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SUMMARY

Values of coefficients for defining the effectiveness of integral
stiffeners in resisting shear deformations of the plate of which they
are an integral part are presented for a wide range of proportions of
rectangular stiffeners with circular fillets. The coefficients are
evaluated by the use of an electrical analog computer. Formulas are
given in which these coefficients may be employed to calculate the
elastic constants associated with the twisting and shearing of integrally
stiffened plates, either directly, as in the case of simple longitudinal
or transverse stiffening, or through the intermediate evaluation of pre-
viously defined shearing-effectiveness parameters, as in the case of more
complicated stiffener patterns. The fillet radius is shown to contribute
appreciably to the degree of penetration of the stresses from the skin
into the stiffeners. Thus, through the use of suitable combinations of
rib proportions and fillet radii, simple longitudinal or transverse
integral stiffening can be made to contribute to the overall shear
stiffness of the plate-stiffener combination.

INTRODUCTION

The effectiveness of integrally stiffened plates, as demonstrated
in references 1 to 4, is in part due to the fact that the stresses in
the skin of the plate are conducted into the integral stiffeners. Even
under simple loadings, a complicated stress distribution within the
cross section is produced, and in consequence the evaluation of the elas-
tic constants for the plate-stiffener combination is difficult.

Formulas for the thirteen elastic constants of plates with integral
stiffeners and a method for analytically obtaining upper and lower limits
on the parameters of the formulas are presented in reference 4, 1In some
cases the differences between the constants calculated by the upper-
and lower-limit assumptions are substantial. For example, upper-limit
shear stiffnesses calculated in reference 4 were from 12 percent to
32 percent greater than the calculated lower-limit stiffnesses.
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In the present paper a more refined analysis is made of the shearing
effectiveness of integral stiffening. The approach used is that of
imposing a quasi-shear deformation upon a repeating element of a plate 3
with simple longitudinal or transverse stiffening (see fig. 1) and then
solving the equations of elasticity associated with the imposed deformation.
The method of solution is similar to the method used in solving the torsion
problem of pages 258 to 263 of reference 5. This approach requires the
solution of Laplace's equation over the cross section of the repeating
element as shown in figure 2. Solutions for a wide range of proportions
of rectangular stiffeners with circular fillets were obtained with a
Ceneral Electric Analog Field Plotter (ref. 6) which was modified by
the NACA to suit the needs of this particular problem. This modified
field plotter is similar in operation and principle to an electrical
analog computer described in reference T.

and curves giving coefficients from which the shearing effectiveness of
the integral stiffener may be evaluated. These coefficients may be
used with the formulas of reference 4 for the calculation of the plate
elastic constants; if the shearing stiffness of a plate with simple

Results of this analysis are presented in the form of tabulations

longitudinal or transverse stiffening is required, however, it may be -
determined more directly from the given coefficients through the use of
formulas presented herein.

SYMBOLS

Plate Dimensions

Aw area of perpendicular cross section of rib, sq in.

bS length of repeating element of integrally stiffened plate, in. |
by height of rib above plate, in.
H total height of rib and plate, tg + by, in.
h z-distance from y-axis to boundary cdef of specimen (fig. 2)
ls length of plate between fillet and end of repeating element,
bg - 2ry - tw, i,
2

ly height of rib above fillet radius, by - Ty, atigi
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radius of fillet, in.
thickness of skin or plate, in.

thickness of rib or web, in.

Forces and Elastic Constants

coupling elastic constant associated with coupling between
twist and shear and defined by equations (1) and (2), in.

twisting stiffness relative to x- and y-directions defined
by equation (1), in-lb

twisting stiffness relative to x- and y-directions defined
by equation (3), in-lb

shear modulus of material, psi

shear stiffness of plate in Xy-plane defined by equation (2),
1b/in.

shear stiffness of plate in xy-plane defined by equation (h),
1b/in.

torsion constant defined by equation (27)
torsion constant for sections shown in figure 6(a)

intensity of resultant twisting torque, 1b
intensity of resultant shearing force acting in plane z = ts/2,
1b/in.

coupling elastic constant associated with coupling between twist
P o Bevinsd By cquations (3) andd (LREreTs

Special Symbols Used in Shearing-Effectiveness Analysis

coupling coefficient defined by equation (A30)

coupling coefficient defined by equation (A25)
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coupling coefficient defined by equation (A26)

F intensity of resultant shearing force acting in y-direction

X
4 in plane z = tg/2, 1b/in.

Fyx intensity of resultant shearing force acting in x-direction
in plane z = tg/2, 1b/in.

J coefficient of twisting stiffness defined by equation (6)

P boundary value of stress function or boundary value of
electrical potential field (fig. 2)

a coefficient of shearing stiffness defined by equation (A22)
and determined by equation (A24)

Sl integral of stress function defined by equation (A35)

S, integral of stress function defined by equation (A36)

Txy intensity of resultant twisting torque acting on planes per-
pendicular to x-axis, 1b

T&x intensity of resultant twisting torque acting on planes
perpendicular to y-axis, 1b

o coefficient used in reference 4 to locate effective centroid
of part of rib for resisting twisting deformation

By coefficient used in reference 4 to define effectiveness of rib
in resisting shear deformation

B coefficient used in reference 4 to define effectiveness of rib
in resisting stretching in its transverse direction

o) magnitude of pure shear distortion imposed upon repeating
element of integrally stiffened plate (fig. 3), in.

