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SUMMARY

A method based upon the theory of characteristics has been developed
to compute the contour of a body for a prescribed pressure distribution.
An indication of the accuracy of the method was obtained by using the
pressure distribution which had been determined by the conventional method
of characteristics to compute the ordinates near the nose of a body. The
agreement between the original and computed ordinates was good. A model
was constructed with an initial included cone angle of 30° and a contour
to give a linear pressure distribution for a free-stream Mach number
of 3.13. Good agreement between the experimental and computed pressure
distributions was obtained when the model was tested at free-stream Mach
numbers of 3.05 and 3.13.

INTRODUCTION

In the past, no method that permits computation of a body of revo-
lution with a particular pressure distribution has been available. The
design of such a body would be useful in the investigation of many aero-
dynamic problems such as those associated with body-wing interaction,
inlets, and boundary-layer transition, separation, and shock interaction.
In this paper, a method based upon the theory of characteristics has
been developed to compute the contour of a body for a prescribed pres-
sure distribution. This method has been used to compute the contour of
a body which has a constant pressure gradient. This pressure distribu-
tion was chosen since the theoretical approach to the problem of tran-
sition indicates that it would be desirable to have, for certain experi-
mental studies, a constant pressure gradient. The available experimental
data on bodies of revolution is restricted to cones which have a zero
pressure gradient and to bodies which have a varying pressure gradient.
A scale model has been constructed and the experimental pressure distri-
bution checked with theory.




SYMBOLS
Cp pressure coefficient
it image
2 :shlutmlushle
cos(6 + u)
L length of body
Ll distance from nose to point of

o sin p Gan p8in O

maXx

cos(8 - p)
M Mach number
0 object
P static pressure
Py stagnation pressure
po' stagnation pressure behind bow shock
q = g pr2
i radius
R Reynolds number
\ velocity
\%) limiting velocity
W limiting velocity ratio, V/Vy
Xy coordinates of flow field
o OS¢ ; )
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o= Gg + deg’h

€ shock angle

y ratio of specific heats, 1.405
e e

B == tan(® + p)

dy
A ==t =l Fan(B -
il T ( W)

Ul conical flow angle

S stream direction

¢ meridian angle about axis of symmetry

) Mach angle

Subscripts:

b body

@ cone

m mean value; when preceded by a 2, a second mean value is
indicated

max maximum

n any point

N normal to shock

T theory

0 free-stream conditions

a,b,c, . . . points in the characteristic net

METHOD OF DESIGN

A sharp-nose body of revolution with a prescribed pressure gradient
may be designed in the following way: The nose can be considered conical
for a short distance, and the values of the flow properties - p the Mach
angle and © the stream direction - along the characteristic line af
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(see fig. 1) can be determined for any conical flow angle 7 from refer-
ence 1. If Cp 1s assumed to be linear with x (see fig. 2), the slope

of the body at any point is determined by the method of characteristics
as outlined in reference 2. For a characteristic of %II (the entropy

terms being disregarded), the basic formulas are as follows:

qy _ i

3= = tan(6 - ) (1)
aV . 36 tan L= m dx - o (2)
\ y

If the limiting velocity ratio

LTI
Tl B S (3)

is introduced and equations (1) and (2) are applied to the determination
of the flow properties at a point c on a specific body (figs. 1 and 2)

with the following relations:

aw

Il

We - Wp
d@b,c = ec =2 Gb
de,c = Xn =Xy (u)

where © 1is measured in radians and equation (2) becomes

my dxp o Wo - Wy

de d i (5)
b,c = tan Hy
where
_ sin 6 sin p tan p (6)
cos(6 - p) 1p

the 6. corresponding to each value of dbp,c is

Oc = dbp,c + Op (7)
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The value of dxb,C and W, to be used in equation (5) is determined
as follows: Draw a straight line from point a to an intersection of

the %II characteristic originating at point b. For an approximation,
the angle of the line to the horizontal is slightly less than the slope
of the conical surface leading to point a. This intersection is brack-
eted by several values of dxb,c and their corresponding values of W,

are determined from the Cp variation given in figure 2 and the following
relations:

P b
(L) " (ﬁ) = %(2) wZs <£> 79 (8)
Po/n Po/n Po n Po/s Po/ ol Po

B el 1
, o y=1 y=-1
pO' el (7 + 1)1\4N Y ik il (9)
Po (y - 1My + 2 oyMy” - (7 - 1)
My = M, sin € (10)

