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By Percy J. I?obbitt

SUMMARY

The Mfting-surface sidewash behind rolling triangular wings has
been derived for a range of supersonic Mach nunibersfor which the wing
leading edges remain swept behind the Mach cone emanating from the wing
apex. Variations of the sidewash with longitudinal distance in the
vertical plane of synmetry are presented in graphical.form.

An appro-te expression for the sidewash has been developed by
means of an approach using a horseshoe-vortex approximate-lifting-line
theory. By use of this approximate expression, sidewash may be computed
for wings of arbitrary plan form and span loading. A comparison of the
sidewash computed by lifting-surface and lifting-line expressions for
the triangular wing showed good ~eement except in the vicinity of the
trailing edge when the leading edge approached the sonic condition.

An illustrative calculation has been made of the force induced by
the wing sidewash on a vertical tail located in various longitudinal
positions.

INTRODUCTION

ih Order lx)-e reliable estinates of the total forces ~d m~ents
acting on an aircraft, accurate evaluations are reqdred of the loadings
on the individual isolated components and of the interference effects
between components. Although considerable effort has been expended in
recent years to supply much of this needed information for the supersonic
speed range, many important problems remain. Among these is the induced
effect of the wing flow field or, more precisely, the wing sidewash on the
vertical tail. The only specific numerical results of this nature obtained
to date have been for the angle-of-attackmotion. In the vertical pl~e of
synmetry for this case, however, the sidewah is zero and tail surfaces
located in t~s plane are unaffected. This is not the-situation for the
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rolling, ywing, and sidesl.ippingmotions where the sidewash in the ver-
ticsl plaq.eof symetry is finite and the load induced on the vertical
tail can be appreciable. Evaluation of the sidewash for these motions
would, therefore, be important in the prediction of the lateral stability
of supersonic aircraft.

The present paper presents the derivation of the sidewash behind
steady rolling, triangular wings with stisonic leading edges. Both liftin.g-
surface and lifting-line methods, previously app13ed primarily to determine
downwash, are utilized and comparisons are made of the sidewash computed
by the two methods in order to give an indication of the worth of the more
easily obtainable lifting-line results. ~ lifting-surface sidewash is
deterdned by using the dotilet-distributionmthod of reference 1, and
the lifting-line values are obtained by use of the lifting-line approach
given in reference 2.

An illustrative calculation using the derived sidewash is mde of the
force induced on a half-delta tail operating behind a rolling trismgular
~, and this force is contrasted to the force that would act on the tail
if it were rolling in the undisturbed stream. .

The material presented in this paper was sulmitted to the University
of Virginia aa a thesis in partial fulfillment of the requirements for
the degree of Master of Science in Aeronautical Engineering.

SYMBOLS

The positive directions of forces, moments,
in figure 1.

x> Y) z Cartesian coordinates of

xl) YIY 21 Cartesian coordinates

field point

of dotilet or

and velocities are shown

line-vortex position

u, v, w perturbation velocities along x-, y-, and z-axis, respectively

A wing aspect ratio, $/s

b wing span

Cn yawing-moment coefficient, Yawing mament

(@b

.
-.
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‘+

Cnp =

Cy

acn

g
P+o

side-force coefficient, Side force
qs

c

d

h

wing root chord

distance from wing trailing edge to a point downstream

displacement of vortex sheet below wing trailing edge

‘lJ ~ limits of yl-integration

i

k

‘1 =

%,0

variable index used in summations

constant

Jx- X1)2 - pzzz

JF-+2 - P2Z2
Eloc

-.,

Y

and as subscript

-.. .. . .-.——-—— . . . —— —— ._. .— —..—— .— _._— -—. —
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“o=*
%,0’ = p - %,0’

M free-stream Mach

m slope of lifting

P static pressure

AP= P~ - Pu

P ~ velocity

,

nuniber, V/Velocity of sound in free stream

line

of

~’ free-stresm dynsmic

s wing area

43=%-”1

roll, radians/see

pressure, g+

v free-stream velocity

Vp sidewash induced by doublets distributed over plan form

%
sidewash induced by doublets distributed over wake

x =x - xl

Xi =x-xi

%.x~=—
b/2

~=:

xl
Xl,. = ~

..

r!

,-,,



NAC!ATN 3609

— —

5

lq=y-yi

Yo=y
b~

‘o=—
b~2

a angle of attack, radians

r circulation at any spanwise station

e angle of downwash measured in xz-plane, between trailing
vortex sheet,and axis parallel to free-stream direction,
radians

(~.b&=$A
o c T )

for triangular wings

A angle through which vortex sheet rotates in moving from wing
trailing edge,to a point which is d distance downstream

P density of free-stresm air

Pf perturbation velocity potential

eoc 1
a=—=—

pz Zo

E complete elliptic integral of second kind with modulus k,

‘dX$&”

/
#

“m

K complete elliptic integral of first kind with modulus k,

r
0 tim

.—,___ . .- —— . . . ..— -. —....-— ——
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E(t,k) incomplete elliptic integral of second kind with

and modulus k,
ro

F(t,k) incomplete elliptic

and modulus k,

NACA TN 3609

argument t

integral of first kind with argment t

x- OW + p2z2(l-eoa
f= )

1 - 002

f. = ‘o { ( - ’02)- 90 X02 + 2.2 1

1 - 0.2

.(%,OJ*)”=:+(%,0 - %,0)+-’;2 %,.)-%,+’& %,.)

