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By George Herrmenn
SUMMARY

Starting with the fundamental equations of the general three-~
dimensional nonlinear theory of elasticity for the case of small elonga-
tlons end shears but moderetely large rotations, a set of plate equations
of motion is derived for an 1sotropic material obeying linear Hooke's
law. Certain assumptions as to plate displacements are made at the
outget. The resulting nonlinear plate theory of motion, valid for large
deflections, 1s discussed in the light of the three-dimensional theory
and other nonlinear plate theories, in particular, the static Von Kdrmen
plate theory.

In order to investigate the influence of large rotations in a dynamic
problem, the nonlinear equations are solved for the case of propagation
of straight-crested waves and the wave velocities are computed for various
values of the parameters involved. Certein similarities to free vibra-~
tions of a mess on & nonlinear spring, governed by Duffing's equation,
are established.

In addition, a veriant of plate equations is derived which permits
tracing back the origin of certain terms appearing in other nonlinear
plete theories, thus revealing more clearly the underlying assumptions
of those theories.

INTRODUCTION

A veriety of Ilmportant problems of structural strength and stability
of plaetes, arising in modern aircraft and missile construction, cannot be
adequately analyzed on the basis of the classical theory because the plate
deflections experienced are not small in camparison with the plate thick-
ness. Several theories have been suggested to take into account the
influence of large displacements and large rotations, the most widely
known being the static theory of Von Kérmen. It is a cammon character-
istic of these theorlies that the equations of equilibrium were obtained
by considering the free~-body diagram of & deformed plate element and by
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equating to zero all the forces and moments. This procedure does not
gudrantee a rigorous consistency relative to the order of the terms
retained, does not permit a clear identification of the order of the
terms involved, and precludes the possibility of occurrence of plate
stresses typical of a nonlinear theory which vanish in the linearized
case. Moreover, since the relationship between, for example, the

Von Kermsn theory and the general three-dimensional nonlinear theory of
elasticity has been established only as far as the streln and displace~
ment componentg are concerned, a more camplete study of this relationship
1s needed. In view of these shortcamings an attempt hes been made to
derive a large~deflection plate theory of motion, starting with the gen-
eral equations of the three-dimensional nonlinear theory of elasticity.

The idea of deriving epproximate theories of plates and other
bodies, one or two of whose dimensions are small as compared with the
third, from the general three-dimensional equations has been, in recent
times, repeatedly applied with success within the class of linear theories,
as for example, in references 1 and 2. It is demongbrated herein that
the same procedure, offering analogous advantages, may be used in the
case of a nonlinear theory.

In a first section of the present report, the main equations of the
general theory are written down 1n the formulation glven by Biot in
references 5 to 5. These are followed by plate equations deduced from
the general equations by assuming at the start the same displacements
as in the Von Kermsn plate theory and performing appropriete integrations
In the expressions to obtaln the potential and kinetlic energies used in
the formulation of Hamilton's principle.

The resulting stress equations of motion appear to be different
from those obtained by Von Kermdn and by Iove, 1n that inertie terms
have been added. However, the equations presented herein are reducible
to Von Kdrmén's equations in the ebsence of external moments, tengential
forces, and campressional inertisa forces. The present theory is also
reducible to the classical plate theory for the case where the rotations
are taken to be small as compared with the strains and the rotatory
inertia is neglected.

All the nonlinear terms of the present theory appear to be of the
same type as in the general three-dimensional theory and mey be desig-
nated, using Biot' s terminology, es "eurvature" terms and as lbuoyanc,y
terms. A "torsion" term, occurring in the three-dimensional theory, 1s
"abgsent in the plate theory. The plate stresses entering the equations
are defined autamatically during the process.

The plate stress-displacement relations are also derived by starting
with the corresponding relations of the three-dimensional theory and

-
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performing appropriate integrations and omitting certain terms. They
appear to be precisely the same as those given In the literature which,
however, were derived quite differently.

The present theory consists, in essence, Just as in the linear case,
of the equations of motion, the stress-~displacement relations, and bound-
axry conditions. The role of the latter, however, is greatly reduced in
the nonlinear cese. Whlle, in the linear case, the boundary conditions
are understood to be those quantities, in mumber end combinations, which
have to be specified at the boundary in order to insure s unique solution,
the analogous conditions presently ascertain merely the nonviolation of
the principle of the conservation of energy.

As an application of the equaetions of motion of plates with large
deflections, the propagation of harmonic, straight-crested waves in an
infinite plate has been studied. The inclusion, in the theory, of the
effect of large rotations introduces a coupling between the classical
campressional and flexural waves, and a redefinition of the normal plate
stress permits exhibiting the nature of the coupling term more clearly.
If, for this purpose, the rotation is considered independent of the
transverse displacement, the operator matrix of the set of two equations
is shown to be symmetric, Just as it should be in any linear theory.

The two coupled nonlinear wave equations are solved simltaneously
and certain similarities to Duffing's equation and his method of solution
are noted in the process. The biquaedratic velocity equation describes
the propagation of two modes, one essentially compressional, the other

flexurel. It contains the effects of transverse Ilnertia, rotatory inertis,

longitudinal inertia, flexural stiffness, and compressional stiffness.
The influence of each of these effects on the wave veloclty 1s discussed
in detail.

Within the range of validity of the present theory, that is, for
flexursl wave velocitlies which are small as compared with the velocity
of compressional waves, the Influence of rotatory and longitudinal inertia
is shown to be negligible. It is remarkeble that in this case the two
coupled, nonlinear equations can be solved exactly. For a given wave
length, the amplitude has the same effect on the wave length as the plate
thickness divided by the square root of three.

In order to gain a deeper insight into the assumptions underlying
the plate equations derived by ILove (ref. 6) and the bar equations
derived by Eringen (ref. 7), a variant of plate equations was derived,
in the light of the three-dimensional theory, in the last section of
this report. The same plate displacements were assumed, but more cam-~
plete expressions for the components of strain were employed.