The variation of po}/Po with the curved portion of the shock will be

disregarded and the ratio taken as that due to the initial cone. In

order to determine the Mach number at any point n on the surface, the
following equation is used:

-1

Y
2 po'>
M, = — -1 1L
e (1)

If equation (3) is used, W, can be determined and

e i) T ¥ =k
U'n = s1in <w_ '2' l> 5 (12 )
n

A second condition must be satisfied for the final evaluation of
the properties of point c. A geometric relation for X. and 0. 1is

obtained by writing the equations for the lines ac and be; thus,

xy tan(e - p)y - X, tan o + ¥y, - ¥y
XCz

(13)
tan(6 - H)p - tan a
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where
3 Bc + Ga
2

QG

(1%)

Equation (13) is solved for several values of a S 9 at the pre-
ceding point on the body. The results of equations (13) and (5) are
plotted against dxa,c where

dxa,c = X, - Xg (15)

The intersection of the two curves represents the point c. The terms ua
and M. are obtained by substituting the intersection values into equa-
tions (11) and (12).

In order to obtain a second approximation of the properties of the
flow at a point on the body, equations (6) and (7) are written:

mb,m dxb,c Wo = Wy

Yp * Ve wb i wé
2 2
Oc,m = =i + 0p (16)
-ta:n _b—_c
2
0, + 6 ) (IS R U]
sin b 5 € sin b 5 € tan b 5 <
my = (17)
’ Gb + ec By + u&
cos 5 - 5 /

where the subscript c¢ refers to the intersection values of the first
approximation. Equation (13) is rewritten as

0., + 6 My + M
b (e] b c
y Xy tan( 5 - 5 ) + ¥ - Yp - Xg tan ay (18)
e By +16, Hp + He
tan = > - tan apy

Equation (14) becomes

ec’m = 2Clm - ea (19)
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The results of equations (18) and (16) are plotted as Oc,m against

dX, o p @and from this plot the intersection values are determined. For
22D

a body with a negative pressure gradient, the slope at any point on the
surface must have 6p ® 6p.].

The equations for determining the flow properties of a field point
and a point on the curved portion of the bow shock by the method of char-
acteristics have been presented in the literature and are presented for
the convenience of the reader in appendix A.

The finite distances between the computed points along the surface
of the body are determined by the number of 1 (fig. 1) used between
Ne and 7 = € on the conical nose. On the afterportion of the body,

the characteristics are widely separated, the slope of the surface is
changing rapidly, and no intersection of the characteristic with the
surface of the body is obtained behind point t. (See fig. 3(a).) A

new field point u corresponding to a more closely spaced characteristic
net (see fig. 3(a)) is obtained by averaging all the properties of the
points t and r. A more detailed characteristic net used to determine the
afterportion of the body is presented in figure 3(b).

The number of approximations necessary to insure a high degree of
accuracy was determined by applying the method of this report to a body
of revolution with zero pressure gradient (a cone) with Me = 15° and
My, = 3.02. The points a, b, d, and so forth, of figure 1 were determined
from reference 1. The computed 8 (along the surface) rapidly approaches
its true value asymptoticallyj; that is, a first approximation of the
point ¢ gave 6, = 14.82°; a second approximation, Oc,m = 14.99°; and
a third approximation, ec’Em = 14.993°, A second body point was computed

by using the second-approximation values of points ¢ and e. The results
were 6; = 14.80° and 6y , = 14.97°.

The pressure distribution of a parabolic body used in reference 3
was determined by the method of characteristics. The resulting pressure
distribution was used to determine several ordinates and slopes on the
initial portion of the nose of the body by the method outlined in this
report which used the second-approximation values. A comparison of the
resultant body with the original body is presented in table I and indi-
cates close agreement.
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APPLICATION OF THE METHOD TO THE DESIGN OF A SPECIFIC BODY

Design Specifications and Attainment

In order to obtain experimental corroboration of the method outlined
in this report, a model with the following conditions was designed:

aCp
Myn = 3.13, 512757

of 1 ineh. The x/L, y/L, 8, M, and Cp for the resultant body are
shown in figure 4.