-,
!.

.,

.

2-
G(eo) = ~-’ (’J -, :O:02F’(’d

- 8.2

ZP

H=~2G(EIo)

L.E. leading edge

T.E. trailing edge

I sign denoting finite part of integral
*

!,

——— .—— —.— —z ..-—— —.—_ __
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Subscripts:

D ConM.tions in

E conditions in

1 pertaining to

P plan form

s conditions on

u pertaining to

W wake

7

region D (fig. 2)

region E (fig. 2)

lower side of surface

surface of discontinuity (at 21 = O)

upper side of surface

The subscripts 1,2, 1,0, and 2,0 on
and K indicate the modulus of the elliptic

()K1 = K ~,kl

the elliptic functions E
function; that is,

ANA.IYSIS

General Remarks

The problem to be considered herein is that of determining the
perturbation sidewash velocity behind a rolling triangular wing for a
range of supersonic Mach numbers for which the leading edges of the
wing are subsonic. The analysis is based on an application of linearized
supersonic-flow theory and, hence, the results obtained will be valid
within the limitations of linear theory.

h the SlldySiS which fOlh’WS, several assumptions are made con-
cerning the trailing vortex sheet. These assumptions are that the vortex
sheet must remain flat behind the wing and that the rotation of the
vortex sheet is small enough to be neglected. In addition, the nonre-
strictive stipulation is made that the”rolling wings be at zero angle of

. ..—.
—. .. —.— - .——— —— . —- ——.._— —.-.— -– -. .—--
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attack. Further discussion of these points will be found in the section -
entitled llDiscussion.ll

In flight, a steady rolling motion till usually be maintained by
differentially deflected ailerons that create a sidewash opposed to the
wing sidewash. Calculation of aileron sidewash. which mav be of the
ssm”eorder of magnitude as the wing sidewash,
the present paper.

130undaryConutions

The boundary conditions for the proposed
on the z = O plane and are similar to those
motion in reference 1.

~11. not be”considered in

problem may be prescribed
giien for the angle-of-attack

The downwash boundary condition on the rolling wing is

~ = (PY)P+O
.-

In order to anslyze the quasi-steady rolling problem by use of steady- ,
flow theory, the rollg wing is considered fixed in appro~tely the
z = O plane but twisted Mnesrly in the spanwise direction. Only smsll.
linear twists are allowable, however, in order not to violate the assump-
tions of smsll-perturbationlinearized theory; hence, the rate of roll is
necessarily small.(approaching zero).

Pressures on the wing and pressure differences across the wing surface
are finite and, for a great variety of plan fo”rms,have already been
obtained. (See, for example, refs. 3 and 4.) Off the wing and in the
plane.of the wing, the pressure, and hence the pressure clifference, must
be zero.

In the z = O plane, the local pressure clifference is directly pro-
portional to the stresmwise canponent of the perturbation velocity and @
given simply as

“M.
2 As (X1>Y1)

~ v
(1)

———____ ____ ._._____ —. —..—————___ —..
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By consideration of the relationship between the perturbation velocity
potential and the stresmwise velocity

an
in

- M!J%D.l=
&Kl

component; that is~

f% (wl) (2)

expression giving the juq in velocity potential across the ~-plane
terms of the local pressure difference may be written as f

J’‘1 AF(x,yl)
@.(xi,YJ ‘ ~

L.E. %3
dx (3)

Since, from equations (1) and (2),

@%@ _ 2 a 4Z3(%YI) “
v a?q

(4)
fl

.

~d since fis(xI)yl) is an odd function in z, it is clear that, beyond

the trailing edge, A@s must be independent of xl to satisfy the zero-

pressure condition in the wake. The integration indicated in equation (3)
should, therefore, be made from the wing leading edge to the trailing edge
to ob~in A@s & the wake.

Solution to Rmxlary-Value Problem

The linearized partial-differential equation which
velocity -potentialmust satisfy in supersonic flow is

the perturbation

(5)

——-—-———— ——--—-———-—--——---. —-— -—-—---- ——— —.. —
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For the problem being considered herein, the solution to equation (~) may
be written as

@(x,y,z) .-g

Z$2

-a !!
wake

(6)

This expression represents the potential in space due to a distribution
of doublets in the xy-plane with strengths that are governed by the
potential jump across the z = O plane.

The synibol~ indicates that the finite parts of the infinite
inte~als are to be

.

The
has been

where

taken when they appear.

Application to Triangular Wings

loading over a rolling delta wing with mibsonic leading edges
found in reference 4 to be

[-

2- e02 e2

1
G(QO) = ~ e ‘~’(co) -y’(co)

o - GO*.

(7)

.

.
d

D

u

.,

—-. — ————...———- ———.—— -. ————.— . .
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and

la

F’(co) = F(:,~~2)

From equations (3) and (7) the potential jump across the wing surface is

where

A@&YI) = ~Yl
-

and in the wake

%(yl) =WJC==W

H= 2P

~2G(8.)

(8)

(9)

(lo)

,

The velocity potential in space may now be written as the sum of the
two expressions (see eq. (6))

—..—— ..—. —.. .Z —— —-— —.. ---- ——- ——.—.