Shortly after the manuscript of this report had been campleted,
Reissner, in reference 8, noted thet Kirchhoff (ref. 9) had been the
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first to analyze motions of plates with large deflections. The present
equations colncide, in essence, with those given by Kirchhoff, who, how~
ever, did not make an attempt to solve any special problems. The first
to consider equilibrium of plates with large deflections appears to be
Clebsch (ref. 10). Both Clebsch and Kirchhoff used different procedures
and erguments in deriving their theories, as campared with the ones pres-
ently employed. A detailed analysis of these differences would require

a separate study end is beyond the scope of the present report. A crit-
ical review of the work of Clebsch and Kirchhoff is found in reference 1ll.

This investigation was carried out at Columbia Universi’cy, the nsjor
part of it being under the sponsorship and with the financiel assistance
of the National Advisory Cammittee for Aeronautics. The initial phese
of the work reported wes sponsored by the Office of Navel Research.

SYMBOLS
A,B wave amplitudes
c phase velocity o
cp phase velocity defined by equation (46) ’
D plate stiffness
E Young's modulus
CxxsCyzPx
eyys Caxs Wy quantities defined by equations (3)
€g.7Cxy W0z,
Fx,Fy
My Ty, Q. external plate forces snd moments defined by
N, My, Npg® , Mpe® equations (18)
Qn
fx,fy Py i components of traction (external force per unit original
area acting on plate surface) in x-, y-, and z-directions,
respectively
G shear modulus; G =p .

h plate thickness




NACA TN 3578

K

L
Mz ¥, Mzo%

Nl,N2,N3,N12
My ,Mp,My0

Vo, Vos¥Wo

i

kinetic potential
wave length

plate stresses defined by equations (68)

plate stresses defined by equations (12)

coordinates perpendicular to and along the plate boundary,
respectively

plate stresses defined by equations (67)

surface of plene face of plate

surface of plene face of plate before deformation
kinetic energy

time

potential energy

displacement components in x-, y-, and z-directions,
respectively

approximate displacement components of plate theory, which
are functions of all three space varisables

plate displacement components defined by equations (7),
which are functions of two space varlables only

plate volume before deformatlon

elastic straln energy

work done by external forces

orlginal coordinates of particle (betfore deformation)

wave number, 2u/L
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€
1122733 camponents of strain defined by equations (4) or (5)
€23,€31,€12

A 1 Lemé's constents of elasticlty

v Poisson's ratio

£,7,¢ final coordinates of particle (after deformation)
p mass density

Te15TonsT
1127222735 components of stress defined by equations (6)
T93,7315T12

A prime indicates differentiation with respect to x; a bar indicates
an approximation; a dot indicates differentiation with respect to time.

BASIC EQUATIONS OF THREE~DIMENSIONAL NONLINEAR THEORY OF ELASTICITY

The basic equations of the three-dimensional nonlinear theory of
elasticity written down in this section are taken fram Biot's work in
the field (refs. 3 to 5). A more extensive account of nonlinear theories
of elasticity may be found in references 12 and 13.

Deformetion

Iet the original coordinates x, y, and z of a particle attached
to the material before deformation beccme

E=x+u
N=y+v (1)
Et=2+w

after deformation. The Cartesian rectangular coordinate system itself
is considered to be fixed during this operation. The deformation of an
infinitesimal region surrounding this particle is given by the linear
transformation
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Using the notation

=(l+%> d.x+%dy+
=%dx+(l+%§)dy+
= %% dx + %5 dy + (i +
e
e
€27 = %g
e = 33+ )
o = H(E+ 3
iy
oy = 43 - &)
v i-¥

éw_) az

du
oz dz

ov
oz dz

oz

P

(2)

(3)

and essuming these nine quantities to be small, the components of the
strain tensor, including terms of first and second order, may be defined

as
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€11 = e+ exyon - ey + (a2 + ay?)

eyy + eyzlx - exy®y + %‘(‘sz + wzz)

€33 = €y + eply = eyl + lé-(myz + 0 ?)
()
>

€p5 = eyp + 2wy (egy - eyy) + L oyery - S ogeny - Sayw,

€31 ezx‘*'lg‘“)y(exx" €z2) "‘Jg‘wzeyz - 5 OxCxy "%‘Dz‘nx

€12 = exy*%%(eyy - exx) +%“’xezx - %“Dyeyz ‘%"%"y ‘
These strain components are referred to & local coordinate system (1, 2,
and 3) originally parallel to the x-, y-, and z-directions, respectively,
and undergoing the same rotation as the material at that particular point.
This rotation is given, in first approximation, by a vector with compo-~
nents @y, wy, and ,, which will be adequate if these components are

small as compared with unity.

The expressions (egs. (%)) for the strain camponents, which are
valid for elongastions and shears which are smeall as compared with unity,
contain linear and square terms in the components of rotation. The
linear terms in the components of rotation are, however, third-order
terms as mey be readlly seen by expressing the quantities €13 in terms

of the components of strain and by remembering that all quantities given
in equations (3) are assumed to be of the first order (ref. 13, p. 52).

Thus, the expressions for the strain components simplify to
- 2 2
€11 = e + 3(0a2 + ay?)

€op = eyy * J-é-(a)xa + wza)

€33 = €gg + %’-((_Dy-z + (sz)
> (5)
€23 = eyp - 5 Wywy
€31 T ©zx -%wzwx
e]_a=exy-%—®)@y
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Even though the rotations and strains are smell as compared with unity,
they do not necesserily have the seme magnitude. For this reason the
squares of the rotation are retalned.

Strain Energy

The variation of the totael strain energy in an original volume V4
1s given by

BW =w Tan DEqnq + Top DE~pn + Tax BExx + 2Ty DE.g +
v, (711 011 ¥ Top Beap ¥ Tz Bezp + 2oz Oep
2T5) Begy + 2T, 8(—:]_2)6.1{ dy dz (6)

where the T13 represent the components of & gymmetric stress tensor

teken per unit initiael area before deformation with respect to locally
rotated axes (1, 2, and 3) and as & function of the fixed original
coordinates (x, y, and z).