General Symbols
u,v,w displacements in x-, y-, and z-directions, respectively, in.
Xy Vi 2 orthogonal coordinates; 2z measured normal to plane of plate,

and x and y measured in plane of plate
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Yxy2 Y%z yz components of shear strain

7xy average 7xy over length of repeating element defined
by equation (A21)

€x1€yr€y components of normal strain

Oy Oy Oy, components of normal stress, psi

T}Q,,TXZ,TYZ components of shear stress, psi

) transformed orthogonal coordinate system defined in
equations (22)

¢ stress function defined by equations (A6)

v warping function defined by equation (Al)

STATEMENT OF PROBLEM

The force-distortion relationships for the twisting and shearing of
rectangular orthotropic integrally stiffened plates having their axes
of principal stiffness parallel or perpendicular to the sides of the
plate (figs. 1 and 2) may be written, as noted in reference 4, in two
forms as follows:

2
Mey = 2Dy ai ';y R, (1)
B2w NXY
oy = P o ey (2)
eor
2
v xy + TN (3)
dx Jy Dyy Xy

N
Yy = 2T+ (1)
Xy
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in which the elastic constants ny, ny, and T are related to Dk’
Gy, and Ck by the following formulas:

Dyy = 2Dy
G
A | o
Dy + Cy Gy
c
- 3

These elastic constants can be evaluated in terms of the three coef-
ficients Jj, q, and c which express the effectiveness of the stiffeners
in resistance to twisting, to shearing, and to coupling between twisting
and shearing, respectively. For plates with simple longitudinal or
transverse integral stiffeners, the equations for the elastic constants
in terms of these coefficients are determined as follows:

Dy = 3 Gitg (6)
Gy = Gatg (7)
Ck = =- CtS (8)

Dy, = Gltg’ (9)

Gjat
Gy = —5—— S (10)
2c—q + J
N, = (11)
Gjts

The determination of the coefficient j 1s presented subsequently in the
text and that of the coefficients q and c¢, in the appendix.
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Expressions for these elastic constants have also been derived in
reference 4 for plates with stiffeners in a variety of patterns, where the
effectiveness of the stiffeners for resisting twisting and shearing is
expressed in terms of two parameters o' and B'. A method for the
evaluation of o' was given in reference 4, based on the work of refer-
ence 8, but no basis for the evaluation of B' was then available.

(The suggestion was made in reference 4 that B' be assumed equal to. Be.
Subsequent experimentation has shown that for a wide range of proportions,
B="7/8pB'.) Values of a' and PB' may now be determined, however,

in terms of J and q; thus

- 2VEE Y oo
S S A (13)
Ayfests
where
2

il e ﬁf.t_w.+2( £)<ﬁl> (1)

tg

Equations (12) and (13) are derived in the appendix.

The problem considered in the present paper is the evaluation of 3%
g, and c. Actual values of these coefficients are obtained herein for
only rectangular stiffeners with circular fillets, but the methods of
analysis are applicable to stiffeners of any cross section.

PROCEDURES FOR DETERMINATION OF COEFFICIENTS

Determination of

References 8 and 9 give torsion constants for sections such as those
illustrated in figures 1 and 2. The coefficient J used in the evalu-
ation of the elastic constants of integrally stiffened plates is related
to the conventional torsion constant K as follows:

I
J——‘{;;—' (15)

4
22—t
tg
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Check tests of the twisting stiffness of a few plates of different
proportions have been made which confirm the results of references 8
and 9. No further analysis of the twisting stiffness of integrally
stiffened plates was therefore made. Further information on the evalu-
‘ ation of j is given in the section entitled "Results and Applications."

Determination of g and c

A quasi-shear deformation was imposed on the repeating element of
the integrally stiffened plate as shown in figure 3, and the stress
resultants required to produce this deformation (fig. 4) were found.

‘ The details of this analysis are presented in the appendix and the
resulting equations are found to be

Nyy = QGtgyyy (16)
and

Mﬁy = - ctSny (17)

where q and c¢ are given by

ba/t
q = _S/—S (18)

2B s,

2
v, 1w, Pwltu, + 5 _.)(ﬁi) & S
tg ~ 2 tg  tg tg L/ \tg 22"
c = (19)
bg/tg

in which bg, by, lg, Ty tg, and ty; are dimensions of the plate
(see fig. 2), and S, and S5, are integrals of a stress function @
defined in the appendix. The integrals are
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and

In order to evaluate these integrals, use was made of an electrical
analogy. As is shown in the appendix, the stress function ¢ must
satisfy Laplace's equation,

2 2
%g+-:—g=o (20)

The application of Ohm's law to a thin conducting sheet of material
(see ref. 7) shows that a function V, which describes an electrical
potential field in the sheet, must satisfy Laplace's equation,

2 2
8_%+§_\2_/=0 (21)
oy oz

Accordingly, a potential field was set up in a conducting sheet over a
shape related linearly to the shape of the cross section under consider-
ation (see fig. 2) by electrically duplicating the boundary conditions
on the stress function. A self-balancing potentiometer was used to
measure values of the potential over the conducting sheet as shown in
figure 5. The desired integrals Sl and 82 were then computed by

numerically integrating the potential readings over the cross section.

