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SUMMARY 

Values of coefficients for defining the effectiveness of integral 
stiffeners in resisting shear deformations of the plate of which they 
are an integral part are presented for a wide range of proportions of 
rectangular stiffeners with circular fillets. The coefficients are 
evaluated by the use of an electrical analog computer. Formulas are 
given in which these coefficients may be employed to calculate the 
elastic constants associated with the twisting and shearing of integrally 
stiffened plates, either directly, as in the case of simple longitudinal 
or transverse stiffening, or through the intermediate evaluation of pre­
viously defined shearing-effectiveness parameters, as in the case of more 
complicated stiffener patterns. The fillet radius is shown to contribute 
appreciably to the degree of penetration of the stresses from the skin 
into the stiffeners. Thus, through the use of suitable combinations of 
rib proportions and fillet radii, simple longitudinal or transverse 
integral stiffening can be made to contribute to the overall shear 
stiffness of the plate-stiffener combination. 

INTRODUCTION 

The effectiveness of integrally stiffened plates, as demonstrated 
in references 1 to 4, is in part due to the fact that the stresses in 
the skin of the plate are conducted into the integral stiffeners. Even 
under simple loadings, a complicated stress distribution within the 
cross section is produced, and in consequence the evaluation of the elas­
tic constants for the plate-stiffener combination is difficult. 

Formulas for the thirteen elastic constants of plates with integral 
stiffeners and a method for analytically obtaining upper and lower limits 
on the parameters of the formulas are presented in reference 4. In some 
cases the differences between the constants calculated by the upper-
and lower-limit assumptions are substantial. For example, upper-limit 
shear stiffnesses calculated in reference 4 were from 12 percent to 
32 percent greater than the calculated lower-limit stiffnesses. 

~--~--~------.-- - - -
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In the present paper a more refined analysis is made of the shearing 
effectiveness of integral stiffening. The approach used is that of 
imposing a quasi-shear deformation upon a repeating element of a plate 
with simple longitudinal or transverse stiffening (see fig. 1) and then 
solving the equations of elasticity associated with the imposed deformation. 
The method of solution is similar to the method used in solving the torsion 
problem of pages 258 to 263 of reference 5. This approach requires the 
solution of Laplace's equation over the cross section of the repeating 
element as shown in figure 2. Solutions for a wide range of proportions 
of rectangular stiffeners with circular fillets were obtained with a 
General Electric Analog Field Plotter (ref. 6) which was modified by 
the NACA to suit the needs of this particular problem. This modified 
field plotter is similar in operation and principle to an electrical 
analog computer described in reference 7. 

Results of this analysis are presented in the form of tabulations 
and curves giving coefficients from which the shearing effectiveness of 
the integral stiffener may be evaluated. These coefficients may be 
used with the formulas of reference 4 for the calculation of the plate 
elastic constants; if the shearing stiffness of a plate with simple 
longitudinal or transverse stiffening is required, however, it may be 
determined more directly from the given coefficients through the use of 
formulas presented herein. 

H 

h 

SYMBOLS 

Plate Dimensions 

area of perpendicular cross section of rib, sq in. 

length of repeating element of integrally stiffened plate, in. 

height of rib above plate, in. 

total height of rib and plate, ts + bW' in. 

z-distance from y-axis to boundary cdef of specimen (fig. 2) 

length of plate between fillet and end of repeating element, 

b S - 2rW - tw . 
~-----------, In. 