= 0.3202, and 7, = 15° with an initial cone length

The downstream end of the body is defined by the method of char-
acteristics as the point on the contour where the local static pressure
becomes zero and can be determined from the following relation for a

de
CONsLant  =—7ve
a(x/L)
X
L = & (20)
o + 1
dac
q e o
d(x/L)

where X is the ordinate corresponding to the base of the conical
nose and

AP = Py=g = Px=I, = Px=a (21)

The description of the flow by the characteristic net in the
vicinity of this limiting length is extremely laborious and from the
nature of the flow has no physical significance. Accordingly, the net

was terminated at % = 0.98% (which will be designated Ip) where

M = 6.203. The maximum radius of the body <1; = O.1016> occurred at

Iy,

%; - 0.6678 and the resultant fineness ratio was 4.919.

The Bell Telephone Laboratories X-66T7hl4 relay computer at the
langley ILaboratory was used for the computations of the example body
up to 88.8 percent of L. The averaging process previously described
for determining a more closely spaced characteristic net had to be com-
puted on desk calculators. This method is very time consuming and
requires 605 hours for the computation of the entire body (425 hours on
the Bell machine and 180 hours on the desk calculators). As a comparison,
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the average time for computing the pressure distribution for a body of
revolution with a given contour by the method of characteristics on the
Bell machine is 120 hours. Convergence on a solution could be expedited
with a different machine from those available for the computation of
thisuprojecitt

Computation of Cp for Off-Design Mach Number Operation

In order to determine the effect of varying the free-stream Mach
number on the body which had a linear pressure distribution at M, = 3.13,
the pressure distribution was computed by the method of characteristics
for My = 3.02 and M, = 4.16. The ordinates of the body are presented

dn®Eabilie’ Tils

The computations for My, = 3.02 were terminated at the point where
further computations would have to be done on desk calculators. The
resultant surface Mach number and pressure coefficient are shown in
figures 5 and 6, respectively. The plot of Cp against x/L indicates

that the pressure distribution is almost linear for M, = 3.02 but not
for M, = 4.16. A plobt-of de/dx against x/L (fig. 7) is indicative

of the effect of varying the free-stream Mach numbers.

Comparison of Constant-Pressure-Gradient Body With
NACA RM-10 Research Missile

In order to illustrate the effect of body shape on the pressure
distribution, the constant-pressure-gradient model is compared with the
NACA RM-10 research missile. The contour of the NACA RM-10 model is
defined as

r = 7%56LJ)- %)

wvhere L = 95 inches for comparison with the constant-pressure-gradient
model. The Mach number and the pressure distribution determined by the
method of characteristics for the NACA RM-10 research missile at M, = 3.12
are shown in figure 8. 1In figure 9, the slopes of the contours for the

two bodies are shown where the abscissa is x/Ll and I; 1is the distance

from the nose to the point of Tmax+ The condition of constant pressure

gradient requires a relatively blunt afterbody. It is obvious that the
relation of constant pressure gradient implies an invariant relation

of 6 with x, and within reasonable limits the value of dp/dx is
inversely proportional to the length.
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APPARATUS AND TESTS

Tests on a model of the constant-pressure-gradient body were con-
ducted in one of the blowdown jets of the ILangley Gas Dynamics Branch.
The test facility consisted of nozzle blocks to give M = 3.05 and
M = 3.13 with test-section sizes of 8 by 10 inches and 9 by 9 inches,
respectively. The test section of each set of nozzle blocks was cali-
brated by measuring the free-stream static pressure in the vertical
center plane with the multitube rake shown in figure 10. High-pressure
air was heated and discharged through the two-dimensional symmetrical
nozzle and diffuser to the atmosphere. The pressures were measured on
a mercury manometer board and photographically recorded. The results
shown in figures 11 and 12 indicate that M = 3,05 t0.043 and M = 3.13
+0.049, respectively, over the entire region that was surveyed. A
schlieren photograph of the flow in a region of the test section of the

M = 3.05 nozzle at a Reynolds number per inch of 2.77 X 106 is shown
in figure 13 and a schlieren of the flow in the M = 3.15 nozzle at a

Reynolds number per inch of 2.64 X 106, in figure 1kL.

Measurement of aerodynamic characteristics that are affected by
the boundary-layer development are governed by the transitional Reynolds
number. The transitional Reynolds number was obtained by heat-transfer
measurements on a 10° cone to indicate the steadiness of the free stream
in this facility as compared with that of other NACA facilities. The
method and results are discussed in appendix B.

