
NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

TECHNICAL NOTE 3632 

CORRELATION, EVALUATION, AND EXTENSION O F  LINEARIZED 

THEORIES FOR TIRE MOTION AND WHEEL SHIMMY 

By Robert  F. Srniley 

Langley Aeronautical Laboratory 
Langley Field, Va. 

Washington 
June 1956 





T A B U  OF CONTENTS 

. . . . . . . . . . . . . . . . . . . . . . . .  INTRODUCTION 

. . . . . . . .  STATEMENT OF THE PR0BI;EM AND C,El!EW& APPROACH 

. . . . . . . . . . . . . . . . . . . .  GENERAL RESTRICTIONS 

. . . . . . . . . .  KINESIATIC RELATIONS FOR THE R O U I N G  T I R E  . . . . . . . . . . . . . . . . . . .  GECIMETRIC RELATIONS . . . . . . . . . . . . . . . . . . . . .  T I R E  DISTORTION . . . . . . . . . . . . . . . . . . . .  KINEMATIC EQUATION . . . . . . . . . .  S E R I E S  EXPANSION OF KINEMATIC EQUATION 

. . . . . . . . . . . . . . .  FORCES AND MOMENTS ON T m  WHEEL . . . .  ELASTIC FORCES AND MaMENTS DUE T O  T I R E  DISTORTION . . . . . . . . . . . . . . . . .  L a t e r a l  E l a s t i c  Force . . . . . . . . . . . . . . .  T o r s i o n a l  E l a s t i c  M o m e n t  . . . . . . . . . . . . . . . . . .  T i l t  E l a s t i c  Force . . . . . . . . . . .  V e r t i c a l - L o a d  C e n t e r  of Pressure . . . . . . . . . . . . . . . . . . . .  GYROSCOPIC MOMENTS 
G y r o s c o p i c  M o m e n t  D u e  t o  L a t e r a l  D i s t o r t i o n  of T i r e  . . 
G y r o s c o p i c  M o m e n t  D u e  t o  T i l t i n g  of Wheel . . . . . . .  
G y r o s c o p i c  M o m e n t  D u e  t o  Swiveling of Wheel . . . . . .  . . . . . . . . . . . . .  T I R E  INERTIA FORCES AND MOMENTS 
Inert ia  Forces and M o m e n t s  Due t o  L a t e r a l  D i s t o r t i o n  . . . . . . . . . . . . . . . . . . . . . . .  of T i r e  . . . . . . . . . . . . .  E f f e c t s  of C e n t r i f u g a l  Forces 
Significance of T i r e  I ne r t i a  E f f e c t s  W i t h  R e s p e c t  t o  . . . . . . . . . . . . . . . . . . .  T i r e  Stiffness . . . . . . . . . . . . . . . . .  Other Inert ia  E f f e c t s  

HYSTERESIS FORCES AND MCIMEWS e e a o e e e e e m e e. . e . . . . . . . . . . . . . .  STRUCTURAL FORCES AND MCBE'NTS 

. . . . . . . . . . . . . . . . . . . . .  EQUATIONS OF MOTION 
DERIVATION OF THE EQUATIONS OF MOTION . . . . . . . . . .  
EQUATIONS FOR STEADY YAWED ROLLING e e e e e e e e . e a 

. . . . . . .  SYSTEMATIC A P P R O X W I O N S  TO THE N&lMARY THEORY . . . . . . . . . . . . . . . . . . . . .  mPROXIMATION A . . . . . . . . . . . . . . . . . . . . .  APPROXIMATION B . . . . . . . . . . . . . . . . . . . . .  APPROXIMATION C 1  

Page . 
1 



NACA TN 3632 

Page 

~ ~ ~ ~ 0 ~ l M A ~ 1 0 ~ C 2 e ~ ~ ~ ~ e ~ ~ e m e * a . ~ s ~ e s e ~ e e  45 . . . . . . . . . . . . . . . . . . . . . .  APPROXIMATION ~ 1 .  46 . . . . . . . . . . . . . . . . . . . . . . .  APPROXIMATION D2 47 . . . . . . . . . . . . . . . . . . . . . . .  APPROXlMATION D3 47 

CLASSIFICATION AND EVALUATION OF EXISTING THEORIES . . .  
INDIVIDUAL RFVIEW AND EVALUATION OF EXISTING THEORIES 

Von Schlippe and Dietrich . . . . . m e . . . . . e  . . . . . . . . . . . . . . . . . . . . . . .  Rotta 
Bourcier de Carbon Advanced Theory . . . . . . . .  
Greidanus . . . . . . . . . . . . . . . . . . . . .  
Bourcier de Carbon Elementary Theory . . . . . . .  . . . . . . . . . . . . . . . . . . . . . .  Melzer . . . . . . . . . . . . .  Moreland Advanced Theory . . . . . . . . . . .  Moreland Intermediate Theory . . . . . . . . . . . .  Moreland Elementary Theory . . . . . . . . . . . . .  Temple Elementary Theory . . . . . . . . . . . . . . . . . . . . . . .  Maier . . . . . . . . . . . . . . . . . . . . . .  Taylor . . . . . . . . . . . . . . .  Kantrowit z and Wylie . . . . . . . . . . . . . . . . . .  Other Theories 

TABULAR CLASSLFICATION OF EXISTING THEORIES . . . 
. . . . . . . . . . . . . .  APPLICATION TO WHEEL-SHINNY PROBLEMS 57 . . . . . . . . . .  DESCRIPTION OF PARTICULAR CASES CONSIDERED 58 

CASE1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 . . . . . . . . . . . . . . . . . . . .  General Derivation 58 . . . . . . . . . . . . . . . . .  Systematic Approximat ions 62 . . . . . . . . . . . . . . . . . . . .  Approximation A 62 . . . . . . . . . . . . . . . . . . . .  Approximation B 62 . . . . . . . . . . . . . . . . . . . .  Approximation C 1  63 . . . . . . . . . . . . . . . . . . . .  Approximation C2 63 . . . . . . . . . . . . . . . . . . . .  Approximation D l  64 . . . . . . . . . . . . . . . . . . . .  Approximation D2 64 . . . . . . . . . . . . . . . . . . . .  Approximation D3 65 . . . . . . . . . . . . . . .  Previously Published Theories 65 . . . . . . . .  Von Schlippe-Dietrich and Rotta theories  65 . . . . . . . . . . .  Bourcier de Carbon advanced theory 66 . . . . . . . . . .  Bourcier de Carbon elementary theory 67 . . . . . . . . . . . . . . . . . . . . . . . . .  Melzer 67 . . . . . . . . . . . . . . . .  Moreland advanced theory 68 . . . . . . . . . . . . . . .  Moreland elementary theory 68 . . . . . . . . . . . . . . . . . . . . . . . . .  Taylor 68 . . . . . . . . . . . . . . . .  Temple elementary theory 68 . . . . . . . . . . . . . . . . . . . . . . . . .  Maier 69 
Kantrowitz . . . . . . . . . . . . . . . . . . . . . . .  69 . . . . . . . . . . . . . . . . . . . . . . . . .  Wylie 69 



Page 

. . . . . . . . . . . . . . . . . . . .  S t a b i l i t y  of Motion 70 
Comparison and Evaluation of %he Summary Theory and . . . . . . . . . . . . . .  I t s  Systematic Approximations 71 . . . . . . . . . . . . .  Stability-boundary conditions 72 . . . . . . . . . . .  ( a )  Effect  of higher 2, terms 72 

. . . . . . . . . . . . . .  (b) Effect  of hys te res i s  74 
( c ) E f f e c t o f  Z1 . . . . . . . . . . . . . . . . . .  75 

. . . . . . . . . . . . . . . . . .  ( d ) E f f e c t o f  5 77 . . . . . . . . . . . .  ( e ) E f f e c t s o f  & and ch 78 
( f )  Effect  of cornering power N . . . . . . . . .  
(g)  Effect  of gyroscopic torque . . . . . . . . . .  . . . . . . . . . . . . .  Unstable shimmy conditions 

Predictions of Some of t he  Previously Published Theories . . . . . . . . . . . . . . . . .  Prac t i ca l  Application 
CASE11 . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  General Derivation . . . . . . . . . . . . . . . .  Systematic Approximations 

Approximation A . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . .  Approximation B . . . . . . . . . . . . . . . . . . .  Approximation C . . . . . . . . . . . . . . . . . . .  Approximation D l  . . . . . . . . . . . . . . . . . . .  Approximation D2 . . . . . . . . . . . . . . . . . . .  Approximation D3  . . . . . . . . . . . . . . . . . .  S t a b i l i t y  Boundaries . . . . . . . . . . . .  Purely o sc i l l a t o ry  boundaries . . . . . . . . . . . . . . . .  Purely uniform motion 
Character of t h e  Motion Between S t a b i l i t y  Boundaries . . . . . . . . .  Evaluation of Approximations D l .  D2. and D 3  . . . . . . . . . . . . . . . . . .  Prac t i ca l  Application 

C A S E I I I e e e e s a e e a e e s e r e o o e a e . e e e s e  

. . . . . . . . . . . . . . . . . . . . . . .  CONCLUDING REMARKS 99 

APPENDIX A -- CALCULATION OF EQUIVALENT VISCOUS DAMPERS . . . . .  101 
GENERALCASE . . . . . . . . . a . e . . . . . . . . . . . . .  101 
VELOCITY-DEPENDENT DAMPING . . e e e . . * s e e . e * . e * * 102 
FRICTIONDAMPING . . . . . . . . . . . . . . . . . . . . . . .  103 

APPENDIX B . DlIG'ERENTIAL EQUATIONS FOR CASE I WITH INCLUSION . . * . . . . . .  . . .  . . . . . .  OF HYSTERESIS EKFECTS 104 

. . . . . . . . . . . . .  APPENDIX c . STABILITY CRITERIA . .  106 

APPENDIXD -STABILITYBOUNDARIESFOR CASE I a e e a e rn e . e e 109 

iii 



NACA TN 3632 

Page 

APPENDIX E -- STABILITY BOUNDARIES FOR CASE I1 . . . . . . . . a *  111 

APPENDIX F . CHARACTERISTIC EQUATIONS FOR CASE I1 . m e e . a e 112 

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . .  114 

T A B L ; E I . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  118 



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 3632 

CORRELATION, EVALUATION, AND EXTENSION OF LINEARIZED 

THEORIES FOR TIRE MCYI'ION AND WHEEL SHIMMY 

By Robert F. Smiley 

SUMMARY 

An evaluation i s  made of the  exis t ing theories of l inearized t i r e  
motion and wheel shimmy. It is demonstrated tha t  most of the previously 
published theories represent varying degrees of approximation t o  a sum- 
mary theory developed herein which i s  a minor modification of the  basic 
theory of Von Schlippe and Dietrich. In most cases where strong d i f fe r -  
ences ex is t  between the  previously published theories and the summary 
theory, the  previously published theories a re  shown t o  possess cer tain 
deficiencies.  