2 

LW height of rib above fillet radius, bw - r W' in. 

~~~~ ----- ----
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rw radius of fillet, in. 

ts thickness of skin or plate, in. 

t w thickness of rib or web, in. 

G 

K 

K' 

T 

Forces and Elastic Constants 

coupling elastic constant associated with coupling between 
twist and shear and defined by equations (1) and (2), in. 

twisting stiffness relative to x- and y-directions defined 
by equation (1), in-lb 

twisting stiffness relative to x- and y-directionB defined 
by equation (3), in-lb 

shear modulus of material, psi 

shear stiffness of plate in xy-plane defined by equation (2), 
lb/in. 

shear stiffness of plate in xy-plane defined by equation (4), 
lb/in. 

torsion constant defined by equation (27) 

torsion constant for sections shown in figure 6(a) 

intensity of resultant twisting torque, lb 

intensity of resultant shearing force acting in plane z = ts/2, 
lb/in. 

coupling elastic constant associated with coupling between twist 

and shear defined by equations (3) and (4), lb-l 

Special Symbols Used in Shearing-Effectiveness Analysis 

c coupling coefficient defined by equation (A30) 

cT coupling coefficient defined by equation (A25) 
xy 
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c'ryx 

j 

p 

cr.' 

13' 

u,v,W 

x,y,z 
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coupling coefficient defined by equation (A26) 

intensity of resultant shearing force acting in y-direction 
in plane z = tS/2, lb/in. 

intensity of resultant shearing force acting in x-direction 
in plane z = t S/2, lb/in. 

coefficient of twisting stiffness defined by equation (6) 

boundary value of stress function or boundary value of 
electrical potential field (fig. 2) 

coefficient of shearing stiffness defined by equation (A22) 
and determined by equation (A24) 

integral of stress function defined by equation (A35) 

integral of stress function defined by equation (A36) 

intensity of resultant twisting torque acting on planes per­
pendicular to x-axiS, lb 

intensity of resultant twisting torque acting on planes 
perpendicular to y-axis, lb 

coefficient used in reference 4 to locate effective centroid 
of part of rib for resisting twisting deformation 

coefficient used in reference 4 to define effectiveness of rib 
in resisting shear deform~tion 

coefficient used in reference 4 to define effectiveness of rib 
in resisting stretching in its transverse direction 

magnitude of pure shear distortion imposed upon repeating 
element of integrally stiffened plate (fig. 3), in. 

General Symbols 

displacements in x-, y-, and z-directions, respectively, in. 

orthogonal coordinates; z measured normal to plane of plate, 
and x and y measured in plane of plate 
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IXy 

¢ 

components of shear strain 

average Ixy over length of repeating element defined 

by equation (A21) 

components of normal strain 

components of normal stress, psi 

components of shear stress, psi 

transformed orthogonal coordinate system defined in 
equations (22) 

stress function defined by equations (A6) 

warping function defined by equation (Al) 

STATEMENT OF PROBLEM 

5 

The force-distortion relationships for the twisting and shearing of 
rectangular orthotropic integrally stiffened plates having their axes 
of principal stiffness parallel or perpendicular to the sides of the 
plate (figs. 1 and 2) may be written, as noted in reference 4, in two 
forms as follows: 

~ 

Ixy 

or 

2lw 
2Dk dX dy + CkNxy 

d
2

W Nxy 

-2Ck dX dy + --
Gk 

N 
= 2TM + xy 

xy Gxy 

(1) 

(2) 

(4 ) 
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in which the elastic constants Dxy' Gxy' and T are related to Dk , 

GkJ and Ck by the following formulas: 

Dxy 2Dk 

Gxy 
G~k 

(5) 
2 

Dk + Ck Gk 

T 
_ Ck 

2Dk 

These elastic constants can be evaluated in terms of the three coef­
ficients j, q, and c which express the effectiveness of the stiffeners 
in r esistance to twisting, to shearing, and to coupling between twisting 
and shearing, respectively. For plates with simple longitudinal or 
t r ansverse integra l stiffeners, the equations for the elastic constants 
in terms of these coefficients are determined as follows: 

~ ! Gjt 3 
2 S (6) 

~ = Gqts 

Ck = - ctS (8) 

Dxy = Gjts3 

G 
Gjqts 

xy 
2c2q + j 

(10) 

c 
T 

GOt 2 
J S 

(11) 

The determin~tion of the coefficient 
text and that of the coefficients q 

j is presented subsequently in the 
and c, in the appendix. 
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Expressions for these elastic constants have also been derived in 
reference 4 for plates with stiffeners in a variety of patterns, where the 
effectiveness of the stiffeners for resisting twisting and shearing is 
expressed in terms of two parameters a' and ~'. A method for the 
evaluation of a' was given in reference 4, based on the work of refer­
enCe 8, but no basis for the evaluation of ~' was then available. 
(The suggestion was made in reference 4 that ~' be assumed equal to ~. 
Subsequent experimentation has shown that for a wide range of proportions, 
~ = 7/8 ~'.) Values of a' and ~' may now be determined, however, 
in terms of j and q; thus 

a' (12) 

13 ' 

where 

(14) 

Equations (12) and (13) are derived in the appendix. 

The problem considered in the present paper is the evaluation of j 
