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STALL PROPAGATION IN AXIAL- FLOW COMPRESSORS 

By Alan H. Stenning, Anthony R. Kriebel, 
and Stephen R. Montgomery 

SUMMARY 

A theory of stall propagation in a cascade of airfoils of high 
solidity has been developed which includes the effects of finite blade 
chord and of the boundary- layer response to change s in angle of attack. 
The theory, based on the assumption that the flow behind the ca scade 
consists of free jets discharging into a constant pressure region, is 
valid for small perturbations in velocity about a mean flow condition 
with finite pressure rise across the cascade, provided that the pressure 
fluctuations downstream of the ca scade are much smaller than those up­
stream of the cascade. The solution for the velocity of stall propaga­
tion indicates that the velocity increases with the wave length of the 
stall cell, tending towards a limiting value for very large stall cells. 
The wave length of the stall cells at the beginning of rotating stall 
is dependent on the amount of time required for movement of the separa­
tion point on the airfoil (boundary-layer time delay) . 

For a stationary circular cascade and a single-stage axial-flow 
compressor, which were tested as part of this investigation, the theory 
predicts propagation velocities within 25 percent over a wide range of 
wave lengths. The experiments have confirmed that an increase in wave 
length is accompanied by an increase in propagation velocity, if other 
parameters are unchanged . 

INTRODUCTION 

In 1941, an investigation of diffusers for centri fugal compressors 
was made by Whittle 's group, who were at that time developing the first 
British jet engine. They constructed a low-speed research rig with an 
observation windo,", to study, with tufts of thread, the flow pattern at 
tfJe diffuser entrance . For one type of diffuser the observat ion was 
made th3t at 10\{ mass flow rates a region of flow reversal traveled 
around the diffuser in the direction of wheel rotation, causing flow 
separ::.tion on each diffuser blade in turn . The velocity of the traveling 
stall vras approximate ly one - sixth of the rotor tip speed. This was the 
first recorded example of the phenomenon now known as "rotating stall" 
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(ref. 1). The phenomenon apparently attracted little attention at the 
time and no further reference to it can be found, although in the light 
of recent discoveries it is possible that rotating stall was the cause 
of some blading failures in the early Whittle engines. 

Several years later, at a time when compressor blade failures had 
become one of the major problems in the development of the axial-flow 
turbojet engine, rotating stall was rediscovered. Although the phenomenon 
was noted independently by several researchers, the first detailed study 
was apparently made by a research group working under the direction of 
Emmons (ref. 2). Using hot-wire techniques to investigate flow conditions 
in an axial compressor, Emmons' group found that, when the compressor 
was throttled, regions of low velocity appeared, traveling around the 
annulus in the direction of wheel rotation but at a lower speed. It was 
then apparent that blade failures previously unexplained were probably 
caused by vibratory stresses induced by rotating stall. 

Later investigations of rotating stall in single-stage and multistage 
compressors are described in references 3 and 4. 

The origin of rotating stall may readily be explained from consider­
ation of the flow changes associated with blade stall. When a cascade of 
airfoils operates close to the stalled condition, a local increase in 
angle of attack on one airfoil may initiate stall o~ that blade. Because 
of the increased blockage effect of the separation region, some fluid 
spills around the affected channel, increasing the angle of attack on the 
blade above the stalled airfoil and decreasing the angle of attack on the 
blade below, so that the stalled region propagates along the blade row 
as shown in figure 1. 

The main concern of the compressor designer is the frequency with 
which stalled regions pass the compressor blades. It is desirable to 
be able to predict this frequency for a given compressor and, if neces­
sary, to alter it to avoid blade resonance. Investigations of rotating 
stall in axial compressors have yielded a bewildering variety of results, 
with no apparent order, so that at present the desired goal is not in 
sight. Some success has been attained in predicting the velocity of 
propagation of the stalled regions, but no means has been found of pre­
dicting the number of stalled regions present in a given compressor, 
and this number must be known before the exciting frequency can be cal­
culated. 

The investigation described in this report was undertaken in the 
belief that a thorough study of stall propagation in the simplest possi­
ble case (the single, two-dimensional cascade) was essential before 
approaching the more practical, but many times more complicated, problem 
of rotating stall in the axial compressor. Previous analyses of stall 
propagation in single cascades considered only disturbances of large 



NACA TN 3580 3 

wave length and were unable to give any clues to the reasons for the 
appearance of stalled regions of varying wave lengths as the inlet angle 
to t he blade row was changed. An analysis which included the effects of 
finite blade chord was therefore carried out and was accompanied by 
experi mental work on a single cascade and on a single-stage compressor 
to determine the validity of the available theories and the effects which 
must be included in a successful theory. 

This investigation has been conducted at the Mass achusetts Institute 
of Technology under the sponsorship and with the financial assistance of 
the Nationa l Advisory Committee for Aeronautics. This report summarizes 
the results of an investiga tion in which many members of the Gas Turbine 
Laboratory s taff have participated. 

Mr. A. R. Kriebel designed the test cascade and was responsible for 
the success of the high-speed schlieren photography. Mr. S. R. Montgomery 
and Lieutenant J. J. Braun, USN, investigated the stall characteristics 
of the singl e -stage compressor and provided the data on stall propagation 
in the rotor. The origina l idea of using a circular ca scade came from 
Professor E. S . Taylor, who has guided the project since its initiation. 
Profes s or Harold E. Edgerton gave generously of his time and lent much 
equi pment. 
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SYMBOLS 

area 

bn (t) ,I 
~(t) J functions of time 

left-hand side of equation (19) 

half wave length of disturbance 

defined by equCltion (20) 

value of C when dC ::: 0 
db 

cascade pressure coefficient, 

velocity 

steady-state velocity in x-direction 
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steady-state velocity in y-direction 

steady-state radial velocity 

steady-state tangential velocity 

D operator, 

d distance 

F function of 131 

f frequency 

G functions defined by equations (11) and (12) 

L equivalent chord length of blade 

M Mach number 

m mass flow rate 

N number of symmetric stall cells 

n number of harmonic 

p stream pressure 

Po total pressure 

R outside radius of guide-vane row 

Re Reynolds number 

r,8 polar coordinates 

inside radius of cascade 

outside radius of cascade 

T stream temperature 

total temperature 

t time 

u total velocity in x - (or r-) direction 
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u l 

v 

v 

VI 

X,Y 

a l 

~l 

~2 

p 

a 

T 

da 

perturbation velocity in x- (or r-) direction 

velocity of stall propagation relative to blade row 

velocity of stall propagation of nth harmonic relative to 
blade row 

total velocity in y- (or e-) direction 

perturbation velocity in y- (or e-) direction 

rectilinear coordinates 

discharge coefficient of cascade, 
Actual mass flow 

Ideal mass flow for same (PoI - P2) 

inlet angle to cascade 

outlet angle from cascade 

nth root of characteristic equation 

Wind-tunnel compressor tip speed 
Speed of sound in air entering compressor 

density 

cascade solidity, 
Chord 
Pitch 

time constant of boundary- layer delay 

total velocity potential 

perturbation velocity potential 

radian frequency of nth harmonic 

Subscripts: 

r partial derivative with respect to r 

t partial derivative with respect to t 

x p~rtial derivative with respect to x 
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y partial derivative with respect to y 

e partial derivative with respect to e 

THEORY OF ROTATING STALL 

Background 

Theoretical investigations of rotating stall have previously been 
undertaken by Emmons, Sears, and Marble. In each case, the equations of 
motion were linearized, so that the analyses are strictly valid only for 
small perturbations in velocity about a mean flow condition. In any 
analysis of stall propagation, the results obtained depend on the assump­
tions made about (a) the nature of the flow field downstream of the 
cascade, (b) the form of the cascade characteristic, and (c) the relative 
importance of the different dynamic effects which govern the velocity of 
propagation of disturbances along the cascade. The possible a ssumptions 
which can be made will be discussed before reviewing the three theories. 

The flow field immediately behind a stalled cascade in steady flow 
consists of streams of fluid, which have suffered little loss in stag­
na tion pressure, separated by regions of low stagnation pressure as 
shown in figure 2. Downstream, mixing occurs between the high and low 
velocity regions, and at a distance of 10 chords or so from the cascade 
the velocity is approximately uniform across the wake. In analyzing 
stall propagation, some approximation to the real conditions in the 
unsteady flow behind the cascade must be made . Emphasis may be placed 
on the flow field immediately behind the cascade by considering the flow 
to consist of a number of free jets entering a region of constant pres­
sure. Alternatively, the region where mixing is complete may be con­
sidered to be of greater importance and the velocity distribution down­
stream may be assumed continuous throughout the field. The true condition 
lies between these two extremes and may be closer to one or the other 
of them depending on the size of the propagating stall regions relative 
to the blade chord. If the disturbance is very large relative to the 
blade chord, then its effect will be felt far downstream and well beyond 
the mixing region. For this case, the mixing region can be neglected 
and the downstream flow field considered as a continuum. On the other 
hand, if the disturbance affects onJ_y two or three blades, it may be 
damped out within the mixing region and the downstream pressure changes 
will be smal l . The assumption of free jets discharging into a constant 
pressure chamber is then to be preferred. 

The cascade performance may be represented by curves of pressure 
coefficient, circulation, or effective discharge coefficient as a f unction 
of inlet angle to the cascade. This function may be continuous or 
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discontinuous, and considerable disagreement exists as to which repre­
sentation is the more accurate. This question will probably be settled 
only when dynamic measurements of cascade performance can be made. 

In the most general case, three factors influence the speed of 
propagation of a disturbance along a cascade of airfoils in the stalled 
condition. These are (a) the time required for movement of the separa­
tion point on the airfoil after a change in inlet angle, which will be 
called the boundary-layer time delay, (b) the inertia of the fluid 
between the blades, and (c) the inertia of the fluid outside the cascade. 
The relative importance of these effects depends on the size of the 
stall region with respect to the blade chord, because the boundary-layer 
time delay and the inertia of the fluid within the blades are proportional 
to the blade chord, while the inertia of the fluid affected by the dis­
turbance outside the cascade is proportional to the wave length of the 
disturbance. In consequence, when disturbances covering many blades are 
considered, the boundary-layer time delay and the inertia of the fluid 
within the cascade can be neglected. 