A ser ies  of systematic approximations t o  the  summary theory i s  
developed f o r  the  treatment of problems too simple t o  merit the use of 
the  complete summary theory, and procedures are  discussed f o r  applying 
the  summary theory and i t s  systematic approximations t o  the  shimmy of 
more complex landing-gear structures than have previously been considered. 

Comparisons of the  exis t ing experimental data with the  predict ions 
of the summary theory and the systematic approximations provide a f a i r  
substantiation of the more detailed approximate theories.  However, some 
discrepancies ex is t  which may be due t o  t i r e  hysteresis e f fec ts  or other 
unknown influences. Thus, fur ther  work may be needed t o  explain these 
discrepancies. 

INTRODUCT I O N  

I n  the  ground maneuvering of a i r c ra f t  equipped with swiveling landing 
gears there sometimes ar i ses  the  problem of violent osci l la t ions or shimmy 
of the landing gear which may lead t o  f a i lu re  of the  gear. In the  past 
t h i s  problem has been handled largely by means of various measures based 
on prac t ica l  experience. However, t h i s  empirical approach has not proved 
en t i r e ly  adequate. Moreover, f o r  radical ly  different types of complex 
f lex ib le  landing gears it i s  highly doubtful whether any empirical approach 
based purely on past experience could always safely and optimumly take in to  
account a l l  of the possible conditions which a landing gear might be sub- 
jected t o  i n  actual  operation, 
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A considerable amount of t heo re t i c a l  and experimental work on wheel 
shimmy has been done, mostly i n  t he  past  25 years.  ( ~ o s t  of t h e  ex i s t i ng  
papers on t h i s  subject  a r e  l i s t e d  i n  r e f .  1, which a l s o  presents a h i s -  
t o r i c a l  discussion of t h e  development of t h e  wheel-shimmy problem,) How- 
ever, most of these  t heo re t i c a l  papers have not been .corre la ted with each 
other  or  wZth t h e  avai lable  experimental data, so  t h a t  e s sen t i a l l y  the re  
e x i s t s  a t  present a large  number of a t  l e a s t  supe r f i c i a l l y  d i f fe ren t  
theor ies  of wheel shimmy and a f a i r  amount of experimental data  which has 
not been corre la ted with many of these  theor ies  ( r e f s .  2 t o  23). 

The primary purpose of t h e  present paper i s  t o  c l ea r  up t h i s  p a r t i a l  
confusion of theor ies  by demonstrating t h a t  most of t h e  previously pub- 
l i shed  theor ies  represent various approximations t o  one basic  general  
l inear ized  theory derived herein  and t h a t  most of t h e  previously published 
l inear ized  theor ies  which do not represent approximations t o  t h i s  general  
theory possess ce r t a in  undesirable charac te r i s t i cs .  This bas ic  general  
theory,  which is  henceforth ca l led  t h e  summarytheory, i s  derived i n  such 
a manner t h a t  it makes use of and i s  compatible with t h e  soundest fea tu res  
of p r ac t i c a l l y  a l l  t he  previously published theor ies ,  insofar  as t h i s ' i s  
possible a t  present; however, i n  the  main t h i s  summary theory i s  a minor 
modification of the  theory proposed by Von Schlippe and Diet r ich i n  r e f e r -  
ences 3, 4, and 5 .  

A second purpose of t h i s  paper i s  t o  develop a s e r i e s  of systematic 
approximations t o  t h e  summary theory su i tab le  f o r  use i n  t h e  treatment 
of problems too  simple t o  merit t h e  use of t h e  complete summary theory 
and t o  examine both these  systematic approximations and t h e  previously 
published theor ies  t o  determine how these  theor ies  a r e  r e l a t ed  t o  t he  
summary theory and how t h e  predic t ions  of these  theor ies  agree with t h e  
avai lable  experimental data ,  

A f i n a l  purpose of t h i s  paper i s  t o  i l l u s t r a t e  procedures f o r  applying 
t h e  summary theory and i t s  approximations t o  complex types of f l ex ib l e  
landing-gear s t ruc tures .  

Although t h e  primary purpose of t h i s  paper i s  concerned with t h e  
wheel-shimmy problem, most of the  mater ia l  presented i s  d i r e c t l y  appl i -  
cable t o  t h e  more general problem of t h e  motion of e l a s t i c  t i r e s  under 
a r b i t r a r y  r o l l i n g  conditions. Thus t h i s  mater ia l  i s  per t inent  t o ' t h e  
study of veering-off or ground looping, ground handling, and catapul t ing 
s t a b i l i t y  of a i r c r a f t .  

The mater ia l  i n  t h i s  paper i s  arranged a s  follows, F i r s t ,  a de t a i l ed  
statement of t h e  problem i s  given, together with a de ta i l ed  out l ine  of t h e  
manner i n  which it i s  t r e a t e d  herein.  Then, a f t e r  a b r i e f  discussion of 
t h e  r e s t r i c t i o n s  on t h e  analysis ,  a l inear ized  der ivat ion i s  made f o r  t h e  
general  Von Schlippe-Dietrich type of kinematic equations governing t h e  
motion of e l a s t i c  t i r e s  r o l l i n g  without skidding. This analysis  proceeds 
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essent ia l ly  i n  accordance with the  theore t ica l  analysis of Von Schlippe 
and Dietrich except tha t  the present analysis considers the  subject of 
t i r e  tilt i n  s l igh t ly  greater de ta i l ,  

Next, the primary forces and moments acting on a ro l l ing  t i r e  a re  
discussed and used t o  establ ish the  equations of motion f o r  a rb i t ra ry  
ro l l ing  conditions. Then a systematic procedure is  developed f o r  forming 
approximat ions t o  the  summary theory. 

The previously published theories are  l i s t e d ,  discussed, and com- 
pared with the  summary theory and these systematic approximations. 
Finally,  the application of the summary and approximate theories t o  
several simplified landing gears i s  discussed. The f i r s t  example is  
chosen primarily t o  demonstrate the  correlation between theory and experi- 
ment, the  second example t o  demonstrate the correlation between the  sum- 
mary theory and i t s  systematic approximations, and the  remaining example 
t o  i l l u s t r a t e  the application of the  theory t o  complex problems. 

Some of the  material  presented herein was submitted t o  the University 
of Virginia i n  p a r t i a l  fulfi l lment of the  requirement f o r  a Master of 
Aeronautical Engineering degree. 

SYMBOLS 

t r a i l  (perpendicular distance between ground-contact center 
point and swivel ax is )  

a '  = a - s i n  K 
ELh 7 

A19A29A3 coefficients defined by equations ( l l3b)  

coefficients defined by equations ( l l5b)  

l a t e r a l  distance of center of pressure of ve r t i ca l  force 
from XZ-plane 

change i n  l a t e r a l  distance of center of pressure of ve r t i ca l  
force from XZ-plane per uni t  of Ag 

"Y change i n  l a t e r a l  distance of center of pressure of ve r t i ca l  
force from XZ-plane per uni t  of y 

c 1 
distance from wheel center t o  center of gravity of swiveling 

par t s  of landing gear 
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2 distance from center of gravity ofl swiveling parts  of 
landing gear t o  swivel axis 

%jd2 hysteresis constants used i n  equation (128c) 

- 
D t i r e  parameter used by Bourcier de Carbon 

D (  
d(  1 d i f f e ren t i a l  operator with respect t o  distance, - dx 

or v-'-D~ ( ) 

D t (  ) d( 1 d i f f e ren t i a l  operator with respect t o  time, - or v D (  ) 
dt  

EO9E l , . . e  coefficients of l inear  d i f f e ren t i a l  equations 

energy dissipated per cycle 

frequency, v/211 

coefficients of l i nea r  d i f f e ren t i a l  equations 

l a t e r a l  force due t o  hysteresis e f fec ts  

l a t e r a l  i ne r t i a  force resul t ing from l a t e r a l  deformation 
of t i r e  

net l a t e r a l  t i r e  force acting on wheel 

net l a t e r a l  s t ruc tura l  force acting on wheel 

l a t e r a l  force on t i r e  due t o  l a t e r a l  d is tor t ion  of t i r e  

F l a t e r a l  force on t i r e  due t o  l a t e r a l  tilt of t i r e  
YY 

FZ. ver t i ca l  load on t i r e  

Fv l a t e r a l  force on swiveling par t s  of landing gear due t o  
landing-gear s t  ru t  

g l inear  damping constant (Damping moment = g Dt$) 

h half -length of tire-ground contact area 
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I( imaginary part  of ( ) 

I 0  moment of ine r t i a  of the  swiveling part  of a landing gear 
about an axis p a r a l l e l  t o  the  swivel ax is  and passing 
through the center of gravity of the swiveling part  

polar moment of ine r t i a  of wheel and t i r e  about an axis  
perpendicular t o  the  wheel axle 

polar moment of ine r t i a  of t i r e  (excluding so l id  wheel pa r t s )  

t o t a l  polar moment of ine r t i a  of wheel and t i r e  

moment of ine r t i a  of the  swiveling part  of a landing gear 
about the swivel axis  

excess of number of zeros over number of poles 

parameter i n  stability-determination p lo ts  (appendix C ) 

l a t e r a l  spring constant of landing-gear - s t ru t  

parameter used i n  appendix A 

tors ional  s t i f fness  of t i r e  

t o t a l  effective change i n  t i r e  tors ional  s t i f fness  due t o  
t i r e  ine r t i a  e f fec ts  

effect ive change i n  tors ional  s t i f fness  of t i r e  due t o  
l a t e r a l  acceleration of t i r e  

change i n  t i r e  tors ional  s t i f fness  due t o  centrifugal forces 

l a t e r a l  t i r e  force due t o  tilt per radian of tilt angle 

l a t e r a l  s t i f fness  of t i r e  

t o t a l  effect ive change i n  l a t e r a l  s t i f fness  of t i r e  due t o  
t i r e  ine r t i a  e f fec ts  e 

effect ive change i n  l a t e r a l  s t i f fness  of t i r e  due t o  l a t e r a l  
acceleration of t i r e  



m~~ change i n  l a t e r a l  s t i f fness  of tire due t o  centrifugal 
forces 

2 0 , 2 1 , . e ~  t i r e  constants; 2, = 
( n ~  + h)hn'l 

n ! 