The potentiometer used was a modified General Electric Analog Field
Plotter (ref. 6), and the conducting sheet was Type L Teledeltos paper.
This paper was sufficiently homogeneous to give good results with the
large-scale cross sections used, but an adjustment was required to take
into account a T-percent deviation from the maximum resistance which
existed between the directions of principal resistance. This directional
property was corrected for by distorting the figure according to the
transformation

\ (22)
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where Ry and RZ are electrical resistances in the y- and z-directionms,

respectively. The actual potential field in the sheet is described by

:Z B V
SR na =0 29
2 B .P (23)

Thus, a potential value measured from the distorted figure is equivalent
to a potential at a corresponding point in an undistorted figure on
uniform, nondirectional conducting paper.

As a check on the overall accuracy of the procedure, values of the
integrals were calculated for a typical cross section by the iterative
procedure of reference 10 -and compared with those measured with the
electrical analog. The difference between the two values was less than
1 percent.

RESULTS AND APPLICATIONS

The values of Jj, g, and c may be used directly in equations (6)
to (11) for the calculation of the elastic constants associated with the
twisting and shearing of plates with simple longitudinal or transverse
integral stiffening. For plates having combined longitudinal and trans-
verse or symmetrically skewed ribbing, values of J and q may be used
in equations (12) and (13) to calculate corresponding value of the param-
eters o' and B' for use in the elastic-constant formulas of refer-
ence k.

Evaluation of Coefficients

Evaluation of Jj.- Check tests performed in the Langley structures

research laboratory in conjunction with this investigation have shown
that the method of reference 8 gives accurate results only when
rw/ts 1 and tW/%S < 2. The following formulas, which can be derived

by use of reference 8, should therefore be used only when Ty/ftg Sl
<¥o.
and tw/ts = 28

1. 1 bs|1 Puftu} Uy ay
it s - 0.105( +a() (2k)
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where
Ty
. a = 0.09% + 0.070 %E (25)
and
2
(l + fE + EE <£V_I + l 51)
Tl gy A Ta e T (26)
ts rw
2 %— + 1
S

check tests previously mentioned. Reference 9 presents torsional
constants (designated herein as Kf) for the configuration shown in
figure 6(a), in which 1g = tg and Iy = ty. The results of refer-

The results of reference 9 were found to agree closely with the

ences 8 and 9 and extrapolations of each of these sources are presented

; - graphically in figure 6(b) for integrally stiffened plates of the pro-

| portions shown in figure 6(a). The extrapolations were partly guided
by the experimental data from the check tests.

| Tnasmuch as the curves of figure 6(b) apply to only the config-
uration shown in figure 6(a), the torsional stiffness of any additional
skin or rib height must be accounted for separately. Since the addi-
tional skin or rib is remote from the juncture, the stress distribution

| at the juncture will not significantly affect the distribution in the
remote portions of the section; therefore, the additional torsional
stiffness is approximately that of a rectangular section. The torsion
constant K for any section is then the sum of K' (the torsion constant
of the section shown in fig. 6(a)) and the torsion constants of the rec-

tangular sections; thus

3
1 il it 17,
K=Kl+!-_2__§_2t)++}. _H__E-—W.tu (27)
b s " 3\tg tg/\ts) S

The relation between K and J 1is given in equation (15). When exper-
imental data are available, J may be computed directly as

, J = BMxyg (28)
Gts _b_w_

ox Jy
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Evaluation of q and c.- The values of the shearing and coupling
effectiveness coefficients q and c¢ determined by the electrical analogy
are given in table I for a wide range of proportions of rectangular ribs
with circular fillets. Also included in table I are the corresponding
values of the parameter B' of reference k.

Values of q and c are presented in figures 7 and 8 as plots of

Pg/tg lg bg Ty
-2 — and +— c against -—. The curves apply only when the
q ts ts ts

values of both bS/tS and bw/ts are equal to or greater than the

largest values of these two parameters which appear in the table for the
given values of ry/tg and ty/tg under consideration. These plots

may be made because, beyond certain limits (the maximum values of bS/tS
and bw/ts appearing in table I for the rw/ts and tw/tS under con-

sideration), additional rib height or additional plate length between
ribs will not affect the stress distribution at the juncture of the skin
and rib.

Interpolation may be made by cross-plotting when a set of dimension
ratios fall within the range of values presented in the table.
When bs/ts is found within the table but bw/ts lies beyond the

range of the table, the values of q and c¢ appearing under the largest
value of bw/ts for the bS/tS being considered may be used. However,

the value of B' must then be computed from equations (13) and (14) by
using the actual value of bW/tS' When by/tg 1s found within the table

but bg/tg lies beyond the range of the table, the value of q for the
largest value of bS/tS for the value of bW/tS being considered is used
in equation (18) to obtain a value of Sl' The value of bs/tS for which

the value of q was found must be used in equation (18) when Sl is

computed. The value of S, thus obtained is then used in equation (18)
with the required values of bS/tS and lS/tS to obtain the desired

values of q. This value of q may then be used in equation (13) to
compute pB'. A similar scheme is used to find the value of c¢. That is,
the value of ¢ found in the table corresponding to the value of the bw/ts
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under consideration and the highest value of bs/ts appearing for that
value of bw/ts, together with the value of S previously obtained,
are used in equation (19) to compute S2. The values of Sl, 82, and
the dimension ratios being considered are then used in equation (19) to

compute c.