12

and
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$-$L[(x-+ - ,P(y - yly - ,Qp
(i)

As previously stated, the primary purpos,eof this paper is the
determination of the velocity perturbated behind the wing parallel to
the y-sxis (or the sidewash). ‘lhisflow veloci~ may be obtained by

~ taking the partial derivative of the velocity potential with respect
to y, or

With

+

pi=#p+~

the sid.ewashin the xz-plane from equations (n) and (12) will be given
by the sun of

()VP=*
S_ y+()

#

J
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and

,. 13

.

%“()‘w= G- y+()

Subsequently it till be convenient for computationalpurposes to
derive expressions for the sidewash”which hag!been .n~nsionalized
pb/2 SO that

When v is written in a

it can be recognized that
be defined as the induced
angle pb/2V.

‘P Vw

fi=~+pb/2 . .

slightly different, though equivalent, form

by

.
v/v

=
. .

..-,
...
.. ... ..

..” .. . .
. .

. .

the nondimensional sidewash parsmeter may “.
.,

angle of sidewash per unit wing-tip helix , .

The rest of this section is
tions (13) and (14) at points in
xz-plane (see fig. 2):

. .

devoted to the evaluation of equa-
the follh two regions of the

(1) The region lying between the Mach lines emanating from the wing
trailing edge and the line of intersection of the two cones from the
trailing-edge tips.

.

. .—— — —..——— --- ---– —-- —
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(2) The region which extends from the line of intersection
two cones from the trailing-edge tips downstream to infinity.

TN 3609

,,
of the

These two regions are dgnoted, as in reference 1, by E and D,
respectively. TIE contributions of the doublets distributed over the
plan form and the wake to the sidewash in regions E and D are con-
sidered separately.

In region D the sidewash contributed by the dmiblets tistrib~d” on the
plan form is

order to facilitate the

convenient to carry out

(15) ,,

integrations involved in determining Vp D, it .,

the differentiationand ldmiting process~s

In

is
first. This procedure gives

eoxl

J’/_ 3zH@2 c ~1 p eo2x12 - 132Y1201
‘P,D I’(

[( ) 1

(16)
. 0 0

x - xl 2 2 2 5/2
‘ $2Y12 - P ‘

When the fold.owingsubstitutions are made,

82 = B%12

eo2x12

eo2x12

‘2=(x- ‘1)2- ‘2’2
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.,
‘P,D becomes

which, by the
smenable form

use of partial f’=ction&,,may be written in the more

15 “

(17)

(18)

The integrals in equation (18) may be reduced to standard elliptic
forms by use of the Jacobian transformation, s = sn u (refs. 5 and 6),
and rea-fllyintegrated to give

(19)

By replacing H

z, equation (19)

by its equivalent and nontiensionalizing ‘xl, x, and

becomes

—.—. .——z —— -...—. —— ‘ ——–—



16

. .

. NACA TN 3609

where

‘P,D.”. 220

‘r (

%?—=
pb/2 G(80)fi () e,#l,~

)

-~ + xn2 *1 ~
1 - k22

J
.,

. .

. .. .

e$xf -:
.“

. . ’22=(x-’42 -“@2.
00-%,0

(- )2_Xo - Xl,o
~02z02

(20) f’

.-.

Sidewash due to doublets distributed on plsm form in region E.-

The portion of the wing area over which the integrationin equation (13)
is to be perfomed is different for each position of the field point in
region E. This fact is evidencedby the appearance of the field-point
coordinates x, y, and z in the limits of integration.” It is expedient “
h dei%~ vp,E to follow the same procedure used in determining

VP,D (differentiatingbefore integrating). This is allowable since it can .

be-shown that the expression for we potential @p,E canbe differentiated

with respect to y without regard to the variable”13mitswhen the evaJ.ua-
tion of the derivative is made at y = O.

Differentiating @p E with respect to y and then setting y eqti
1

to zero yields

+

. / ‘d?=?
(x -x 2

1 - $222
- ylp

P2

5/2

(21)
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where

17

x- eo2X2 + j32Z21 - eo2
f= )

The yl-integration in the first double integral of equation (21) is

identical to the yl-integration in equation (16); hence, only the second

term of

In

equation (21) remains to be considered.

the integration

let
#

where

& .
(X-X1)2 -pzzz

802X12

~—. . .-— ——-——
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This substitutionresults in the expression

WA TN 3609

(22)

which, except for the we of the finite-part concept, may be integrated
in a manner similar to that used for equation (17). Performing the
integration in expression (22) allows Vp ~ (eq. (21)) to be written as

>

d’

.

.
(23)

Equation (23) for vp,E does not lend itself readily to numerical cal-

culations because, at the point xl = f, kl and ~ become equal to

1 and give rise to first-order infinities in the integrands. Appendix A
shows how this difficulty is eliminated by a parts integration of the
terms containing the singularities. After the first-order infinity has
been treated and the xl-, x-, and z-lengths nondlmensionalized,eqya-

tion (23) iS

-7
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..

k12

1

Q%(XO -‘1,0)&l 0-
%l,o >

/ ‘i-’’---( ‘- ‘(
1--, - .(, - e:)’,,. +X. “

&o%2 + .Z02 1 - 0.2

[

%)(’0- Xl,o )
f. 1‘.~ ‘1’0- “ - ‘0’’J0k’2 ‘“0 -

‘l,o -_l -1- eo2)+ ~

%2 + 2.2(1 - eo2) ‘c#CJ2+‘02(1- eo2)}

where

‘o - J00 *02 + Z02 1 - 0.2
f. =

(,4)

Numerical calculationsmay be made by using equation (24) for all
values of eo except 00 . 1 where f. becomes indetemte and the

uc ~erbolic functions become imfinite. The tieterminac~ when
evaluated yields

()f X02 - Q02Z02
o O.=l = 2X0

“,

,.