The first analytical treatment of the problem was made by Emmons 
in 1951. He showed that the cascade could be represented as a series 
of channels in parallel, with variable-area outlets to represent the 
blockage effect of the separation regions. By investigating the 
stability of small disturbances ahead of the cascade, Emmons showed 
that, if a critical value of the derivative of the effective outlet area 
with respect to the angle of attack were obtained, disturbances would 
propagate unchanged along the cascade. For lower values of the deriva­
tive disturbances died out, while for higher values they were amplified. 
The propagation velocity was governed by an arbitrarily assumed time 
delay between changes in angle of attack and changes in the flow field 
ahead of the cascade. Pressure variations behind the cascade were 
assumed negligible and the cascade characteristic was assumed to be a 
continuous function of inlet angle. Emmons did not solve the dynamic 
equations of motion and, therefore, was unable to predict the velocity 
of propagation. 

Sears, in 1953 (ref. 5), considered the case of disturbances which 
were large with respect to the blade chord and obtained the first complete 
solution. He assumed the existence of stalled regions moving with steady 
velocity along the cascade and calculated their velocity and the con­
ditions required to produce them. The velocity field downstream of the 
cascade was considered to be continuous. Sears failed, however, to 
realize the full consequences of the assumption of large stall cells 
and introduced a boundary-layer phase lag which he believed to be of 
prime importance in influencing stall propagation. Although he obtained 
a solution showing stall propagation occurring with zero boundary-layer 
phase lag, in his conclusions Sears still stated that the speed of 
propagation of this phenomenon is determined by viscous effects. The 
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cascade characteristi c was represented as a continuous function of inlet 
angle , and the mean flow condition was cons ider ed to be one in which t here 
was no pressure r ise acros s the cascade and no turning of the flow. The 
latter assumption is not a good one because rotating stall commences in 
a cascade at an angl e of attack onl y slightly greater than that corre ­
sponding to the peak of the pressure - coefficient curve . 

Marb le, in 1954 (ref . 6), noted the inconsistency in Sears ' analysis 
with regard to the boundary- layer delay and presented a theory for large 
stall cells in which the inertia of the fluid outside the blade row was 
considered to be of much greater importance than either the boundary­
layer time delay or the inertia of the fluid between the blades . In 
addition, by a very ingenious method, he was able to treat the effect 
of a discontinuity in the cascade pressure-rise characteristic and show 
how the shape of the propagating wave changed as the mean inlet angle 
to the cascade increased . The propagation velocities obtained were the 
same as those predicted by Sears for zero boundary- layer phase lag . 
Marble's theory, like Sears' , is valid only for a mean flow condition in 
which there is a very small pressure rise across the cascade, since a 
finite step in pressure is accompanied by finite velocity changes and 
the theory is based on the assumption of small perturbations in velocity. 

In summation, the theories presented by Sears and Marble should 
predict the velocity (Sears-Marble value) of propagation of stalled 
regions along a cascade in cases where the stalled regions are so large 
that the effects of the boundary-layer delay, the inertia of the fluid 
within the blades, and the mixing region after the cascade can be 
neglected. They give no clues to the reasons for the appearance of 
different numbers of stall cells in a compressor as the compressor is 
throttled, and they are valid only if the cascade pressure coefficient 
is small when rotating stall commences. 

In 1954, Stenning (ref. 7) presented a theory which treated the 
case where the inertia of the fluid within the cascade could not be 
neglected, allowing also a finite pressure rise across the cascade when 
rotating stall commenced . A later development of the theory includes 
the boundary - layer delay and offers a possible explanation of the varying 
number of stall cells which appear when a compressor is throttled. The 
complete analysis is presented in the following section . 

Analysis of Stall Propagation in a Cascade 

The main objective of the analysis is a consideration of stall 
propagation when the boundary-layer time delay and the inertia of the 
fluid within the cascade are considered as well as the free-stream 
inertia . As has already been suggested, for this case (which is one 
frequently encountered in practice), the pressure fluctuations downstream 

- --- - - - - - ------------
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of the cascade should be small compared with the upstream fluctuations, 
so that the assumption that the flow behind the cascade consists of 
free jets discharging into a constant pressure region appears to be the 
more accurate one. 

The model representation of the cascade and the method of attack 
employed are similar to those used by Emmons. The advantage of this 
method is that it uses the classic techniques of stability analysis 
to determine whether disturbances will be amplified or will die away 
and thus gives a good physical understanding of the phenomenon. 

Representation of cascade.- The analysis is based on the model 
shown in figure 3, with the cascade simulated by a series of channels 
of length L arranged in parallel and having variable-area outlets. 
The fluid enters the cascade at CD with entrance angle ~l' is 
turned to flow angle ~2 at G) in a short distance, and leaves the 
channel at QD. The assumption is made that the effect of stall pro­
duces a discrete region of flow separation, so that the wake behind 
the cascade consists of a number of free jets discharging into a region 
of constant pressure. 

The ratio of exit area to inlet area A2/A3 is defined to be a 
function of ~l as 

The assumption is made that local changes in ~ lag behind local changes 
in ~l exponentially as shown in figure 4, so that for step changes in 
~l 

where (~)ss is the steady-state change in ~ corresponding to the 
change in ~l and T is the time constant of the boundary-layer time 

delay. Thus, in general, when ~l changes continually 

at any instant where (~)ss 

sponding to the value of ~l 

operational notation where D 

is the steady-state value of ~,corre­

at that instant or 
d denotes ct' 

(00,) ss 
00, = TD + 1 using 
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This representation of the boundary-layer response is an extreme 
oversimplification of a complex phenomenon which is not yet fully 
understood. It is, of course, not possible to consider the changes in 
effective exit area as independent of the fluid velocity in the passage 
since the fluid itself forms the "gate." However, the response assumed 
gives the simplest model which includes the boundary-layer delay and 
should at least yield some information on the effect of this delay . 

The ratio A2/A3 is equivalent to the ratio 

Actual flow through cascade 
Ideal flow for same (POI - P2) with no losses 

and is obtainable, for a real cascade, from test results. 

It can be seen that Q, = A2/A3 is a measure of the "swallowing 
capacity" of the cascade and must therefore be important when the possi ­
bility of flow spillage around the entrance is considered. For a real 
cascade, it can be shown that Q, is equivalent to 

cos (31 

for a rectilinear cascade, where Cp is the pressure coefficient (see 
appendix A) . 

Additional assumptions are that the fluid is incompressible and 
frictionless and that changes in (32 in the unsteady flow can be 
neglected. The blades are considered to be very close together, so 
that Q, may be taken as a continuous function of y. 

For the initial analysis, the boundary-layer response is assumed 
fast compared with the inertia delays, so that T is taken as zero. 
The effect of the boundary-layer delay is considered subsequently. 

Solution in field before cascade.- The solution in the field before 
the cascade is obtained as follows: 

The cascade lies on the y-axis in the xy plane . The fluid is con­
sidered to be incompressible. Perturbations are considered from a steady 
flow with inlet angle (31 and velocity components Cx and cy . 

Since the flow entering the cascade is irrotational a velocity 
potential can be used. In the unste ady flow, 
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u 

v 

Where ~ is the total velocity potential and ~ is the perturbation 
du dv . 

potential. From continuity , -- + -- = 0; that lS, ~xx + m_. = O. 
dx dy ':f:f 

Solutions to this equation are obtainable in the form 

( 1) 

representing periodic disturbances of half wave length b and satisfying 
the boundary condition, at x = -00, 

The stability of the disturbances depends on the time-dependent functions 
iln(t) and bn(t) which are as yet undetermined . From consideration of 
the dynamic equations, it is possible to find the conditions required for 
the disturbances to be damped, amplified, or propagated unchanged along the 
cascade. 

From Euler's equation for unsteady flow, 

Constant 

,,,here 

H 

For small perturbations from the steady flow, 

(2) 
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Equations (1) and (2) are valid in the region - 00 < x < o. 

Entry to cascade. - The equation for f l ow entering the cascade is 
derived as follows : 

The distance CD to G) (fig. 3) is assumed small so that inertia 

effects between CD and G) may be neglected . Thus, 

At CD, equation (2) may be rewritten 

(4 ) 

Momentum effects in cascade .- In order to obtain the momentum effects 
in the cascade, the flow between G) and ® (fig . 3) is considered one ­
dimensional and the moment um equation in the l -direction is 

Integrating with respect to l from G) to ® J with the assumptions 

that c = c3 between G) and ® and that the change in velocity from 

c3 to c2 takes place in a short distance, gives 

2lc
3 

c 2 c 2 P2 P3 2 3 0 L - + - - - 2 +- -p = 2lt 2 p 

For small perturbations from a steady flow, 

( 5) 
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if P2 does not change. 

and (5) gives 

OP3 
Eliminating c3 oC3 + p between equations (4) 

From continuity, 

Thus, 

and 

Also from continuity, 

Substitution for c3 

A3 c3 = A2c2 

A3 oC3 = A2 OC2 + c2 0A2 

u = c
3 

cos 132 

and oC3 yields 

so that 

c2 5c2 = (~;)2 C:::;2 _ (~;)2 

(6) 

By substituting this expression for c2 oC2 in equation (6), the following 

equation is obtained at point CD: 
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But, 

1 da, o (cot 131) a: d: (cot 131) 

a,' 
- o(u/v) a, 

a,' CPx - cot 131CVy 
a, cy 

where 

a,' da, 
= d (cot 131) 