The ranges of the dimension ratios covered by the table and curves
are:

Ratio Range

Rib thickness/Skin thickness, ty/tg « « « « « « « = v = - . . . Otoh
Fillet radius/Skin thickness, ryftg « « « « « « « + = = - . . . 0 %016
Length of repeating elements/Skin thickness, bs/tS < s IS TR IOt oo
Rib height/Skin thickness, by/tg . . . « . . « « .« . . . .. O%0ow

An additional result incidental to the evaluation of q and c
is that, for values of Ty/ts > 1, no shear stress concentration exists

in the cross section. (Stress-concentration factors were based on an
average shear stress in the skin at a remote unaffected distance from
the juncture of the skin and ribs.) No investigation of the stress
concentration when rw/ts < 1 was pursued.

Illustrative Examples
In order to illustrate the method of obtaining the effectiveness
coefficients and their significance, the effectiveness coefficients J,
g, and c are calculated for the rib proportions used in the tests of
reference 3 and one variation of that shape.

The dimensions of the rib cross section used in reference 3 are:

bg = 1.00 in. tg = 0.05 1in.

tW = 0.10 in. by = 0.20 in. Ty = 0.20 in.

The dimension ratios are then

l
\o}

tw/ts

20

bg/tg
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1
=

by/ts

]
o

ry/tg

These dimension ratios are considered in the first example. The second
example considers the same dimension ratios except that the value of
rw/ts is changed from 2 to O.

Ty Ty
Example l,- From figure 6(b), for o =2 aod =2,
S S

Therefore,

K" = 25.l+tsl+

From equation (27) the torsion constant K is determined as

4

1 e L
K =234ty + 3(1& - 2)tg + 3(2 - 2)(2)

3, L
tg = 27.uts

The effectiveness coefficient Jj can now be computed from equation (15)
as

27.utS“
b prew
2(20)tg

= 0.685

The value of bS/tS is larger than the largest value of bS/tS which

appears under ty/tg =2 and rW/tS = 2 1in the table, and bw/ts is
equal to the largest value of bw/ts which appears under tw/ts =2 and

rw/ts = 2., Figures 7 and 8 are therefore used to obtain values for q
D /b 1

s/®s s g
—_— - 2 — for rw/ts =2 and

and c¢. From figure T, the value of =
S

ty/tg = 2 is found to be 4,0. Hence

— -1k =k
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or

a ¥ =i

b
From figure 8, €§ ¢ is found to be 2.10, or
S

ch=1010>

Using the above values of J, q, and c¢ in equations (6), (7), and (8)
glves the values of Dy, Gk’ and C, as follows:

D, = 4.8 x 10'6G
Gy = 0.0555G
Cy = - 0.00525

The value of «' 1is found from equation (12) by substitution of the
values of j and q previously found:

o = %\/% (T‘%ﬁ%’i) (0.685 - 0.166) = 0.3225

From equation (14),
2 _ Loy 4 2(1 - ")(2)2 = 0.486
b, 20 T8 i
S
The value of B' is then found from equation (13) as

SRRAL -
T 0.486

= 0.2285

Example 2.- In this example, & configuration having the following
proportions is considered:

tyfts =2 Dbgfts

by/tg = 4% ryftg

20

I

]
o

]
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The value of J may be found by means of equation (24) or from fig-
ure 6(b) and equation (15) to be

J = 0.436

From figures 7 and 8, q and c are found to be
q = 1.031

and
cH=NER052

The values of Dy, Gy, and Cy are then found from equations (BYa s
and (8) to be

Dy = 27.350 % 10'6G

Gk = 0.05155G

Cx = - 0.00160
From equation (12),

o' = 0.k2k

From equation (14),

gé%— = 0.40

S°S

The value of £' 1is then found from equation (13) to be
p' = 0.0775

The values of «' and PB' found in these two examples could have
been used in the formulas of reference 4 to obtain the elastic con-
stants Dy, Gy, and Cx- The values of Dy and Gk so obtained would

be exactly those values obtained by using the effectiveness coefficients
and q in equations (6) and (7). The values of C, obtained from the

formulas of reference 4, however, are found to be somewhat greater than
those computed directly by use of the coefficient c.




5

NACA TN 3443 17

This discrepancy, which disappears when ribs of small twisting
stiffness are considered, arises as a result of the assumption of refer-
ence 4 that the shearing effectiveness of the ribs can be represented
by a substitute sheet of zero twisting stiffness. There is no corre-
sponding discrepancy in the calculation of Dy, however, since in refer-

ence 4 the location of the substitute sheet (measured by a'H) is chosen
to give the correct value of twisting stiffness for the stiffened plate
as a whole. If a value of a' 1is desired which will give the correct
value of the coupling term Cj, that value of «' may be obtained by

equating the expression of reference i for Ck to that of the present

paper and solving for a'. That procedure leads to the following expres-
sienffior! o'

(o a é?(q % l)c (29)

This value of o' would give correct values of Cp but somewhat con-
servative values of Dyg.