. .. .. —.. - ---- -. —----—-——--— — .-. — . —. ——— —
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Thus, an integration
Sbilar to that made

expression for kl

yields

WA IIN36o9

by parts of the singular terms of equEtion (23)
tO obtah eq=tion (24), UW now (fo)eO=l ‘d

and lq in which e. has been set eqyal to 1,

‘P,E 2Z0

(r

o %,0
_=—
pb/2 YcG(eo) o J

~(-~ + ~) + 1 =(-Kl + El) -I-
f. xQk12

1 f(0 -loge )[2 %-%
-2X+1,0 +,X02 - Zo — -

~ %?

The

)[ (
1

El - Kl)(% - ‘l,o) ~1 o -
X02 + Zo2Kl -

k2xl,0,
)

%(%=JF7aogepo-X02+ Z02) + -

=0

‘i~10ge~02- ‘02)}
(25)

integration in equation (25) may be handled by numerical-methods.

.

.
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Sidewash due to doublets distributed in wake in region D.- In
region D, equation (14) takes the form

Carrying out the differentiationand then the first integration
gives

eoc

f-[ [

$ 3f32y12/~
VW,D =

ZH(X - C)

Y& o
I

(ylZ+ z=’)(x - C)2 - payf’ - fw 1/2

(=-c)2h12/eo2c2+2Y12

( 1’
y12+’2r[(x-c)2-@;y12-~2z2]3/2‘(’Y1)

By making the variable substitution

2 802C2
Yf=s-

p2

and defining

e02C2
= k2 02

(X-C)2 -p2z2 ‘

for y=O

(27)

-. — .-— - ——.-—. — .—. — —-— —.-——.- . . ..— ——
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equation (27) reduces to

‘W,D =

..

3H(x - c)eo3c~, o
r

1
-=2*

Y’cp2z3

H(x - c)3eo&>,03

7cp2z3

NACA TN 3609

The expression for ~~,D given by equation (28) maybe

appendix B) to yield a closed-form solution for ~,D.

‘I~,D ~~
equation for —

pb~’

(28)

r

.

integrated (see

The nondhensional .

A

.
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Sidewash due to doublets distributed in wake of region E.- In
region E the
and yields

derivation of the sidewash is similar to that of region D

J%,0%% 2.2 + 1

-1
+

%

( )(-J1 cot-l ‘w
‘1,0 - ‘1, o )220 J%,o’ -

(Kl,# cot

](

-1 ‘lyo k , 22.2-1-1 e.
~ 1,0

I
~ - “1’020

(30)

where

k1,02 =
(x - C)2 ,-pzzz

~02C2

Sidewash at x-axis.- In the xy-plane (plane of the wake), only the
doublets distributed in the wake contribute to the sidewash. Equation (20)

‘P,D
and equations (24) and (25) for ‘P,E

‘or ‘~
approach zero as 20

~

approaches zero, whereas equations (29) and (~) give

‘W,D ‘W,E 1—=— =—
pb/2 pb/2 G(eo)

(31)

-- - - .- —— .—— — --—— — .- ——— — ..—— .- —
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.

This result is identical with
formula obtained in reference
sheets. This formula, for y

where

NACA TN 3609 “

that which would be obtatied by use of the
7 by considering the properties of vortex

= Y7 = o, is

r = (4)s T.E.

Sidewash at x = ~ (lkefftzplane).- As x approaches

contribution of the doublets distributed on the plan form to
goes to zero and the total sidewash is given by

(52)

(33)

.

infinity, the

the sidewash -

(34)

Equation (~) could also have
formula

been determined more directly by using the

.,

d

,<
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WhiC4 may be obtained
tion and then setting

—

25

from equation (26) by performing the first integra-
x equal to infinity.

Lifting-Line Sidewash

The lifting-surfacemethod by which the sidewash behind a rolling
delta wing was derived in the previous section is applicable to wings of
arbitrary plan form; however, the integrations which would be required
before the potential or one of the perturbation velocities could be
obtained in a calculable form are extremely difficult to evaluate. It
is of hportance, therefore, to develop some approximate expressions
which may be easily evaluated either analytically or numerically. Refer-
ences 2 and 8 indicate that a lifting line and a lifting line appro~ted
by supersonic horseshoe vortices can be used as good appro-tions to
lifting-surface solutions for most downwash problems. It would seem that
a comparison of the sidewash behind the rolling delti wing calculated by
the lifting-surfacemethod with that calculated by an appro-te method
might give some indication“of the usefulness of the “approximate”approach
for sidewash problems.