The equations of equilibrium msy be derived fram the expression for
the strein energy by the same process as followed in the lineer theory.
The components of straln are expressed in terms of dlsplecement derive-
tives and the principle of virtual work, the static analogue of Hemllton's
principle, is applied, followed by a partial integretion.

PIATE EQUATIONS

Consider a plane plate of constant thickness h ‘referred to an
xyz Cartesian coordinate system, the xy-plane being the middle plane of
the plate and the z-axis being dlrected normal to that plemne. The
approximate displacements U, ¥, and % characterizing the plate theory
with large deflections are taken as

_ o )
u uo(x:b") -2 g‘
ow,
v = ( ’ ) - -2 { (7)
vo(x,y z >
®= Wo(x:b’)
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These displacements clearly consist of two parts, namely, the transverse
displacement wgy, which characterizes the classical plate theory, and the
displacements uy, eand vy, which serve to describe the displecements in
the plane of the plate. The displacements given by ‘equations (7) are
?hose o§ the Von Kdrmén plate theory (ref. 14) as was pointed out by Biot
ref. 5).

Using equations (7), the following epproximations to the quantities
glven in equations (3) are obtained:

_ P ’
ejmc=$o-zax20
- dv 82w
W TR
8y, = O '
&z = O
g, =0
S ) o
- ov, d
&y = %(éig * g;g - 22;52@%5)
oW

ow,
o - - 20

v
5 - 2e - 29

Plate deformations may produce only large rotations &y eand &y
but not @&y. Thus, in calculating the camponents of strain from equa-
tions (5) with the aid of equations (8), second-order terms conteining
@®, are neglected.

The spproximate components of strain in the plate are then



NACA TN 3578 11

e
33725, T 2\% L (9)

Strain Energy
Inserting the approximate expressions for the strain components
given in equations (9) into the expression for variation of the strain

energy (eq. (6)) gives the following epproximate expression for the
variation of the strain energy OW:

- [, 8 -+ 458 - 2o
L& )

-
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Since the z-dependence of all the camponents of strein has been made
explicit by equations (7), an integration through the thickness h of

the plate from 2z = - 5 to =z = B- can be performed immediately with
the result:

F - g\ _y of 3o g .aio_)
o7 = fI. i o(Z) - o) 4, 2o o(2)
2
Bv()) - ) wo> o (Bwo)
N 6<——ay_ My 6(@2 + N 50 5

it 2 (2] 1y o o)

& \Xx % \d
NEE(%TQ) + 8@;") + gy% S(Sywo) + g;o 6(30)] -
2y, a(i"’gy) ax dy (1)

the integration being extended over the originel surface S, of the
plate before deformation. In this process one is led sutomatically to
the following definitions of plate stresses:

N

/ah/e h/2
Ny =U-h/2 T1142 M = f_ h/2 T112 4z

h/2 h/2
Ny = j: h/2 Too dz M, = ..h/2 TopZ 42

h/2 h/2 [ 42
Ny = f— n/o T33 dz My = n/ T10% dz

h/2

Nipo = j: h/2 T1p 4z J
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du, > 3%, 3°
Noting that &(—2 = .2 dug, o) =2 _ dWo, and so forth, it is
Ox Ox 2 2
ox x
possible, 1in expression (ll) » to bring out the factors dugy, &vgy, and
dWo by partial integration obtaining

a 3% 5[ o
5?:[[ -_1s __law .._<1\1 —°>8w -
I N R o e

¥ 2 ° %
ow

%(}13 ax>6w° . é33;<N3 By>5w° -

O oy 5

9
Aovo) |, Ims , 3 (13)
on Js Js
Herein, use has been made of
-%Mm %Swod.s=§2§§§—gﬂﬁwods (1)

Work of External Forces
ILet fy, fy, and £, denote the x-, y-, and z-camponents, respec-

tively, of the external force (traction) per unit original area acting
at the boundery. The (virtual) work done by these external forces is

B, =/] (fx Bu + fy Bv + £y 5w)as (15)
S

the integral being extended over the whole surface of the body.
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In the case of a plate, the total surface consists of the two plane

feces 2z = 1:% and the cylindrical surfaces bounding the plate. The

expression for the work is therefore

]:[[ fy du + fy Bv + £y dw)dx dglz:}:/jz

h/2
Slgf (fnSun+f56uB+fzaw+fn§E8w+‘fs-a£-8w)d.zds (16)
h/2 on Os

The line integral is to be taken around all (external end internal)
cylindrical boundaries of the plate. Subscripte n and s indicate
components referred to coordinates n and s measured normal to and

along the boundary.

Substltuting for the displacements u, v, and W their approxima-
tions 1, ¥, and W fram equations (7), the work of external forces
acting on the plate is given by

z=h/2

_ AYE A
BWe = [/.fxﬁ%-zﬁg- +fy<8vo-z§y_— + £, Bwg ¢ dx dy +

z=-h/2

h/2 0
ff fnauon—ZB + f5 U.OB-'ZB——— + f£5 Bwo +

(fn g:'l— + £y %) Bwo & dz ds (17)
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Employing the notation

h/2
Fx = (fx) ~h/2
mx _ (fo)t]-.]/jja
« h/2
= fn_ dz
. 'f-h/a
h/2
* = f fhz dz
~h/2
h/2
Fy = (fy) 1/
’ (18)
h/2
my = (2fy) ]/1 /o
N h/2
an- = fs dz
~h/2
h/2
Q = £, dz
-h/2
q= (fz)}ill/1 Z
< h/2
Mps = fsz dz
-h/2

expression (17) may be rewritten as

g g
Swe=ﬂ Fx6uo-mx88—x— +Fy8vo-my‘6§y— + g dwp|dx dy +

f E\In* Buo, - Mn® s@%"-) + Npg Suo, - Mns™ 8(%9) + Qq Swo +

* aw'0

N, anso+1&gﬂB —ands (19)
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Noting that
BW'O o]
ﬂEx 6(&—) + oy (—-) dx dy = 9§mn bwp ds - /f( >8wod.xdy
(20)
the work of external forces may be expressed as
BW, =‘/]Ex5uo+}?yavo+ (q+§x+%nz> 5o | dx dy +
yg ‘:Nn* Bugy + Npg™ Bug - Mp" 6(2‘3) aMnS Bwgo -
my Bvg + Q B + N %;’2 Sy + Npg g"’—o SWO] ds (21)
8