q, and c. Actual values of these coefficients are obtained herein for J 

only rectangular stiffeners with circular fillets, but the methods of 
analYSis are applicable to stiffeners of any cross section. 

PROCEDURES FOR DETERMINATION OF COEFFICIENTS 

Determination of j 

References 8 and 9 give torsion constants for sections such as those 
illustrated in figures 1 and 2. The coefficient j used in the evalu­
ation of the elastic constants of integrally stiffened plates is related 
to the conventional torsion constant K as follows: 

(15) 
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Check tests of the twisting stiffness of a few plates of different 
proportions have been made which confirm the results of references 8 
and 9. No further analysis of the twisting stiffness of integrally 
stiffened plates was therefore made. Further information on the evalu­
at ion of j is given in the section entitled "Results and Applications." 

Determination of q and c 

A quasi-shear deformation was imposed on the' repeating element of 
the integrally stiffened plate as shown in figure 3, and the stress 
resultants required to produce this deformation (fig . 4) were found. 
The details of this analysis are presented in the appendix and the 
resulting equations are found to be 

(16) 

and 

where q and c are given by 

c 

in which bS' bw, 
(see fig. 2), and 

(18) 

(19) 

2S' r W' t s' and tw are dimensions of the plate 

Sl and S2 are integrals of a stress function ¢ 
defined in the appendix. The integrals are 
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and 

In order to evaluate these integrals, use was made of an electrical 
analogy. As is shown in the appendix, the stress function ¢ must 
satisfy Laplace's equation, 

o (20) 

The application of Ohm's law to a thin conducting sheet of material 
(see ref. 7) shows that a function V, which describes an electrical 
potential field in the sheet, must satisfy Laplace's equation, 

(21) 

Accordingly, a potential field was set up in a conducting sheet over a 
shape related linearly to the shape of the cross section under consider­
ation (see fig. 2) by electrically duplicating the boundary conditions 
on the stress function. A self-balancing potentiometer was used to 
measure values of the potential over the conducting sheet as shown in 
figure 5. The desired integrals 81 and 82 were then computed by 

numerically integrating the potential readings over the cross section. 

The potentiometer used was a modified General Electric Analog Field 
Plotter (ref. 6), and the conducting sheet was TYPe L Teledeltos paper. 
This paper was sufficiently homogeneous to give good results with the 
large-scale cross sections used, but an adjustment was required to take 
into account a 7-percent deviation from the maximum resistance which 
existed between the directions of principal resistance. This directional 
property was corrected for by distorting the figure according to the 
transformation 

z = ~ 

(22) 

-- --- ---~------~---- --~~-. 
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where ~ and R z 
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are electrical resistances in the y- and z-directions, 

respectively. The actual potential field in the sheet is described by 

(23 ) 

Thus, a potential value measured from the distorted figure is equivalent 
to a potential at a corresponding point in an undistorted figure on 
uniform, nondirectional conducting paper. 

As a check on the overall accuracy of the procedure, values of the 
integrals were calculated for a typical cross section by the iterative 
procedure of reference 10 "and compared with those measured with the 
electrical analog. The difference between the two values was less than 
1 percent. 

RESULTS AND APPLICATIONS 

The values of j, q, and c may be used directly in equations (6) 
to (11) for the calculation of the elastic constants associated with the 
twisting and shearing of plates with simple longitudinal or transverse 
integral stiffening. For plates having combined longitudinal and trans­
verse or symmetrically skewed ribbing, values of j and q may be used 
in equations (12) and (13) to calculate corresponding value of the param­
eters ~' and ~' for use in the elastic-constant formulas of refer­
ence 4. 

Evaluation of Coefficients 

Evaluation of j . - Check tests performed in the " Langley structures 

research laboratory in conjunction with this investigation have shown 
that the method of reference 8 gives accurate results only when 
rwlts ~ 1 and tWjts"£ 2. The following formulas, which can be derived 
by use of reference 8, should therefore be used only when rw/ts ~ 1 

and twits'S 2: 

j (24 ) 
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where 

a 
rw 

0.094 + 0.070 ~ 
s 

(25) 

and 

(26) 

The results of reference 9 were found to agree closely with the 
check tests previously mentioned. Reference 9 presents torsional 
constants (designated herein as K') for the configuration shown in 
figure 6(a), in which LS = ts and LW = two The results of refer-
ences 8 and 9 and extrapolations of each of these sources are presented 
graphically in figure 6(b) for integrally stiffened plates of the pro­
portions shown in figure 6(a). The extrapolations were partly guided 
by the experimental data from the check tests. 