L relaxat ion length 

m mass of swiveling par t s  of landing gear 

mt mass of t i r e  

mw mass of wheel including t i r e  

ml mass of nonswiveling par t s  of landing gear 

Mo constant f r i c t  ion-damping moment 

Mxs net s t ruc tura l  t i l t i n g  moment acting on wheel center 

Mxe gyroscopic moment due t o  swiveling 

Mzh twist ing moment due t o  hysteresis e f fec ts  

Mzi  ine r t i a  moment resul t ing from l a t e r a l  d e f o m t i o n  of t i r e  

Mzs net s t ruc tura l  swiveling moment acting on wheel center 

tors ional  moment on t i r e  due t o  twist  of t i r e  

Mz7 gyroscopic moment due t o  t i l t i n g  

gyroscopic moment due t o  l a t e r a l  d is tor t  ion of t i r e  

Me tors ional  moment on the swiveling parts  of the  landing gear 
due t o  landing-gear s t r u t  and damper unit 

M$ 
damping moment about swivel axis 

cornering power ( l a t e r a l  t i r e  force per radian of yaw angle 
during steady yawed ro l l ing  f o r  yaw angle approaching 
zero) 
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nl parameter used i n  appendix A 

P complex roots of character is t ic  equations 

Pl'P2 functions defined i n  appendix D 

PlmrP2w~PlljP12~~21j~22 functions defined i n  and a f t e r  equations (80) 

qn parameter used i n  appendix A 

r f ree  t i r e  radius 

r polar radius of gyration of t i r e  

'3 ve r t i ca l  distance from wheel axle t o  ground 

=-4 radius of cross section of t i r e  torus 

t i r e  parameter used by Bourcier de Carbon 

r e a l  part  of ( ) 

circumferential coordinate on t i r e  ( f i g  . 1 )  

wave length, %/v1 

t i r e  parameter used by Bourcier de Carbon 

time 

time lag  due t o  t i r e  hysteresis 

Moreland ' s t ime-lag constant 

t i r e  parameter used by Bourcier de Carbon 

functions of D t  correlating s t ruc tura l  forces, moments, 
and deflections 

time-lag constant f o r  hysteresis moment 

TA time-lag constant f o r  hysteresis force 

u = c F (a l l  cos K - a ) s i n  K 
)E A z  



. . 
- cAFZ(Z1 cos K - a ) s i n  K %1- 

v ro l l ing  velocity 

w width of t i r e  -ground contact area 

wl density 

w, = (a% - aF, + c F s i n   sin K 
7 2  

horizontal distance pa ra l l e l  t o  mean direct  ion of ro l l ing  
mot ion 

x,y,z space-fixed coordinate axes; the  X-axis i s  horizontal and 
p a r a l l e l  t o  the  mean direction of ro l l ing  motion, the 
Z-axis i s  ver t ica l ,  and the  Y-axis i s  perpendicular t o  the  
XZ-plane . The XY-plane i s  the  ground plane. 

Y l a t e r a l  distance of t i r e  equator from XZ-plane 

z v e r t i c a l  distance up from XY (ground) plane 

Y0,Yl'Y2, I l a t e r a l  deflect ion of t i r e  equator from XZ-plane; subscript 0 
Y i > Y g  r e fe r s  t o  the  center of the ground-contact area, 1 t o  the  

foremost point of the ground-contact area, 2 t o  the rear- 
most point of the ground-contact area, i t o  equator points 
off the ground, and g t o  equator points on the ground 

a t w i s t  i n  t i r e ,  radians 

* h  half-width of twisting-moment-angular-deflection hysteresis 
loop of t i r e  

Y l a t e r a l  wheel tilt, radians 

?A l a t e r a l  t i r e  tilt resul t ing from l a t  e ra1  deformation, radians 

E pneumatic caster,  I&/N 

V~VorTl~q3 
l a t e r a l  deflection of center plane of wheel with respect t o  

Va) Ti J Tg t he  XZ-plane; subscript 0 re fers  t o  the  point corresponding 
t o  the center of the ground-contact area, 1 t o  the  point - 

corresponding t o  the foremost point of the  ground-contact 
area, 3 t o  the  center point of the  wheel, a t o  the  point 
of attachment of the swiveling par t s  of the  wheel t o  the  
swivel axis,  i t o  wheel-plane points off the ground, and 
g t o  wheel-plane points on the  ground 
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r l ~  i ne r t  ia-force parameter (eq. (46) ) 

'1, inertia-moment parameter (eq, (49) ) 

"a hysteresis-moment parameter (eqs . (62) ) 

'A hysteresis-f orce parameter (eqs . (60) ) 

e angle of rotat ion of wheel about the ve r t i ca l  Z-axis, radians 
. .. 

. . 
K inclination of swivel axis, radians (f ig .  5 )  

l a t e r a l  dis tor t ion of t i r e  equator with respect t o  the  sol id  
par t s  of the wheel; subscript 0 re fers  t o  the  center of 
the  ground contact area, 1 t o  the foremost point of the  
ground contact area, 2 t o  the  rearmost point of the  ground 
contact area, i t o  equator points off the ground, and g 
t o  equator points on the  ground 

AAo half-width of lateral-force-lateral-deflection hysteresis 
loop of t i r e  

c i rcu lar  frequency of shimmy motion, &f or  v v 
1 

'1 path frequency of shimmy motion, w-' 

5 t i r e  tilt parameter (eq. (13)) 

P spring constant f o r  a l inear  restoring moment 

P, = (dy - aF, + ac A F + c+?, s i n  r 

t a n  K a = l + € j L h -  
Z1r 

u 1 ~ a 2  constants representing phase s h i f t  

T constant defined by equations (33) and (50) 

7 
1 constant f o r  gyroscopic moment 

NZ, T 2 
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4' angle of rotat ion of wheel about the swivel axis ,  radians 

angular velocity of wheel about i t s  axle (= $1 
Subscripts : 

c c r i t i c a l  

max maximum 

STATEMENT OF THE PR0BL;EM AND GENERAL APPROACH 

The purpose of t h i s  section i s  t o  define specif ical ly  the  problem 
considered i n  t h i s  paper and t o  c l a r i fy  fur ther  the correlation between 
the various par t s  of the paper. 

The basic problem t o  be considered i s  t he  ro l l ing  motion and wheel 
shimmy of a r ig id  wheel equipped with an e l a s t i c  t i r e ,  when the wheel 
i s  attached t o  some supporting structure such as a landing-gear s t r u t .  
The motion of the r ig id  wheel can, of course, be completely described 
by s i x  independent variables corresponding t o  the three degrees of free- 
dom i n  t rans la t ion  and rotat ion of the  wheel. I n  addition t o  these 
s i x  degrees of freedom, there ex i s t s  a seventh degree of freedom which 
i s  associated with the d is tor t ion  of the  e l a s t i c  t i r e  or the  t rack  of 
the  t i r e  on the  ground which r e su l t s  from the  application of a given 
motion t o  the r i g i d  wheel. Thus, i n  general, the motion of a r i g i d  wheel 
with an e l a s t i c  t i r e  represents a system of motion involving seven varia- 
bles ,  and seven equations correlating these different  variables a re  
required t o  solve f o r  the  motion of a landing gear under a rb i t ra ry  ro l l ing  
conditions. Six of these equations w i l l  usually be the equations expres- 
sing the sum of the  forces or moments acting along each of the three 
pr incipal  coordinate axes; the seventh re la t ion  w i l l  be an equation, 
usually a kinematic equation; which correlates the t i r e  d is tor t ion  with 
the  other variables,  

The present paper i s  not concerned with a l l  seven degrees of f ree-  
dom. Most of the paper i s  res t r ic ted  t o  a consideration of cases of 
wheel motion i n  which the  wheel i s  ro l l ing  a t  an approximately constant 
velocity v without braking, and consequently with constant angular 
velocity a, and where no strong ve r t i ca l  osci l la t ions are  involved. 
Thus, f o r  example, e f fec ts  of acceleration or  deceleration, which are  
known t o  have a t  leas t  some influence on the  ro l l ing  motion (see, f o r  
example, the  experimental evidence of re f .  17) are not considered, 
Similarly, fore  and a f t  osci l la t ions of the wheel a re  excluded, 
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When these  t h r ee  r e s t r i c t i o n s  a r e  applied, t he  seven-variable prob- 
lem of a r o l l i n g  wheel becomes reduced t o  t h e  consideration of a system 
involving t h e  following four  degrees of freedom: (1)  swiveling of t h e  
wheel about a v e r t i c a l  ax i s  through t h e  wheel center point ,  designated 
by t h e  symbol 8; (2 )  l a t e r a l  t i l t i n g  of t he  wheel with respect  t o  a- 
v e r t i c a l  plane p a r a l l e l  t o  t h e  d i rec t ion  of undisturbed motion, desig- 
nated by t h e  symbol y ;  ( 3 )  l a t e r a l  displacement of t h e  wheel with 
respect  t o  a space-fixed reference ax i s  p a r a l l e l  t o  t h e  d i rec t ion  of 
undisturbed motion, designated by t he  symbol 7 with various subscripts;  
and (4)  l a t e r a l  displacement of t h e  t i r e  foo tpr in t  on t h e  ground (which 
i s  a measure of t h e  t i r e  d i s t o r t i on ) ,  designated by t h e  symbol yo. 
( ~ h e s e  coordinates and t h e i r  pos i t ive  d i rec t ions  a r e  i l l u s t r a t e d  i n  
f i g .  1.) 