Xinetic Energy

The kinetic energy T of a body occupyling before deformation a
volume Vo and having a mass density p 1is given by

M u+v +w)dxdyd.z (22)

The dot indicates differentiation with respect to time +. Using & 3 \:r',
and W in the above expression, en approximete form of the kinetic
energy T in a plate is obtained as

. \2 . \2
—=%fﬂ:f0pﬁ%_z§_an) +<\'ro—z§yw—°-> +1?r02 dx dy dz  (23)

which can be integrated through the thickness h of the plate ylelding,
under the simplifying assumption that p 1is independent of 2,

_ 3 2 AL
-3/ “E%‘g*%@x—wg) S 5 It ETOCS

f\)ll—'

-
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The variation of the kinetlc energy 8T is found to be

_ 3 g
8T = |/ (el Bilg + phip B - £ —2 Birg -
12 ¢
3 3% » 3 '
)il w°5w:ro+ph€r051:ro dxdy+f]§p£-—95ﬁods (252)
12 By2 12 on

By integrating partially the above expression with'respect to time and
setting, as usual, the variations at the beginning end end of the time
interval equal to zero, the following equation is obtained:

_ 3 %, 3 g .
8T=ﬂp-hiioauo-h’&oavO+%2-g-xT05Wo+‘hl—2$Q-8WO"

3 3. '
Ko BWo dxd\v-‘sg%goﬁwods (25b)

Equations of Motion

Hamilton's principle is now applied to derive the equations of
motion. The principle states that for an erbitrary time intervel tl - t2

to
af_ Kdat =0 _ ' (26)

where K is the kinetic potential; in general,

K=T-1 (27)

U being the potential erierTgy. In the present case of the plate, the .
potential energy consists of two parts, nemely, the approximete internal
strein energy W and the approximate potential energy of the external

forces -We. Hence,

E=T-W+W, (28)

and
5K = 8T - BW + BWe (29)
Using equations (25), (13), end (21) for &T, oW, and &W., respectively,

the following expression for the variation of the kinetic potential is
obtained:
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2
i@m%) 8w0+-a%é\112%‘2> 5w0+2gx—Mal;=:5w;‘ dx dy -

(5w
fE\InSun+NnB5uB+Nn%5wo+ang—:—Q8wo-Mnigii’)}+
( Mg %>5W{Ids+ﬂ|: dug + Fy dvo +
(q+§x;+%!>5wo ax dy + fErn*aun+an*5u5+Mn*s(%’)+

(Qn mn+%—+

ano"'an ) ds =0 (30)

This veriation of the kinetic potential 5K must be equal to zero
for arbitrary values of Jug, ©vp, and so forth. The three stress equa-
tions of motion are obtained from the integrand of the double integral in
equation (30), obtained by equating to zero the coefficients of 0&ug,

ovo, and &wg, are
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|
+
k%
+
t
1
E
3 H

A
n
D
3.
o

+2 4-31-@5_-—59 +-ji(%é 93%9 +
v,

J

The integrands of the line integrals sexrve to identify the starred
with the corresponding unstarred quantities (such as Np* = Np) and permit
the estsblishment of a relationship between the tremsverse shear force
and other plete stresses as follows:

In addition, the integrand of the last line integral msay be employed
to establish the boundery conditions. For a system of linear differential
equations, appropriate initial and boundary conditions are those which are
sufficient to assure a unique solution. The classical uniqueness theorem
of the linear theory of elasticity, using energy considerations, is given
by Neumann (ref. 6 y D 176) Ite analogy for a linear plate theory,
including the effects of rotatory inertia and shear, was established by
Mindlin (ref. 1).

Similar arguments may be used in the present nonlinear cese. 8Since
the superposition principle does not hold, the &ppropriaste boundery con-
ditions will ascertain not a unique solution but merely the nonviolation
of the principle of conservation of energy. These boundery conditions to
be specified on the edges of the plate are determined by any of the com-
binations which contains one member of each of the four products of the
last line integral in equation (30).
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The first two equations of the system (egs. (31)) describe motions
in the plane of the plate and possess the same form as the equations of
the plane stress problem. The third equation describes the transverse
motions of the plate. The first three terms are those of the classical
plate theory. The following six terms represent the influence of large
rotations and are nonlinear. Bach of these six terms, for example, the

first, gi Ny gzba, may be written as the sum of two terms; that is,

‘ 2
20 oy B, > w
%( X axo>= 1oy axzo (33)

Inasmuch as Bwo/Bx represents a camponent of rotation, it is
recognized that the nonlinear terms in the stress equation of motion of
the present plate theory are precisely of the same nature as those in
the three-dimensional nonlinear theory of elasticity. Following the

ON, ow
terminology of Bilot (ref. 4) terms of the type S;L 529- mey be called

buoyancy terms, because they arise from some kind of buoyancy due to the
deformation of an element In its own stress field and depend on the stress

d Wwo
x

of direction of an element due to curvature and may be called curveature
terms.

have their origin in change

gradient, while terms of the type Ny

The two terms containing the total transverse normal stress N3 will
be neglected in conformance with the type of motions to be described by
the plate equations for which this stress is negligible, just as in the
classical plate theory. The remaining three terms on the left-hand side
of the third equation of motion (egs. (30)) are the forcing terms, g
being the net normal pressure, while my and my, are the external moments,
which are customerily neglected in a plate theory. They are retained here
merely for the sake of completeness.

On the right-hand side of the equation are found the inertia terms,
the first phW, belng the transverse inertia term of the classical plate

5 a oo 3 a .o
theory while %g— ——gg and. %g_ 2 ¥
ox oy

which are discussed in reference 1.

are the rotatory inertia terms

There exist several other possible ways to deduce plate equations (31)
from the general theory, two of which are outlined briefly as follows:
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First, the three-dimensional equations could be written down using
the components of strain given by expressions (5), which would yield,
after substitution of plate displacements (egs. (7)) and appropriate
integration, the plate equations (31).