The constant-pressure-gradient model has a length of 17.55 inches
% = 0.9781| and a maximum diameter of 3.608 inches and is constructed

of Paraplex with a steel central core and coated with heat-resistant
phenolic lacquer for added strength and heat resistance. A sketch of
the model and a table of ordinates are shown in figure 15 and a photograph
of the model in figure 16. The completed model was accurately measured
on a Jjig-boring machine and the resultant ordinates are plotted as a
deviation of slope of the surface from the slope of the prescribed ordi-
nates in figure 17. The differences between the prescribed and measured
slopes are shown to be small. The model was mounted on a sting which
was supported by a strut spanning the tunnel downstream of the diffuser.
A sketch of the model and sting support mounted in the M = 3.13 tunnel
is shown in figure 18. Thirty-five static-pressure orifices (0.020-inch

inside diameter) were located at %—inch increments along a longitudinal
element of the body with one orifice diametrically opposite the foremost

orifice to determine the angle of attack. The pressures were measured
on a multitube mercury manometer board and photographically recorded.
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The effect of orifice size on the static-pressure measurements on
a body of revolution with a small boundary layer was determined on a small
30° cone. Three orifices (0.004-, 0.0135-, and 0.0200-inch inside diam-
eter, including the orifice size for the design model) were located at
two axial stations corresponding to the locations of the first two static-
pressure orifices on the constant-pressure-gradient model. A sketch of
the model illustrating the size and location of the orifices is shown
in figure 19 and a photograph of the model, in figure 20. The cone was
tested with the orifices at $ = 0° and 90° at M, = 3.13 over the
same range of free-stream Reynolds numbers used for the tests of the
design model. A comparison of the measured Mach number with the predicted
Mach number (ref. 1) indicated that the error is a maximum for the small-
est orifice and is essentially zero for the orifice with a 0.020-inch
inside diameter.

The effect of free-stream static-pressure variations on the
longitudinal-pressure distribution for the design model was determined
by rotating the model about its axis of symmetry and recording the pres-
sures for $ = 0°, 90°, and 180°. In the M = 3.05 tunnel, the model
was also tested at the three axial stations shown in figure 11 with the
orifices at ¢ = 0° to determine further the effect of flow discontinu-
ities. The ranges of test Reynolds numbers based on body length were

3.61 x 107 to 4.86 x 107 for M = 3.05 and 3.76 x 100 to 4.62 x 107
for M = 3.135. Composite schlieren photographs taken during the tests
are shown in figures 21 and 22.

ACCURACY OF TEST DATA

A number of pressures were measured for the purpose of determining
the free-stream Mach number and the pressure coefficient along the model.
The overall accuracy is dependent upon the individual accuracy of each
measurement. The accuracy of measuring the stagnation pressure on a gage
was 0.1 lb/in.2, and the accuracy of reading it on a manometer board was
¥0.1 inch of mercury. The overall accuracy for determining Cp 1805005,

A comparison of the experimental points with the computed curve indicates
a deviation greater than the accuracy of measuring Cp. This deviation is

explained by the deviation of actual model contour from the design (see
fig. 17) and the growth of boundary layer.

RESUITS AND DISCUSSION

Tests at M = 3.05

Th? schlieren photograph (fig. 13) shows several compression waves
symmetrical about the horizontal center plane of the tunnel. The nozzle
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calibration indicates that only one set of these waves has sufficient
strength to be of concern. The model was tested in three axial positions
(fig. 11) and three radial positions with the model in position 1. The
results of these tests are plotted as Cp against x/L in figure 25

where the solid line is the computed distribution for M, = 3.02. The

region of compression causes a pressure rise at 0.195 to 0.51 with

(]t el

the model in position 1 and is moved forward to = 0.085 to 0.20 with

the model in position 2 in the tunnel. (These bumps are dotted for
clarity of fig. 23(a).) In axial position 3 the compression does not
intersect the body. The result of rotating the body about its axis of
symmetry in position 1 is shown in figure 25(b). The pressure rise that
occurs when the line of orifices intersect the compression wave is dotted
for clarity. The slope of the compression can be determined from the
schlieren (fig. 13) and can be checked with the results of rotating the

model about its axis. The Reynolds number was varied from 36.1 X lO6

to 48.6 x 10° with the model in position 1 and the orifice at @ = O°.
There was no effect on the pressure distribution (fig. 23(c)).

