Additional computations of the sidewash have been made
using lifting lines composed of straight lines connecting the tips with
the c/b point and connecting the tips with the “3¢/h point but the
agreement with the exact sidewash was not so good as that evidenced in
figure 7.

—— e
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It is of interest that the spanwise center of loading of the loading
distributed along the lifting line connecting the ¢/2 point with the
tips (the lifting line yielding the best agreement with the lifting-
surface results) was located longitudinally closer to the actual wing
center of loading at 3c/h than 1t was when the loading was distributed
on the other two lifting lines.

The wing loading in the examples Just discussed was distributed on
one 1ifting line. Sidewash obtained by distributing the wing loading on
more than one 1ifting line would probably show better agreement with the
exact results In region E, because some-effect of the longitudinel dis-
tribution of loading over the wing could then be realized.

Example of Flow-Field Effect on Vertical Tail

The effect of the induced sidewash velocity behind a rolling wing
on the forces and moments contributed by a vertical tail can best be
11llustrated by analyzing a specific wing-tall configuration. The perti-
nent geometric characteristics of the wing-tail model are (see fig. 8):

Wing aspect ratio . . . . ¢ ¢ ¢« & ¢ ¢ i 4 4 e 4t h h e e e e e 3.2
Tail aspect 7atio . . &« & 4 ¢ ¢ v it i e e e e e e e e e .. . 1.86
Tail aresa .. e e .. 021
Wing area

Tall spen . et e e e s e e e e s e e e e e e e e e e 0.7
Wing semispan
Wing chord
Center-of-gravity location . . . . . . . . « ¢ ¢« v ¢ v v o o . 0.5¢c

A free-stream Mach number of 1.6 (B = 1.25) has been chosen. The wing
leading edge for this Mach number is somic (6,5 = 1) and the vertical-

tail leading edge 1s supersonic. Induced side-force and yewlng moments
for a number of ‘longltudinal positions of the vertical tail have been
determined by numerical integrations in a manner similar to that used in
reference 11 to obtain the contribution of horizontal tails with super-
sonic leading edges to the 1ift and pitching moment. In meking the
numerical integrations, sidewash curves (figs. 4 and 5) were used which
had the infinity at the tip-cone intersection line faired through.
Isolated vertical-tail forces and moments have been computed from the
formulas given in reference 12.
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Figure 9 shows in stability-derivative form the variation of the
induced, isolated, and total forces and moments with the longitudinal
location of the vertical tail. For the example configuration chosen,
the induced forces and moments are greater than the "“isolated" forces
and give rise to a positive CYP coefficient and a negative Cnp'

Obviously, from the sidewash curves, if the vertical tall were moved
awvay from the x-axis, the induced force would be reduced. The isolated
forces and moments, on the other hand, would increase and the total

CYP and total CnP would become negative and positive, respectively.

Assumptions and Limitations

In some cases, the assumptions made in the analysis, by necessity
or for convenience, to allow the determination of the sidewash behind
triangular wings by linearized supersonic flow theory limit the applica-
tlon of the results. Some discussion of these assumptions and limita-
tions may be useful.

The validity of the assumption of a flat vortex sheet for wings
with very low aspect ratios is questionable, but, in the absence of
experimental and theoretical information directly concerned with the
vortex sheet behind rolling wings,'no definite statement can be made as
to the effects that wing aspect ratio, roll velocity, and distance behind .
the trailing edge will have on the rolling-up of the vortex sheet. It
may be possible, as suggested in reference 13, to get some indication of
these effects from the data published in references 1% and 15 concerning
the rolling-up of the vortex sheet behind wings at an angle of attack.

The vortex sheet hag been assumed not to rotate. The angle (in
degrees) through which the vortex sheet would rotate in moving frem the
wing tralling edge to a point d distance downstream is given by

» - 180 pd
T vV

- 180 pb _i_)
T 2V \b/2
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Substitution into this formulae of values of pb/2V usually encountered
and of distance d up to two semispans will generally yield rotation
engles small enough to be neglected.

The sidewash expressions derived in the analysis for rolling wings
at zero angle of attack are also applicable for finite angles of attack
because angle-of-gttack loadlings are symmetrical and do not contribute
10 the sidewash in the xz-plane. The displacement of the assumed flat
vortex sheet from its zero angle-of-attack position, however, must be
accounted for; that is, the sidewash given for a point x, z=0t for the
zero angle-of-attack case represents the sidewash at the vortex sheet
when the wing is at an angle of attack. At a distance d behind the
trailing edge, the displacement of the vortex sheet below the trailing
edge may be found (see following sketch) from

a
h = tan € dx
T‘EI

’ \
’ te e
Trailing edge Vortex sheet —

Wing chord extended'

Values of tan € for a tiriangular wing are given in reference 2.
CONCLUDING REMARKS

The variation of sidewash with longitudinal distance in the verti-
cal plane of symmetry behind rolling trianguler winge traveling at super-
sonic speeds has been derived by linearized lifting-surface and lifting-
line methods. The range of supersonic Mach numbers for which the
lifting-surface results are valid is limited by the condition that the
wing leading edges must be subsonic. The variations of lifting-surface
sidewash are presented in graphical form for s number of values of 6,

a Mach number—leading-edge-sweep parameter. Sidewash calculated from
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the lifting-line formula has been compared with the lifting-surface side-
wash for values of 6, of 0.40 and 1.00. This comparison shows very good

agreement of the lifting-line results with lifting-surface results except
at the higher vertical distances close behind the trailing edge for
8o = 1.00. The curves for 6, = 0.40 reveal that, as 6, 1s decreased

from 1.00, the agreement close behind the trailing edge limproves.