Discussion of illustrative examples.- The most significant implication
of the results of this evaluation of the effectiveness coefficients is
that relatively small changes in detailed proportions can appreciably
affect the overall effectiveness of integrally stiffened plates. As dem-
onstrated in the examples, a change in fillet radius from rw/ts = 2

to ry/tg = 0 decreased B' (B' 1is a parameter which shows the effi-

ciency of the rib in resisting shear) by a factor of 0.339 and decreased
the twisting stiffness by a factor of 0.687.

More complete analysis will be required to evaluate fully the merits
of large fillet radii and the effect of changes in the other proportions.
Results of buckling tests of plates with fairly large fillet radii, such
as those of reference 3, should not be considered representative of the
results to be expected for similar plates with small fillet radii.

Suitably proportioned longitudinal or transverse integral stiffening
can evidently contribute to the shear stiffness of plates; thus integral
stiffeners may be utilized to contribute to the torsional stiffness as well
as to the flexural stiffness of wing panels.
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CONCLUDING REMARKS

The evaluation of the shearing effectiveness of integral stiffening
for a wide range of proportions of rectangular stiffeners with circular
fillets has indicated that the degree of penetration of stresses from
the skin into the stiffeners is in part dependent upon the fillet radius.
Also, for fillet radii greater than the skin thickness, the shear-stress=-
concentration factor has been found to be equal to unity. Determination
of the overall structural importance of the fillet radius and the effect
of changing other proportions require and, on the basis of the large
changes in stiffness associated with small changes in configuration shown
in the present study, deserve further investigation.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 3, 1955.
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APPENDIX

ANALYSTS OF SHEARING EFFECTIVENESS OF LONGITUDINAL

OR TRANSVERSE INTEGRAL STTIFFENING

Figure 3 shows the repeating element of a plate with integral
unidirectional stiffeners. A quasi-shear state of deformation has been
imposed upon the element so that the edge af has undergone a pure
shear translation with respect to the edge bc. The problem is to
determine the stresses necessary to maintain the imposed deformation.
The ratio of the resultants of the stresses to the magnitude of the
assumed distortion provides an index to the effectiveness of integrally
stiffened plates in resisting shearing forces.

Derivation of Differential Equation Governing Stress Function

The semi-inverse method of Saint-Venant, as found in reference 5
(pp. 259-263), is the approach used for this problem. Plane sections
parallel to the yz-plane before distortion are assumed to have their
shape preserved, but these planes may warp in the x-direction. This
warping is the same for all cross sections along the x-axis. Displace-
ments u 1in the x-direction of points in cross sections parallel to the
yz-plane can be defined by a warping function,

u.= ¥{v,2) (A1)

Since the shape of the cross section is preserved, the displacements in
the y- and z-directions (v and w), respectively, are

vo=tw="0 (A2)

The components of strain are therefore calculated from the relations
between strains and displacements as

Vo= %f , (AB)
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The corresponding stresses can then be calculated as
3\

O ="y s Oy =" Tyy = 0

Tys = @ o { (%)
oz
oV

Txy = G —

e dy J

Consider now a stress function @ = @(y,z) from which the shear
stresses T4, and Txy @are obtainable. The equations of equilibrium

given on page 229 of reference 5 must be satisfied. Only one of the
three equations of equilibrium is of significance, namely,

oT oT

g e D) (a5)
oz oy
The stresses T,, and Txy WY then be expressed in terms of the

stress function @ = @(y,z); thus

(46)
Txy

= 98

oz
Equating the stresses determined in equations (A4) to those determined
in equations (A6), so as to determine the stresses from a consideration
of displacements and thereby automatically satisfy compatibility of
strains, yields

o Q¥ 98
oz Oy
(a7)
e ¥ . _o8
oy oz

The warping function V¥ may be eliminated from equations (A7) by
differentiating both sides of the first of equations (A7) with respect
to y and both sides of the second with respect to 2z and subtracting
the second from the first. Elimination of the warping function shows
that the stress function ¢ must satisfy Ilaplace's differential
equation

(5 R o (A8)

32  dz2
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Stresses obtained from the solution of this differential equation satisfy
the conditions of equilibrium and compatibility.

Determination of Boundary Conditions

The stresses normal to the boundaries ab and cdef of the element
must be zero because these boundaries represent the stress-free surfaces
of the repeating element. (See fig. 3.) The values of the stress
function along these two boundaries must therefore be constant in order
that the stresses normal to these boundaries may be zero. Boundary ab
is arbitrarily set at the constant value of zero, and boundary cdef
is arbitrarily set at the constant value of P. The physical signifi-
cance of this choice of boundary conditions may be seen by considering
the integrally stiffened plate to be a flat plate. Then,

¢ - z (n9)

- - (A10)

or

N,y = Tyybg = P (A11)
Therefore P 1is the magnitude of the applied shear force per unit
length.

Along the boundaries af and EZ, the displacements u are assumed
to be constant. The shear strain y,, along those boundaries is given

by

du , ow

=e—=4+==0 (A12)
Tx2 T3z T ¥y

The shear stress T, along those boundaries is therefore calculated

to be, zero, or

-g-f e R (A13)

along boundaries af and bc. The assumption that 7., = 0 along
boundaries af and be could have been made from consideration of
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the fact that the boundaries are lines of symmetry for the stress
function, and therefore o@/0y = O at these lines of symmetry.