I n  order t o  obtain four  equations cor re la t ing  these  four  var iables  0,  
y, 7,  and yo, t h e  following procedure i s  used: After  some remarks on 

general  r e s t r i c t i ons ,  a kinematic r e l a t i o n  between t h e  four  var iables  i s  
derived i n  t h e  sect ion e n t i t l e d  "~ inema t i c  Relations f o r  t h e  Roll ing 
Tire."  Next, t h e  primary forces  ac t ing  on t h e  wheel from t h e  ground, 
including wheel i n e r t i a  forces ,  a r e  discussed i n  t h e  sect ion e n t i t l e d  
"Forces and Moments on t h e  Wheel." By u t i l i z i n g  these  ground forces  and 
moments, t h e  four  bas ic  equations of motion f o r  t h e  wheel, including t h e  
kinematic equation, a r e  s e t  down i n  t h e  sect ion e n t i t l e d  "Equations of 
Mot ion. I' 

For many appl icat ions  these  equations of motion i n  t h e i r  most gen- 
e r a l  form a r e  r e l a t i v e l y  complicated and, although they a r e  by no means 
insolvable, it i s  prof i t a b l e  t o  simplify t h e  equations f o r  those problems 
which do not require  t h e  de ta i l ed  equations of the  summary theory. There- 
fo re ,  a number of systematic approximations t o  t he  summary theory a r e  
formulated i n  t h e  sect ion e n t i t l e d  "Systematic Approximations t o  t h e  
Summary Theory." A second reason f o r  es tabl ishing these  systematic 
approximations l i e s  i n  t h e  f a c t  t h a t  they furnish  a framework f o r  com- 
paring t h e  summary theory with t h e  other ex i s t i ng  theor ies  of wheel 
motion, most of which a r e  c losely  r e l a t ed  t o  these  systematic approxima- 
t i ons .  Such a comparison of t h e  summarytheory and i ts  systematic approx- 
imations with t h e  ex i s t i ng  theor ies  of wheel motion i s  ca r r ied  out i n  t h e  
sect ion e n t i t l e d  "c lass i f i ca t ion  and Evaluation of Exist ing Theories," 

I n  t h e  l a s t  major sect ion of t h i s  paper t h e  summary theory and i ts  
systematic approximations a r e  applied t o  . three i l l u s t r a t i v e  types of 
landing-gear configurations which a r e  chosen e i t h e r  t o  i l l u s t r a t e  agree- 
ment between theory and experiment o r  t o  i l l u s t r a t e  methods f o r  applying 
t h e  theory t o  complex problems of wheel shimmy. 



GENERAL RESTRICTIONS 

Before entering upon the detailed derivation of the  equations of 
motion, some fur ther  res t r ic t ions  on the  analysis should be discussed. 
F i r s t  of a l l ,  the present paper i s  limited almost exclusively t o  l i n -  
earized theories.  However, there  i s  some question a s  t o  whether a l i n -  
earized theory i s  suff ic ient  t o  describe the  important features  of wheel 
shimmy. It appears a t  present t h a t  a l inearized theory w i l l  provide a t  
l e a s t  a f a i r  qual i ta t ive description of s t a b i l i t y  boundaries f o r  shimmy 
and w i l l  indicate whether a given motion is s table  or not. However, 
agreement between theory and experiment, presented i n  a subsequent sec- 
t ion ,  is  s t i l l  not good enough quantitatively t o  warrant the  conclusion 
t h a t  nonlinear e f fec ts  can always be neglected or replaced by equivalent 
l i nea r  e f fec ts  . 

Another l imitat ion of the l inearized theory is  tha t  it does not 
permit calculation of the  maximum steady-state shimmy amplitude f o r  those 
steady-state self  -excited shimmy motions which sometimes occur on ac tua l  
landing gears, 

Although the  preceding considerations suggest t ha t  nonlinear e f fec ts  
i n  landing-gear motions may possibly be of importance f o r  some prac t ica l  
problems, t h e i r  consideration is  beyond the scope of the  present paper 
and henceforth only l inearized theory i s  discussed. The only concession 
t o  nonlinearity i s  made i n  appendix A, which presents a conventional 
approximate method f o r  converting a nonlinear shimmy damper t o  an equiva- 
l en t  l inear  damper. It should, however, be noted tha t  some at tent ion has 
been given t o  the  development of nonlinear tire-motion theory i n  refer-  
ences 18 t o  21. 

Another r e s t r i c t ion  ar i ses  i n  connection with the assumption adopted 
throughout t h i s  paper tha t  the f i n i t e  width of the t i r e  need not be taken 
in to  account i n  developing a tire-motion theory f o r  single t i r e s  of con- 
ventional cross section, This assumption appears a t  present t o  be a t  
l eas t  par t ly  jus t i f ied  on the basis  of an experiment by Von Schlippe 
and Dietrich ( r e f .  3); on the other hand, since t h e i r  investigation of 
t h i s  matter was extremely l imited i n  scope, t h e i r  experimental resu l t  
may not be completely typical .  Consequently, a more thorough evaluation 
of tire-width e f fec ts  seems desirable. Some theore t ica l  work on t h i s  sub- 
ject  has been done by Von Schlippe and Dietrich ( r e f .  3 )  and l a t e r  by 
Rotta ( r e f .  2 ) ,  but the matter i s  beyond the  scope of the  present paper, 

KINEMATIC RELATIONS FOR THE ROLLING TIRF: 

In t h i s  section the  kinematic equations f o r  the  motion of a ro l l ing  
t i l t e d  e l a s t i c  t i r e  without skidding are  derived i n  accordance with the  
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theore t ica l  analysis of Von Schlippe and Dietrich ( r e f .  3 or 4) .  This 
derivation d i f fe rs  only s l igh t ly  from tha t  analysis i n  t h a t  it omits 
some refinements of the theory which are  necessary f o r  very wide t i r e s  
and it includes some influences of t i l t i n g  of the t i r e  i n  more de ta i l .  
While the modifications tha t  are  made i n  regard t o  tilt may not neces- 
s a r i l y  be of prac t ica l  importance i n  most cases, they may be of in t e res t  
i n  a few problems. 

Specifically, the  object of t h i s  section i s  t o  obtain a r e l a t ion  
correlating the  absolute l a t e r a l  deflection of the  center point of the  
t i r e  ground-contact area yo with the corresponding wheel coordinates 

of l a t e r a l  deflection q ( for  example, qO or q3), swivel angle 0 ,  

and tilt y. (see f i g .  1.) F i r s t ,  some geometric re la t ions  a re  s e t  
down and some background information regarding t i r e  d is tor t ion  i s  dis-  
cussed. Then t h i s  information i s  u t i l i zed  t o  obtain a kinematic rela-  
t i o n  between the  l a t e r a l  deflection of the  t i r e  center l i n e  or  equator 
a t  t h e  forward edge of the ground-contact area yl and the  coordi- 

nates 7, y, and 8 .  Next, a kinematic re la t ion  between the  l a t e r a l  
deflections of the t i r e  equator a t  the cepter and forward edge of the 
ground-contact area (designated yo and yl, respectively) i s  estab- 

l ished. These two relat ions are  combined t o  obtain a basic kinematic 
equation correlating y with , y, and 8. 0 

The derivation of these kinematic re la t ions  i s  based upon the  f o l -  
lowing physical concept: A s  a t i r e  moves forward, t he  t i r e  material  on 
the  circumference just  ahead of the  ground-contact area i s  l a i d  down or 
developed on the  ground without skidding and becomes the  new forward por- 
t i o n  of the ground-contact area, so tha t  the  t r ack  of the  t i r e  i s  com- 
p le te ly  determined by the la teral-dis tor t ion coordinate of the  foremost 
ground-contact point yl and the  slope of the dis tor ted center l i n e  or 

equator of the  t i r e  a t  t ha t  point. 

The primary geometric quantit ies involved i n  the problem of a ' 

ro l l ing  t i r e  are  shown i n  figure 1, which gives an instantaneous view of 
a dis tor ted t i r e  with respect t o  an a rb i t r a ry  space-fixed XYZ coordinate 
system, the X-axis being horizontal  and p a r a l l e l  t o  the  mean direct ion 
of wheel motion, the  Z-axis being perpendicular t o  the  ground, and the 
Y-axis being perpendicular t o  the  X- and Z-axes. Par t s  ( a )  and (b) of 
t h i s  figure represent side and bottom views, respectively, of a ro l l ing  
wheel tha t  i s  swiveled and t i l t e d .  For the sake of c la r i ty ,  par t  (c )  of 
t h i s  figure,  which shows an end view of the ro l l ing  t i r e ,  has been drawn 
t o  a different  scale from part  (b) and represents the unswiveled condition. 



I n  digcussing the  geometric quantit ies,  the  following terminology and 
symbols a re  used: The wheel center plane i s  the plane of symmetry of 
the  wheel perpendicular t o  the wheel axle. The t i r e  center l i n e  or equa- 
t o r  comprises the  t i r e  points which on the  undistorted t i r e  a re  located 
a t  t he  intersect ion of the  t i r e  outer circumference with the wheel ten- 

t e r  plane; under the action of moments and l a t e r a l  forces these t i r e  
points a re  deflected l a t e r a l l y  by an amount h with respect t o  the  wheel 
center plane. The symbol Ai designates the l a t e r a l  deflection of t i r e  

equator points which a re  not i n  contact with the ground and Ag desig- 

nates the  l a t e r a l  deflection of points which are i n  contact with the 
ground. The point a t  the  center of the  ground-contact area i s  designated 
by A0" 

The l a t e r a l  distance of the  wheel plane from an arb i t ra ry  space- 
f ixed XZ-plane i s  designated by qi f o r  points off the ground a t  a ver- 

t i c a l  height z and by qg f o r  points on the ground. The l a t e r a l  dis- 

tances of tire-equator points from t h i s  XZ-plane a re  similarly designated 
by yi and y The difference between y and i s  the  l a t e r a l  dis-  

g ' 
t o r t ion  h of the  t i r e ,  or 

and 

The t i r e  contacts the  ground i n  a f i n i t e  area having a f i n i t e  width 
and a length 2h. The width of t h i s  area i s  assumed t o  be negligibly 
small; t ha t  is,  the  ground-contact area is  assumed t o  be reduced t o  a 
ground-contact l ine.  The foremost ground-contact point ( i n  the direction 
of motion) i s  designated by the  subscript 1, the rearmost point by the 
subscript 2, and the center point by the  subscript 0. Except f o r  
braking and accelerating ef fec ts ,  the  center point 0 has approximately 
the  same horizontal  x-coordinate as  the  wheel axle. 

Distances about the  t i r e  equator or circumference are  measured i n  
terms of the  circumferential coordinate s whose or igin i s  taken a t  the  
point 0. 