The experimental data (fig. 23) were corrected for the free-stream
static-pressure variation by simple superposition except in the region
of the bump. The bump in the Cp curve due to the compression waves in

the nozzle was corrected by decreasing the measured static pressure by
the ratio of the pressure rise across an oblique shock, the intensity of
which corresponds to the decrease in Mach number shown in figure 11.

The coarseness of the nozzle calibration allows considerable latitude in
the detail of the Mach number distribution in the compression region and
the distribution was assumed so that it was compatible with the calibra-
tion and eliminated the bump in the Cp curve. The effect of this com-

pression had been completely eliminated when the compression distribution
in the flow was applied as a correction to the model in all positions, as
is shown in figure 24. An inspection of figure 24 shows an excellent
agreement between the computed and experimental Cp curves.

The pressure rise in the vicinity of the base of the body is asso-
ciated with the boundary-layer separation as seen in figure 21.

Tests at M = 3.15

The body was rotated about its axis of symmetry to evaluate the
effect of the free-stream discontinuities on the longitudinal-pressure
distribution. The experimental data corrected for the free-stream static-
pressure variations by simple superposition are shown in figure 25(a) with
the computed pressure distribution. The first two orifices located dia-
metrically opposite from each other, 0.5 inch from the nose, have a
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reversal of pressure differential for ¢ = 0° and 180°; this reversal
indicates that the model was at a slight angle of attack with the line
of orifices on the windward side for ¢ = 0°. The Reynolds number was

varied from 37.6 X 100 to 46.2 x 108 with the orifices at § = 0° with
no effect on the pressure distribution (fig. 25(b)).

A close examination of the flow schlieren (fig. 22) shows the
conical shock angle is greater than the computed value from reference 1,
but the accuracy of measurement is not sufficient to determine the free-
stream Mach number. A comparison of the boundary-layer thickness along
the nozzle surface with that in figure 14 shows the boundary layer is
approximately 0.032 inch thicker when the model is mounted in the tunnel.
The effect of the model in the small test section might be to reduce the
free-stream Mach number from 3.135 to 5.07. When M = 5.07 dis used to
reduce the experimental data, there is good agreement with the computed
pressure distribution for the design conditions. The pressure rise in
the vicinity of the base of the body is due to the boundary-layer
separation.

CONCLUDING REMARKS

A method based upon the theory of characteristics has been devel-
oped to compute the contour of a body for a prescribed pressure distri-
bution. An indication of the accuracy of the method was obtained by
using the pressure distribution which had been determined by the conven-
tional method of characteristics to compute the ordinates near the nose
of a body. The agreement between the original and calculated ordinates
was good. The contour of a body with a constant pressure gradient at
a Mach number of 3.13 was computed; a model was constructed and tested
at Mach numbers of 3.05 and 3.13. Excellent agreement with the computed
distribution was obtained.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Iangileys Field s Vas S October 2158 195572
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APPENDIX A
EQUATION FOR DETERMINING TEE FLOW PROPERTIES OF A FIELD POINT

The equations for determining the flow properties of a field point
and a point on the curved portion of the bow shock have been given in
many references and are presented in this appendix for the convenience
of the reader.

The equations for the first approximation of a field point e (fig. 1)
are as follows:

iy Yo - Ya - %c tan(ec + pc) + X3 tan(ed e pd) i
% tan(ed - “d) - tan(ec + uc)

Ye = (Xe - *a)ten(8q - Ha) * Ya (82)
W, T : i
c e - - £ ( e
=g (0o - Gajpenea +gs (e xa) -y, (% = %) g
B = 0o +
c
WE tan p, + tan By
(A3)
where
le = sin u tan p sin 6 (Ak)
cos(® + 1)
hen,

1
We = Wp + wc[gee - ec)tan He + i% (Xe - Xci} (A5)

The term pe 1s determined from equation (12).