The problem has now been reduced mathematically to solving equa-
tion (A8) subject to the boundary conditions:

N

$ =0 along ab

$ =P along cdef L (A1k)

QQ = 0 along af and bc
Jy )

which are included in figure 2.

Determination of Resultant Forces

The resultant forces (see fig. 4) necessary to maintain the assumed
state of deformation can now be determined in terms of the stress
function @ = @#(y,z). When these forces and the distortions produced
by them are determined, the elastic constants can be obtained in terms
of the stress function.

In the plane y = bg/2, the shear stresses may be resolved to
a resultant shearing force Fyx per unit length, acting at the midplane
of the skin, and a torque T., per unit length. Equations (A6) and

the boundary conditions (egqs. (AllL)) are used to determine the forces
in the plane y = bg/2 as follows:

ts
F =\/p T 7 dz = -P Al5
X o ( Xy)y_bs/g ( )

and

‘tS tS
e =fo (Txy)y=bs/2<_2_ 3 )dz

tg
1 1
Phal= = ——— A6
S<2 Ptg Jo y=bS/2dz) s
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In a like manner, the resultant forces on the yz-plane are obtained as

ba/2
s/
u/‘ Jf Tyydz dy = -P (A17)
~bg/2
and
Txy e Jﬁ Txy<—§ - z> + Tygd dz dy
bg —bs/2 0 2
ba/2
A s/
s N f f paz dy + 5= ¢y_b 5z
2" " bgts ~ Posts Jpg/e Vo s/
(A18)

where h is the z-distance from the y-axis to the boundary cdef.

Derivation of Formula for gq

The relative shear displacement & of plane af at y = bg/2

with respect to plane bc at y = -bg/2 at any value of 2z between
O and tg 1is given by

bs/2
o= 7 ygty  (0S2Sty)  (a19)
-bs/2
From this equation, equations (A6), and the stress-strain relation-
ship Txy = G7xy’ d becomes
bs 2
f f —Q dy dz (0szgtg)  (A20)
~bg/2 9

The average shear strain over the length of the repeating element
is given by

bs/z'

Ty = 2 = 1 Jf d;

e =14y (A21)
¥ bg  Gbgts Jopg/o ot
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From equation (Al7), TFyy = Fyyx = -P; therefore, each of these
two shear forces can be replaced by the more conventional notation ny.

The coefficient g, which represents the effectiveness of the integral
stiffener in resisting shear, can now be defined as follows:

I\
q = —t- (A22)
GtsTxy

Substitution from equation (A15) or (Al7) for ny and from equa-
tion (A21) for ;Xy in equation (A22) yields the coefficient q in
the following form:

b
q = 2 (123)
3 bs/2
Ef Pamts®y
-bs/2
t
Noting that ¢ =P when 2z = tg and ry + §¥'§ |y| <lg+ Iyt 7?
(see fig. 2) and expressing the dimensions as dimensionless ratios
permit q +to be obtained in the form
A bg/ts
Ty (A2Y4)
W+ =
.}_S_ ._l..... = ¢Z t dy
tg  Ptg ( tw> S
5 2
Derivation of Formula for c
The resultant torques Txy and T,, necessary to maintain the
assumed state of deformation are defined in terms of two coeffi-
cients cr and c as
Xy yX
Txy = -CT}thN)Q’ (A25)
Tyx = -CTthsny (A26)

The torques are negative if N is positive. This can be seen by

comparing Fyy of equation (A15) and Tyx ©of equation (A16). From

equations (A1T7), (A18), and (A25), <

is obtained as
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DR P R
ep,. = = - z + — —be, /032
2 gty PbgtgJ.pg/2Yo prgJo Y708/

Similarly, B is obtained from equations (A1l7), (A18), and (A26) as

1 L

i
C i e d A28
Tyx = 2 Ptg Jg g y=bg/2%? (a28)

In order that these results may be incorporated in flat-plate theory,
the twisting moments on adjacent sides of a repeating element must be
equivalent. The distributed moments Txy and Tyx may be replaced by
concentrated lateral forces Txy and ?yx at the corners of the plate
as is done in reference 11. The resultant torques Txy and Tyx are
then replaced by Mky where

Mey =‘%(Txy + Tyx) (A29)

This system is statically equivalent to the actual system. It therefore
produces essentially the same distortions as the actual system except in
regions at the edges of the plate comparable in width to the thickness
of the plate. This result follows from Saint-Venant's principle (see
ref. 5, p. 33). The resultant torque Myy is therefore defined in

terms of a coefficlent c¢ as

M’Q’ = -CtSN)Q’ (ABO)
where
1
= =(c +
¢ 2( Txy cTyx)
ba/2 ph
A S
SR \jp / \jp ¢ dz dy (A31)
2 Dbgts Pbgtg ‘bS/2 0

From equation (A20) the following relationship exists:

bg/2
S ¥ -bg/2 Z Y -bg/2
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Rearranging equation (A32) and integrating over the thickness of the
skin yields

ftS /ﬁbs/2 N E§ bS/E

B, Ay (A33)
=t

L B g
Thus, in finding the value of a double integral of the ¢-surface over
the area of the element, only the integral over the attached stiffener
need be found, since the integral over the flat-sheet part of the
element is found from just the line integral along the line 2z = tg

over the length of the element.