A second alternative consists in following the same procedure which
leads to equations (31) but temporarily considering the rotations w,

and wy a8 being independent of the transverse displacement wo in

performing the variation of the emergy expressions. This would lead to
five equations of motion, with five unknowns ugy, Vg, O, Wy and wq.

The equations would contain, in addition to the plate stresses defined
by equations (]_2), ‘the plate shears Q, and Q- EXpressing o, and

wy subsequently as derivatives of W, and eliminating the shears Qy
end Q, from the equations of motion leed to equations (31), two inter-

mediate relationships in the x~ and y-directions being those analogous
to equation (32).

Comparing equations (31) with the Von Ksrmsn plate equations as
found, for example, in reference 15, it is noticed that the essential
difference consists in the fact that the Von Kedrmsn equetions do not con-
tain the buoyancy terms, but only the curvature terms, as the nonlinear
terms of the stress equations. Thus, a mere addition of inertia and
forcing terms to the Von Kdrmen equations will not result in equations (31).
However, in the ebsence of inertias terms, equations (31) reduce resdily
to the ones of Von Kdrmen.

Comparing equations (31) with those given by Love (p. 558 of ref. 6),
the @bsence, again, of the buoyancy terms is noted and, in addition, the
occurrence of nonlinear terms containing the transverse shear force. The
discussion of the significance of these latter terms is postponed to the
last section of this report.

Stress-Displacement Relations

The stress equations of motion (egs. (31)) represent three equations
relating 10 unknown functions, namely, the 3 displacements and the 7 plate
stresses. Therefore, just as in the three~dimensional theory, additional
equetions, here numbering seven, are needed to camplete the problem. They
should relate plate stresses to plate displacements-and are developed
from the three-dimensional relations, as was done before for a linear
plate theory by Mindlin (ref. 1). Assuming the material to be isotropic,
the stress-strain relations expressing Hooke's law are
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Ty = K(ell + €py + 633) + 21eqq
T22 = A (Ell + 622 + €33) + 2}1622

Taz = %(ell + €5p + e33) + 2ue35

¢ (34)
To3 = 2Hep3
T31 = 2]1-631

where the stresses and strains are those introduced by expression (6),
and N and p are Lamé's constents of elasticity. The third equation
of the set (egs. (34)) is now solved for €s3 and substituted into the

first and second, resulting in
B Ev

Tyy = €y +
11 11
1l - v2 : l-v

A
52t = 3

E Ev
1 -

A
T22 v2 Gll + N+ o T33

Performing the integrations indicated in equations (12) and neglecting
h/2 h/2 ,

agein Nz = Tzz dz and, in addition, d/‘ Tzz2 dz results Iin
nfp P mfe P

the following plate stress-displecement relations after substitution of

the straln-displacement relstions in equations (9):

oW, a W
My = -D 20 20
ox dy
2 2
_ 3 Wg 9w, >
My = -D—5 5
. dy dx
2
Ow
Mla—-D(l-v)axgy ‘

(equation continued on next page)
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Cm |, 2B, e, afon)?]
T }Ehvzﬂa—x— %<$-) Ty %(?ﬁ)_
,Eh —aVo lawoa E”-’0 a"’og—
2=y E(ay Ve VRS | | (3)
1 -7 _
- (¥, o, ¥ aw)
Ny, Gh(ay - +ax >

In relations (35) E 1s Young's modulus, G is the shear modulus,
v 1s Poisson's ratio, and D is the plate modulus expressed as

B e
’ Ca2(1-4) 6= )

, The stress-displacement relations (egs. (35)) coincide in every
respect with those of the Von Kérmén plate theory (ref. 1) end also
with those of the more general theory of Love (ref. 6), which are, how-
ever, derived in a different menner without making use of Hooke's law
for a three-dimensional solid.

STRAIGHT~CRESTED WAVES

As an application of the plete theory derived @bove, the problem
of propagation of free waves in an infinite plate is now investigated.
Assuming the straight-crested harmonic wave to be propageted in the
x-direction, the equations of motion are simplified by letting vy = 0

and 9/dy =

In the absence of external loads the one-dimensional equations are,
from plate equations (31),

(37)

Primes indicete differentiation with respect to x. The correspond.ing
stress-displecement relations are, fram equations (35) ’




2l NACA TN 3578

] 1 2
N ?hszlo ¥ 5(o ):l

L (38)
M]_ = -DW'O"
so that the displacement equations of motion teke the form
m —- *s
1——-_2-(110" + WQ'WO") = phuo
-V
. 5 5 (39)
v Eh " " ] h” .. 1 _ o

It is noted that the first of the two displacement equations of motion
(egs. (39)) describes essentially the compressional motions in a plate,
which are, however, coupled to the transverse motions because of the
presence of a (nonlinear) term containing derivatives of transverse dis-
placement Ww,. The second equation governs the transverse (flexural)
motions, which appear to be coupled to compressional: motions by the pres-
ence of two terms containing derivetives of the longitudinal displace-
ment ug.

Neither the form (egs. (37)) of the stress equations of motion nor
the form (eqs. (39)) of the displacement equations of motion permits
clear recognition of the nature of the coupling effect contained in these
coupling terms. A deeper insight into this coupling phenomenon in both
sets of equations (37) and (39) may be gained, however, with the aid of
a redefinition of the plate stress Nl.