Thus, at Q) (fig . 3) , 

L cx~ ~ cot ~1~') cot2~1~' 
CPt + cos 132 CVxt + 1 - + cxCVy 0 (8) 

a,2 cos2132 a, a,3 cos2132 

This equation must be satisfied by cP at the entrance to the cascade, 
that is, at x = O. By substituting the solution for cP (eq. (1)) into 

equation (8) and separating coefficients of cos n~ and sin n~, two 

simultaneous differential equations are obtained in terms of ~(t) 
and bn(t) as follows: 

a" [(cos ~2 + ~njD + ~n ~2 c:: ~2 (1 _ cot~~l~' ~ + 

~nJ( cot2 131 a, I cx~ 
b - = 0 

n b a,3 cos 132 

bn ~cos ~2 + ~n) D o 
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Assuming solutions of the form 

the characteristic equation 

~--- -----~ 

15 

and gives 

The roots of this equation may represent oscillatory disturbances 
which are damped out, amplified, or persist unchanged depending on the 

cot i310,' 
1 - ----value of the damping term containing I < a, 

a, t i3 ' co 1 
If 

the disturbance will die away_ If 0,' > co: f31' it will be amplified 

beyond the range in which a linearized analysis is valid. If 0,' = a, 
cot f31 

(fig. 5), the disturbance will persist and ~ and bn will be of the 

form An cos runt + En sin runt and An sin runt - En cos runt, respectively. 
The potential funct10n then represents waves traveling along the cascade. 
At this point, the characteristic equation becomes 

r ~rr cot f31 Cx J2 
In 

2 
+ l-0,-2-c-o-S-f3-2-:(-:::Ln-b-:n:-+-C-O-S-f3-2-:-:) = 0 

representing waves of frequency in radians per second 

run = ( 
0,2 cos f32 ~:n: + cos 

The velocity of wave propagation of the nth harmonic along the 
cascade Vn = (Frequency) (Wave length) or 

Vn = run 2b 
2:n: n 

cot 131 Cx 

0,2 cos (Ln:n: f32 b + cos (32) 
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cot 131 

This result indicates that the velocity of stall propagation increases 
with the size of the stall cell, the limiting value of Vn/cx for stall 

cells covering many blades being cot 131 In figures 6(a) and 6(b ) 
2 2 

a, cos 132 
a,2V/cx is plotted against 131 for cascades with 100 and 150 turning 
angles and different values of rtL/b. The velocity of propagation is 
taken as the velocity of the fundamental component of the wave. The 
expression for Vn/cx includes the number of the harmonic n and 
indicates that higher harmonics travel more slowly than the primary wave. 
This is not in accord with experience and shows that a linearized analysis 
is inadequate in this respect. 

The propagation velocity may be conveniently related to the cascade 
pressure rise (which is a more familiar parameter than 0,) by replacing 

a, with its equivalent Then, 

2(1 - Cp) 
- -s-in-2-13-(~-=-Ln-=rt"---+-1:-) 

1 b cos 132 

For stall cells covering many blades, this expression reduces to 

v 
-;::= 

It should be noted that, 'vi th the boundary-layer time delay 
no limitation is placed on the wave length of the disturbances. 
ation of the boundary-layer delay permits prediction of the size 
wave in addition to the veloc~ty. 

neglected, 
Consider ­
of the 
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Interference effect of blade row upstream of cascade.- With the 
assumption that pressure changes downstream of the cascade may be neg­
lected, it is not possible to treat the interference effect of an 
additional blade row behind the cascade. Upstream interference effects 
are, however, very easily determined. If a row of closely spaced blades 
of very large chord is situated a distance d from the cascade (fig. 7), 
then the perturbation velocity ~ will be forced to zero at x = -d 
because of the high inertia of the fluid within the guide vanes. In 
any practical case, ~ will not be zero at x = -d because of the 
finite chord of the guide vanes, but this approximation will permit an 
estimation of upstream interference. A solution for ~ may then be 
found in the form 

satisfying the condition ~ = 0 at x = -d. Substitution of this 
solution into equation (8) gives, for the case of undamped wave s, when 

cot /31 
0.' = ---, 

0. 

n1f cot 
b /31 Cx 

illn = 

~ rrrC-
-2n1fd) 

+ cos ~21 0.2 cos 
e b 

2 b (1 -2~1fd) 
+ e 

Vn cot /31 

-cx- - -CL-2-C-O-S-/32-~ill-:-b-1f-l---e-~-;~::-:-:-:::--+-C-O-S-/3-2)"-

\ 1 + e b 

The equivalent expression for propagation velocity in terms of the 
cascade pressure coefficient is 
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Vn 2(1 - Cp) 
Cx ~ -2Md 

+ 1) sin 
Ln1! 1 - e-b-

2f31 b -2n1!d 

1 + e b 

Thus, interference increases the velocity of propagation for Ln/b of 
order unity but does not change it for disturbances with wave lengths 
which are large compared with the blade chord. If d/b is very small, 

Vn cot f31 
then the coefficient of Ln1!/b is effectively zero and 

Cx 

which is the same result as that obtained without upstream interference 
when the wave length is large. The addition of a row of guide vanes 
upstream of the cascade therefore decreases the influence of the inertia 
of the fluid within the stalled cascade on the velocity of propagation. 

An approximation to the velocity of stall propagation relative to the 
rotor in a single-stage compressor with guide vanes close to the wheel 

. Vn cot f31 
thus may be obtained by puttlng -- = 2 2 • This should be valid 

Cx a, cos f32 

only when the blades are stalled from root to tip so that the flow is 
effectively two -dimensional . 

Effects of boundary-layer delay.- The time constant T of the 
boundary-layer delay will now be included in the analysis to determine 
the additiona l limitations it imposes on stall propagation. If 

0, 1 

5a, = TD + 1 5 (cot f3l) is substituted into equation (7), the equation 

satisfied by cp at Q) is 

LT 
+ crxt (cos

L 
f32 

TCX ) TCtJtt + cos f32 crx t t + crt + 0,2 COs2f32 + 

(10) 

cx'I'x ( cot ~la') cot2f310,t 
1 - - cxCf>y 0 

0,2 COS2f32 a, 0,3 COs2 f32 

Inserting the solution for cp (eq. (1)) and separating the coefficients 

of cos nny and sin nny give two second-order differential equations 
b b 

in terms of ~ and bn . Taking solutions of the form ~ = AneAnt 

and bn = Bne Ant gives the following characteristic equation for An: 
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This equation will be examined to find the conditions for undamped 
oscillations in time. Equation (11) is of the form 

19 

(12) 

For undamped oscillations, An = ±imn must be a root. With An = iWn 
a solution is obtained as follows: 

With An = -iWn a solution is obtained as follows: 

Subtracting equation (l~. ) from equation (13) and factoring give 

Thus, if An = ±iWn is a root of equation (12), then run2 G3/Gl. 

putting an = JG3/Gl in equation (13) gives 

(-G3 + iG2 VG3/Gl + G3) 2 + G4
2 

= 0 

-G22 (G3/Gl) + G42 = 0 

(14) 

L~~ _ _ _ _ 
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or 

The requirements for an undamped oscillatory solution to equation (12) 

are) therefore) that G3/Gl = (G4/G2) 2. With this requirement satisfied) 

two of the roots of the equation are ±imn where lin = G4/G2. A factor 

of the equation is then An2 + (G4/G2) 2 and the remaining two roots 

satisfy the equation 

o 

For the remalnlng two roots to be stable the coefficient of An in 
equation (16) must be positive; that is) G2/Gl must be positive. 

(16) 

It can be seen) therefore) that for equation (12) to have roots 
representing undamped oscillations of frequency fin (1) all coefficients 
must be positive and (2) G3/Gl = (G4/G2)2 . Under these circumstances) 
run = G4/G2' Applying these results to equation (11)) the requirement 
for stall propagation is 

and the frequency of the 
second is 

oscillations at any point in radians per 

n1! cot2f31 a, I Cx 

b 0,3 COs 2 j32 
lin = -l-+-n-1!"""'(,----:L:----+--""'Tf""C-X---,-) 

b cos 132 0,2 cos2 f32 

(18) 

If T = 0 the same results are obtained as in the earlier analysis . The 
importance of this solution lies not in the precise relationship but in the 
fact that a relation is established among L/b) T) 0,) 0,1) (31) and 132 
which makes stall propagation possible . More explicitly) since for a 
given cascade T) 0,) 0,1) and 132 all depend on (31) a relationship 
has been found between L/b and 131 for stall propaga~ion. Thus) over 

--~ 
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a range of inlet angles, stall propagation can occur and the size of the 
stall cell will depend on the inlet angle . This result may explain the 
variation in size and number of stall cells found in an axial compressor 
stage over the working range of angle of attack. 

It can be seen that, with the boundary-layer delay included in the 

analysis, stall propagation occurs with 
cot 1310,1 

less than unity, so 
a, 

that the frequency of the disturbances is lower than the frequency of 
the stalls of the same wave length when the boundary layer is left out. 
The boundary-layer delay therefore has the effect of decreasing the 
velocities of propagation of the stalled regions. The boundary-layer 
time constant should be approximately of the order L/C3, so that the 

boundary-layer delay may be as important as the inertia delay of the 
fluid within the cascade and will have little effect on the velocity of 
propagation of large .stall cells. 

Calculation of wave length when rotating stall commences. - It is 
now possible, without making any additional assumptions, to predict the 
wave length of the disturbances when rotating stall commences. Because 
of the simple representation employed for the boundary-layer response, 
it would be unwise to attempt to derive numerical values from this 
result, but it is of interest inasmuch as the main features of the 
phenomenon can be reproduced with a simple model. 

When equation (17), which can be rewritten as 

cot 1310,1 
1 - --..::;....­

a, 

T cot4131 (a, 1 ) 2cx 

0,4 cos2132 

is satisfied, stall propagation is possible. It can be seen that, as the 
inlet angle 131 to the cascade is increased and flow separation commences 

on the airfOils, 0,1 will increase from almost zero to a positive 
quantity. The group on the left side of the equation (denoted by B) will 
therefore have a value which begins as a large positive quantity at the 
design point and decreases as 131 is increased. At any setting of 131, 

the group on the right side of the equation (denoted by C) can have an 
infinite number of values for each harmonic, depending on the value 
of b assumed. Considering only the primary component of the wave 
(n = 1), there will, however, be a maximum value of C corresponding 
to a wave length which might be considered as the wave length which is 
closest to being propagated. As 131 is increased, the maximum possible 
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value of C 
the value of 
the value of 

can be computed for each value of ~l and compared with 

B (see fig. 8), which will, in general, be larger than 
C. However, as ~l is increased the difference between 

B and C shrinks until, at the critical value of ~l' the maximum 
value of C corresponds to the value of B at that point and stall 
propagation becomes possible for the wave length which yields this 
value of C. The problem is, therefore, the determination of the value 
of b which gives Cmax • 

For the primary component of the wave 

C = 
11:(1 + 11: L ) 
b b cos ~2 

= 
(
b 11:L) 

11: + cos ~2 
(20) 

b + 

For a maximum (or minimum) value of C, dC/db = 0 and this occurs when 

A study of the expression for C 
a maximum value of C, at a value of 

shows that this value of b gives 
b which may be positive or negative 

depending on whether 
T 

is greater than, or less than, unity. 