The wheel i s  assumed t o  move a t  constant velocity v approximately 
i n  the direct ion of t h e  X-axis. The wheel i d  l a t e r a l l y  inclined with 
respect t o  the  ve r t i ca l  Z-axis by the  tilt angle 7 and i s  swiveled with 
respect t o  the  XZ-plane by the  swivel angle 8. Both tilt and swivel 
angles a re  assumed t o  be small; t ha t  is, cos 8 = cos 7 = 1, s i n  8 = 8, 
and s i n  7 = 7. 
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The center point of the wheel axle i s  located a t  a ve r t i ca l  dis-  
tance r 3  from the XY (ground) plane, a l a t e r a l  distance 

r37 
the intersect ion of the wheel plane and the  XY-plane, and a l a t e r a l  
distance q3 from the XZ-plane, where 

TIRE DISTORTION 

This section contains a short discussion of the  features  of t i r e  
d is tor t ion  which are  pertinent t o  the  derivation of the  basic kinematic 
relat ions of t h i s  paper. 

Experimental and theore t ica l  considerat ions ( for  example, see 
refs .  3 and 2, respectively) indicate t h a t ,  i f  the  t i r e  equator i n  the  
gsound-contact region i s  subjected t o  a rb i t ra ry  l a t e r a l  dis tor t ion,  t he  
l a t e r a l  d is tor t ion  of the t i r e  equator off the  ground hi tends t o  die 
out a s  an exponentially decaying function of the  circumferential dis-  
placement s ( fo r  example, see f i g .  2(a)  ) . Thus, near t i r e  point 1 
off the  ground the t i r e  d is tor t ion  w i l l  tend t o  approach the  pat tern 
described by the  equation 

and a similar equation w i l l  apply near t i r e  point 2. The exponential 
constant L i s  a t i r e  character is t ic  having the  dimension of length 
and i s  called the  relaxation length. The relaxation length near point 2 
i s  not necessarily exactly the  same as  tha t  near point 1; however, since 
the former relaxation length w i l l  not be used i n  t h i s  paper i n  any c r i t i -  
c a l  calculations, t h i s  difference w i l l  not be taken in to  account, 

I n  regard t o  the  accuracy of equation (4) very near point 1, it 
should be emphasized tha t  t h i s  exponential var iat ion i s  only an expression 
of t h e  equilibrium condition which the  tire-equator d i s to r t  ion would 
reach i n  the absence of any res t ra in ts .  However, it i s  obvious t h a t  con- 
di t ions ex is t  f o r  which t h i s  d is tor t ion  curve cannot be completely expo- 
nent ia l  i n  form. For example, f o r  the case of pure l a t e r a l  deflection of 
a stationary t i r e ,  the  t i r e  equator i n  the  ground-contact zone i s  (neg- 
lec t ing  skidding) a s t raight  l i ne  pa ra l l e l  t o  the  wheel center plane and 
extending from point 1 t o  point 2 (see solid l i nes  i n  f i g .  2 (b ) ) .  Con- 
sequently, the existence of an exponential curve just  t o  the  r ight  of 
point 1, and including point 1, would imply the  existence of a sharp 
bend i n  the  t i r e  a t  point 1 such a s  i s  indicated i n  f igure 2(a) .  Since 
a sharp bend i s  impossible because of f i n i t e  t i r e  s t i f fness ,  it follows 
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t h a t ,  i n  general, on a s ta t ionary t i r e  the exponential var iat ion given 
by equation (4) cannot be val id  close t o  point 1. However, experimental 
evidence indicates tha t  beyond a short t rans i t ion  region ahead of point 1 
the  t ire-equator d is tor t ion  curve does have an essent ia l ly  exponential 
character (see so l id  l i nes  i n  f i g .  2(b) ) . A s  the wheel r o l l s  ahead the  
nonexponential t r ans i t ion  region of the t i r e  equator i s  l a i d  down or 
developed on the  ground a s  it passes in to  the  ground-contact zone, and 
the  more nearly exponential par t  of the equator curve moves down toward 
the  ground (see dashed l ines  i n  f i g .  2(b) )  and i s  eventually developed 
on the  ground, so tha t  a f t e r  ro l l ing  a short distance frm res t  and 
during normal ro l l ing  conditions ( f i g  . 2 (c)  ) the tire-equator d is tor t ion  
a t  the  front  end of the  t i r e  can approach the  assumed exponential varia- 
t i o n  of equation (4).  

A t  the  rear  end of the  t i r e  the  equator dis tor t ion curye during 
ro l l ing  does not so closely approximate an exponential variation, since 
a t  the  rear  end there i s  no process of laying down or development such 
a s  i s  responsible f o r  the  exponential var iat ion a t  the  front  end. How- 
ever, since the rearward section of the  t i r e  equator i s  not used i n  any 
c r i t i c a l  calculations i n  t h i s  paper, i t s  equator curve is also, f o r  sim- 
p l i c i ty ,  assumed t o  be exponential. 

I f  equation (4)  i s  accepted a s  the  basic equation f o r  tire-equator 
l a t e r a l  d is tor t ion  near point 1 under ro l l ing  conditions, the t o t a l  l a t -  
e r a l  displacement of the  t i r e  firom the  XZ-plane i n  t h i s  region can, by 
use of equation (I), be wri t ten i n  the  form 

Substituting the  geometric re la t ion  li = qg - 72 (see f i g .  1 )  in to  

equation ( 5 )  gives 

KINEMATIC EQUATION 

By making use of the  physical concepts discussed previously, together 
with equation (6) ,  it i s  now possible t o  establ ish as  follows the  basic 
d i f f e r e n t i a l  equation re la t ing  the  t i r e  deflection a t  t he  center of the  
ground-contact area yo with the  wheel coordinates , 8, and y. 

There i s  assumed t o  be perfect adhesion between t i r e  and ground, 
t h a t  i s ,  no skidding. A s  the  t i r e  r o l l s  forward ( a r b i t r a r i l y  swiveling, 
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t i l t i n g ,  and moving la tera l ly)  a distance *, a new element of the t i r e  
of circumferential length ds above and i n  front of point 1 is  l a i d  
down or developed on the ground. This t i r e  element, before being l a i d  
down on the  ground, had the  lateral-dis tor t ion variation given by equa- 
t i o n  (6).  This equation, a f t e r  different iat ion with respect t o  s, 
yields f o r  a given instantaneous position of the  t i r e  the following r a t e  
of change of d i s to r t  ion: 

A t  point 1, where s = h and yi = yl: 

The term i s  simply the  sine of the  angle between the  ground and 
I 

the t i r e  equator a t  point 1. (See f i g .  1. ) Just  t o  the l e f t  of point 1 

the t i r e  is  f lat tened on the ground, or = 0. ( )  were not 
ds 1 

I 

zero, the t i r e  would have t o  have a sharp bend at point 1. However, 
because of the  f i n i t e  bending s t i f fness  of an actual  t i r e ,  a sharp bend 

is impossible; thus ( )  = 0 and equation (8) reduces t o  
1 

Further, since ( )  = 0, s is a horizontal coordinate near point 1. 
-a 
I 

The r a t e  of change of wheel l a t e r a l  displacement q with respect t o  
g 

the  horizontal coordinate x a t  any given instant i s  just the  swivel 
angle 0; hence 

If the  t i r e  i s  assumed t o  have no sharp bend a t  point 1, 

(2) = (2) a t  t h i s  point. Then, since (3) is the  slope of the  
1 1 1 
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t i r e  equator on the  ground a t  point 1 and since no skidding i s  assumed 
t o  ex is t ,  t h i s  slope must coincide with the  t rack  of the  ro l l ing  t i r e  

dy1 on the  ground, which i s  - Thus, 
dx 

or, i f  different iat ion with respect t o  x i s  designated by the operator 

D = -  and the  terms a re  rearranged, 
dx 

(Alternate derivations of t h i s  equation are  presented i n  re fs .  3 and 4.) 
A s l igh t ly  more convenient form of equation (11) i s  obtained by substi tu- 
t i o n  of the  geometric relat ions hl = yl - 71 and rll = qo + h0 (see 

f i g .  1) t o  give 

Equation (12) i s  the  basic equation f o r  yl previously obtained by 

Von Schlippe and Dietrich (refs .  3 and 4 ) .  It should be noted, however, 
t ha t  no tilt terms appear i n  the  equation. Although it i s  not known 
whether the  e f fec t  of tilt on the  va l id i ty  of equation (12) i s  important, 
i n  view of the  present lack of a re l iab le  method f o r  taking t h i s  tilt 
ef fec t  i n to  account, the  following argument i s  presented t o  afford a t  
l eas t  a crude approach t o  the  problem. 

Equation (8) contains the tilt term 7 which was se t  equal t o  

zero on the  grounds tha t  the fac tor  (g)l i s  zero because of the  f i n i t e  

bending s t i f fness  of the  t i r e .  (see f ig .  1 . )  On the  other hand, i f  it 
i s  assumed tha t  the  bending s t i f fness  of the  t i r e  i s  zero and if r ad ia l  

t i r e  d is tor t ion  i s  neglected, ( )  w i l l  be equal t o  h/r  and the tilt 
1 
L 

term yh/r w i l l  enter in to  equations (9) t o  (12). A s  a somewhat ques- 
t ionable approximat ion, 'it w i l l  now be assumed tha t  a term of t h i s  type, 
but smaller by the reduction fac tor  5 < 1, should appear i n  the dif - 
f e r e n t i a l  equations (9) t o  (12). Equation (12) then becomes 
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A similar tilt term was derived by Greidanus ( re f .  7) on the  basis  
of a s l igh t ly  different  argument.  reid id anus' term i s  discussed i n  a 
subsequent section of t h i s  paper.) However, apparently no other detailed 
tire-motion theory has included such a term. 

Equation (13) i s  the fundamental kinematic re la t ion  f o r  t i r e  point 1. 
The kinematic relat ions f o r  points 0 and 2 a re  determined by the  condition 
of perfect adhesion between t i r e  and ground. During the  ro l l ing  process 
each t i r e  circumferential element f i r s t  contacts the  ground a t  point 1, 
l a t e r  proceeds t o  point 0 and then t o  point 2, a f t e r  which it leaves the  
ground. Consequently, with perfect adhesion each t i r e  element at point 2 
has the  same l a t e r a l  deflection t h a t  it had when it entered the  contact 
zone a t  point 1 a distance 2h ago; tha t  is, 

Similarly the  kinematic re la t ion  f o r  point 0 i s  

Finally,  by combining equations (13), ( l?) ,  and (3) the  equation 

i s  obtained. This i s  the basic kinematic equation correlating the t i r e  
l a t e r a l  deflection yo under ro l l ing  conditions with the  swivel angle 9, 

t he  wheel l a t  e ra1  displacement qO or 
q33 

and the  l a t e r a l  tilt 7 f o r  

a r b i t r a r i l y  applied variations of 9, qo or qj, and 7. However, t h i s  

transcendental form of the  kinematic equation i s  not the  most convenient 
form f o r  some purposes i n  t h i s  paper. In  par t icu lar  it i s  expedient t o  
remove the transcendental expression from equation (16) by use of a 
ser ies  expansion. 