An illustrative calculation of the sidewash-induced force on a half-
delta vertical tall operating behind a triangular wing indicates that the
induced force acts in opposition and is comparable in magnitude to the
damping force created on the isolated rolling tail. In order to determine
the total force which would act on the vertical tall of & steady-rolling
alrcraft In flight, an additional force induced by the aileron sidewash
should be calculated. This force may be of the same order of magnitude
as, and opposed to, the force induced on the tall by the wing sldewash.

" No attempt has been made in the present papér to evaluste aileron sidewash.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., October 21, 1955,




3l NACA TN 3609
APPENDIX A

TREATMENT OF FIRST-ORDER INFINITIES IN VP,E

AS GIVEN BY EQUATION (20)

In order to isolate the "infinite" term, equation (23) may be
written as

®

zHB T ag By
= ——kg -2K2+E2) + ko2 &
8o%1 0 %c%1 1 -k,

©) ®

C C
ax - dx E
11 (“Kl“‘ El) - 1 1 -‘ (A1)
r 80%1 ;2 8o%1 1 - kl2J

Terms @ and @ are integrable by numerical methods, whereas terms
(@) and () contain a first-order infinity at the limit x; =

(when X, = £, kl=k2=l).

Consider term (2) in eguation (Al)

dxy  koBy
9c¥1 1 - 1P
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If kp 1s replaced by its equivalent (see éymbols), term @ becomes

ff dxy Ez\/(x - x1)2 - %22 (A2)
0 (x - x1)2 - 822 - 02x,?

Assume expression (A2) to be of the form r u dv, where
0]

,u=E2J(x~xl)2-Bf-z2 . ‘_‘

and
av = &
(x' ~ xl)2 _ 5222 —'902}‘:12
Then,
2
v o 1 cotn-1 - (l - 84 )xl + X
\/602:@ + [32z2 (l - ebe) Jeozxz + 1322.2 (l - 602)
oy - Jo(F2 - Kp) Kokp(x - x1)

ko Oo%1
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and a parts integration of expression (A2) gives

£
Ea\/(x - xl)2 - B2z2 cotn-l —(l - Goz)xl +x
\/5;21@ + B2 (L - oo?) ‘/902}:2 + B2 (L - 062) o
r coth~1 _Q _ eoe)xl T x
J602x2 + p222(1 - 0,2) [0, (s - Ky _Kplo(x - xp) x (1)
o \[eoaxz - BP2E (L - 0,2) kp 6%y

Substituting for ky its equivalent in term @ of equation (Al) results
in

_ f ¢ Oo%1Ey dxy (ak)
£ 902x12 - (x - xljz + p2z2

With
u = 8gxy8
and

dv

902x12 - (x - xl)2 + 52z2
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a parts integration of expression (AL) ylelds

0ox1E1 tann-1 -(l - eoe)xl + X

Jej%@ + p222 (1 _ 902) \/gexz + 3222(1 - 902) .

c ~-{1 - 08.2)%x; + E, -K -
£ \/9021:2 + p2z2 (1 _ 902) Box Ky’ _

The nonintegra)l term in expression (A5) may be written in slightly
different form as

ElJ(x - x)2 - p%22 tann-1 -1 - 8p%)x1 + x (26)
lieosz + 222 (1 - 0,2) Jeoer + p222(1 - 8.2) .

Inasmuch as when x; = f, ky =k, =1, it is clear that the evaluation

of the integrated term in expression (A5) (equivalent to expression (46))
at the limit x3 = f will cancel the integrated term of expression (a3)

evaluated at this same limit. The complete expression for Vp,E is now
seen to be
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&y Ky + E
Vp,E = {ffeoxl (2K2+Ee) fceo,l;l lkl L -

£ coth'l[ (- oc)u v x ]
[ PR
0

\/gozxz + $22 (1 - 902) | ® | 00X

cta.nh‘l[ "(l N 602)x1 +tx }
f 7J602x2 + p222(1 - 0,2) | I:Kleo ) (81 - K3) (= - xl)]dxl ;
T

8522 + p222 (- 0o7) 901k ?