There are now two possibilities. T 
If > 1, then, for 

a-2 (L/c3) 
positive (i.e., real) values of b, C has a maximum value when 

b = 11:L I. T _ II and 
cos ~2 La-2 (L/c3) J this will be the value of b when stall 

propagation commences. If 
T ---::::--- < 1, 

a-2 (L/c3) 
then the maximum value of C 

for positive values of b occurs when b = 0, and stall propagation will 
commence with the smallest values of b that are physically possible. 
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T Thus, the wave length is governed by the ratio which is the ratio 
(L/c3) 

of the boundary-layer time delay to the inertia delay of the fluid within 
the cascade. 

stall propagation in circular, radial-flow cascade.- For a radial­
outflow cascade of the type used for the experimental study (fig. 9), an 
expression for propagation velocity may be derived in r8 coordinates 
(see appendix B). 

With guide-vane interference effects included, but omitting the 
boundary-layer time delay, 

Inside radius of cascade 
where r /r is the ratio R is the outside 

1 2 Outside radius of cascade' 
radius of the guide-vane row, and N is the number of stall cells in "the 
cascade. Consideration of the boundary-layer time delay yields lower 
values of V/crl than does the expression given above. 

In terms of the cascade pressure coefficient 

V 2 (1 -
-- == crl 

LN 
sin 2~ll cos 132 rl 

and this reduces to the same form as that for the rectangular cascade when 
the stall cells are very large or the gap between the guide vanes and 
the cascade is small. 

Discussion of Solutions 

The most important point of difference between the present analysis 
and the analyses of Sears and Marble is the assumption made here that 
downstream nressure fluctuations may be neglected. For the case con­
sidered by Sears (that with no pressure rise across the cascade when 
stall propagation occurs), Cp = 0 and the present analysis then yields, 
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for disturbances with large wave length, v 
Cx 
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2 This is double 

the value obtained by Sears. Because Cp always lies in the range 0 .3 
to 0 . 6 when stall propagation commences, the values for propagation 
velocity given by the present theory are never double Sears' predicted 
values in any practical case, but may be greater or less than these 
depending on the pressure rise and whether the wave length of the dis­
turbance is large with respect to the blade chord or of the same order 
of magnitude. 

The values of propagation velocity predicted when the boundary­
layer delay is neglected should be larger than those obtained experi­
mentally, with the difference most pronounced for the case of disturb­
ances covering only a few airfoils when the boundary-layer delay will have 
an important effect. An increase in the wave length of the stall cells 
should be accompanied by an increase in propagation velOCity, if other 
variables are unchanged. 

EXPERIMENTAL INVESTIGATION OF ROTATING STALL 

Experimental work has been carried out using both a stationary 
cascade and a single-stage axial-flow compressor. This combination has 
proved exceedingly useful because a wide range of stall wave lengths 
could be examined and the measured characteristics compared with theory . 
In addition, a comparison of phenomena observed in the two test rigs has 
given an indication of the value and limitations of the circular cascade 
as a research tool to reproduce effects found in turbomachines. 

Stationary Cascade 

Apparatus and procedure.- In order to obtain the simplest possible 
type of flow in which a stable rotating-stall pattern could be observed, 
the cascade was constructed in the form of a circle between two flat 
plates (fig . 10). Air flows outward through the cascade, and the angle 
of incidence of the air entering the blades is controlled by a set of 
variable-angle nozzles ahead of the cascade (fig. 11). There are 54 
compressor blades and an equal number of nozzles. Provision has been 
made for removal of the wall boundary layers by suction through slots 
machined in the casing (fig. 12). Air enters the test section through 
two pipes parallel with the central axis of the cascade and turns into 
the plane of the cascade before being accelerated in the nozzles. After 
leaving the cascade, the air is collected in a scroll and returned to 
the compressors. 
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An exterior view of the stationary circular cascade tunnel is shown 
in figure 13 and ~he longitudinal section and end elevation are depicted 
schematically in figure 14. The test section of the cascade tunnel is 
shown in figure 15. A schematic diagram of the flow circuit with the 
state conditions of the fluid tabulated for a typical operating condition 
is given in figure 16. With the closed-circuit arrangement, the Reynolds 
number and Mach number may be varied independently by changing the pres­
sure level in the circuit. Reynolds numbers up to 300,000 (based on 
blade chord and conditions entering the cascade) and approach Mach numbers 
up to 0.8 ~re attainable. 

The dimensions of the span and chord of the compressor cascade 
blading are l.7l inches and 0.96 inch, respectively (fig. l2), and the 
airfoil section is shown in figure 11. The airfoil shape was obtained 
by conformal mapping of a rectilinear cascade into a circular cascade 
with radius ratio rl/r2 of 1.09. In the transformed cascade, the chord 
of the airfoil (defined as the straight line joining the centers of 
curvature of the leading and trailing edges) makes an angle of 420 with 
the radius through the leading edge (fig. 11.) The design-point inlet 
air angle of 48.50 measured from the radius and the outlet air angle is 
380 • The blades of the cascade are located in position by pins which 
fit into holes drilled in the casing on a circle of radius 8.23 inches 
(figs. 10 and 12). After the stagger angle has been set, the blades are 
clamped into position at one end with bar clamps which fit over the ends 
of the pins and fasten adjacent blades together in pairs. It is thus 
possible to change the stagger angle of the cascade by loosening the 
clamps and resetting the blades. A different procedure is required for 
the three blades in the observation window since clamps would obscure 
the picture. These blades are retained in position by a wire soldered 
to their trailing edges and to the trailing edges of the clamped blades 
adjacent to the window. 

At the commencement of the test program, difficulty was encountered 
with frequent torsion failures of the pins on the clamped ends of the 
blades. In addition, blade vibration caused chipping of the optical 
flats around the pins (showing as a circular blemish on the schlieren 
photographs) and the solder failed to hold the connecting wire to the 
blades in the window. These problems were ameliorated, though not com­
pletely solved, by cementing the blades to the casing on the clamped 
side and covering the pins of the blades in the test window with cement 
before inserting them in the window, thus increasing the damping and also 
cushioning the surface of the glass. 

The design of the test rig and cascade is described in detail in 
references 8 and 9. 

Instrumentation.- The observations made in the cascade may be 
divided into two classes, measurements of mean or steady-state values of 
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pressure, velocity, and flow direction and observations of instantaneous 
values of these parameters and of the changes in the flow field around 
the airfoils in rotating stall. 

To obtain mean values of static pressures before and after the 
cascade, three pressure taps were fitted before the cascade at 1200 from 
each other on a circle of 7 . 69-inch radius, and three pressure taps were 
mounted behind the cascade between the first three on a circle of 
8.94-inch radius (fig. 12). Total-pressure probes were mounted in both 
inlet pipes to permit a total-pressure traverse before the nozzles, and 
the test window could be removed and replaced by a small traversing gear 
to obtain a total-pressure traverse ahead of the blades in the window. 

The air angle leaving the cascade was measured with an uncertainty 
of ±20 using tufts attached to the connecting wire. The air angle 
entering the cascade was a ssumed equal to the nozzle outlet angle, since 
flow deviation is small for nozzles and the nozzles were so close 
together that accurate measurement of the air angle could not be obtained. 
An error of the order ±2° is therefore possible in the air inlet angle. 

The mass flow through the cascade was obtained with an estimated 
accuracy of ±1/2 percent using a standard A.S.M.E. orifice meter. The 
total temperature leaving the compressor was measured using a thermo­
couple with an accuracy of ±20 F. From a knowledge of mass flow, air 
angle, total temperature, and static pressure, it was possible to compute 
the magnitude of the parameter m~T07Ap entering the cascade from Which, 
using gas tables for compressible flow, the mean entry Mach number, 
velocity, and total pressure could be found. A check on the accuracy of 
this method of calculating the conditions entering the cascade was 
available, inasmuch as the mean total pressure obtained should be very 
close to the average value found from a total-pressure traverse ahead 
of the cascade. A comparison of the two values at several operating 
points showed agreement within 0.5 percent, so that it was not necessary 
to make total-pressure traverses ahead of the cascade at each operating 
condition to find the mean total pressure. 

For observations in the unsteady flow, the main instrument used 
was the Gas Turbine Laboratory portable schlieren apparatus, which proved 
effective for entry Mach numbers to the cascade as low as 0.2. Schlieren 
photographs were taken using a General Radio 35-millimeter high-speed 
camera, and a 16-millimeter Fastax camera, in conjunction with an Edgerton 
high-speed stroboscopic flash unit operated at flash rates up to 6,000 cps. 
The schlieren photographs showed the propagation velocity and the frequency 
of the rotating stalls, as well as the changes in air angle ahead of the 
cascade and the nature of the flow around the airfoils. A pair of hot­
wire instruments gave another method of calculating the propagation 
velocity and number of stall cells and also showed qualitatively the 
nature of the velocity fluctuations. Pressure fluctuations before and 
after the cascade were compared by recording the signals from barium 
titanate crystals connected to static pressure taps. 
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Cascade performance.- before commencing the test program, total­
pressure traverses were made in the inlet pipes and ahead of the blades 
in the test window. The thickness of the boundary layer in each inlet 
pipe was of the order of 0.1 inch and outside the boundary layer a 
maximum variation in total pressure equal to 8 percent of the mean 
dynamic pressure was observed, so that the total variation in velocity 
outside the boundary layer did not exceed 4 percent of the mean velocity. 
Variation in mean total pressure between the two inlet pipes did not 
exceed 3 percent of the mean dynamic pressure in the inlet pipes. In 
spite of the uniformity of the conditions entering the test section, 
considerable asymmetry in static pressure around the cascade was observed 
behind the nozzles, especially when the inlet angle ~l to the cascade 
was low. At the design inlet angle, the total variation in static pres­
sure around the cascade was 12 percent of the mean dynamic pressure 
leaving the nozzles. The asymmetry gradually disappeared as the rotating 
stall region was entered. These pressure variations were too large to be 
explainable by errors in nozzle-throat area. Also, the scroll shape should 
have had little upstream effect since the velocity in the scroll was very 
low. The most plausible explanation of the pressure variation around the 
cascade appears to lie in the possible presence of regions of separated 
flow within the duct which turned the flow leaving the inlet pipes into 
the plane of the cascade. Because of the space requirements of the 
schlieren apparatus, the duct was designed for no acceleration of the air 
as it turned, so that unfavorable pressure gradients in some areas may 
have caused flow separation before the nozzles. This effect would explain 
the decrease in the percentage asymmetry with increasing ~l, since up­
stream irregularities become less important as the pressure drop across 
the nozzles increases. 