SERIES EXPANSION OF KINEMATIC EQUATION 

The expression yo(x+h) , a f t e r  expansion i n  a Taylor ser ies ,  gives 

where the operator Dn represents An al ternat ive form of equa- 
dxL1 

t i o n  (17a) which i s  useful l a t e r  i s  

since the i n f i n i t e  se r i e s  i n  hD is  the  ser ies  expansion of the exponen- 
t i a l  function. A t h i r d  useful form of t h i s  equation i s  obtained by 
expressing equation ( 1 ~ )  i n  terms of a time derivative Dt instead of 
the  space derivative D. Since it i s  assumed throughout t h i s  paper tha t  
the  ro l l ing  velocity v i s  constant, the  correlation between these two 
derivatives i s  given by the equation 

and hence equation ( 1 ~ )  can a l so  be written i n  the  form 

-I 
yo(x+h) = ehv yo(x) 

Differentiation of equations (17) gives the resu l t  
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S u b s t i t u t i ~ n  of equations (17) and (18) in to  equation (16) gives a f t e r  
rearcangement, with y (x) written simply as  y and similar treatment 

0 0 

where 

Equations (lga) and (19b) are  al ternat ive forms of the  basic kinematic 
equation (16) which are  useful i n  subsequent sections of t h i s  paper. 



This concludes the  derivation and discussion of the  basic kinematic 
equation correlating the  l a t e r a l  t i r e  deflection yo with the  wheel 

coordinates 8, ?lo, and 7. Next, a t tent ion w i l l  be directed t o  the 

relationships exis t ing between these coordinates and the  forces and 
moments acting on the wheel. 

FORCES AND MOMENTS ON TKE WJ3EEL 

In t h i s  section the  primary forces and moments acting on a ro l l ing  
wheel are  discussed and, where possible, equations are  s e t  down f o r  these 
quantit ies.  These equations a re  then u t i l i zed  i n  l a t e r  sections, together 
with the  preceding kinematic equation, t o  establ ish the  equations of 
motion f o r  a ro l l ing  wheel. 

The forces and moments considered f a l l  i n to  f ive  general categories: 
e l a s t i c  forces and moments due t o  t i r e  distortion, gyroscopic moments, 
t i r e  ine r t i a  forces and moments, hysteresis forces and moments, and 
s t ruc tura l  forces and moments. 

Throughout t h i s  discussion, forces along the coordinate axes are  
considered positive i f  they tend t o  move the  wheel i n  the  positive direc- 
t ions  of the  coordinate axes; moments about the  coordinate axes X, Y, 
and Z or other pa ra l l e l  axes a re  considered positive i f  they tend t o  pro- 
duce wheel rotat ion from the positive Y-axis toward the  positive Z-axis, 
from the  positive Z-axis toward the positive X-axis, and from the  posi- 
t i v e  X-axis toward the positive Y-axis, respectively. 

ELASTIC FORCES AND MOMENTS DUE TO TIRE DISTORTION 

Lateral Elast ic  Force 

The l a t e r a l  e l a s t i c i t y  properties of a t i r e  w i l l  be considered f i r s t .  
I f  a s t a t i c  unt i l ted  t i r e  i s  l a t e r a l l y  deflected a t  i t s  base with respect 
t o  i ts  rim by a l a t e r a l  force Fyh, it produces an equal spring reaction 

force roughly proportional t o  the  mean l a t e r a l  dis tor t ion hean, or, 
inversely, a l a t e r a l  t i r e  dis tor t ion hean creates a proportional 

ground force F ~ h  . If the  l a t e r a l  dis tor t ion of the  center of the  ground- 

contact l i n e  A. is  taken as the  mean distortion, then the  e l a s t i c  ground 

force i s  
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where Kh i s  the l a t e r a l  spring constant or side s t i f fness  of the  t i r e .  
This re la t ion  i s  used by most investigators. However, i n  references 2 
t o  5 a s l igh t ly  different expression i s  used. I n  these references the  
mean l a t e r a l  d is tor t ion  of the t i r e  i s  defined as  the  average of the  
dis tor t ions a t  the  leading-edge and trailing-edge points of the ground- 
contact area (Faints 1 and 2). The resul t ing equation f o r  

*YA 
i s  

instead of equation (20). The t rue  equation f o r  Fyh i s  probably more 

complicated than e i the r  of these two equations; however, since no plausi- 
ble means of obtaining a be t t e r  equation i s  available,  it appears advis- 
able t o  select  one of the above equations f o r  use i n  t h i s  paper. Equa- 
t i o n  (21) may be s l igh t ly  the be t t e r  equation f o r  a few special  cases of 
wheel motion, but equation (20) i s  much simpler t o  work with, and i n  most 
cases of wheel motion it makes l i t t l e  difference which of the two equa- 
t i ons  i s  used. Therefore, f o r  the  sake of simplicity equation (20) i s  
adopted hereinafter as  the  basic equation f o r  the  l a t e r a l  force on a 
wheel due t o  l a t e r a l  deformation of the t i r e .  

Torsional Elas t ic  Moment 

The tors ional  e l a s t i c i t y  properties of a t i r e  w i l l  be considered 
next. I f  a t i r e  i s  twisted on the  ground about a v e r t i c a l  axis  through 
an angle a, there a r i se s  a restoring ground moment tha t  i s  roughly 
l inear ly  proportional t o  the  twist: 

The t i r e  t w i s t  a i s  equal t o  the  mean angle between the  t rack  of the 
t i r e  on the  ground and t h e  wheel plane; t h a t  is ,  a = Dymean - 0 .  Taking 
the value of Dyman a s  Dyo gives 

and thus 

Most investigators of t i r e  motion use t h i s  relat ion.  However, i n  refer-  
ences 2 t o  5 the mean angle i s  taken equal t o  (hl - h2)/2h and thus 

the moment equation 
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i s  obtained, which leads t o  re la t ive ly  more complicated equations of 
motion than does equation (24). Since there i s  no strong reason f o r  
believing equation (25) t o  be a significant improvement over the  simpler 
equation (24), t he  l a t t e r  i s  used i n  the analysis of t h i s  paper. 

Melzer ( re f .  10) has used the  l e s s  accurate re la t ion  tha t  the  mament 
due t o  t i r e  t w i s t  i s  

which implies the re la t ion  6 >> DyO (see eq. (24). ) Since t h i s  rela-  

t i o n  i s  not t r u e  i n  a l l  p rac t ica l  cases, Melzerfs theory should be viewed 
with some caution. 

T i l t  E las t ic  Force 

I f  a t i r e  i s  t i l t e d  from the  ve r t i ca l  Z-axis by an angle 7 without 
l a t e r a l  d is tor t ion  of the  equator (ho = 0 ), there a r i ses  a restoring 

ground l a t e r a l  force t h a t  i s  approximately l inearly proportional t o  the 
tilt angle (e.g. ,  see r e f .  2); 

where 3 i s  t he  constant of proportionality. Most authors (excepting 

Rotta i n  r e f .  2) have not considered the e f fec ts  of t h i s  force term 
although they have considered other e f fec ts  of the  same order of magnitude. 

Vertical-Load Center of Pressure 

Under some circumstances the  ve r t i ca l  load FZ influences the  

wheel motion. I n  order t o  consider t h i s  influence it i s  necessary to  
know the  location of the  center of pressure of t h i s  force,  I n  the 
XZ-plane ( f ig .  1) t h i s  center of pressure l i e s  approximately below the 
wheel axle i n  l i n e  with the point 0. I n  the  YZ-plane the  center of pres- 
sure i s  shif ted l a t e r a l l y  from the  intersect ion of wheel plane and 
ground 70 a s  a resu l t  of l a t e r a l  d is tor t ion  ho and tilt 7. A s  a 

f i r s t  approximation, t h i s  s h i f t  may be taken as  l inear ly  dependent on 
hg and 7 so that, the l a t e r a l  distance c of the  center of pressure 

from the  XZ-plane becomes 
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c = 70 + ch% " 
C77 

= chYo (1 - ~ ~ ) 7 ~  - c77 

where c~ and cy are constants. ('The signs of the  terms are  chosen 
so t h a t  cA and c7 are  positive numbers. ) 

GYROSCOPIC MOMENTS 

Gyroscopic Moment Due t o  Lateral Distortion of Tire  

The origin of gyroscopic moments on a ro l l ing  unt i l ted wheel with 
l a t e r a l  d is tor t ion  of the t i r e  a t  the  ground (f ig.  3) i s  considered next. 
While the  sol id rim and axle parts  of the  wheel are  unt i l ted,  l a t e r a l  
deformation of the  e l a s t i c  t i r e  causes the t i r e ,  on the  average, t o  be 

t i l t e d  with respect t o  the  wheel center plane by an amount 7 - AoT1 
A - r + r3' 

where r i s  the  t i r e  radius and -rl i s  a correction fac tor  which indi- 

cates the  effect ive fract ion of the  t o t a l  t i r e  mass tha t  i s  t i l t e d  a t  t h i s  
angle. Kantrowitz (ref .  8), apparently the  only investigator who has con- 
sidered t h i s  a t  l eas t  theoret ical ly significant factor,  has suggested tha t  

T 51: 112. This t i l t i n g  action produces an angular velocity DtyA = DtA071 
1 r + r3' 

where Dt indicates different iat ion with respect t o  time. This angular 

velocity, together with the  rotat ional  velocity of the  t i r e  a, produces 
a gyroscopic moment about the  Z-axis of magnitude 

where 
=yt 

i s  the  moment of ine r t i a  of the  t i r e  (excluding the  sol id 

rim and axle) about the  wheel axle. By using the re la t ion  Dt( ) = v D( ), 
equation (29) can a lso  be expressed i n  the  form 

where the  r a t i o  V/U i s ,  t o  a good enough approximation f o r  t h i s  sec- 
ondary term, equal t o  the  t i r e  radius r. Then, subst i tut ing f o r  71 
and U/V i n  equation (30) gives 
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For l a t e r  convenience, the  r e su l t  can be expressed i n  several a l te rna te  
abbreviated f oms : 

where 

Another method f o r  deriving an expression f o r  T i s  discussed i n  a 
subsequent section. 