References 2 and 8 together represent a fairly thorough study of the
lifting-line and approximate lifting-line methods, especially with regard
to downwash calculations, and show that the bent (swept) lifting lines
will.probably give the best results for swept and triangular wings. The
potential.due to a bent lifting line may be obtained from the errata of
reference 2 as

% dr(YJ tin-l ok1 1 -j3yY2 +‘2) ~

ix q ‘2 *2 1
1 YXm-—- —

where the equation of the lifting lins is

yl+k
xl. —

m

(36)

—— .- . . . ..- —.—.— .—. ..— .—e —.— —.— _ .— . . . . — .— .. —-. — .-— — ——. —.— —
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and the circulation r is defined by equation (33) as the potential jump “
across the seace evaluated at the trailing edge,. (See fig. 3.) When

.,
‘(YIJ is zerO, equation (5) becomes
*1

+2
@ &+Jx2-f3:~;2’2~=— (Y’)

xx -y-;
hl

which might be considered as the potential in space (at a point x, y, z)
of a finite bent vortex of constant strength. A number of fhit-e bent
vortices distributed along a line can be used to approximate the potential
b space of a lifting line with any prescribed

- equation (37), the sidewash due to a
obtained by taking the derivative with respect
result is obtained:

lift distribution.

bent vortex is readily
to y. The following

When m approaches infinity, equation (~) becomes the sidewash’for a
rectangular horseshoe vortex and agrees with the equations given in
references 9 and 10.

Since the loading on a rolklng wing is sxrtisymnetrical,the induced
sidewash from each panel is in the ssme direction and equal h the
Y = o plane. For this reason it is necessary to calculate the sidewash
ody from one panel and double it.

Equation (X) csn be utilized to formula& an approximate expression ,
for the sidewash due to a series of constant-strengthhorseshoe vortices
spaced along a line so as to represent as closely as possible some pre-
scribed span loading. Tbis expression is

.
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$ r(%+1)- r(h)v=- %(’xi’-13”iz-P2Z2) - zx~(& -B2Z2)

=0 4“ &-G=[i% -+’++’ -~’-’i’ - P’.’] ‘n)~
Yi+k

where Yi=y-yi, Xi=x-~, and xi= the subscript i
m’

takes on all integral values from O to n. Equation (39) in nondimen-
sional form is

1[ (n -r(Y,+.)r(y4-,~ZOyi,.‘y,’- ,2*,.2

L“

p(b/2)2 p(b/2)2 m
- ,%.2) - ZJ.@ -,22.’

]

&=-

W=-==f& -%-i$)’+’.’@ -’2yiJ02 -“02] ‘m)

In the application of equaticm (40) to the calculation of sidewash,
some care should be exercised that the forecone from the field point
under consideration does not intersect the lifting line at a point close
to the corner of a horseshoe vortex. When the forecone intersect the
lifting line near a corner located within the forecone, the expression
under the radical in the denominator of equation (40) becomss small.and -
the sidewash becomes large. (See sketch 1 below.)

/ I&fting line

\
\ \
\ I

Intersection
field points

of forecones from
with vortex sheet

Sketch 1

/

Trailing vortices

Sketch.2

/

\

\

—- . ... . .. ... . —.. —.— -—. .—. _ _.— — -z ._ .._ ——— .——. —... .
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A zero value for the square root and an infinite value for the sidewash
result when the forecone intersects the corner. The abruptness of the
infinity vsrles with the distance of the field point from the corner.
Note that when x = m, the infinity no longer exists. The preferable
field-point locations have forecones intersecting the lifting line as
shown in sketch 2. The closeness of the forecone to the corner when the
corner is outside the ~ch cone is obviously of no consequence because
only line vortices within the forecone from the field point contribute
to the sidewash at the point.

RESULTS AND DISCUSSION

Exact Sidewash

The exact Hnearized nondimensional si~wash has been calculated
for values of 00 Of 1.00, 0.75, 0.50, 0.40, and 0.30; Vdl.leSOf X.

from 1.2 to 2.4; and values of Z. frcunO to 0.6 except where these

values are ahead of re~on E. Variations of the sidewash param-

eter
Vjv— with ~ for 7 values of Z. fromO to 0.6 and for the

pb/2V
O.’s given are presented in figure 4. Cross plots of figure 4which

show the variation of the sidewash parametir with Z. for 7 values of

~ froml.2 to 2.4 are given as figure 5.

In order to depict the effect of Mach number and leading-edge sweep,
variations of the sidewash parameter with Z. for values of 00 of 1.00,

0.75, 0.50, and O.~ have been plotted for three longitudinal locations:

Xo =1.6, ~ = 2.0, and X. =~ (fig. 6). (It should be noted at this

point that an increase in 00 may be interpreted as either an increase

in Mach nuniberfor a fixed lea--edge slope or an increase in the wing
semiapex angle for a specific Mach number.) The major difference to be
noted h the effects of changing 00 is that, when the longitudinal sta-

tion is ahead of the line of intersection of the Mach cones from the
trailing-edge tips, an increase in 00 causes an increase in the sidewash

at the higher values of Zo, whereas the sidewash at a station remaining

behind the intersection Line during an

decrease in sidewash at all values of

localized infinity at the intersection
can be seen at station ~ = 1.6 that

increase in 00 experiences a

Z. which are unaffected by the

line. Byway of illustration it
when 00 is increased from 0.75

to 1.00 the sidewash increases

values of 90 of 0.3 and 0.5,

for values of 20

when -~ = 1.6 is

greater than 0.2; for

behind the intersection

.
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line, the effect of increasing e. is to decrease
values of Z. except at Z. = 0.6. This point is

ity at the intersection line.