Ahead of the blades in the test window, variations in total pressure 
outside the wall boundary layers and the nozzle wakes were less than 
5 percent of the mean dynamic pressure entering the cascade. The thick­
ness of the wall boundary layers was of the order of 0.050 inch and the 
width of the nozzle wakes was approximately 0.0'70 inch. 

The cascade performance was obtained in terms of the pressure rise 
across the cascade and in terms of the cascade outlet angle and is sh0wn 
in fi gures 1'7 and 18 in which the cascade pressure coefficient Cp and 

the outlet angle ~2 measured from the radial direction are plotted 

versus ~l. It was found most convenient to operate the wind-tunnel 

compressors at constant rotational speed during a test run and to vary 
the air angle entering the cascade. Because of the compressor charac­
teristic, this procedure resulted in almost constant mass flow through 
the cascade at anyone rotational speed, independent of nozzle angle; 
and, in consequence, the Mach number leaving the nozzles increased as 
the nozzles were closed. Each curve in figure 1'7 corresponds to a 
constant value of the ratio Wind-tunnel compressor tip speed 

Speed of sound in air entering compressor 
denoted by rrm, and in figure 19 the Mach number entering the cascade is 
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plotted against ~l for each of the three compressor speeds used. It 
can be seen in figure 17 that, for any value of ~l, there is a slight 

increase in Cp with increasing values of nm. Within experimental 

error, no change in ~2 with Mach number could be determined. 

Starting at an inlet angle 
with ~l until at 480 the curve 

The explanation of this dip lies 
over the airfoils at a value of 

of 420 , the pressure coefficient increases 
flattens out briefl y before rising again. 

in the fact that the nozzle wakes wash 
~l equal to 490 and have a serious effect 

on the cascade performance. The pressure coefficient then rises once more 
until a peak value is attained at an inlet angle of 560

• Thereafter, the 
pressure coefficient falls, until when ~l equals 590 the curve starts 
to flatten, has a minimum value at 600

, a second peak at 630
, and then 

falls off again . The nozzle wakes cross the airfoils a second time when 
~l attains a value of 600 and at this point some unsteadiness was observed 
in the nozzle and cascade wakes, but stall propagation did not begin until 
the nozzle wakes passed the cascade. Random stalls were observed at an 
inlet angle of 610 , and periodic rotating stall commenced at an inlet 
angle of 640

• 

It has been suggested that the temporary rise in pressure coefficient 
after initiation of the unsteady flow may be partly due to the increase 
in the root-mean-square value of the velocity entering the cascade. For 
a given inlet angle and mass flow rate in an unsteady flow, the mean 
pressure rise across the cascade is proportional to the time mean value 
of velocity squared, which increases as the velocity fluctuations become 
larger. 

At the lowest compressor speed, the Mach number entering the cascade 
does not exceed 0. 35, so that compressibility effects should be small and 
the experimental results may be used to test the theory presented previ­
ously. Using the method of appendix A, ~ has been calculated for each 
inlet angle up to the point where rotating stall commences and is plotted 
against cot ~l in figure 20. In the region before rotating stall 

begins, the curve i s practically a straight line, with a gradient very 
close to the value predicted by the theory, the tangent passing slightly 
below the origin instead of through it. This result is in agreement with 
experimental evidence for rectilinear cascades presented by Emmons, 
Pearson, and Grant, in reference 2. In the circular cascade, rotating 
stall started at a value of ~ of approximately 0.80. It is, of course, 
impossible to find values of ~ for higher angles of attack in the 
rotating-stall region because of the unsteady flow, and the nozzle angle 
could not be increased suffiCiently to pass through the unsteady flow 
region into a state of steady, fully stalled flow. 



NACA TN 3580 29 

Schlieren photographs of the airfoils in the steady flow are pre­
sented in figure 21, at inlet angles of 420 , 460 , 49.50 , 53.20 , 56.80 , 

and 60.40 • The nozzle wakes and the cascade boundary layers are visible 
and the forward movement of the separation point with increasing ~l can 
be observed. 

Rotating stall in cascade.- As the nozzle angle was increased 
beyond 600 7 the onset of rotating stall was accompanied by an increase in 
air noise from the apparatus, with a sharp intensification of the sound 
at 640 when full rotating stall commenced. For inlet Mach numbers 
above 0.5, lambda shocks appeared on the upper surface of the airfoils at 
high nozzle angles and the occurrence of these shock waves was signalled 
by a high-pitched screaming sound. The rotating-stall phenomena at low 
Mach numbers will be described first7 since compressibility effects had 
a strong influence on the periodicity of the stall pattern. 

To obtain satisfactory schlieren pictures, Ml was required to be 

at least 0.2. In consequence 7 a compressor nm of 0.173 (with Ml 

ranging from 0.2 to 0.35) was most suitable for evaluation of rotating­
stall phenomena at low Mach numbers and extensive testing was carried 
out at this speed setting of the wind-tunnel compressor. As can be seen 
from figure 21(f), just before the transition from steady flow to random 
stall occurred, the separation point on the suction surface of the airfoils 
wa s approximately 30 percent of the chord length rearward of the leading 
edge. A 10 increase in angle of attack from this point was sufficient to 
start random stall. 

In this region of operation, the disturbance did not always propa­
gate from blade to blade across the window but would frequently die out 
before reaching the last b lade. Small differences in blade setting may 
have been responsible for this effect, since the possible variation from 
the nominal setting was estimated at tlo. Figure 22(a) shows one cy cle 
of stall and unstall in the random-stall regime. Some of the pictures 
taken in this region of operation showed the airfoils in the window 
remaining stalled for 20 to 30 milliseconds before unstalling, while 
others revealed stalls propagating across the window at intervals of 
5 to 10 milliseconds. With increasing ~l, the disturbances appeared 
more regularly until at ~l = 640 the disturbances crossed the window 

at time intervals ranging from 3 . 2 to 5.6 milliseconds and could now be 
properly called rotating stall (fig . 22(b)). An airfoil was now stalled 
for approximate l y 40 percent of the time, and the wave length of the 
stalls was about six blade spacings. With further increases in ~l, the 

stalls appeared more regularly and at ~l = 670 (fig . 22 (c)) the time 
intervals between disturbances varied only from 3.0 to 3.6 milliseconds. 
From the film records the velocity of propagation could be calculated 
within 5 percent and it was found that at any nozzle setting there was 
little variation in propagation velocity between stall cells but that 
the average propagation velocity increased from 90 fps to 120 fps 
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as ~l was increased from 630 to 670
• Because of the variation in the 

time interval between stalls and the uncertainty in propagation velocity, 
the number of stall cells could be estimated only within about one cell, 
but there appeared to be approximately 9 cells in the cascade at ~l = 640

, 

with the number increasing to 11 at ~l = 670 • In table I, the measured 
propagation velocities are tabulated and compared with the results obtained 
using hot-wire equipment. 

Over the whole range of inlet angles for which rotating stall was 
obtained, it was found that the time required to unstall an airfoil was 
always greater than the time required to stall an airfoil, the former 
process requiring approximately 0 . 6 to 0.8 millisecond, while the latter 
was completed in 0.4 to 0.5 millisecond (figs. 22 and 23). That this 
should be the case is not surprising when it is considered that the fluid 
in the separated region can only be removed at its own low velocity after 
boundary-layer reattachment becomes possible, while the boundary layer 
can separate from all points of the upper surface of the airfoil when 
stall occurs and fill the passage very rapidly. At the higher values 
of ~l' reversed flow was observed in the channels between airfoils after 
stall had occurred, so that, after the reverse flow had stopped, a small 
amount of initially stationary fluid had to be removed from the channel 
before good flow could recommence (figs. 22(c) and 23). It can be seen, 
therefore, that it is impossible to separate the effect of boundary-layer 
time delay from the inertia effect for measurement purposes during the 
unstalling process since the flow rate through the channel must be 
changed before the reattached boundary layer can be seen. On the other 
hand, when the airfoil stalls, flow separation and a decrease in ~ can 
take place without necessarily being accompanied by a change in flow 
rate through the channel, so that the time taken to stall after a change 
in inlet angle can be used to obtain an upper limit for the boundary­
layer delay. The average time for stall was approximately 0 .5 milli­
second throughout the range of inlet angles; however, this is not equal 
to the boundary-layer time delay T since, for the equivalent exponential­
lag system, the minimum time required to attain 95 percent of the final 
change in ~ after a step change in ~l would be 3T. An approximate 
value for T is therefore 0.16 millisecond. The inertia time constant 
L/c3 was equal to 0 .35 millisecond for this operating condition, since 

cr 
c3 = cos ~2 = 230 fps and the blade chord L = 0.96 inch. Thus, the upper 

limit to the value of T was approximately 1 ~ and the true value was 
2 c3 

certainly smaller than this since the inlet angle did not change 
instantaneously and the observed response of the boundary layer was 
therefore slower than the theoretical response to a step change in 
inlet angle. 
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An interesting feature of the photographs is the occasional 
appearance after stall of what seem to be vortex planes at the entrance 
to a channel at the moment when the fluid within the channel is station­
ary and the unstalling process is about to commence (fig. 23). The planes 
retain their identity in subseQuent pictures and move through the channel 
as good flow is reestablished. These planes may be formed by shear 
action between the deflected main flow and the stationary fluid within 
the passage and are visible as sharp lines only when they are perpendicular 
to the plane of the cascade. 