Gyroscopic Moment Due t o  Ti l t ing  of Wheel 

I f  the  en t i r e  wheel structure t i l t s  a t  an angular velocity Q y ,  
another gyroscopic moment a r i se s  of magnitude 

i n  addition t o  the  term of equation (29 ) .  Here I i s  the  t o t a l  polar 
yw 

moment of ine r t i a  of the wheel (including the  t i r e )  about i t s  axle. 

Gyroscopic Moment Due t o  Swiveling of Wheel 

If the  wheel swivels a t  an angular velocity Dte, a t i l t i n g  gyroscopic 

moment a l so  a r i ses  of magnitude 

TIRE INERTIA FORCES AND MOMFINTS 

This section i s  concerned with an examination of t h e  influence of 
t i r e  ine r t i a  forces and moments on a wheel ro l l ing  a t  high speeds, Two 
types of such ine r t i a  e f fec ts  a re  evaluated now i n  separate sections: 
i ne r t i a  forces and moments associated with l a t e r a l  d is tor t ion  and twisting 
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of t h e  t i r e ,  and centrifugal forces and moments. Then the overall  e f fec ts  
of these two types of ine r t i a  forces and moments.are considered i n  another 
sect ion. 

Ine r t i a  Forces and Moments Due t o  Lateral  Distortion of Tire 

A t  high ro l l ing  or shimmy veloci t ies ,  t i r e  ine r t i a  forces and moments 
a r i s e  which are  proportional t o  t h e  re la t ive  accelerations of the  different  
par t s  of the t i r e  (including the  previously discussed gyroscopic moment due 
t o  t i r e  l a t e r a l  dis tor t ion,  discussed here from a s l igh t ly  different  point 
of view). A rough estimate of these forces and moments can be made a s  f o l -  
lows : One-third of the t o t a l  mass of the  t i r e  mt i s  assumed t o  be loca- 
ted  on the periphery of the  t i r e  and to* be subjected t o  the  same accel- 
erations with respect t o  the  wheel hub as  are  t i r e  par t ic les  on the  equa- 
t o r  l ine ,  while the  remaining t i r e  mass i s  assumed t o  be substant ial ly  
undisturbed. The "active" mass of the  t i r e  per uni t  circumferential 
length i s  then q-/&r. The l a t e r a l  acceleration of t i r e  par t ic les  on 

the right-hand side of the  t i r e  and off the  ground i n  f igure l ( a )  w i l l  
be considered first.  The l a t e r a l  d is tor t ion  of the  t i r e  i n  t h i s  region 
i s  given by equation (4) .  The l a t e r a l  re la t ive  veloci ty  of a t i r e  par- 
t i c l e ,  obtained by d i f fe rent ia t ing  t h i s  quantity with respect t o  time, 
i s  

The quantity Dts ,  which represents the  peripheral veloci ty  of t i r e  

par t ic les  with respect t o  the  wheel axle., i s  approximately equal t o  the  
negative of the  ro l l ing  velocity v, so tha t  the  velocity expression 
becomes 

Differentiation of t h i s  resu l t  t o  give the re la t ive  acceleration of the 
t i r e  par t ic les  yields the resu l t  

The corresponding i n e r t i a  force DF f o r  t h i s  par t  of the t i r e  i s  obtained 
by integrating the product of t h i s  acceleration and the  act ive mass per 

mt 
swr 

unit  length t o  obtain the force term -- D~ 2hi ds . Evaluat ion 
Grcr 
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of t h i s  integral ,  a f t e r  replacing the  upper l i m i t  by i n f i n i t y  f o r  simpli- 

f i ca t ion  of the  resu l t  which introduces no s ignif icant  e r ror  because of ( 
the  rapidly decaying exponential function i n  D ~ ~ A ~ ) ,  yields 

The corresponding ine r t i a  moment LM is  given by the  expression 

mt swr 

- =S,, r s i n  p D ~ ~ > ~  ds 

where r s i n  q i s  the  moment arm (see f ig .  l ( a ) ) ,  s i s  related t o  q 

by the  re la t ion  s - h = r ( q  - ql), and (41 = s i n  -' h Theref ore, the  r 
moment in tegra l  may be written i n  terms of i n  the  form 

Evaluation of t h i s  integral,  a f t e r  replacing the upper l i m i t  by i n f i n i t y  
(which introduces no appreciable e r ror ) ,  yields the  expression 

I n  a similar manner, f o r  t i r e  par t ic les  off t he  ground on the  l e f t -  
hand side of the  t i r e  i n  f igure l ( a ) ,  the following expressions a re  
obtained f o r  the  i n e r t i a  force and moment : 

I n  these two expressions it i s  assumed, f o r  reasons previously discussed, 
t h a t  the  relaxation length L i s  the  sa~& f o r  both sides of the  t i r e .  
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I n  obtaining t h e  i n e r t i a  forces  and moments f o r  t i r e  p a r t i c l e s  i n  
t he  ground-contact area,  it i s  recognized t h a t  i n  p r ac t i c a l l y  a l l  cases 
where i n e r t i a  forces  a r e  important t h e  ground-contact l i n e  i s  almost a  
s t r a igh t  l i n e ,  so  t h a t  t h e  l a t e r a l  d i s t o r t i on  f o r  t i r e  p a r t i c l e s  i n  t h i s  
region can be expressed f a i r l y  wel l  by t h e  equation 

Ag = A. + sa 

The corresponding ve loc i ty  and accelera t ion a r e  

2  2  ~~~h~ = Dt ho + s Dt a - 2v Dta  

The t o t a l  i n e r t i a  force  f o r  t h i s  region i s  then 

and t h e  i n e r t i a  moment i s  

The t o t a l  i n e r t i a  force  Fyi, obtained by summing t h e  force  terms 

i n  equations ( 3 6 ) ,  (38), and (40),  can be s t a t ed  conveniently i n  terms 
of ho and a by using t h e  r e l a t i ons  hl + A2 = 2A0 and hl - h2 = 2hu, 

which a r e  va l i d  f o r  a subs tan t ia l ly  s t r a igh t  ground-contact l i ne .  The 
r e s u l t  i s  

where Z1 = L + h. Similarly, t h e  t o t a l  i n e r t i a  moment i s  
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The significance of these  i n e r t i a  expressions w i l l  now be p a r t l y  
evaluated by considering t h e  i n e r t i a  force  f o r  s inusoidal  osc i l l a t ions ;  
t h a t  is, where 2 

ho = A& s i n  vt and there fore  Dt hg = -v2?y,, so 

t h a t  equation (42) may be r e s t a t ed  as, 

( ~ n  equation s imilar  t o  equation (44) has been derived by Marstrand i n  
reference 20. Marstrand's equation, however, i s  based on a cruder repre- 
senta t ion of t h e  shape of t h e  l a t e r a l  d i s t o r t i on  of t h e  t i r e . )  

I n  order t o  in te rpre t  t h e  significance of t h e  i n e r t i a  force  it i s  
noted t h a t  t he  t i r e  force  quanti ty which i s  of importance f o r  t h e  sub- 
sequent analysis  i s  t h e  net t i r e  force  Fyn ac t ing  on t h e  wheel, which 

i s  equal t o  t he  sum of t he  ground force  
F ~ h  

and t he  i n e r t i a  force  Fyi: 

For a s t a t i c  t i r e ,  F was s e t  equal t o  KhhO (eq. (20) ) .  I n  t h e  
YA 

dynamic case t h e  r e l a t i o n  between ground force  and l a t e r a l  d i s t o r t i on  
of t he  t i r e  may be modified by t he  i n e r t i a  e f f ec t .  As a f i r s t  approxi- 
mation, it w i l l  be assumed t h a t  t he  modification of t h e  ground force  i s  
proportional  t o  t h e  i n e r t i a  force ,  or  

where 
9~ 

i s  a number whose absolute value w i l l  be l e s s  than un i t y  i f  

t h e  modification of t h e  ground force  due t o  t h e  i n e r t i a  force i s  l e s s  
t han  the  i n e r t i a  force  i t s e l f .  

After  combining equations (44),  (45), and (46), t h e  following 
equation f o r  t h e  net t i r e  force  Fyn i s  obtained: 
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From t h e  form of equation (47) it can be seen t h a t ,  insofar  a s  t h e  r a t i o  
of net  t i r e  force  t o  l a t e r a l  deformation i s  concerned, t h e  e f fec t  of t h e  
i n e r t i a  force  can be considered equivalent t o  a change i n  t i r e  l a t e r a l  
s t i f f n e s s  &$, equa l . t o  

i 

Similarly, from an examination of t h e  terms containing a i n  t h e  i n e r t i a  
moment equation (43), it can be concluded t h a t  pa r t  of t h e  e f f ec t  of t h i s  
i n e r t i a  moment i s  t o  change t h e  t i r e  t o r s iona l  s t i f f n e s s  by an amount 
a:, which i s  defined by 

where 7 i s  a number representing t h e  t o r s iona l  s t i f f n e s s  s imilar  t o  

7y f o r  t he  l a t e r a l  s t i f f ne s s .  The remaining inertia-moment term in  

equation (43), which i s  proportional  t o  DtAo, i s  simply t h e  previously 

discussed gyroscopic moment due t o  l a t e r a l  t i r e  d i s to r t ion .  By comparing 
t h i s  term with equation (32) it i s  seen t h a t  t h e  coeff ic ient  T may be 
expressed by t he  equation 

antr(h + L 47) 
7 = (50) 

33I(L2 + r2) 

Equation (50) gives approximately t h e  same r e s u l t  a s  equation (33) with 

Kantrowitz' assumption t h a t  T~ = The discussion of t h e  ve loc i ty  
2 * 

range i n  which these  s t i f f n e s s  changes a r e  important i s  postponed u n t i l  
a f t e r  t h e  e f f e c t s  of cen t r i fuga l  forces  have been considered. 