In view of the stress-displecement reletion contained in the first
equation of the set (38), Nl may be expressed as the sum of two compo-

nents, namely,

Ny = Ny ~ Ny, ‘ (+0)
where Ny 1s the classical component defined as
My = —28 i) (1)
1-v2x
and Nzyx 1s defined as
oW, ‘ |
Eh 0 (42)

Vax = o0 - 8)
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The rotation camponent ay sappearing in equation (40) 1is considered,
temporarily, as being independent of the tremsverse displacement wq.
The resolution of Ny, defined by equation (ho), 1s convenient because
it separates the terms contalning uy, and wg. In terms of the newly
introduced plate stresses N, and N,., the stress equations of motion
(egs. (37)) mey be written as

T’ - L (Mgey) = ehilo

5 32 > (43)
1t 2\ _ . h- W,
M- gﬁ@ﬁﬂbg - gi@mn@w') = phwy - %E—'Q;EQ
)
and the displacement equations of motion (egs. (39)} as
Eh "o Eh e Rl
1-2° "3 -R) &<% BX) Phito
> (L)

oodv_ _En 3 auo)_ Eh _a_(ga_wg>= . pED
G 1 -2 ax(py ox 2(1 - v2) ox Y ax Pio 12 "o

The coupling terms, the second term in each of the equations of the

set (43) or (44), are thus clearly exhibited. As a consequence of &
large rotation wy, the plate stress Ny enters the equation of trans-
verse motions, while the plate stress Nzyx, which depends on wg only,
enters the equation of compressionel motions. ' )

The coupling operator in equations (44) is recognized to be the
same in both equetions, namely,

B3y - 2, m d "
() = wy & (45)
- v2 ox L - v2 ox 1 - v2 ox
thus meking the operator matrix on the two dependent variebles uy and
Wo symmetric. Thus, it appears that the operator matrix is symmetric,
In a generalized sense, even in the present nonlinear theory Just as it
should be in any linear theory, as was pointed out, for example, in

references 16 and 17. Moreover, it is observed that the coupling oper-
ator conteins both & curvature term and a buoyasncy term.
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In eddition, it is noticed that the effect of a large rotation is
apparent not only in the coupling terms, which contaln the rotation to
the first power, but also in a term occurring in the second equation,
which contains the rotetion to the second power.

Equations (39) are now rewritten in a more convenient form. The
first is solved for Wo'Ww," and substituted into the second. If cp

denotes the phese velocity of compressional waves 1n e plate, then

2, E (16)

and equetions (39) may be written as

cpz(uo" + wb’wb") = g

(&7)

2 h2 iv 1 1 t 1 1" 2 2 t h2 se 11 e 7
~%p \35 Yo + 5 Yo Wo -~ Up Wp | * > owo ' + 5 Yo = Vo

The solution of this coupled set of two partial, .hamogeneous, nonlinear,
differential equations is sought in the form of harmonic waves

uo(x,t) = A sin ¥ (x - Ct)
(18)
Wo(x,t) = B cos 7 (x-- ct)

where A and B eare the amplitudes, ¥ eand 7, the wave numbers, and
¢ and c, the phase velocities. Substitutlion of this trial solution
into the first of the equations of motion reveals that, for periodiec
motions,

5 =2y (49)

S=c (50)

8hy (1 - %) = B%,? (51)
cp

The first term in equation (51) represents the influence of compressional
stiffness, the second, the influence of longitudinal inertia, and the
term on the right-hand side, the influence of tramnsverse stiffness. A
sketch of the deformed plate is given in figure 1. Substitution of equa-
tions (48) into the second equation of the set (47) results in the
following equation:
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2 ok
I;FPEQ%E 71L + 2A73> + c2(3A75 + h12 + 7?2} cos 7 (x - ct) -
5A73c2 cos 3y (x = ct) =0 (52)

In obtaining equation (52), use was made of the relation

co‘s3 a = % cos 3o + E cos a (53)

Equation (52) is similer to an intermediate form of the Duffing equation
which governs, for exemple, motions of a single mass attached to a non-
linear spring and which is discussed in detail in reference 18. Discus-
sion of nonlinear problems governed by pertial differential equations
may be found in references 19 to 21.

Confining attention to periodic solutions, the term (eq. (52)) with
cos 3y (x - ct) may be disregerded as campared with the term
cos y (x - ct), provided that the amplitude of the former is small as
compared with the amplitude of the latter. This restriction is discussed
in detail below. The velocity equation 1s then

2 2,2 ) 2,2
c h = ™7

The first term on the left-hand side of velocity equation (54)
represents the influence of transverse inertia on the wave velocity, the
second term, the influence of rotatory inertia, and the third term, the
influence of longitudinal inertia. On the right-hand side, the first
term represents the influence of flexural stiffness and the second term,
the influence of compressional stiffness.

Eliminating Ay 1in equations (51) and (54), a single biquadratic
equation

4 h22 2 h2y2 2.2\ . %2 BHS _
655 - @b ) e o

governing the phase velocity c¢ 1is obtalned, which 1s seen to depend on
two parameters, namely, hy and By. Since

7:

=R
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where L 1s the wave length, hy represents the ratio of plate thick-
ow
ness to wave length, while By equals the maximm rotation Wy = = go-.

This velocity, or frequency, equation represents a typical two-mode
coupled system similar, for exsmple, to the one of reference 2. While
in reference 2 the coupling between the two modes was esteblished through
Poisson's ratio and thus depended on material properties, the coupling
is effected presently through a knematical quantity, nsmely, by teking
into account large rotetions. A coupling due to gravity between the
same two types of waves has been discussed in reference 3. The two modes
mey be uncoupled by omitting the terms in equation (55) containing By,

which yields

2 )(cz 2 12,2 h272>

-1 + - =0 (56)
<_°? ot ot 2 T

Thus, one mode, which describes campressional motions in the plete, has
the velocity

£ =1 (57)
Cp

while the second, the flexural mode, has & veloclty

22
o hoy-
02= liaz (58)
P 127

12

which has been discussed in reference 1. If the influence of rotatory
inertia 1s neglected, equation (58) simplifies to

(59)

Several graphs have been plotted to exhibit more clearly the coupling
effect. . Figure 2(a) shows the uncoupled end coupled veloclty curves for
a constant value of. the ratio of transverse amplitude B +to the wave
length L, which is & measure of the rotation and which has been chosen
to be equal to 0.1 in the case where the rotatory inertia is neglected.
Figure 2(b) gives the same curves, including, however, the effect of
rotatory inertia. It is seen that the coupled curves approach the veloc-
ity curves of uncoupled motions for large values of h/L but not for
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h/L = 0. This deficiency is due, most probsbly, to the fact that the °
equations derived are not valid for the full range of the parameters
involved. These inherent limitations are discussed subsequently.