Hot-wire equipment was used to check the number of stall cells and 
the propagation velocity and also for traversing in the spanwise direc ­
tion to determine whether the whole passage was affected by rotating 
stall. The equipment employed was of the type manufactured by the Flow 
Corporation of Cambridge, Mass., 'and is shown in figure 24 with the 
dual-beam oscilloscope, Land camera, and audio-oscillator. Two hot-wire 
probes were installed behind the cascade at a distance apart of nine 
blade spacings. The signals from the probes were amplified, fed to the 
dual-beam Du Mont Type 322 oscilloscope, and photographed with a Land 
camera to be analyzed later. A time scale was added to each photograph 
by feeding an oscillatory signal to the beam intensity control of the 
oscilloscope and thus superimposing a line of blips of any desired 
frequency on the trace. Since the approximate number of stall cells was 
already known to be in the neighborhood of 12, two probes set a fixed 
distance apart were sufficient for determination of the phase lag and it 
was not necessary to resort to the more complex procedure reQuired for 
identification of the number of stalls when no other information is 
available. From the phase-lag measurements, the number of stall cells 
could be calculated, and this information together with the frequency 
of the disturbances passing one wire was sufficient for computation of 
the propagation velocity. The accuracy of this method depends entirely 
on the regularity of the disturbances since the phase lag can be measured 
sufficiently closely to pinpoint the number of stall cells only if the 
phenomenon is periodic. As can be seen from the traces in figure 25, the 
variation between stall cells was responsible for an uncertainty of about 
one cell. For example, at ~l = 680 the estimated number varied from 
11 to 12, with 12 the most likely number. In addition, it is possible 
that the number of cells changed with time. In table I the results of 
the hot-wire measurements are compared with those obtained from schlieren 
photographs and the agreement is good. All the testing described in 
table I was carried out with a cascade Reynolds number of 240,000. By 
lowering the pressure at the inlet to the wind-tunnel compressors from 
20 psia to 10 psia the Reynolds number was lowered to 120,000 without 
changing the Mach number and velocity. At the lower Reynolds number 
rotating stall did not begin until ~l attained 630 , and the propagation 
velocity was approximately 15 percent lower than at the higher Reynolds 
number. There appeared to be 12 stall cells in the cascade. Since the 
Reynolds number should affect only the boundary-layer delay, and possibly 
the downstream pressure fluctuations, one would expect only a small change 
in propagation velocity with Reynolds number. 
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By traversing the passage with the hot-wire probes, the discovery 
was made that periodic rotating stall existed in a sharply defined band 
of about 1/4-inch depth adjacent to each end wall of the cascade while 
the disturbances were still of a random nature over the rest of the 
cascade. The tip stall began at ~l = 610 and persisted until Sl = 630 , 

after which the periodic stall filled the cascade. 

Removal of the boundary layer through the slots behind the nozzles 
had no measurable effect either on the rotating-stall characteristics of 
the cascade or on the curve of Cp versus Sl. If more than 2 percent 

of the main flow was removed, the cascade pressure rise decreased, 
indicating that fluid from outside the nozzle boundary layer was lost 
and that the inlet velocity to the cascade was reduced. The tip stall 
persisted and may have been caused by corner vortices being shed by the 
nozzles, as described in reference 10. Carbon-black patterns showed that 
the ends of the blades were stalled at ~l = 560

• 

With increasing Mach number, the hot-wire pattern remained periodic 
until shock waves first appeared, after which a further increase in Mach 
number was followed by a rapid deterioration in the periodicity of the 
trace. A high-speed film taken at ~l = 67 .20 with Ml = 0.65 showed 
the stall pattern building up and then collapsing as described below. 
Following a period of 14 milliseconds with all the airfoils stalled, a 
brief period of partial unstall moved across the window. Twenty-eight 
milliseconds later, 6 cycles of unstall moved past the window, each 
cycle occupying 1.5 milliseconds. After a further 20.7 milliseconds 
from the appearance of the cells, the cluster of stalls moved by once 
again, but there were now 8 of them apparently occupying one-half of the 
circle since they took 12 milliseconds to pass the window and had a 
propagation velocity of 184 fps, corresponding to a time of 21 milli­
seconds for 1 revolution. Another interval of 9-millisecond duration 
followed, with all the airfoi ls in the test window fully stalled, and at 
the end of this time the 8 cells came by again, but this time they had 
apparently sprung apart to fill the cascade since the interval between 
each cell had doubled. The film terminated at this point, but the hot­
wire traces indicated that this process was typical of the phenomena 
at high Mach numbers and was probably followed by collapse and a later 
reforming of the pattern. A portion of the film is reproduced in 
fi gure 26 and shows strong lambda shocks appearing on the upper surface 
of the airfoils after the inlet angle increased, with boundary-layer 
separation behind the shock waves. At this Mach number vlcr had a 
value of 0.66 . 

At very law Mach numbers the pressure fluctuations ahead of the 
cascade were three times as large as those behind the cascade (fig . 27). 
With increasing Mach number, the relative magnitude of the pressure 
fluctuations behind the cascade increased, until at Ml = 0.5 they were 
as large as those ahead of the blades. 
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The nozzle wakes gave a useful indication of the inlet angle to 
the cascade during rotating stall, and a comparison of the high-speed 
motion pictures with the steady- flow schlieren photographs showed that 
during the unstalled portion of the cycle the inlet angle was never 
less than 560, so that the airfoil was not operating to the left of the 
peak on the Cp curve at any time during the cycle. 

No steady-state hysteresis effects were observed in the cascade 
response to changes in inlet angle, the pressure coefficient and 
rotating-stall characteristics being dependent only on ~l and unaffected 
by the way in which the operating point was approached. This suggests 
that interference effects between blade rows are responsible for the 
hysteresis found in compressor stall characteristics. 

Effect of cascade solidity on rotating stall.- With the original 
blade spacing, the stall cells had the appearance of a cloud of material 
of fixed identity rolling along the cascade. This illusion of continuity 
was so strong that, when the film was projected, the observer received 
the impression that the stall was flowing over and through the blades 
rather than being propagated from one blade to the next. The position 
of the boundary of the stall cell was a linear functiqn of time and there 
was no appearance of discontinuity due to the finite blade spacing. In 
order to determine the effect of cascade solidity on the appearance, 
velocity, and number of the stalls, every second blade was removed from 

the cascade so that the solidity a (defined as ~~~~~) was reduced 

to 0.5, and the cascade was tested once again. In figure 28 the pressure 
coefficient is shown for values of ~m of 0.173 and 0.288, and in 

figure 29 ~2 is plotted against ~l. There was now very little turning 

of the flow and the greater part of the pressure rise was due to the 
change in radius, which was responsible for a theoretical pressure coef­
ficient of 0.25. The Cp curve still showed the same characteristics 
as those observed with the higher solidity, with a dip in the curve 
at ~l = 490, a peak at ~l = 540, a minimum value at 01 = 600, and a 

second peak at ~l = 620. Rotating stall was observed in the wall bound­
ary layer at the ends of the blades at an inlet angle of 610 , and full 
rotating stall commenced at 640 • The pressure coefficient and flow 
deflection were now too small to permit accurate measurement of a, which 
was approximately 0.9 when rotating stall began. 

High-speed schlieren photographs taken with an inlet Mach number 
of 0.35 showed that the number of stall cells was approximately 13, with 
vlcr increasing from 0.76 at ~l = 650 to 0.86 at ~l = 68.60. There 
were now only two airfoils in one wave length of the disturbance, and 
yet the stalls still moved with uniform velocity along the cascade. 
Flow separation on the suction surface of one blade commenced when the 



NACA TN 3580 

pressure side of the blade was touched by the stalled region generated 
by the previous blade (figs . 30(a) and 30(b)). Frequently, the boundary 
layer reattached on one blade before stall commenced on the blade above 
it, so that part of the passage had good flow while the upper portion of 
the passage was still occupied by low-energy fluid. When a blade stalled, 
a region of flow separation appeared first at the leading edge and then 
grew and moved back along the blade, requiring approximately 0.5 milli­
second to cover the blade. To obtain a better definition of the nozzle 
wakes, a high-speed motion picture was taken with an inlet Mach number 
of 0.45 (fig . 31) and, from this, it can be seen that the air inlet 
angle to an airfoil increased sharply just before the airfoil was 
touched by the stall propagating from the adjacent blade. 

A further reduction in solidity to 0.33 was accomplished by 
removing nine of the remaining blades from the cascade. Only one b lade 
was now visible in the window, but rotating stall still occurred and the 
turbulent air from the adj acent blade could be seen crossing the window 
before stall occurred on the blade in the window ( f i g . 32 ). The fre­
quency of the disturbances was now almost twice the frequency obtained 
with a cascade solidity of unity , being 630 cps at ~l = 68.60 . Hot­
wire measurements showed that there were still approximately 13 stall 
cells in the cascade, propagating with a velocity of 200 fps. 

When nine of the remaining blades were removed (leaving nine blades 
in the cascade) rotating stall did not appear, and for inlet angles 
greater than 610 the flow separated from the leading edge as shown in 
figure 33. The stalling process was quite abrupt, with the separation 
point jumping suddenly from the 30-percent-chord position to the leading 
edge as ~l was increased from 600 to 610. 

In figur e 34 , the frequency of the stalls is plotted against 
solidity for ~l = 68.60 and Ml = 0.35, and on the same diagram the 

frequency of eddy formation for a single airfoil (Von Karman vortex 
street) as determined by Fage and Johansen (ref. 11) is shown. The 

V formula for the eddy frequency of a plate or airfoil is f = 0.155b, 

where f is the frequency in cycles per second, V is the free-stream 
velocity in feet per second, and b is the component of chord normal 
to the free stream in feet. The stall frequency apparently tended 
towards the single-airfoil eddy frequency as the solidity was decreased. 
When the cascade solidity is too low to permit rotating stall, the 
airfoils shed eddies, and for the nine airfoils in the cascade an 
attempt was made to measure the eddy fre quency . Accurate determination 
was difficult because of stream turbulence and because the hot-wire 
could not be traversed to find the position where the disturbances were 
most regular, but the eddy frequency appeared to be approximately 
1,000 cps and this point lay on a smooth curve through the single-airfoil 
eddy frequency and the rotating-stall frequencies. Although accurate 
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determination of the eddy frequency was not possible with the present 
arrangement of the apparatus, this result suggests that there may be a 
connection between the eddy frequency in the absence of rotating stall 
and the frequency of stall cells with small wave lengths. No experi­
mental work has apparently been done on the effect of blade spacing on 
eddy frequency and it would appear that such a study might shed some 
light on the relationship (if any) between eddy frequency and rotating 
stall. The eddy frequency is governed by the same parameters that 
determine the boundary-layer response in rotating stall and the fact 
that no satisfactory theory of vortex shedding has yet been developed 
is an indication of the complexity of the problem and the inadequacy of 
the simple exponential-lag representation of the boundary-layer response. 