The equations for the seecond approximation are as follows:
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6. + 6 Hg + M 6, + 6 Ko T B
Yo - Ya + %4 tan( d e _d e> - X tan( £ £, ¢ ¢

o oy 2 2 c 2 2
elmae (ed + B pg # “e) (ec 0 N “e)
tan 5 - 5 - tan 5 o 5
(n6)
6, + 6 EUSREER L
Ye,m = (Xe,m = xd)tan( d ) € - d 2 -~ it yd. (A7)
Wy =~ W, Ha tike "d ,m 2(wc i we) fe;m ~ o
W + W =8 - ed)ta.n i (Xe,m - xd) TR A B Wy + We le,m 7:+ Ye
£ 2 2 8
d%¢ e,m = by Fi W W i (e g
el T e
M M T I
sin £ € tan -< € sin - -
2 2 2 (
L t0 A9)
: Oc + 8 Mo + Hg
cos
2 2
Oe,m = 86c o m + O (A10)
[EEE] Xem = X | W, + W
. o c e ) c e
Wom = (ee,m 6.) tan 5 L T s 5 + W, (A11)

2

The final x-value of the field point is that calculated from equa-
Tion (A6) where Xe,m corresponds to an average value of p and 6 for

the first approximation obtained by using points c, d, and e.

In order to determine the properties of point h, the intersection
of a Ay characteristic with the bow shock, assume the line fh (fig. 1)

is a straight line, the slope of which is +tan €, and the line gh is
straight with a slope of tan(p + 6)g. As a result,
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Yg - ¥ + Xp tan € - X, tan (u + 0)g

Xp = Al2
tan € - tan{u + e)g (i)
and
Vi = (Xh - xf)tan €+ yr (A13)
With the use of the general equation of a shock,
W ae Xy - X
0,8 <dw> g,h h g
—22 .1 + (=) —=— - adb tan b, = ——= 1y = 0 AlL
Then
Xy, = X
b S 9,8
Tg . g
Pg,n = <dw = (A15)
—— — - tan p
d6> W g
eg g
where the subscript 6Og corresponds to a deviation across the shock
at h equal to 6 of point g. Therefore,
Oy =B = 85 + A0y 1y, (A16)
and
_ aw
Wy = Wg g + <£>e by 1 (A1T)
g
The method of determining (dW/dé)e and we e will be presented
)
after the equations for the second approximation of point h which are
as follows:
5 25 (= L. + 6, + + 0
Yo = ¥g T Xp tan —— B . ¢ tan -£ & "h h
*n,m " = - - = 92 (A18)
’ € + € Mo + + Wy, +
tan b - tan g & 2 5

2 2
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e 1 + Wg 5 We’g
Yg,m o We,m
A9 h.m = 2 2 (A19)
S (dw) i
—] —— - tanyp
/5, Wg,m g,m
= daw
Wh’m B we:g * <d5)9 deg)h)m (A20)
g
®h,m = Bn,m = 8g + g h (A21)

The term Zg,m is computed from equation (A9) by substituting g for c
and h for e. The terms (%g) and Wy g are constant for both
e J

first and second approximations. The shock angle corresponding to 5h,m

is used to determine the next point on the shock but not to determine
the location of point hp.

As outlined in reference 2, dW/dS is the tangent, at the point
o = Qg, to the curve that represents W as a function of ®. The usual

procedure is to determine this property graphically and regard the quan-
tity as constant along the curved portion of the shock. An analytical
expression is necessary to determine dW/dS to a more accurate degree
and to consider the curvature of the bow shock for computing the char-
acteristic net on a Bell Laboratories X-66T4k relay computer. If the
two-dimensional shock equation is used,

e
- 1 == (2 ; . = - 1)tan € (A22)
B Mmgsin € -1
and
wne_ 2 ( 1,73 "
e \Mg sinp
Since
e g i
D tenvy Ltz (82
tanSA

then, by using the notation of this report,
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2
a it — et M, - ). 1 L
de tan 68 2 Mmgsin eg - 1 cos &g
o) 2
rt L M; 2 sinfeg (A25)
mzsin €g - 1
cls ak
de _ dd tan 5g (A26)
dbg| i il
de tan 5g
tan €
T i e B y + 1 o A o
B GEEA(CE 6%)( 2 Tan(eg - Og) 2 (A27)
My o g~ g

i . 3 I de & A28
> 2 51n(eg Sg)cos(cg 6€)<€g; > ( )
L. Lomee i = (A29)
W 2 y= Ly e
0,8 70,8
aw _we 3 i (ABO)
1 & vy -1
d
M 2
< 9,8 >
L O B9 (a%1)
dE) J \ du 2 3
g d/‘ %) Mg g
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The variation of dW/dB from the point where shock curvature begins to
the last point on the shock where a characteristic of Ayy family inter-

sects the stern of the body (see fig. 26) was computed for the constant-

pressure-gradient model. For M, = 3.13, dW/d& varied from -0.33937

at v, to -0.31145 at v_ ..
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APPENDIX B