Inasmuch as the curves of figure 6(b) apply to only the config­
uration shown in figure 6(a), the torsional stiffness of any additional 
skin or rib height must be accounted for separately. Since the addi­
tional skin or rib is remote from the juncture, the stress distribution 
at the juncture will not significantly affect the distribution in the 
remote portions of the section; therefore, the additional torsional 
stiffness is approximately that of a rectangular section. The torsion 
constant K for any section is then the sum of K' (the torsion constant 
of the section shown in fig. 6(a)) and the torsion constants of the rec­
tangular sections; thus 

3 
K = K' + 1. (2 2 S _ 2\ t 4 + ! ("LW _ t~\ (tW) t 4 

3 ts ) S 3 ts t s) ts S 

The relation between K and j is given in equation (15). When exper­
imental data are avail able , j may be computed directly as 

j (28) 
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Evaluation of q and c.- The values of the shearing and coupling 
effectiveness coefficients q and c determined by the electrical analogy 
are given in table I for a wide range of proportions of rectangular ribs 
with circular fillets. Also included in table I are the corresponding 
values of the parameter ~' of reference 4. 

Values of q and c are presented in figures 7 and 8 as plots of 

bs/ts ~S 
and 

bS against 
rW 

The curves apply only when the 2- - c t' q ts ts 
va lues of both bs/ts and 

largest values of these two 
given values of rw/ts and 

may be made because, beyond 

S 
bWjtS are equal to or greater than the 

parameters which appear in the table for the 
twjts under consideration. These plots 

certain limits (the maximum values of bs/ts 

and bw/ts appearing in table I for the rw/ts and twits under con­

sideration), additional rib height or additional plate length between 
ribs will not affect the stress distribution at the juncture of the skin 
and rib. 

Interpolation may be made by cross-plotting when a set of dimension 
ratios fall within the range of values presented in the table. 

When bs/ts is found within the table but bw/ts lies beyond the 

range of the table, the values of q and c appearing under the largest 
value of bw/ts for the bs/ts being considered may be used. However, 

the value of ~' must then be computed from equations (13) and (14) by 
using the actual value of bw/ts' When bw/ts is found within the table 

but bs/ts lies beyond the range of the table, the value of q for the 

largest value of bs/ts for the value of bw/ts being considered is used 

in equation (18) to obtain a value of Sl' The value of bs/ts for which 

the value of q was found must be used in equation (18) when Sl is 

computed. The value of Sl thus obta ined is then used in equation (18) 

with the required values of bSjtS and ~s/ts to obtain the desired 

values of q. This value of q may then be used in equation (13) to 
compute ~'. A s i mi lar scheme i s used t o find the value of c. That 
t he value of c found i n the t able corresponding to t he value of the 

is, 
bw/ts 
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under consideration and the highest value of bS/tS appearing for that 

value of bW/tS' together with the value of Sl previously obtained, 

are used in equation (19) to compute S2. The values of Sl' S2' and 

the dimension ratios being considered are then used in equation (19) to 
compute c. 

The ranges of the dimension ratios covered by the table and curves 
are: 

Ratio 

Rib thickness/Skin thickness, twits ..•.•.•. 

Fillet radius/Skin thickness, rW/ts .•...••... 

Length of repeating elements/Skin thickness, bS/tS 

Rib height/Skin thickness, bW/tS . . . . . . • . . . 

Range 

o to 4 
o to 16 
o to 00 

o to 00 

An additional result incidental to the evaluation of q and c 
is that, for values of rW/ts > 1, no shear stress concentration exists 

in the cross section. (Stress-concentration factors were based on an 
average shear stress in the skin at a remote unaffected distance from 
the juncture of the skin and ribs.) No investigation of the stress 
concentration when rW/ts < 1 was pursued. 

Illustrative Examples 

In order to illustrate the method of obtaining the effectiveness 
coefficients and their significance, the effectiveness coefficients j, 
q, and c are calculated for the rib proportions used in the tests of 
reference 3 and one variation of that shape. 

The dimensions of the rib cross section used in reference 3 are: 

b S = l.00 in. ts = 0.05 in. 

"tw = 0.10 in. 0.20 in. rw = 0.10 in. 

The dimension ratios are then 

I 

~ 



These dimension ratios are considered in the first example . The second 
example considers the same dimension ratios except that the value of 
rw/ts is changed from 2 to O. 

tw 
Example 1. - From figure 6 (b), for - = 2 

ts 

w. 
-- = 2.2 
ts 

Ther efore, 

and 

From e quation (27) the torsion const ant K is determined as 

The effec t iveness coefficient j can now be computed from equation (15) 
a s 

j 0.685 

The value of bs/ts is l arger than the largest value of bs/ts which 

appears under twits = 2 and rw/ts = 2 in the table, and bw/ts is 
equal to the largest value of bw/ts which appears under twi ts = 2 and 

rw/ts 2. Figures 7 and 8 are therefore used to obtain values for q 
bs/ts 1S 

and c. From figure 7, the value of - 2 - for rw/ts = 2 and 
q ts 

twits = 2 is found to be 4.0 . Hence 