Comparison of theory with experiment.- Using the simple theory 
with T assumed negligible, the theoretical propagation velocities 
were computed from the curves of Cp and ~2 versus ~l for the 
cascade with solidities of 1 and 0.5. The calculations could be made 
only in the steady-flow region since it is unlikely that the pressure 
measurements in the rotating-stall region represent the steady cascade 
performance. In consequence, it is not possible to compare the theo­
retical propagation velocities directly with the experimental results 
for the same angles. In figure 35(a), the computed propagation veloci­
ties for 9, 10, 11, and 12 stalls are plotted versus ~l for cr = 1, 
together with the experimental velocities. The broken lines represent 
the extrapolation of the theoretical curves into the rotating-stall 
regime and it can be seen that most of the experimental points lie within 
this area, which is as much as could be hoped for from a simple linear­
ized theory. In this case, failure to consider the inertia of the fluid 
within the cascade would result in an error of the order of 100 percent 
in the predicted propagation velocity. The propagation velocity with 
a Reynolds number of 120,000 and 12 stall cells is slightly smaller than 
that with 12 cells and a Reynolds number of 240,000. 

In figure 35(b), the computed and observed propagation velocities 
are shown for the lower solidity, and here the agreement is not so good. 
The assumption of one-dimensional flow within the passages is certainly 
not valid for low cascade solidity and the effective inertia of the air 
within the cascade may be considerably less than the value given by the 
theory. The good agreement between the experimental results and the 
simple theory for the high-solidity cascade suggests that the boundary­
layer time delay T may be considerably smaller than the approximate 

value calculated earlier, since a value of T equal to ~ ;3 would 

reduce the predicted propagation velocity by about 30 percent. From 
figure 34, it can be seen that increasing the cascade solidity beyond 
0.75 has little effect on the stall frequency and, hence, on the prop­
agation velocity. Accordingly, it would appear that the neglect of finite 
blade spacing in the theory is justifiable for solidities greater than 
0.75. 



NACA TN 3580 

Rotating Stall in a Free-Vortex Single-Stage Axial-Flow Compressor 

Some of the unpublished results obtained in an investigation of 
rotating stall in a single-stage compressor are presented herein for 
comparison with cascade performance and theory. The compressor was a 
free-vortex machine with a hub-tip ratio of 0.75, and the stage consisted 
of a row of inlet guide vanes, a rotor, and a set of stator blades. The 
axial clearance between the rotor and guide vanes was 1.5 inches and the 
rotor had an outside diameter of 23.25 inches and held 44 blades with a 
mean chord length of 1.5 inches. With the stator removed, an investigation 
of the rotating-stall characteristics of the machine was made using hot­
wire equipment. For the rotor, the geometry of the blading was quite 
similar to that of the stationary cascade, with a design-point air inlet 
angle of 480 at the mean radius. 

The performance of the rotor in terms of pressure coefficient and 
relative outlet angle at the mean radius versus relative inlet angle is 
shown in figures 36 and 37. As the mass flow was decreased at 1,500 rpm, 
eight stall cells appeared at ~l = 670 covering the blades from root 
to tip and propagating at approximately 30 percent of rotor speed relative 
to the rotor. A further decrease in flow caused a change to nine cells 
at ~l = 710 , with approximately the same propagation speed. At ~l = 750 , 

the nine cells were replaced by a single stall cell propagating at 50 per­
cent of rotor speed relative to the rotor. Three stall cells appeared 
at ~l = 80° and four cells, at ~l = 84°. Throughout the whole rotating­
stall range, the pressure fluctuations ahead of the inlet guide vanes 
were less than 25 percent of the pressure variations between the guide 
vanes and the rotor, indicating that the effect of the guide vanes on the 
unsteady flow was substantially as assumed in the analysis. The pressure 
variations behind the rotor caused by rotating stall (that is, the differ­
ence between the fluctuations with and without rotating stall) were less 
than 25 percent of those ahead of the rotor throughout the whole flow 
range in which rotating stall was obtained. 

In figure 38, the predicted and observed values of propagation 
velocity are plotted against ~l' At the commencement of rotating stall 

where the linearized theory is most likely to be applicable, the agree­
ment is remarkably good. As in the cascade, the accuracy of the simple 
theory indicates that the effect of the boundary-layer delay on velocity 
must be small. The change from nine cells to one cell at ~l = 750 was 
accompanied by a considerable increase in propagation velocity, verifying 
the prediction that propagation velocity should increase with wave length. 
The theory comes within 25 percent in predicting the propagation velocities 
of the large stall cells, probably because the pressure fluctuations 
behind the rotor were small in this case even for large cells. By con­
sidering the flow field behind the cascade as a continuum, it is possible 
to obtain a solution for propagation velocity which reduces to the 
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Sears-Marble result for large waves with small pressure rise across the 
cascade (appendix C). This solution predicts propagation velocities which 
are much lower than the experimental values for both the stationary cas­
cade and the rotor, showing that neglecting the downstream pressure 
fluctuations is the better assumption for the single blade rows t ested. 

SUMMARY OF RESULTS 

A theory of stall propagation in a cascade of airfoils of high 
solidity has been developed which includes the effects of finite b lade 
chord and of the boundary-layer response to changes in angle of attack. 
When the flow downstream of the blade row was treated as a series of 
free jets discharging into a constant pressure chamber, the follOWing 
results were obtained: 

(1) The wave length of the stall cells at the beginning of 
rotating stall, which was obtained analytically, was dependent on the 
amount of time required for movement of the separation point on the 
airfoil (boundary-layer time deiay). 

(2) The theoretical prediction that the velocity of stall propaga­
tion increases with the wave length of the stall cell was confirmed by 
experiment. 

(3) The values obtained analytically for the stall propagation 
velocities agreed within 25 percent over a wide range of wave lengths 
with the results obtained experimentally on both the stationary circular 
cascade and the single-stage compressor. 

When the flow downstream of the cascade was treated as a continuum, 
the solution for the stall propagation velocity applied to the case of 
large waves with a small pressure rise across the cascade. For this case 
the predicted stall propagation velocities were much lower than those 
obtained experimentally. 

Massachusetts Institute of Technology, 
Cambridge, Mas s., May 10, 1955. 
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APPENDIX A 

CALCULATION OF CASCADE DISCHARGE COEFFICIENT 

FOR REAL CASCADE 

The cascade dis charge coefficient a has been defined as the ratio 
of the ac t ual mas s flow through the cascade to the ideal mass f l ow for 
the s ame value of (Pal - P2) and flow deflecti on with no losses. It 

may be obtained from conventional test results a s follows: 

For a rectilinear cas cade, 

Therefore, 

Since 

Thus , 

a = Actua l mas s f l ow 
I deal mass f l ow for same (pal - P2) 

a = 

Po with no l osses, 
1 

a 

cl co s 131 
a = 

cos i32VC12 - CpC1
2 

cos 131 
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where 

Cp (P2 - P1V~ 2 
cl 

For a circular cascade, 

2nrl cl cos 131 
0,= 

2nr2(C2)ideal cos 132 

which reduces to 

r l cos 131 
a, = 

r 2 cos 13iJl - Cp 
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APPENDIX B 

STALL PROPAGATION VELOCITY IN POIAR COORDINATES 

Stall Propagation in Circular Cascade 

The circular cascade arrangement is as shown in figure 9. Consider 
disturbances from an incompressible plane source-vortex flow with velocity 

rl rl 
components ce = ce

l 
r and cr = crl r and angle 131 measured from 

the radial direction. The flow before the cascade is irrotational so 
that a velocity potential can be used. 

In the disturbed flow and 

From continuity, 

Therefore, 

~(ur) + dV = 0 
dr de 

rCfTr + CIT + ~e = 0 
r 

v 

Solutions to this equation are obtained in the form 

cP = ':2 [au(t) cos ne + bn(t) sin n~ rn 

satisfying the condition CPr o at r = O. 

For n = 1, the velocity perturbation does not die out at the origin. 

From Bernoulli's equation for unsteady flow, 
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If inertia effects are neglected between Q) and G) (fig. 9) then 

so that 

Inertia Effects Within Cascade 

In order to obtain the inertia effects within the cascade, it is 
assumed that the blades are in the form of logarithmic spirals of small 
curvature (valid if r2/rl is close to unity); thus, the momentum equation 
along the mean line of the passage (called the I-axis) can be written 

the same equation given for the rectilinear cascade. A similar process 
of integration gives the equation 

Also, 

as in the case of the rectilinear cascade. However, ~ is now given 
rl A2 . 

by ~ = -- --, Slnce the outlet area with no separation region is now 
r2 A3 
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where 

~'O(u/v) :::: 
a. a. 

a.' v du - u dv 

which reduces to 

&:L a.' Cllr - cot [31 Cllr/r 
-= 

An equation for cp at CD is obtained in the form 

By inserting the solution for cp and separating the coefficients of 
cos nS and sin nS, two differential equations in terms of au and bn 
are obtained which yield the characteristic equation 

o 

Stall propagation occurs when a.' 

nth harmonic is given by 

and the velocity of the 

cos 

Thus, if there are N symmetrical stall cells in the circular cascade, 
the velocity of propagation of the primary component is obtained from 
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Upstream Interference Effects 

In determining upstream interference effects, if a row of inlet guide 
vanes is placed before the cascade, with outside radius R, then ~ will 

be forced to zero at r = R and a solution is obtained in the form 

Substituting this solution, as before, in the differential equation 
satisfied by cp at CD and carrying through the rest of the solution 
give 

v 

where V is the velocity of propagation of the fundamental component 
of the wave when there are N symmetric stall cells in the cascade. 
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APPENDIX C 

STALL PROPAGATION VELOCITY WITH FLOW INTO A CONTINUUM 

By assuming that the fluid from each blade passage mixes without 
pressure recovery immediately after leaving the cascade so that the down­
stream flow field is a continuum, it is possible to obtain an expression 
for propagation velocity which reduces to the Sears-Marble value for 
large waves with small pressure rise across the cascade. 