METHOD OF DETERMINING THE TRANSITIONAL REYNOLDS NUMBER

OF THE M = 3.135 NOZZLE

In a project of this type, where a computed distribution is to be
compared with the actual pressure distribution on a body of revolution,
it is interesting to know the nature of the boundary layer because of
its effect on the model contour.

The boundary-layer transition Reynolds number on a 10° cone has
been used as a measure of the steadiness of the free stream in various
NACA facilities (ref. 4). A similar highly polished thin-walled cone
was used to determine the Ry, Dby surface-temperature measurements in

the M = 3.13 Jet. The high free-stream Reynolds number per foot pro-
duces an extremely thin boundary layer which requires that the ratio of
average height of surface roughness to height of boundary layer be small.
The ratio is made small by a high degree of polish on the model surface
and by reducing the free-stream Reynolds number.

The model with a 0.050-inch skin thickness was machined from a
single piece of stainless steel. The surface was successively ground
with No. l/O, No. 2/0, and No. 3/0 fine emery papers and the direction
of grinding with each paper was alternated from circumferential to axial,
and conversely. A cutting oil of 5 percent paraffin with filtered kerosene
was used with each grinding. The final polish was obtained with a com-
mercial polish which contains a chromium grit whose average size is
1 micron.

The temperature distribution along the surface of the model was
determined by 18 iron-constantan thermocouples installed in a 20° helix
about the conical body with the first thermocouple located 5/& inch from
the nose as shown in figure 27 and a picture of the completed model in
figure 28. A continuous record of the surface-temperature variation was
made throughout the test with a multi-channel recording oscillograph.

In order to facilitate a closer inspection of the boundary layer
by visual means, a schlieren system similar to that in reference 5, which
permits magnification greater in a plane normal to the flow than in the
direction of the flow, was constructed. The system incorporates three
spectacle-size lenses: one spherical and two cylindrical. The optical
diagrams are shown in figure 29. A magnification of 6, normal to the
flow, was obtained with this lens system incorporating a +34 diopter
cylindrical lens with a horizontal axis (lens no. 4 in fig. 29) and a
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+6 diopter cylinder with a vertical axis (lens no. 5 in fig. 29). The
lens mount in figure 30 allows the lens position and cylinder axes to be
varied. A comparison of the 10° cone using a conventional schlieren with
this system is shown in figure 31. A l-inch grid is superimposed on the
asymmetrical schlieren. Since the lens system was not achromatic, a
filter which transmits the yellow portion of the spectrum was used.

A second minimum was installed to reduce the stagnation pressure and
thereby reduce the free-stream Reynolds number R and move the tran-
sition point onto the instrumented portion of the cone and to a point
where the boundary layer has a substantial thickness. The diffuser con-
sisted of two 11° wedges with a length adjusted to avoid choking. The
portion of the diffuser downstream of the second minimum was extended to
a point beyond the model support as shown in figure 32. This extension

allowed the stagnation pressure to be reduced from 160 lb/in.2 to
65 1b/in.2 gage and a corresponding reduction of Reynolds number per inch
from 2.15 x 100 to 0.894 x 10°.

The variation of the transitional Reynolds number with free-stream
Reynolds number is shown in figure 33. The transition point corresponding

to this curve is accurate to t% inch.