29

the sidewash at all

affected by the infin-

Approximate Sidewash

From the nature of the analytical and numerical integrations required
to obtain the exact sidewash for triangular wings, it is apparent that for
wings with more complex potential-jmp expressions the derivation of exact
sidewash would be a difficult task. Herein lies the merit of the approxi-
mate lifting-line method (eq. (b)) which is not encumbered %y the ccm-
plexl.tyof the wing-loading expression. The approximate method is, how-
ever, hindered to the extent that an area distribution of loading is
assumed concentrated on one or several lines. The penalty that this
assumption imposes on the quality of the results cannot be ascertained in
every case. For the triangular wing treated hereinj comparisons may be
made between the results from the lifting-1.im and the lifting-surface
methods, and perhaps some indication H be obtained as to the regions
wherein the approximate method may or may not give reliable values.

By use of equation (~), approximate lifting-line calculations of the
sidewash have been made for f30= 1.00 and 0.40, values of ~ from 1.2

.
to 2.4, and values of Z. from 0.1 to 0.6. Sidewash values for Z. = O

were obtained from equation (32). A comparison of the sidewash calcu-
lated by the lifting-line and lifting-surfacemethods has been made in
figure 7, and the agreement is shown to be good everywhere except at the
high values of 20 close behind the trailing edge for f30= 1.CX). The

agreement in this region is considerably better at e. = O.~ (fig. 7(b))

and indicates that as t30 is decreased from 1.00 the approximate calcu- .

lations will become more reliable at locations close behind the trailing
edge.

Seventeen bent horseshoe vortices were used to approximate the
lifting line, with the concentration of vortices geater near the
tip because of the rapid change in the span loading in this region.
The shape of the bent lifting line used in the approximate calculations
was a pair of straight lines connecting the midpoint of the root chord
to the tips. Additional computations of the sidewash have been made
Ming lifting lines composed of straight lines connecting the.tips with
the c/4 point and connecting the tips with the 3c/4 point but the
agreement with the exact sidewash was not so good as that evidenced in
figure 7.

. -.. ..= — . .—— ._._ . .— .—. — ..__ .— .——z . . . . . ——— ..—.
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It is of interest that the spsmwise center of
distributed along the lifting lAne connecting the
tips (the lifting line yielding the best agreement
surface results) was located longitudinally closer

NACA TN 3609

e
loading of the loading
c/2 point with the
with the lifting- .
to the actual ~

center of loa& at 3c/4 than-it was wh& the loading was &I.strib&d
on the other two lifting lines.

The wing loading in the exsmples just discussed was distributed on
one Mfting line. Sidewash obtained by distributing the wing loading on
more than one lifting line would probably show better agreement with the
exact results in region E, because some.effect of the longitudinal dis-
tribution of loading over the wing could then be reaU.zed.

_le of Flw-l?ield Effect on Vertical ml

The effect of the induced sidewash velocity behind a rolling wing
on the forces and moments contributed by a vertical tail can best be
illustrated by analyzing a specific wing-tail configuration. The perti-
nent geometric characteristics of the wing-tail model are (see fig. 8):

.
Wingaspectr atio. . . . . . . . . . . . . . . . . . . . . . .
TsAl aspect ratio . . . . . . . . . . . . . . . . . . . . . . .
‘I&il area
Wing area””..”””””. ““=”.=”””””””’” ““

Tail span
Wing semispan .”.’.””. ““”.”.””””””””. ““

Tbil chord

W~ chord.””.-””.” ““””.”””””..””” ““

Center-of-gravity location . . . . . . . . . . . . . . . . . .

0.21 .

0.7

0.6

0.5C

A free-stresm Mach number of 1.6 (~ = 1.25) has been chosen. The wing
leading edge for this Mach number is sonic (00 = 1) and the vertical-

tail leading edge is supersonic. Induced side-force and yawing moments
for a nuniberof longitudinal positions of the vertical tail have been
determined by nmnerical integrations in a manner similar to that used in
reference 11 to obtain the contribution of horizontal tails with super-
sonic leading edges to the lift and pitching moment. In making the
numerical integrations, sidewash curves (figs. 4 and 5) were used which
bad the infinity at the tip-cone intersection line faired through.
Isolated verticsl-tail forces and moments have been computed from the
formulas given in reference 12.
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Figure 9 shows in stability-derivativeform the variation of the
induced, isolated, and total forces and moments with the longitudinal
location of the vertical tail. For the example configuration chosen,
the induced forces and mcments are greater than the “isolated” forces
smd give rise to a positive CYP coefficient and a negative Cnp.

Obviously, from the sidewash curves, if the vertical tail were moved
away from the x-axis, the induced force would be reduced. The isolated
forces and moments, on the other hand, would increase and the total
C* and total C-

%?
would become

P

Assumptions

negative and positive, respectively.

and Limitations

In some cases, the assumptions made in the analysis,,by necessity
or for convenience, to allow the determination of the sidewash behind
triangular wings by linearized supersonic flow theory limit the applica-
tion of the results. Some discussion of these assumptions and limita-
tions may be useful.