Noting that % = % %, similar curves can be drewn for a constant

value of B/h, which may be taken as & measure for the deflection. Fig-
ure 3(a) shows the two coupled velocity curves, draswn for B = 1, with

h
the effect of rotatory inertia being neglected. The coupled curves
approach the uncoupled curves for % = 0 but not for large velues of

h/L. Figure 3(b) gives the coupled and uncoupled velocity curves for
the same constant value of B/h, but with the effect of rotatory inertia
included, and agein a similar behavior of the coupled curves with respect
to the uncoupled ones 1s noted.

The range of valldity of the veloclty equation, however, is limited
to specific ranges of the parameters involved in view of the simplifying
asgumptions underlying both the plate theory and the solution of the
wave-propagation problem. These limitations are now examined in detail.

At the outset, in considering the possible deformations, the rota-
tion was assumed to be not too large, so that i1t could be represented
by a vector with components wy, Wy, and wy,. This is admissible only

if these components are small as compared with unity.

In the case of waves, described in equations (48), propageted in a
plate, the maximm value of the component'of rotation wy 1s given by

|9y | max = BY

which haes to be small as compared with unity. Moreover, it was assumed
thet the components of strain are small as campared with unity, which

implies that in the expressions for the strains all the nonlineasr terms
ere of third and higher order, except the squares and products of rota-
tion, vhich are of the second order. Such a typical nonlinear term not

venishing in the one-dimensional case is % Wyeyy, Which occurs in the
expression for the strain 63

such term is % exxz, which occurs in the expression for the straln e

if the strains are not assumed to be small (ref. 4, egs. (1-12)).

L in the set of equations (4). Another

11

Thus, the assumption of small strain requires the smallness, as
compared with unity, of the coefficient ey = %%. In the case of the




30 NACA TN 3578

present plate theory, the coefficlent Eyy = %-E- is
2
- Ou o)
i .M ., %Y
& & o
2
dug 0 W
and consists of & campressional part —a—;— and a flexural part =z 5
82w >
the maximum of which is B —C. Since the coefficient &y has to be

2 _2

small throughout the thickness of the plate, each part must be smell as
compared with unity. In the case of waves, this implies that both Ay

(compressional part) and %Byz (flexural part) should be small as com-
pared with unity.

The significance of the smellness of the flexurasl part 1s not quite
clear yet, in view of the fact that By 1s small by itself. -However,
it should be pointed out that, in the expression for the strain, the

squares of rotation contain terms with B272 which are retained, while
terms of the type 12‘“&?3;01 which contain ﬁl B272 are neglected.

Thus, clearly, this implies that hy is small as compared with
unity, and since 7y = 2:(/L, where L 1is the wave length, that h/L 1s
small as compared with unity. Hence, the solution will be valid only
for waves which are long as campared with plate thickness.

To summarize the restrictions of the wave solution inherent in the
present plate theory, the smallness of the components of strain implies
the smallness of Ay end hy, while the smallness of the rotations
implies the smallness of By, all compared with unity.

Attention is drawn next to limitations inherent in the neglect of
the term with cos 37(x - ct) as compared with the term with cos y(x - ct)
in equation (52). This neglect is Justified only if the amplitude of the
former is small as compered with the emplitude of the latter. The ratio
of these amplitudes, which ought to be small, is calculated to be equal
to 3Ay. But this requirement coincides with one of the requirements
Imposed by the smallness of strain discussed previously. Thus, the
approximations introduced in the wave solution do not introduce any addi-
tional limitations.
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The solutions (51) and (54) are now exsmined in the light of the
limitations just discussed. Solving equation (51) for Ay and obtaining

2.2
A7=BL 1

8 1 - &

1t 1is noted that -:I—-———l?/—-—é- should be small, as campared with unity,
- c“/e
1Y

for a given value of By. The curve of Ay, as a function of c/cp )
exhibits a resonance phencmenon of a type similaer to that in the case
of forced vibrations of & single mass. The phase velocity c¢ should
be éither smaller or larger than the campressional wave velocity in a
plate Cp-

2.2

In equation (54) the terms with 11—1-2L end 3Ay on the left-hand

side may be omitted, in accordance with the limitations imposed, since
these terms are added to unity. Thus, relaetion (51+) simplifies to

%}=%3+2A7 (60)

That is, in the range of 1ts valldity, the phease velocity depends only
upon transverse inertia and the flexural and compressional stiffness,
while compressional and rotatory inertias are negligible. But it has
already been established that hy and Ay are small as campared with

unity; hence, from equation (60), 5'32 is small as compared with unity.
c
D
Thus, equation (51) simplifies to
8ay = B2 (61)

Eliminating Ay from equation (60) with the aid of equation (61) gives
the velocity equation

2 22 2.2 242 2
e® _ b5 L BS° _ AT, g2) - B[t 2)
i) -5 2

in which each term has to be small as compared with unity. The result
is thus obtained that, within the range of its validity, for a given
wave length, the velocity is affected in the same manner by the deflec-
tion B as by the plate thickness divided by |[3.
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The velocity given by equation (62) is plotted in figure L4 for
various values of the parameter B/L, which represents a measure of the

rotatlon. Since % = % lfl." equation (62) mey be rewrlitten eas
2 2.2 2
¢c _n°h B
=1_h (7 4338 (63)
,? 3 I ( hz)

where the parameter B/h mey be tgken as a measure of the deflection.
The velocity given by equation (63) is plotted in figure 5 for various
values of the parameter B/h.

In the treatment of nonlinear systems wilith one degree of freedom,
it is customary to study the so-called response curves, that is, curves
relating the amplitude to the frequency (ref. 18). Since, in the pres-
ent case, the velocity msy be sald to plgy the role of the frequency,
B/h was plotted as a function of c/cp for various values of h/L,

which is now considered a parsmeter. These curves, glven in figure 6,
are qualitatively the ssme as the response curves of systems governed
by Duffing's equation (ref. 18) which demonstrates still further a cer-
tain resemblence of the present nonlinear contimious system with infi-
nitely meny degrees of freedom to & nonlinear single-degree-of-freedom
system.