The transition point was also determined from the flow schlieren
(fig. 34) and the corresponding transitional Reynolds number is plotted
in figure 33. The tests indicate that the transition point on the
constant-pressure-gradient model is so far forward that the boundary
layer is turbulent on the entire model.
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TABLE I.- COMPARISON OF ORDINATES COMPUTED FROM THE KNOWN PRESSURE
DISTRIBUTION WITH THE ACTUAL ORDINATES OF A

PARABOLIC BODY AT M, = 3.02

Method Ség alal: Vi i 0, deg
Pressure 1.0354 0.33%618 17.540
Computedl 1.0354 .33%620 17.541
Pressure 1.0785 .34979 17.500
Computedl 1.0785 .34081 17.503
Pressure 1.1236 . 36400 17.462
Computedl 1.1236 .36401 17.464

lComputed by the method of characteristics with
contour of the body defined by the equation

where | Li'=" L@
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TABLE II.- ORDINATES FOR THE CONSTANT-PRESSURE-GRADIENT MODEL

DETERMINED BY THE METHOD OF CHARACTERISTICS

x/L r/L
0.013900 0.003724k4
014495 .0038838
.015120 .0040507
OIS .00k2262
.016472 .0044115
SOREEILL .0046081
.017999 .0048175
.018843 .0050419
.019754 .0052833
.020740 .005544 7
.021815 .0058292
.022995 .0061412
.024301 .0064860
.025760 .0068703
.027405 .0073034
.029286 .0077975
.031470 .0083700
.034058 .0090465
.037204 .0098667
041172 .010897
.o42472 .011234
.04l 23L .011689
046251 .012210
.O4837L L0125
.050616 -015%555
-0535003 .013944
.055549 .014595
.058283 .015291
.061241 .016042
.0644L5 .016853
067957 017738
.071823 .018708
L0762 .019781
.080945 .020980
.086427 .0223%2
.092729 .023877

x/L r/L
.10012 .025672
.10896 .027797
.11986 .030383
.13383 033645
<1URTS .036155
.15204 .037806
-15979 .039545
.16805 LOU1575
.17696 .043330
.18659 .045408
< 19707 .047637
.20858 .050041
., 22126 052638
.23542 0554771
25155 .058576
. 26949 .062000
.29042 .065802
+31500 .070058
3hhL2 .OT4843
. 38064 .080258
42679 086551
48878 .093003
.57912 .099151
.61182 .10025
.66079 .10058
.T2l15 .098326
.80423 .09003k4
.8573k4 .080054
. 88806 .072029
.92456 .059352
.95000 .ok 7426
.96611 .037746
.97610 .030486
.98209 .025457
.98742 .0203%2k4
.98954 .018061
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Figure 2.- Assumed axial variation of pressure coefficient for body of revolution.
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Figure 5.- Axial variation of surface Mach number for a body designed to
have constant dp/dx at M, = 3.13 when operating at M, = 3.02
and M, = 4.16.
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Figure 9.- Comparison of slope of surface of the NACA RM-10 missile and the constant-pressure-
gradient model.
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Figure 10.- Multitube static-pressure rake for nozzle calibrations.
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Figure 11l.- Nozzle calibration for M = 3.05 at a Reynolds number per inch of 2 X 106.
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Figure 12.- Nozzle calibration for M = 3.13 at a Reynolds number per inch of 2.64 X 106.
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Figure 13.- Schlieren photograph of M 5.05 test sectionm.
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Figure 1L.- Composite schlieren photograph of M = 3.13 test section.
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Figure 15.- Sketch of constant-pressure-gradient model with pertinent dimensions.
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Figure 17.- Design slope for the contour of the model and deviation of the experimental model
from design.
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Figure 18.- Sketch of model in M = 3.13 tunnel.
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Figure 19.- Sketch of cone used in orifice investigation.
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Figure 20.- Photograph of

cone used in orifice investigation.
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Figure 21.- Composite schlieren photographs of constant-pressure-gradient model at M = 3.05
for Reynolds numbers of O and 48.6 x 10°.
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L-90515
Figure 22.- Composite schlieren photograph of model at M = 3.13 for Reynolds numbers of O
and 46.2 x 10°.
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(b) Effect of radial position of the orifices with the model at position 1
in tunnel at Reynolds number 48.6 x 106.

Figure 23.- Continued.
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Flagged symbols denote orifice displaced 180°.
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Figure 28.- Photograph of 10° cone used for transition investigation.
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Figure 29.- Optical lens system for producing greater magnification in a plane normal to the flow.
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Figure 30.- Lens mount for producing unequal magnification of schlierens.
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(b) Conventional. L-90516

Figure 31.- Comparison of 10© cone using conventional and asymmetrical
schlierens.
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Figure 3%2.- Sketch of model and diffuser for transition tests.
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(b) Conventional.
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Figure 34.- Comparison of conventional and asymmetrical schlierens on a

109 cone at R = 12 x 10°.
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