The validity of the assumption of a flat vortex sheet for wings
with very low aspect ratios is questionable,but, in the absence of

, expertiental and theoretical information directly concerned with the
. vortex sheet behind rolling wings)’no definite statement can be made as

to the effects that wing aspect ratio, roll velocity, and distance behind .
the trailing edge will have on the rolling-up of the vortex sheet. It
may be possible, as suggested in reference 13, to get some indication of
these effects from the data published in references 14 and 15 concerning
the rolling-up of the vortex sheet behind wings at an angle of attack.

The vortex sheet has been assumed not to rotate. The angle (in
degrees) through which the vortex sheet would rotate in moving from the
wing trailing edge to apoint d distance downstream is givenby

()180 Pb d=—— —
X 2V b/2

— .-..-. — .— ——.———..——. .—.———— . ..——— -——-— ——
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Substitution into this formula of values of pb/2V usually encountered
d

and of distance d up to two semispans will generally yield rotation
amgles smsll enough to be neglected. .

The sidewash expressions derived in the analysis for rolling wings
at zero angle of attack are also applicable for finite angles of attack
because angle-of-attack loadings are symmetrical and do not contribute
to the sidewash in the X2-p-. The displacement of the assmed flat
vortex sheet from its zero angle-of-attackposition, however, must be
accounted for; that is, the sidewash given for a po~t x, z=d for the
zero angle-ofattack case represents the sidewash at the vortex sheet
when the wing is at an angle of attack. At a distance d behind the
trail~ edge, the disphcement of the vortex sheet below the trailing
edge may be found (see following sketch) from t

J’
d

h= tanedx
T.E.

,Wing

Wing chord extended’

Values of tan s for a triangular wing are ~ven in reference 20

CONCLUDING REMARKS

The variation of sidewash with longitudinal distance in the verti-
cal plane of symmtry behind rolling triangular wings traveling at super-
sonic speeds has been derived by linearized lifting-surface and lifting-
line methoti. The rsmge of supersonic Mach nuders for which the
lifting-surface results are vslid is Uted by the condition that the
wing leading edges must be subsonic. The variations of lifting-surface
sidewash are presented in graphical form for a number of values of f3o, .

a Mach nuniber-leading-edge-sweepp~ter. Sidewssh calculated from

.
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the lifting-line formula has been compared with the lifting-surface side-
wash for vslues of 60 of 0.40 and 1.00. ‘IMs comparison shows very good

,- agreement of the lifting-line results with lifting-surfaceresults except
at the higher vertical dislxmces close behind the trailing edge for “
80 = 1.00. The curves for 80 = 0.40 reveal that, as 80 is decreased

from 1.00, the agreement close behind the trailing edge improves.

An illustrative calculation of the sidewash-inducedforce on a ha&-
delta vertical tail operating behind a triangular wing indicates that the
induced force acts in owosition and is comparable in magnitude to the
damping force created on the isolated rolling tail. ti order to determine
the total force which would act on the vertical tail of a’steady-rolling
aircreft in flight, an additional force induced by the aileron sidewash
should be calculated. This force may be of the same order of magnitude
as, and opposed to, the force induced on the tail by the ~ sidewash.
No attempt has been made in the present paper to evaluake ‘tileronsidewash.

Mngley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., October 21, 1955.

.

-—— .—— ———-
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APPENDIX A

TNWMINT OF FIRST-ORDER INFINITIES IN VP,E

AS GIVEN BY EQUATION (20)

In order to isolde the “infinite” term, equation (23) may be

o2
dq E2

e&l 21 “- ?’#

J’%q~ 1c dxl El
——(-Kl + El)-- —

f ‘#l k12 1‘&l1-k12

+

-.

Terms @ and ~ are integrable by numerical methods, whereas terms

~ and ~ contain a first-order infinity at the limlt xl = f

(when xl = f,
)

kl=~=l.

Consider term ~ in equation (-Al)

(Al)

.

r dxl %%2
o %xll-k#

\
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.
If k2 is replaced by its equivalent (see symbols), term ~ becomes

J’
f dx~

o (x - X1)2 - paza - (302X1
a%~~”

Assume expression (A2) tobe of the form

.U=

r u’dv, where
o .

‘+--
and

dv =
ti~

(“x- Xl)2 - P2Z2 -’eo2x12

.

,,

1 -1- )eo2 Xl + x
v. coth-l

(
eo?# + j32Z21 - eo2) (

eo2~ + P2Z2 1 - eo2)

du= ‘0(E2- ~) K*(x - Xl)

k2 - eoxl

(A2)

- — —--- ——— -———-——.-— —--— —-——— — -. . ..—— _—.-_ __ —.— . —
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and a parts integration of expression (A2 ) gives

f
- X1)2 - ppzp ~oth-l -(1 - 902)X1 + x

(
1302X2+ ppza 1 - e$

) (
O?X2 + ~2z2 1 -’go2) o

/,[( ‘1
f coth-l - 1 -

eo2)xl + x

[

902%+ B2Z2 1 - 9.2 eo(~ -~)

o (
,9.%?+ #Z2 1 - 902

)
k2-

Substituting for kl its equivalent in term ~ of equation (Al) results

in
.