20 
- - 14 = 4 
q 

J 



NACA TN 3443 15 

or 

q = 1.111 

From figure 8, is found to be 2.10, or 

c = 0.105 

Using the above values of j, q, and c in equations (6), (7), and (8) 
gives the values of Dk , Gk, and Ck as follows: 

The value of 0,' 

values of j and 

G:k = 0.0555G 

Ck = - 0.00525 

is found from equation (12) by substitution of the 
q previously found: 

From equation (14), 

AW 1 11 (1r) 2l 
bstS == 20 L4 (2) + 2 1 - 4" (2,) J = 0.486 

The value of ~' is then found from equation (13) as 

1.111 - 1 
~'= 0.486 == 0.2285 

Example 2. - In this example, a configuration having the following 
proportions is considered: 

bS/ts == 20 
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The value of j may be found by means of equation (24) or from fig­
ure 6(b) and equation (15) to be 

j = 0.436 

From figures 7 and 8, q and c are found to be 

q = 1.031 

and 

c = 0.032 

The values of Dk , Gk , and Ck are then found from equations (6), (7), 
and (8) to be 

From equation (12), 

From equation (14), 

-6 Dk = 27.30 x 10 G 

~ = 0.05155G 

Ck = - 0.00160 

a.' = 0.424 

0.40 

The value of ~' is then found from equation (13) to be 

13' = 0.0775 

The values of a.' and 13' found in these two examples could have 
been used in the formulas of reference 4 to obtain the elastic con-
stants Dk , Gk, and Ck . The values of Dk and Gk so obtained would 

be exactly those values obtained by using the effectiveness coefficients j 
and q in equations (6) and (7). ~e values of Ck obtained from the 

formulas of reference 4, however, are found to be somewhat greater than 
those computed directly by use of the coefficient c. 

-~- -----
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This discrepancy, which disappears when ribs of small twisting 
stiffness are considered, arises a s a result of the assumption of refer­
ence 4 that the shearing effectiveness of the ribs can be represented 
by a substitute sheet of zero twisting stiffness. There is no corre­
sponding discrepancy in the calculation of Dk , however, since in refer-

ence 4 the location of the substitute sheet (measured by ~'H) is chosen 
to give the correct value of twisting stiffness for the stiffened plate 
as a whole. If a value of ~' is desired which will give the correct 
value of the coupling term Ck, that value of ~' may be obtained by 

equating the expression of reference 4 for Ck to that of the present 
paper and solving for ~'. That procedure leads to the following expres­
sion for ~': 

~' = tS( q )c 
H q - 1 

This value of ~' would give correct values of Ck but somewhat con­

servative values of Dk. 

Discussion of illustrative examples. - The most significant implication 
of the results of this evaluation of the effectiveness coefficients is 
that relatively small changes in detailed proportions can appreciably 
affect the overall effectiveness of integrally stiffened plates. As dem­
onstrated in the examples, a change in fillet radius from rW/ts = 2 

to rW/ts = 0 decreased ~' (~' is a parameter which shows the effi­

ciency of the rib in resisting shear) by a factor of 0.339 and decreased 
the twisting stiffness by a factor of 0.687. 

More complete analysis will be required to evaluate fully the merits 
of large fillet radii and the effect of changes in the other proportions. 
Results of buckling tests of plates with fairly large fillet radii, such 
as those of reference 3, should not be considered representative of the 
results to be expected for similar plates with small fillet radii. 

Suitably proportioned longitudinal or transverse integral stiffening 
can evidently contribute to the shear stiffness of plates; thus integral 
stiffeners may be utilized to contribute to the torsional stiffness as well 
as to the flexural stiffness of wing panels. 
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CONCLUDING REMARKS 

The evaluation of the shearing effectiveness of integral stiffening 
for a wide range of proportions of rectangular stiffeners with circular 
fillets has indicated that the degree of penetration of stresses from 
the skin into the stiffeners is in part dependent upon the fillet radius. 
Also, for fillet radii greater than the skin thickness, the shear-stress­
concentration factor has been found to be equal to unity. Determination 
of the overall structural importance of the fillet radius and the effect 
of changing other proportions require and, on the basis of the large 
changes in stiffness associated with small changes in configuration shown 
in the present study, deserve further investigation. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., March 3, 1955. 
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APPENDIX 

ANALYSIS OF SREARING EFFECTIVENESS OF IDNGITUDINAL 

OR TRANSVERSE INTEGRAL STIFFENING 

Figure 3 shows the repeating element of a plate with integral 
unidirectional stiffeners. A quasi-shear state of deformation has been 
imposed upon the element so that the edge af has undergone a pure 
shear translation with respect to the edge be. The problem is to 
determine the stresses necessary to maintain the imposed deformation. 
The ratio of the resultants of the stresses to the magnitude of the 
assumed distortion provides an index to the effectiveness of integrally 
stiffened plates in resisting shearing forces. 