Substituting equation (A33) into equation (A31), noting that @ =

t
when 2z = tg and 1y + %? £ {7 = 1s % Py 7;, and nondimensionalizing
yields
Tw 1w byty 7 rW+—
Rt on el <’°s> ngfzwi“ﬂJ ;L apt [(Iw tw)’bﬂ's
o = 2 (a34)

bg/tg

Thus, the forces required to maintain the assumed state of deforma-
tion are known in terms of two integrals:

tw
L
S P (835)
)
and
tw .
S b |
il L Plag (A36)
S

i (e 3)

These two integrals are evaluated for the cases considered herein by
means of an electrical analog computer.
Determination of Elastic Constants Dk, Gk, and Cyp in
Terms of J, g, and ¢

The elastic constant Dy 1s defined in terms of the coefficient
in equation (6) where J 1s obtained by the methods discussed in the
main text.
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The state of deformation assumed in the determination of the
coefficients q and c¢ 1is characterized by

Bzw =0 A
L (A37)

Thus, by setting the twist equal to zero in equation (1) and sub-
stituting from equation (A30) for Mky’ the elastic constant Cp 1is
obtained as

Cx = -ctg (a38)

When the twist —QEE— is set equal to zero in equation (2) and 7xy
ox oy

as may be determined from equation (A22) is substituted for Yxy of
equation (2), the elastic constant Gy 1is obtained as
Gk = Gatg (A39)

From the relationships of equations (5) the remaining elastic constants

ny, ny, and T Dbecome
- 5
Dyy = GJtg (A40)
Giat
G)Q’ = __?'_S__ (A)-I-l)
2ecq +
e L 5 (A‘+2)
Gitg

Determination of o' and PB' in Terms of j and g

Reference 4 derived expressions for the elastic constants of
integrally stiffened plates in which the effectiveness of the ribs for
resisting twisting and shearing is expressed in terms of two param-
eters a' and B'. The coefficient B' represents the part of the
rib which is effective in resisting shear when this part is considered
to be flattened out over the length of the element, thus increasing

the effective flat-plate thickness of the element. The relation between

B' and the applied shearing force ny is then
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Al
Nyy = G<ts + B 1—)—&)7” (AL3)

Equating N as obtained from equation (A22) to that as obtained in
equation (A43) results in the following relationship between B’ and q:

o 1
A Bl (At
Ay/bsts

The coefficient a' represents the height above the midplane of the skin
at which the centroid of the distributed fractional area of the rib is
located to produce the required twisting stiffness. By substituting
from equation (A43) for B' and from equation (9) for Dyy in equa-
tion (93) of reference 4, a' 1is determined in terms of j and gq:

R
3 HJE(q - 1) (J 6) L)
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TABLE I.- VALUES OF q, c, AND B'

CEER .