It is worthwhile to point out that, 1f the terms containing longi-
tudinal lnertia are neglected in equations ()-1-7) by letting iy = O,
equetions (61) end (62) represent exact solutions of equations (47). It
should also be observed that the contribution of the buoyancy term in
the second equation (’+7) is contained only in this longitudinal inertla
term.

A VARIANT OF PLATE EQUATIONS

In this last section of the present report, a lerge-deflection plate
theory 1s derived the equation for which includes the Influence of terms
containing the first power of the rotation In the expressions for the
camponents of strain, that is, expressions (4) for the strains will be
used and not expressions (5). Even though it has been recognized pre-
viously that these terms are of higher order than the second, the devel-
opment is worthwhile because it appears that better insight is gained
in appreaising other large-deflection plate and beam theories, perticularly
those derived by ILove (ref. 6, p. 558) and Eringen (ref. 7).

In view of the fact, however, that the assumptions as to displace-~
ments are still those given by equations (T7), that is, €y = Cyy = €zy = 0
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and wy 1is small, the influence of linear terms in wy and wy appears
only in two components of strain, namely, €37 and €53, which are now

3

€p3 = =3 Oy * 3 Oy (o - o)

5 (64)
€51 = 3 Oyoxx - 3 Ox oy * 02)
J
or, using the displacements given by equations (7),
2
Cnz = J.. ow /a" a Yo % -z _Q_
23 2 dy \ay aya 2 Ax dx oy
> (65)

2
L 1l 3w lawaw awo>
51 25x\ax axz 2 dy axay

Assuming, as was done before, that the derivatives of u, and v, with

respect to the space veriables asre small as compared with unity and using
the same procedure which led to the equations of motion (31) , the following
homogeneous equations of motion are obtained:

o % OW [ & Ow
3 §<<Ql 5 %(Qﬂaxo)“?lz:’ph%
ON. % OW S [+ % OWg ang__
'#*%@a_f*ax(% ) - 2 - o
2 2 2
_aml_aMz_gaMle_g(N %)-A(Nio)- S (66)
2 x\tax/  wy\ ey ‘

In these equations, Nj, Ny, Nyo, My, My, end M;, are the plate

stresses defined by the integrals in equations (12) The transverse shear
forces Ql 5 Q,2 are now defined by
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h/2 ]
" =/: nje 5L %
‘ (67)
h/2
% —v/:h/z 32 % J

and no longer by equation (32) as in the previous theory. Moments of
trensverse shear stresses M31 and M52 are autamaticelly defined as

fh/2
Mzq = Tz,%2 dz
31 -n/2 31

fh/a
Mzr = TznZ 4z
52 -h / o 32

and do not occur in sny linear plate theory. The static terms in eque-
tlons (66) could have also been obtained by a direct integration, through
the thickness of the plate, of the corresponding three-dimensional eque-
tions, which were given by Biot (ref. 4, egs. (5.4)).

~

> (68)

J

Comparing equations (66) with those given by ILove, it 1s recognized
that the first two equations of each set are almost identical, except
that in reference 6 only shear curvature terms of the type Ql* 8220

o
occur, while equations (66) contain both shear curvature and shear buoy-

*
ancy terms, the latter belng typified by the term -a—gxl— %xw_g

Thus, the origin of the nonlinear terms in the first two stress
equations of Iove's theory is due to a retention of first-power terms of
rotations in the expresslions for the components of strain. It has been
shown previously in this report that they are of a higher order than the
second and may thus be omitted. In reference 6, it 1s merely stated
that 1t will generally be sufficlent to omit these terms.

\ The last equation of the set (66) contains, in addition to the terms
found in the corresponding equation of the set (31) , & series of terms
containing the maments Mpz end M3l’ which are missing in Iove's equation.
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In order to campare Eringen's beam egu.e. tions (ref. 7) with those of
the present study, the plate equations (66) are reduced to beam equations
by letting V, =0 and J/dy = 0. They are

dN
2 _9q = ohil
3 3 (l S > phu,
> (69)
a M
1,9 Q[ 5L _o_) =

5 + (Nl ) phtfo

Next, Eringen's equations are reduced to describe small strains and
moderately large rotations by considering ou/ox +to be small as compared
with unity, letting the cosine of the angle of rotation equal unity, and

essuming that the sine equals the angle itself. They are, in the nota-
tion used hereln,

N

(70)

Thus, it is seen that Eringen's term Ql* Bago is expressed in the present
ax

theory as a—lgxﬂ EW—Q

ox

Columibia University,
New York, N. Y., October 3, 1955.
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Figure l.- Streight-crested waves in plete. Transverse displacement vg,
smplitude B; longitudinal displacement 1wy, emplitude A.
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(a) Clessical theory, @ flexural wa.ves; @ longitudinal waves; coupled motions according
to theory presemted herein (B/L = 0.1), (3 lower branch, ® upper branch.

Figure 2.- Plot showing dependence of wave velocity on wave length and influence of large rotatlons.
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(b) Classicel theory with rotatory inertie correction edded, @ flexural waves; classical theory,
@ longitudinal waves; coupled motions according to theory presented

herein (B/L = 0.1), (® lower branch, () upper branch.

Figure 2.~ Concluded.
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(a) Classical theory, () flexural weves, (Z) longltudinal waves; coupled motione according

4o theory presented hereln (B/h = 1), @ lower branch, @ upper branch.

Figure 3.- Plot showilng dependence of wave velocliy on weve length end influence of large
deflectione.
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longitudinal waves; coupled motions according to theory presented
herein (B/h = 1), (3 lower brench, () upper brench.
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Migure L4.- Plot showing dependence of wave velocity on wave length end influence of large rotations
for various velues of B/L.
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Flgure 5.- Plot showing dependence of wave velocliy on wave length and influvence of
lerge deflections for verious values of B/h.
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Flgure 6.- Response curves showing dependence of amllnlitude on wave veloclty end
influence of wave length.
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