Derivation of Differential Equation Governing Stress Function 

The semi-inverse method of Saint-Venant, as found in reference 5 
(pp. 259-263), is the approach used for this problem. Plane sections 
parallel to the yz-plane before distortion are assumed to have their 
shape preserved, but these planes may warp in the x-direction. This 
warping is the same for all cross sections along the x-axis. Displace­
ments u in the x-direction of points in cross sections parallel to the 
yz-plane can be defined by a warping function, 

u = 1f(y,z) (AI) 

Since the shape of the cross section is preserved, the displacements in 
the y- and z-directions (v and w), respectively, are 

v = w = 0 

The components of strain are therefore calculated from the relations 
between strains and displacements as 

EX Ey = EZ Yyz = 0 

txz = Q.i 
dZ 

txy = Q1 
dy 

(A2) 

(A3) 
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The corresponding stresses can then be calculated as 

TXZ = G 21 
dZ 

= G dY Txy 
dy 

(A4) 

Consider now a stress function ¢ = ¢(y,z) from which the shear 
stresses Txz and Txy are obtainable. The equations of equilibrium 
given on page 229 of reference 5 must be satisfied. Only one of the 
three equations of equilibrium is of significance, namely, 

dTXZ + ~ = 0 
dZ dy 

The stresses Txz and Txy may then be expressed in terms of the 

stress function ¢ = ¢(y,z); thus 

TXZ 

Txy = 
dZ 

(A6) 

Equating the stresses determined in equations (A4) to those determined 
in equations (A6), so as to determine the stresses from a consideration 
of displacements and thereby automatically satisfy compatibility of 
strains, yields 

(Ar) 

The warping function y may be eliminated from equations (Ar) by 
differentiating both sides of the first of equations (Ar) with respect 
to y and both sides of the second with respect to z and subtracting 
the second from the first. Elimination of the warping function shows 
that the stress function ¢ must satisfy Laplace's differential 
equation 

(A8) 

-----~ 
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stresses obtained from the solution of this differential equation satisfy 
the conditions of equilibrium and compatibility. 

Determination of Boundary Conditions 

The stresses normal to the boundaries ab and cdef of the element 
must be zero because these boundaries represent the stress-free surfaces 
of the repeating element. (See fig. 3.) The values of the stress 
function along these two boundaries must therefore be constant in order 
that the stresses normal to these boundaries may be zero. Boundary 8b 
is arbitrarily set at the constant value of zero, and boundary cdef 
is arbitrarily set at the constant value of P. The physical signifi­
cance of this choice of boundary conditions may be seen by considering 
the integrally stiffened plate to be a flat plate. Then, 

is the solution to equation (AB). Thus, 

or 

Therefore P is the magnitude of the applied shear force per unit 
length. 

(A10) 

(All) 

Along the boundaries af and 
to be constant. The shear strain 
by 

bc, the displacements u are assumed 
lxz along those boundaries is given 

(Al2) 

The shear stress TXZ along those boundaries is therefore calculated 
to be zero, or 

~ = T = 0 
dy xz 

along boundaries af and bc. The assumption that TXZ = 0 along 

boundaries af and bc could have been made from consideration of 
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the fact that the boundaries are lines of symmetry for the stress 
function, and therefore o¢/oy ~ 0 at these lines of symmetry. 

The problem has now been reduced mathematically to solving equa­
tion (AS) subject to the boundary conditions: 

¢ ~ 0 along ab 

¢ ~ P along cdef (A14) 

~~ 0 along af and bc 
oy 

which are included in figure 2. 

Determination of Resultant Forces 

The resultant forces (see fig. 4) necessary to maintain the assumed 
state of deformation can now be determined in terms of the stress 
function ¢ = ¢(y,z). When these forces and the distortions produced 
by them are determined, the elast ic constants can be obtained in terms 
of the stress function. 

In the plane y ~ bS/2, the shear stresses may be resolved to 
a resultant shearing force Fyx per unit length, acting at the midplane 
of the skin, and a torque Tyx per unit length. Equations (A6) and 
the boundary conditions (eqs. (Al4)) are used to determine the forces 
in the plane y = bS/2 as follows: 

-p (Al5) 

and 

j ots (t) 
Tyx = (T xy) ~ - z dz 

o y==bS/2 2 

~ Pt - - - dz 
(
l l i ts ) 

S 2 PtS 0 0y=bS/2 
(Al6) 
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In a like manner, the resultant forces on the yz-plane are obtained as 

and 

F =..l. j bs /2 1 h T dz dy = -P 
xy bS -b

S
/2 0 xy 

T = l J b
S
/2Jh[T (ts _ z) + TXZ)dZ dy 

xy bS -bS/2 0 xy 2 J 

= PtSC2l + 2 AW 2 j b
s /2 1 h rf.. dz dy + 1 I ts rf, dZ) 

~ bsts - Pbsts -bS/2 0 ~ Pts 0 ry=bS/2 

(AlB) 

where h is the z-distance from the y-axis to the boundary cdef. 

Derivation of Formula for q 

The relative shear displacement 6 of plane af at y = bS/2 
with respect to plane bc at y = -bS/2 at any value of Z between 
o and ts is given by 

j bS/2 
6 = 'lxydy 

-bS/2 
(0 ~ z ~ tS) 

From this equation, equations (A6), and the stress-strain relation­
ship Txy = G'lxy' 6 becomes 

6 = - .l..jZ j b
S
/2 ~ dy dz 

Gz 0 -bS/2 dZ 
(0 ~ z < tS) (A20) 

The average shear strain over the length of the repeating element 