“ch - %22 coth-1 X

+
2‘1902:{2 + 3222(1 - 902) ‘Jeozx?- + 3222(1 - 902)
eocgl,O tamn-1 [—gl - 902)c + x] (A7)
Jeozxe + 222 (1 - 8,2) 10022 + 8222 (1 - 0,2)

This equation in nondimensional form is presented in the analysis of the
report as equation (24).
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APPENDIX B

EVALUATION OF Vy p

The contribution of the doublets distributed in the wake to the
sidewash in region D is given by equation (28) as

H(x - c)8 Ck2,03 1

x e 1P ds (B1)
= 6_0__82> o
2,2 °
2°p
which by use of partial fractions can also be written
W p = SH(X-c)BJkQOIIL J1 - 82 as _if Ji- s as _
’ 1 + a 52)‘, 232 (l + a232)2/l - ke’oasa
Hx - cpakg,o J: P
xpz° [ + kp, o l + a2 ‘IF]: koo
1 fl 1-g°ds £ J1 -624ds (B2)
82 + kp % JO (x+ aea?-)a,’l - ke_,0252 2+ ke 1 - kp o2 2 3/ :
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BC

For ease in writing, —g— has been replaced by a in equation (B2).
z

Consider first the integral

L - 52 as ' (3)
Y (l + a2 )" kzjoas2

If the variasble transformation s = sin 6 1is made, expression (B3)
becomes

jm / 2 cos28 as (BLF)
0 (1 + 82 sinze) Jl - kz’oa 51n26

The evaluation of expression (B4) is given by formuls (9), table 61 of
reference 16 as

fl o - e tilsz,000)  (35)
(1+ a2s2)Ji - kp 26? J;é Xy R

Where

G.(kz:o’a) - l}‘é ¥ (KQ;O - Ez:o)F(COt-la’keyo') - KQ;OE(COt.-la’ke’O'):l

(B6)



6T

NACA TN 3609 y1

Expression (B4) could also have been integrated without recourse to
tables with the aid of reference 17 (pp. 134 to 136). The integration
of expression (B3)

u{”‘ ' 1 - g2 ds
0 (1 + a232)2Jl - k2)0232

may be performed by using the relationship (see p. 13 of ref. 17 and
p. 79 of ref. 18):

4+

Jﬁl 1l - s ds Vl - s das
0]

O+ o221 o 22) i -~ iy 2a2

d(a 1 + as2) /1 - S 282

From equations (B5) and (B6), equation (B7) becomes

(k2,002) +

L[u' 1l - s2 ds _ Jaz + 1 4#
0 (1 + a282f%/i - k2’0252 aJ;e + k2,02

al

d.2 ’ 2 + 1 J‘(kQ,O’ ) (BB)
d(a ) a«a + k2 0 .
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Carrying out the differentiation in equation (B8) results in

L \’l - 52 ds Jae + 1 J.,(}[2 o:a) _

—x

° [« aase)EJ['_ kp o282 ana +kp o2

%l’ avad +‘l . ‘ 1 G(ka,o:ﬂ-) +
(R N )

i Jal 4 1 |7K2 ‘32 + k2:°2 - K2:° - Ez:o ] (29)
2 2, ke’oz[ ’ J(aa + 1)3 ‘/(ja + ])(32 + ka’oa)J

The remaining integration needed to evaluate v 5 (eq. (B2)) is
J

j:(lh___?as

2.2\3/2
- k2,0 8 )5/

This integration may be reduced to standard elliptic forms by the
transformation s = sn u and integrated to give

L Jl - 82 ds _ K2,0 - Ea,o '(BlO)
O (1 -m R

The sidewash U D is now completely defined by equations (B2), (B5),
2 -

(B9), and (BlO) as
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G- o)p0n |l BT 1 (2, 008) -

Yw,p = 2
’ o Ka? + k2:°2)3/2 a\/a.2 + lJag + ky oZ

2 > 2
a® + 1 Ja + Ko o _ Koo - B2 o ]

B(x - °)5ak2,o3 —Jaz + 1 3822 + 1 N
npz2 a(32+k2’02)5/2 2(e2 k2,02)5/2

3(Ez,'o - %o,0)
2P+t 0" )

(B11)

Considerasble simplification of equation (Bll) may be accomplished
by combining terms and noting that

5 5 (x - c)2k2 02 (x - c)2k2 02a2
ac + k2 o = 2 = 2
J B2Z2 e 02C2
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a(x - c)kz’o
R S T

Replacing &a by its nondimensional equivalent

L

0.c
a=-2 =
Bz Zo

and H by its equivalent and then nondimensionalizing x by c¢ and
Vgp O pb/2 gives
J

Vi 2 -1
W,D _ 2 |22 + 1, (kz,o: 1) _ K2,ok2,o(xo )Zo (B13)

= G L
pb/2  nG(8,) J;2—+_1 60(202 + 1)
o

20

Equation (Bl3) is identical with equation (29) of the ammlysis, with

the exception that, in the analysis, the function G(kQ’O ’zi) has been
. o

written out.
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Figure 1.~ Triangular wing oriented with respect to body system of axes
used in analysis and associated symbol dats.
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Figure 2.- Regions behind a triangular wing.
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Figure 3.- Finite vortex used to approximate a bent lifting line.
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Figure 5.- Variation with 2o Of nondimensional sidewash parameter in

XoZo-Plane at a number of longitudinal stations.
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Figure 7.- Comparison of lifting-line and lifting-surface sidewash for
8o = 1.00 and 0.40. Circles represent points calculated by lifting-

line method.
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