b q c B
s g tg
ty/ts = O

1 2 1 1.167 0.084 0.778

2 L 2 1.267 L1455 .623

3 6 3 150 .219 579

6 12 6 1.69% 496 .540

8 16 8 1.840 645 489

12 2k 12 2.090 .%5 RIS

16 32 16 2.370 1.22k .399

T/t =~

T ! 1.023 0.018 0.126

T 2 1.023 .022 .080

v 3 1.023 .02k .054

5 1 1.033 .025 .165

5 2 1.033 .026 .083

0 45 3 1.033 .026 .055

3 1 1.058 043 LTk

3 2 1.058 Ol .087

3 3 1.058 045 .058

1 1 1.240 A58 .2ko

1 2 1.241 .156 121

Ll 3 1.2k2 .158 .081

9 14 1.070 .051 RISE

9 2 1.070 .053 .259

9 3 1.071 .053 .186

T i 9 1.092 .06k 451

i 2 1.09% .070 2Tk

7 3 1.09% .070 .192

1 5 v 1.138 .093 486

5 2 1.158 .097 284

5 3 1.138 .098 .201

3 ¥ 1.250 .13 525

3 2 1.250 .158 .309

Lj 3 1.250 .160 .219

T 2 1.257 .165 .616

T 3 1.257 JA7h U459

> 7 " 1.257 ATk 367

5 2 1.401 232 .687

5 3 1.k01 245 512

5 4 1..01 245 408

(9 3 | 1383 .25 451

9 i 1.343 246 393

3 9 5 1.343 .246 348

T 3 1.489 .316 kg9

T 4 1.489 .316 435

L7 5 1.489 .316 .386

6 13 6 1.748 .565 453

8 b g 8 1.910 .76 437

12 25 12 2.155 1.077 392

16 35 16 2.420 1.361 31

NACA TN 3443
AS DETERMINED BY ANALOG COMPUTER
e G SRR \
= ) q c B
tg tg tg
ty/tg = 2
8 al 1.076 0.063 0.304
8 2 1.0T7 .075 154
8 3 1.078 .079 .10k
6 i 1.105 .085 915
6 2 1.106 .101 .159
6 3 1.108 .10k .108
0 L ! 1.166 .129 332
4 2 117 eilop 1D
4 3 3375 156 15
2 3l 1.463 .285 463
2 2 1.500 340 .250
L 2 5 1.500 342 .166
10 x I 1.119 .093 kg0
10 2 1.123 126 .278
10 %) 1.123 231 .189
8 p | 35T .18 s b
8 2 1.161 .158 .291
8 3 1.161 .16k .200
1 6 1 1.227 .159 561
6 2 1291 ] 313
6 5 1.233 .220 217
L i i 1.k09 246 673
N 2 1.433 350 391
| & 3 1.440 3k .270
10 2 1.245 .161 A62
10 3 1.245 .164 355
10 " 1.245 .165 .263
8 2 1.327 .203 RiT-7]
2 8 3 1.327 .204 .358
8 L 1.327 .207 .281
6 2 1.489 .270 51
6 3 1.489 273 ko1
6 L4 1.489 215 515
12 4 1.502 43 405
12 5 1.502 3 .358
s 12 6 1.502 Jar .319
10 4 1.670 .503 451
10 5 1.670 .50k 397
10 6 1.670 .506 2355
1 6 1.830 .65k 423
6 14 T 1.830 .661 3%
L 8 1.830 .663 .369
8 18 8 1.7 .80 .39
12 26 12 2.185 1.180 .359
16 3k 16 2.455 1.543 349
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TABLE I.- VALUES OF q, ¢, AND B' AS DETERMINED BY ANALOG COMPUTER - Concluded

Ty bg | Pu ' ] by | by ;
tg ts tg % i § s ts s x i ?
Tyfts =3 tyftg = 4
9 1 1.126 0.107 0.379 6 il 1.343 0.250 0.515
9 2 1.141 164 .212 6 2 1.400 .380 300
9 5 1.143 .169 143 6 3 1.h2k 456 .212
9 L 1.143 A7 .107 0 6 4 1.426 485 .160
7 3 1.172 k1 Lol b 1 1.671 393 6
7 2 1.190 .212 222 4 2 1.852 .606 426
T 3 1.192 .220 .150 L 3 1.911 .T18 304
0 T i 1.192 222 Q12 4 4 1.917 .768 .229
5 i 1.263 .202 438
5 2 1.289 .299 .21
5 5 1.29% .310 .16k 10 2 1.509 397 .52k
5 4 1.295 .321 .123 10 3 1.526 g1 383
3 i 1.604 361 .60k 10 - 1.529 489 299
3 2 1.676 518 338 2 10 5 1.551 506 .24k
3 2 1.7ah .550 .238 g § i%’? 15;?'6( Euog
Ay . . g . -
. 7 e 2o i 8 L 1.765 .613 345
8 5 1.770 .635 284
(9 1 1.2}248 .166 .599
9 2 1.248 .227 b7
9 3 1.257 251 245 12 L 1.212 .282 .ug'r
9 " 1.259 .260 .188 " 12 5 1.818 .698 -3 ?3
& 7 1 1.328 .218 .670 12 6 Leé 713 .31
1 T 2 1.349 .293 .380 12 T 1.820 .73 .282
7 13+ 1.329 .32k .266
1.360 5 .
; 1 1-253 ??Z .382 16 6 | 1.%0 -855 -386
- 5 2 1.582 413 453 6 16 1 1.950 .860 .350
5 3 1.587 sl 311 16 8 1.950 .865 320
5 n 1.590 A 237 16 9 1.950 .865 .296
1 2 1.302 .261 430 = 8 2-0'{8 l'ggg giﬁ
1 3 1.310 .289 .18 8 20 9 07 g '292
1 L 1.311 .299 249 20 10| S2.970 1o .
1 5 15 301 1205 20 1 2.070 1.007 .280
2 e ]l o2 2l 460 12 28 | 12 | 2.290 | 1.k20 .330
2 g i itgg ;2125 'Z’gé 16 36 | 16 | 2.5%0 | 1.880 517
9 5 1.408 .369 .219
7 2 1.575 409 -519
T 3 1.591 452 .386
7 " 1.5% 470 .303
T 5 1.5% L75 .249
13 4 1.551 490 .380
| 13 5 1.557 499 331
13 6 1.562 .505 .29
k 135 T 1.564 .507 .263
i b 1.730 .580 426
A 5 1.732 591 .368
11 6 1.741 .59 .328
| 1n 7 L s .597 204
|
6 15 6 1.899 .40 403
15 7 2.020 .T50 370
8 19 8 2.020 .930 385
19 9 2.020 .90 3TT
12 27 12 2.250 1.290 .356
- 16 35 16 2.490 1.710 .330
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Figure 1l.- Integrally stiffened plate considered.
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Figure 2.- Cross section of repeating element and boundary conditions on
stress function ¢.




oJ
NACA TN 3443 33

A \
\\\\
\
\ e d
]
| X
z
f foee 1 43 c
R
¥ e |
y ” e

N
o)
2

Figure 3.- Repeating element in imposed state of deformation.
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Figure 4.- Repeating element with resultant forces necessary to maintain
' imposed deformation.
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Figure 5.- Analog Field Plotter. L-83509
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q ts ts

ts
than those values presented in table T.
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