is given by 

b /2 . 
'lxy == ..2... == - _1_ j S ¢z-t dy 

bS Gbsts -bS/2 - S 
(A21) 
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From equation (Al7), Fxy = Fyx = -P; therefore, each of these 
two shear forces can be replaced by the more conventional notation Nxy. 
The coefficient q, which represents the effectiveness of the integral 
stiffener in resisting shear, can now be defined as follows: 

N q= xy 
GtS7xy 

Substitution from equation (Al5) or (Al7) for 

tion (A21) for lxy in equation (A22) yields 
the following form: 

q = b /2 lJ S P ¢z=tsdy 
-bS/2 

(A22) 

Nxy and from equa­

the coefficient q in 

(A23) 

Noting that ¢ = P when z = ts and rw + ? <£ I y I -;; 7,S + rw + ~w 
(see fig. 2) and expressing the dimensions as dimensionless ratios 
permit q to be obtained in the form 

bS/tS q = 
(A24) 

Derivation of Formula for c 

The resultant torques Txy and Tyx necessary to maintain the 
assumed state of deformation are defined in terms of two coeffi­
cients cTxy and CTyx as 

(A26) 

The torques are negative if Nxy is positive. This can be seen by 
comparing Fyx of equation (A15) and Tyx of equation (Al6). From 

equations (Al7), (A18), and (A25), cT is obtained as xy 
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A j bS/21h 
f ts CT = 1 + 2 ~ - 2 ¢ dz dy + -1- ¢ -b /2dz 

xy 2 bStS Pbsts -bS/2 0 PtS 0 y- S 

Similarly, CTyx is obtained from equations (Al7), (Al8), and (A26) as 

1 1 Lt
s c = - - - dz Tyx 2 PtS 0 ¢y=bS/2 

(A28) 

In order that these results may be incorporated in flat-plate theory, 
the twisting moments on adjacent sides of a repeating element must be 
equi valent. The dis tri buted moments Txy and 'ryx may be replaced by 

concentrated lateral forces Txy and 'ryx at the corners of the plate 
as is done in reference 11. The resultant torques Txy and TYx are 
then replaced by Mxy where 

This system is statically equivalent to the actual system. It therefore 
produces essentially the same distortions as the actual system except in 
regions at the edges of the plate comparable in width to the thickness 
of the plate. This result follows from Saint-Venant's principle (see 
ref. 5, p. 33). The resultant torque Mxy is therefore defined in 
terms of a coefficient c as 

(A30) 

where 

1 + AW l jbS/2 fh ¢ dz dy 
= 2 bsts - Pbsts -bS/2 0 

(A3l) 

From equation (A20) the following relationship exists: 

(0 ~ z < tS) (A32) 
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Rearranging equation (A32) and integrating over the thickness of the 
skin yields 

i ts j bs/2 _ ts j bS/2 
¢ dy dz - -- ¢z=t dy 

o -bS/2 2 -bS/2 S 
(A33) 

Thus, in finding the value of a double integral of the ¢-surface over 
the area of the element, only the integral over the attached stiffener 
need be found, since the integral over the flat-sheet part of the 
element is found from just the line integral along the line z = ts 
over the length of the element. 

Substituting equation (A33) into equation (A3l), noting that ¢ = p 

when tw tw 
z = ts and rW + :2 ~ Iyl < lS + rw + :2' and nondimensionalizing 

yields 

Thus, the forces required to maintain the assumed state of deforma­
tion are known in terms of two integrals: 

rw+ tw 
1 J 2 

Sl = Pt ( t )¢z=tsdY (A35) s _ rw+.-li 
2 

and 

(A36) 

These two integrals are evaluated for the cases considered herein by 
means of an electrical analog computer. 

Determination of Elastic Constants Dk, ~,and Ck in 

Terms of j, q, and c 

The elastic constant 
in equation (6) where j 
main text. 

Dk is defined in terms of the coefficient 
is obtained by the methods discussed in the 

j 
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The state of deformation assumed in the determination of the 
coefficients q and c is characterized by 

d2w 
dX dy 

o 

27 

Thus, by setting the twist equal to zero in equation (1) and sub­
stituting from equation (A30) for Mxy, the elastic constant Ck is 
obtained as 

dX dy 
is set equal to zero in equation (2) and lxy When the twist 

as may be determined from equation (A22) is substituted for lxy of 
equation (2), the elastic constant is obtained as 

~ = Gqts (A39) 

From the relationships of equations (5) the remaining elastic constants 
Dxy, Gxy' and T become 

Dxy = GJts3 (A4o) 

Gxy = 
Gjqts 

2c2q + j 
(A41) 

T = 
c 

GJ t S2 
(A42) 

Determination of ~I and ~I in Terms of J and q 

Reference 4 derived expressions for the elastic constants of 
integrally stiffened plates in which the effectiveness of the ribs for 
resisting twisting and shearing is expressed in terms of two param­
eters ~I and ~I. The coefficient ~I represents the part of the 
rib which is effective in resisting shear when this part is considered 
to be flattened out over the length of the element, thus increasing 
the effective flat-plate thickness of the element. The relation between 
~I and the applied shearing force Nxy is then 
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Equating Nxy as obtained from equation (A22) to that as obtained in 
equation (A43) results in the following relationship between ~I and q: 

~ I 
q - 1 

AW/bStS 
(A44) 

The coefficient ~I represents the height above the midplane of the skin 
at which the centroid of the distributed fractional area of the rib is 
located to produce the required twisting stiffness. By substituting 