Under these Circumstances, the x-component of velocity immediately 
behind the cascade in the unsteady flow will be Cx + (~)l and the 

y-component of velocity will be [Cx + (q)x:) lJ tan 132. 

In the downstream flow field, let 

u Cx + u' 

v = ex tan 132 + v' 

The linearized momentum equations are 

1 0 ou' ou' ou' p di(OP) + dt + Cx dx + Cx dy tan 132 0 

Differentiating the x-momentum equation with respect to x and the 
y-momentum equation with respect to y and adding give (bY using the 

ou' ov' \ 
continui ty relation ~ + ~ = 0) 
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A solution to this equation may be obtained in the form 

.2E = ~rcn(t) cos ~ + dn(t) sin nr le-
nnx

/
b 

P n=lL b J 

From the x-momentum equation 

1 0 ou ' ou ' ou ' P dx"( op) + dt + Cx dx + Cx tan 1)2 dY ::: 0 

But 

Therefore, 

At the cascade, 

Therefore, 

but 

oU2' _ 0 _ nrc ~(dan E2SZ. dbn ~) 
-~ - dx( q:x) 1 - - b L- dt cos b + dt sin b 

n=l 

45 
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and so 

Therefore, 
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n11: f=.lcn(t) cos ~ + dn(t) sin ~ 
b ~lL b bJ 

= 
d8.n 
dt 

and 5p/p after the cascade is OP2/P which may be written as 

P :t~Jn(t) cos nb! + bn(t) sin ntpj} 

,,; (Cflt)l 

By substituting this value for 5P2/P in equation (5) instead of putting 
5P2 = 0, the final expression for propagation velocity is 

V 2(1 - Cp ) 
- ,,; -----~"-----:-

( 
Lrr ) 2~1 b cos ~2 + 2 sin 

and this reduces to the Sears-Marble value for Cp = 0 and L/b = O. 



NACA TN 3580 47 

REFERENCES 

1. Cheshire, L. J.: The Design and Development of Centrifugal Compressors 
for Aircraft Gas Turbines. Proc. Institution Mech. Eng . (London), 
vol. 153, 1945, pp . 426- 440 . 

2. Emmons, H. W., Pearson, C. E., and Grant, H. P.: Compressor Surge and 
Stall Propagation. Advance Paper No. 53-A-65, A.S.M.E., Dec. 1953. 

3. Iura, T., and Rannie, W. D.: Experimental Investigations of Propa­
gating Stall in Axial-Flow Compressors. Trans. A.S.M.E., vol. 76, 
no. 3, Apr. 1954, pp. 463-471. 

4. Huppert, M. C., and Benser, W. A.: Some Stall and Surge Phenomena in 
Axial-Flow Compressors. Jour . Aero. Sci ., vol. 20, no. 12, Dec. 1953, 
pp. 835- 845. 

5. Sears, W. R.: A Theory of "Rotating Stall" in Axial-Flow Compressors. 
Contract AF-33(038)21406, Office Sci . Res., Dept. Air Force, and 
Graduate School Aero. Eng., Cornell Univ., Jan. 1953. 

6. Marble, F. E.: Propagation of Stall in a Compressor Blade Row. Tech. 
Rep. No . 4, Contract AF-18(600)-178, Office Sci. Res., Dept. Air 
Force, and Daniel and Florence Guggenheim Jet Propulsion Center, 
C.I.T., Jan. 1954. 

7. Stenning, Alan H.: Stall Propagation in Cascades of Airfoils. Readers' 
Forum, Jour. Aero. Sci . , vol. 21, no. 10, Oct. 1954, pp. 711-713. 

8. Kriebel, A. R.: Stall Propagation in Cascades of Airfoils. M. S. 
Thesis, Dept. Mech. Eng., M.I.T. , June 1954. 

9. Kriebel, A. R., and Stenning, A. H.: A Cascade Tunnel for Investiga­
tion of Rotating Stall . Rep. No. 26, Gas Turbine Lab., M.I.T., 
Aug. 1954. 

10. Herzig, Howard Z., Hansen, Arthur G., and Costello, George R.: A 
Visualization Study of Secondary Flows in Cascades. NACA Rep. 1163, 
1954. (Supersedes NACA TN 2947.) 

11. Fage, A., and Johansen, F . C.: On the Flow of Air Behind an Inclined 
Flat Plate of Infinite Span. Proc . Roy . Soc. (London), sere A., 
vol. 116, no. 773, Sept . 1, 1927, pp. 170-197 . 



48 NACA TN 3580 

TABLE I 

COMPARISON OF PROPAGATION VELOCITIES 

[Total temperature, 5350 R; cascade Reynolds number, 240,000J 

Schlieren photographs Hot-wire method. 

132, Ml 
crl , Number of Propagation Number of Propagation 

deg fps stalls, veloCity, V/crl stalls, veloCity, v/crl 
N V, fps N V, fps 

63 . 8 0.326 161 9 104 0.64 9 99 0.62 

65 . 5 . 343 160 10 110 .69 9 112 .70 

67 . 2 .361 159 11 117 .74 11 116 .74 

68. 5 · 377 159 -- --- ---- 12 115 .72 
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Figure 1. - Effect of stalled blade on flow entering cascade. 

/ 

/ 

/ 
Figure 2 .- Flow field of stalled cascade. 
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-+~----------~--------------~x 

Figure 3. - Cascade representation and notation. 

f31 

Figure 4. - Assumed boundary- layer response to step changes in ~l. 

J 



NACA TN 3580 

a 

/ 

/ 

CSTALL 
/{------- ~ROPAGAT ION 

// POSSIBLE 

Figure 5.- Stability criterion for stall propagation. 
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vel Figure 6.- Plot showing versus ~l for cascades in stalled condition. 
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Figure 7.- Representation of cascade ,nth inlet guide vanes. 
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Figure 8.- Stability criterion with boundary-layer del~. 
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Figure 9.- Representation of circular cascade. 



NACA TN 3580 55 

Figure 10.- Test section blading. 
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Figure 11 .- Schematic blading diagram for stationary circular cascade 
showing design angles. 
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Figure 13.- Cascade tunnel and portable schlieren. 
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.. 

L-92406 
Figure 15.- Test section of the stationary-circular-cascade tunnel. 
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2 3c 

,.-

• COMPRESSOO ~ • 4 

'- ~ -COOLER 

SCREENS 

@®®0® 

station ~adius, Mach Velocity, p ..lL P Po' psi a p T of 
In. number f p s 0' f t3 , 

I 78 0.0712 0.0710 14.54 14.49 90 

2 62 .0855 .0854 18.09 18.06 90 

3a 127 .0814 .0809 16.60 16.47 89 

3b 133 .0786 .0781 16.01 15,86 89 

3c 0.44 498 .0786 .0715 16.01 14,02 70 

4 6.0 .45 509 .0786 .0714 16.01 13.93 68 

5 7.2 .71 776 .0771 .0608 15.69 11.25 45 

6 7.9 .59 658 .0771 .0652 15.69 12.40 54 

7 8.7 .39 443 .0759 .0703 15.47 13.93 73 

8 12.0 .28 317 .0759 .0730 15.47 14.56 82 

9 ~3,O .10 I 15 .0714 .0711 14.56 15.86 89 

Figure 16.- Schematic diagram of air circuit and tabulated properties. 
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Figure 21.- Schlieren photographs of cascade in steady flow . 
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Figur e 22.- Concluded . 
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~ l = 67° ; Ml = 0.35; cr = 1.0 . 
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Figure 24. - Hot-wire-anernometer equipment and cascade tunnel. 
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(a) 

( b ) 

(a) 

( b ) 

Figure 27 .- Pressure fluctuat i ons at tap ( a ) upstream and at tap (b ) 
downstream of cascade . ~l = 68 .5° ; Ml = 0 . 22 . 



Cp 

,6 

,5 

.4 

,3 

.2 

, I 

I I I 
I---+---+----+---+-- X 17" m :: 0, 17 3 -t--t--t--+--t--+---l 

o 17"m:: 0 ,288 

~ 

1-~---T-=?C~~~~~~~~7X 'x 
tr-<T1r V..J. >-1 __ ;/ 7 ~ ,: i 

L. __ Xi x-~' 

r-~~~ X I 
-q~><- ~~P< ' 

~T-~-+~--+-4-~~--~~=4~~~~~~"~l~ I 

I 
I ""x I 

'~ '-..x I 

I 

o 
40 44 48 52 56 60 64 68 

/31 ' deg 

Figure 2e.- Cascade pressure coefficient versus ~l for cr = 0.5. 

~ 
~ 

~ 
v-s 
VI 
co 
o 

-.:] 
v-s 

o 
~ 



C\J 
CQ 

70 

60 

50 

40 

30 

20 

10 

o 
40 

,.., 

1---' ~ 
i--""'" 

p.--

44 48 

NACA TN 3580 

-""""~ 

~ 
i"'" C) 

W 
~ 
~ 

52 56 60 64 
/3" deg 

Figure 29· - Cascade performance . ~2 versus ~l for cr ~ 0.5. 



• • • • , • • • • • 

--. TIME 

(a) ~l = 65°; Ml = 0.34; cr = 0·5· 

--. TIME 

(b ) ~l = 68.5°; Ml = 0.35; cr = 0·5· 

Figure 30.- Rotating stall. 5,000 frames per second. 
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L-92414 Figure 31.- Rotating stall. ~l = 68.5°; Ml = 0.45; 16-millimeter Fastax 
camera . 

TIME-

L-92415 Figure 32. - Rotating stall. 5,000 frames per second; ~ l = 68.5° ; 
Ml = 0.35; cr = 0.33. 
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Figure 33.- Stalled airfoil. 5,000 frames per second; ~l = 68·5°; 

Ml = 0.35; cr = 0.16. 
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Figur e 35.- Theoretical and experimental values of propagation velocity. 
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Figur e 38 .- Theoretical and experimental propagation velocities for rotor. 
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