-J
c

eoxl% dxl

f eo?x12 - (X \2+ B2Z2- xl

With

u= e&lE1

and

(A4)

dv =
-ax~

‘$xf - F - ‘1)2+ ’222
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a parts integration of expression (A4) yields

(eozxz + $=’22 1 - 0.2
(-1- eo2)xl + x c

( )0.%2 + p2z2 1 - (3.2 f

J’
c

-tanh-l
f

(-1- )eozxl+x

[

(El - Kl)(X -
Kleo -

1.

‘1) &l
(A5)

(
Oow + B2Z2 1 - O.=’

)
(3&1k12

The nonintegxal term in expression (A5) maybe written h slightly
different form as

x-x12 -#z?

(~2x2 -t #-z2 1,- O.=’)

I

(tam-l ‘l- eoqxl i- x I (A6)

(
0%2 + pzzz 1 - 092

) f

Inasmuchas when xl = f, kl = ~ = 1, it is clear that the evaluation

of the integrated term in expression (A5) (equivalentto expression (A6))
at the limit xl = f will cancel the inte~ated termof expression (A3)

evaluated at this same limit. The complete expression for ‘P,E is now

seen to be

—..—.—. .——-—-———-— ------ —-- —- .-—— ——....——..—
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f

.

.
Tt&- ~2z2

coth-l- X +

(~w + pzzz1 - 002)
(

eo? + p2Z2 1 - 002
)

.

eOCE1,Q
tanh-l ~-(1-eo2)c’xl

(
0.2.2+ p2Z2 1 - 0.2

) (
eo2G + 132z2 1 - 002)

This equation b nonfinsional form is presented in the analysis of the
report as equation (24).
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APPENDIX B

b

EVALUATION OF vw,D

The contribution of the doublets distributed in the wake to the
sidewash in region D is given by equation (28) as

H(x - c)3Qoc~,o 31

J( 3,

s2J~ -s2ds

~P2z3 eopcz p
2

1+
o

(1 - Q,o%2)3/2

22$2

which by use of partial fractions can also be written

1
1s /1 .5 Llv

1

2~
a2 + Q,.

1

(.+ a2*2};J*+ (’2+ 1,02)2 (1. -’~,~.~

(Bl)

(F2)

. .
. .

.—— —-— —. .——. ——— —–. — —— -- -
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For ease in writing,
aoc

has been replaced by a in equation (B2).
~

Consider first the integral

If the variable
becomes

r1 Jca. s “i

JO
‘ + a2s2)Fz-(

(B3)

transformation s = sin e is made, expression (B3)

I

e

p/2
Cos’e &l

(B4) “
do l+ a2 sin2El)Jl- ~,02 sin2~

(

The evaluation of ~essfon (~) iS givenby formula (9), table 61 of
reference 16 as

f–

1

where

[
‘(%?,o~a) = ~+ (%,0 ‘%,O)F(cot-la,~,o’) -~,#(cot-la,~,o’ ]

.
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Expression (B4) could also have been integrated without recourse to
tables with the aid of reference 17 (pp. 134 to 136). The integration
of expression (B3)

may be performed by using the relationship (see p. 13 of ref. 17 and
P. 79 ofref. 18):

J’
1

-#& ‘ J’ JC7*” ,=
0 (1 i- a2s2)2{~ (1 + a2s2)/CIJZF

From equations (B5) and (B6), equation (B7) becomes

,’

. . .— .——-—. — ————— --- -——— -—. — ‘——— —.— . . . —— ——— -
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Carrying out the differentiation

NACA ~ 3609

in equation (E8) results in

The remaining integration needed to evaluate vW,D (eq. (B2)) is

r Jc%.s
o ~ - k2,02s2)3/2

This integration may be reduced to standard elliptic forms by the
transformation s = sn u and integrated to give

= %,0 - E2,0

%,02

(B1O)

~ ‘idewsh ‘W,D is now completely defined by equations (B2), (B5),

(~), and (B1O) as
.

.

.

.



3H(x- c)Bk2 ~a
VW,D =

‘{[

raa+l
27C

.1“2+ “02)3’2 + Fk ‘(%’0”) -

H(x -

{[

c)’~,~ ~

I-rpz2 z 3/2
‘p+%jo )

+

(2 a2 + Q,.
)
z 5/2

1 %,0

2a/arl~+ ~,02)3/2 ‘(’2’0”) - 2~ + 1)(.2 + k2,<) -

13(E2,0 - %,0)

2(a2 + ’20 )j
22

Considerable simplificationof equation (Bll) my be accomplished
by combining terms and noting that

z (x - c)2~,02 (x - c)2~,02a2
a2+k20= =

) p2z2 ~02C2

..— — — .. .. . .. . .. . . ..— —— .——- —
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and

WA ~ 36@

Replacing a by its nondimensioti equivalent

and H by its equivalent and then
Vw D by pb/2 gives

>

nondimensional-izing X by C and

Equation (B13) is identical with equation (29) of the analysis, with

the exception that,in the analysis,the function
‘(!Q’*) ‘s been

written out.

.

.
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Figure 1.-
“L-gO~2g

Triangular ~ oriented with respect to body system of sxes
used in analysis and associated symbol data.
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(0,0) * Y+

z, z, ‘

Figure 3.- Finite vortex used to

.

+ Y, =h-z

approximate a bent lifting line.
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(c) e. = o.~o.

(d) e~ = 0.40.

Figure 4.- Continued.
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