from equation (A43) for ~I and from equation (9) for Dxy in equa­
tion (93) of reference 4, ~I is determined in terms of j and q: 
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TABLE I. - VALUES OF ClJ e,AND ~ I AS DETERMINED BY ANALOG COMPll'ml 

rw ~ ~ q C ~' ts ts ts 
rw b S bw q C I ~' ts ts ts 

twits = 0 twits ~ 2 

1 2 1 1.167 0.084 0 .778 8 1 1.076 0.063 0.304 
2 4 2 1.267 .145 .623 
3 6 3 1.373 .219 .579 

8 2 1.077 .075 .154 
8 3 1.078 ·079 .104 

6 l2 6 1.695 .496 .540 6 1 1.105 .085 .315 
8 16 8 1.840 .645 .489 6 2 1.106 .101 .159 

l2 24 l2 2.090 . 955 .424 6 3 1.108 .104 .108 
16 32 16 2.370 1.224 .399 0 4 1 1.166 .l29 .332 

4 2 1.173 .153 .173 
twits = 1 4 3 1.173 .156 .115 

2 1 1.463 .285 .463 

7 1 1.023 0.018 0. l26 
7 2 1.023 .022 .080 

2 2 1.500 .340 .250 
2 3 1.500 .342 .166 

7 3 1.023 .024 .054 
5 1 1.033 .025 .165 
5 2 1.033 .026 .083 

0 5 3 1.033 .026 .055 
3 1 1.058 .043 .174 
3 2 1.058 .044 .087 
3 3 1.058 .045 ·058 
1 1 1.240 .152 .240 
1 2 1.241 .156 .l21 
1 ~ 1.242 .158 .081 

10 1 1.119 .093 .490 
10 2 1.l23 .l26 .278 
10 3 1.l23 .131 .189 

8 1 1.157 .118 .517 
8 2 1.161 .158 .291 
8 3 1.161 .164 .200 1 6 1 1.227 .159 .561 
6 2 1.231 .213 .313 
6 3 1 .233 .220 .217 
4 1 1.409 .246 .673 

9 1 1.070 .051 .441 
9 2 1.070 .053 .259 

4 2 1.433 .331 .391 
4 3 1.440 .341 .270 

9 3 1.071 .053 .186 
7 1 1.092 .064 .451 
7 2 1.094 ·070 .274 
7 3 1.094 .070 .192 

1 5 1 1.138 .093 .486 
5 2 1.138 .097 .284 
5 3 1.138 .098 .201 
3 1 1.250 .143 .525 
3 2 1.250 .158 .309 
3 3 1.250 .160 .219 

10 2 1.245 .161 .462 
10 3 1.245 .164 .335 
10 4 .1.245 .165 .263 
8 2 1.327 .203 .492 

2 8 3 1 .327 .204 .358 
8 4 1.327 .207 .281 
6 2 1.489 .270 .551 
6 3 1.489 .273 .401 
6 4 1.489 .275 .315 

11 

2 1.257 .165 .616 
3 1.257 .174 .459 

2 4 1.257 .174 .367 
2 1.401 .232 .687 
3 1.401 .245 .5l2 
4 1.401 .245 .408 i~ 

4 1. 502 . 413 .405 
5 1.502 .413 .358 

4 6 1.502 .417 .319 
4 1.670 ·503 .451 

10 5 1.670 .504 .397 
10 6 1.670 .506 .355 

[! 

3 1.343 .245 .451 
4 1.343 .246 .393 

3 5 1.343 .246 .348 
3 1.489 .316 .499 
4 1.489 .316 .435 
5 1.489 .316 .386 

6 13 6 1.748 .565 .453 

{14 
6 1.830 .654 .423 

6 14 7 1.830 .661 .395 
14 8 1.830 . 663 .369 

8 18 8 1.957 .840 .396 
12 26 l2 2.185 1.180 .359 
16 34 16 2.455 1.543 .349 

8 17 8 1.910 .716 .437 
12 25 l2 2.155 1.077 .392 
16 33 16 2.420 1.361 .373 
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TABLE 1. - VALUES OF q, c, AND ~ , AS DETERMINED BY ANALOG COMPUTER - Concluded 

:.rr 
I 
~ I ~ I q I c 

I ~ ' 
ts ts 

:.rr 
1 
~ ~ 

I 
q I c I ~' ts ts ts 

twits = 3 t../ts = 4 

9 1 1.126 0.107 0.379 
9 2 1.141 .164 .212 
9 3 1.143 .169 .143 
9 4 1.143 .171 .107 
7 1 1.172 .141 .401 
7 2 1.190 .212 .222 
7 3 1.192 .220 .150 

0 7 4 1.192 .222 .112 

5 1 1.263 .202 .438 
5 2 1..289 .299 .241 
5 3 1.295 .310 .164 
5 4 1.295 .321 .123 
3 1 1.604 .361 .604 
3 2 1.676 .518 .338 
3 3 1.714 .550 .238 
3 4 1.714 .558 .178 

6 1 1.343 0.250 0.515 
6 2 1.400 .380 .300 
6 3 1.424 .456 .212 

0 6 4 1.426 .485 .160 
4 1 1 .671 .393 .671 
4 2 1.852 .606 .426 
4 3 1.911 .718 .304 
4 4 1..917 ·768 .229 

10 2 1.509 .397 .524 
10 3 1.526 .461 .383 
10 4 1.529 .489 .299 

2 10 5 1.531 .506 .244 
8 2 1.729 .497 .600 
8 3 1.757 .576 .441 
8 4 1.765 .613 .345 
8 5 1.770 .635 .284 

9 1 1.228 .166 .599 
9 2 1.248 .227 .347 
9 3 1.257 .251 .245 
9 4 1.259 .260 .188 
7 1 1.328 .218 .670 

1 7 2 1.349 .293 .380 
7 3 1.359 .324 .266 
7 4 1.360 .337 .203 
5 1 1.553 .331 .806 
5 2 1.582 .413 .453 
5 3 1.587 .454 .311 
5 4 1.590 .471 .237 

~ 
4 1.815 .682 .427 

4 5 1.816 .698 .365 
6 1.818 ·713 .318 
7 1.820 .713 .282 

{" 
6 1.950 .855 .386 

6 16 7 1.950 .860 .350 
16 8 1.950 .865 .320 
16 9 1.950 .865 .296 

11 2 1.302 .261 .430 
11 3 1.310 .289 .318 
11 4 1.311 .299 .249 
11 5 1.311 .301 .205 r 8 2.070 .995 .336 

8 20 9 2.070 1.002 .315 
20 10 2.070 1.006 .296 
20 11 2.070 1.007 .280 

9 2 1.395 .319 .460 

2 9 3 1.406 .352 .341 
9 4 1.408 .366 .268 
9 5 1.408 .369 .219 

12 28 12 2.290 1.420 .330 
16 36 16 2.540 1.880 .317 

7 2 1.573 .409 .519 
7 3 1.591 .452 .386 
7 4 1.595 .470 .303 
7 5 1.595 .475 .249 

13 4 1.551 .490 .380 
13 5 1.557 .499 .331 
13 6 1.562 . 505 .294 

4 13 7 1.564 .507 .263 
11 4 1.730 .580 .426 
11 5 1.732 .591 .368 
11 6 1.741 .596 .328 
11 7 1. 743 .597 .294 

6 {15 
6 1.899 .740 .403 

15 7 2. 020 .750 .370 

8 {19 
8 2.020 .930 .385 

19 9 2.020 .940 .377 

12 27 12 2 .250 1.290 .356 
16 35 16 2.490 1.710 .330 
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Figure 1.- Integrally stiffened pla te considered. 

Boundary conditions: 

4>= 0 a/onq ab 

4>= P a/onq cdef 

~t = 0 a/onq of and bc 

Figure 2.- Cross section of repeating element and boundary conditions on 
stress function ¢. 



5J 
NACA TN 3443 33 

f 
I 

y II ,
L __ --

Figure 3.- Repeating element in imposed state of deformation. 
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Figure 4.- Repeating element wit h resultant forces necessary t o maintain 
imposed deformation. 
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Figure 5.- Analog Field Plotter. L-83509 
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(a ) Cross section of repeating element. 
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Figure 8.- Values of bS when both bW and bS 
are larger than those - c 
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