Ef fec t s  of Centrifugal  Forces 

Another i n e r t i a  e f f ec t  t h a t  may become s ign i f ican t  at high speeds 
i s  produced by t h e  cen t r i fuga l  forces  ac t ing  on t h e  individual  mass e le -  
ments of t h e  t i r e .  These cen t r i fuga l  forces  appear t o  increase t h e  t i r e  
s t i f f ne s s ,  a s  w i l l  be demonstrated by a crude analysis  which gives a 
qua l i t a t ive  idea of t h i s  e f f ec t  but which should not be regarded as pos- 
sessing any strong quant i ta t ive  merit .  
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For t h e  purpose of t h i s  estimate, one-half t h e  mass of t h e  t i r e  is  
assumed t o  be concentrated i n  t h e  s ide  w a l l s  and t h e  other  hal f  i s  assumed 
t o  be concentrated on t h e  periphery. 

I f  t h e  t i r e  l a t e r a l  and t o r s iona l  s t i f f ne s se s  Kh and K, a re  
assumed t o  be d i r e c t l y  proportional  t o  t h e  tension i n  t h e  s ide  walls  of 
t h e  t i r e ,  the re  w i l l  be two sources of t i r e  s t i f f ne s s :  i n f l a t i o n  pres- 
sure,  which produces a side-wall tension approximately equal  t o  wp per  
un i t  circumferential  distance (where w i s  t h e  t i r e  width), and cen t r i -  

fuga l  force,  which produces t h e  side-wall tension ($)(&) g) c orre  - 
sponding t o  t h e  per ipheral  t i r e  mass .$ mt . Thus t h e  l a t e r a l  s t i f f n e s s  

of t h e  t i r e  may be expressed i n  t h e  form 

or ,  equivalently, a s  

It i s  evident from t h i s  equation t h a t  cen t r i fuga l  force  increases t he  
t i r e  l a t e r a l  s t i f f n e s s  by an amount 4, : 

and t h e  t o r s iona l  s t i f f n e s s  by an amount 4 3 "  

Significance of T i re  I n e r t i a  Effects  With Respect 

t o  T i re  S t i f fne s s  

The significance of t h e  two jus t  discussed t i r e  i n e r t i a  e f f e c t s  on 
t h e  t i r e  s t i f f n e s s  w i l l  now be considered. 
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For the l a t e r a l  s t i f fness  of a t i r e ,  the  effect ive change AKA from 

the  s t a t i c  value of KA i s  obtained by adding the two increments given 

by equations (48) and (51). The resul t ing effect ive overall  change i n  
t i r e  l a t e r a l  s t i f fness  a s  a function of ro l l ing  speed and shinrmy f re -  
quency i s  

The f i r s t  term, which involves the  shimmy frequency, appears t o  be small 
enough i n  comparison with Kh so tha t  it can probably be neglected f o r  

most prac t ica l  conditions. The l a s t  t w o  terms have opposite signs i f  
7 < 1 and thus may represent two par t ly  counterbalancing ef fec ts ,  The 

Y 
second term a r i se s  from the previous considerations of the  l a t e r a l  accel- 
erat ion of t i r e  par t ic les  and tends t o  reduce the effect ive l a t e r a l  s t i f f -  
ness of the t i r e  with increasing ro l l ing  velocity i f  7 < 1. The l a s t  

Y 
term a r i se s  from the previous considerations of centrifugal forces and 
tends t o  increase the  l a t e r a l  s t i f fness .  These l a s t  two terms indicate 
t h a t  a t  high ro l l ing  speeds, i f  vy < 1, the t i r e  s t i f fness  may e i the r  

dras t ica l ly  decrease or dras t ica l ly  increase, depending on which of the 
two terms i s  larger. However, both terms happen t o  be of the  same order 
of magnitude and the  derivations of both terms are based on concepts too  
crude t o  jus t i fy  conclusions regarding which term i s  larger .  Thus, the 
only conclusion tha t  can be drawn i s  tha t  a t  suf f ic ien t ly  high ro l l ing  
speeds drast ic  changes i n  t i r e  l a t e r a l  s t i f fness  may occur. Whether the  
s t i f fness  increases or decreases can probably be se t t l ed  only by 
experiment. 

I n  order t o  give some quantitative measure of the  velocity a t  which 
these ine r t i a  e f fec ts  become signif icant ,  some calculations were made t o  
determine the  velocity a t  which the  magnitude of the second term i n  equa- 
t i o n  (53) becomes equal t o  Kh. By making use of the  s t a t i c  t i r e  data i n  

reference 24 f o r  several modern a i r c r a f t  t i r e s  and assuming tha t  qy = 0, 
it was found tha t  t h i s  velocity averaged approximately 
400 fi fps  270 \/;; mph, where r i s  expressed i n  f ee t .  Similar e s t i -  
mates f o r  the  velocity a t  which the  t h i r d  term i n  equation (53) becomes 
equal t o  Kh yielded approximately t h i s  same velocity. Moreover, since 
t h i s  velocity i s  rather  high compared with normal present-day landing 
speeds, the  ine r t i a  e f fec ts  on t i r e  l a t e r a l  s t i f fness  considered here 
can probably usually be neglected. 

For the  tors ional  s t i f fness  of a t i r e ,  the  overall  effect ive change 
i n  tors ional  s t i f fness  & due t o  t i r e  ine r t i a  and centrifugal forces 

i s  obtained by adding the  two increments given by equations (49) and (52). 
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The r e s u l t  i s  

This equation i s  p a r a l l e l  t o  equation (53) f o r  t h e  l a t e r a l  s t i f f ne s s ,  so  
t h a t  statements made previously concerning t h e  l a t e r a l  s t i f f n e s s  apply 
here a lso .  

Other I n e r t i a  Effects  

The preceding discussion suggests t h a t  t h e  e f f e c t s  of t i r e  i n e r t i a  
a r e  t o  change t i r e  s t i f f n e s s  a t  high speeds and t o  introduce a gyroscopic 
moment. However, it should be recognized t h a t  other i n e r t i a  e f f e c t s  w i l l  
come i n t o  play, probably a t  ve loc i t i e s  close t o  those a t  which t h e  pre- 
viously mentioned i n e r t i a  e f f e c t s  a r i s e .  For example, t h e  basic  kinematic 
equation depends on t h e  assumption of an exponentially d i s t o r t ed  t i r e -  
equator l i n e  corresponding t o  a de f in i t e  " s t a t i c "  re laxat  ion length. 
This assumption i s  va l i d  ( i f  it i s  va l id  at a l l )  only when t h e  e l a s t i c  
forces  i n  t h e  t i r e  predominate over t h e  i n e r t i a  forces .  Where i n e r t i a  
fo rces  a r e  strong i n  comparison with e l a s t i c  forces ,  it i s  a t  l e a s t  
doubtful whether t he  re laxat  i on  length remains constant. 

Although there  a r e  undoubtedly other e f f ec t s  of t i r e  i n e r t i a  i n  
addi t ion t o  t h e  ones discussed here, it appears probable t h a t  t h e  impor- 
tance of many t i r e  i n e r t i a  e f f e c t s  can be assessed by means of t h e  f o l -  
lowing summary statement: The major e f f ec t s  of t i r e  i n e r t i a  on t h e  ro l -  
l i n g  motion appear t o  come i n t o  play a t  a ve loc i ty  of an order of magnitude 
of 400 fi fp s  = 270 fi mph where r is expressed i n  f e e t .  For con- 
s iderably  smaller ve loc i t i es ,  most i n e r t i a  e f f ec t  s can probably be sa fe ly  
neglected; f o r  ve loc i t i e s  of t h i s  order of magnitude or higher, many of 
t h e  basic  assumptions of t h i s  paper, and of most other papers on t h i s  
subject ,  may be subject  t o  considerable e r ro r .  
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HYSTETBSIS FORCES AND MOMEXPS 

In  addition t o  the forces and moments previously discussed, cer tain 
damping forces and moments a r i se  as a consequence of the  sometimes con- 
siderable hysteresis losses which a r i se  i n  the  d is tor t ion  of e 1 a s t . i ~  
t i r e s .  Apparently the  only significant attempt t o  deal with t h i s  hyster- 
e s i s  problem i s  reported by Von Schlippe and Dietrich i n  reference 5 
This reference provides some valuable insight in to  the  f u n m e n t a l  mech- 
anism of the  hysteresis process and presents an equation f o r  the  hysteresis 
moment act ing about the swivel axis  of a shimmying wheel. However, even 
though use of t h i s  hysteresis-moment equation leads t o  good agreement 
between theore t ica l  and experimental s t a b i l i t y  boundaries f o r  a limited 
amount of experimental data (as  i s  shown subsequently i n  t h e  present 
paper), some par t s  of the analysis seem so unreal is t ic  tha t  it is ques- 
t ionable whether much confidence can be placed i n  the  f i n a l  resu l t s  of 
reference 5.  Apparently, the only other significant contribution t o  the  
hysteresis problem i s  provided by the  analysis of Moreland i n  refer-  
ences 11 and 12. I n  these references t i r e  hysteresis forces as  such are  
not considered, but the  idea i s  introduced tha t  a t i r e  possesses a char- 
a c t e r i s t i c  time-lag constant. I n  a subsequent section of the  present 
paper it is  shown t h a t  t h i s  time-lag constant may be, a t  leas t  i n  part ,  
a consequence of hysteresis e f fec ts .  However, the  interpretat ion of 
Moreland's time-lag constant as a hysteresis e f fec t  presents some ques- 
t ionable features tha t  a re  a l so  discussed subsequently. 

No completely sat isfactory solution of the  hysteresis problem has 
been found yet. However, the  following crude analysis of t h i s  problem 
offers  another point of view with a few qualitative merits not possessed 
by the  two previous analyses. 

Consider the  case i n  which a standing t i r e  i s  subjected t o  a period- 
i c a l  l a t e r a l  deformation hg of the  form 

hg = hg,, s i n  vt 

Under these conditions the  l a t e r a l  ground force on t h e  t i r e  i s  

experimentally observed t o  vary with time i n  the  manner indicated i n  
sketch 1 and the corresponding variat ion of l a t e r a l  ground force 

F ~ h  

' ~ l t h o u ~ h  Von Schlippe and Dietrich considered hysteresis e f fec ts  
i n  an ea r l i e r  paper (ref .  4), t h i s  e a r l i e r  analysis leads t o  sane con- 
clusions which are  not i n  agreement with the  resulks of the  l a t e r ,  more 
detailed analysis of reference 5 .  
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with l a t e r a l  t i r e  dis tor t ion Ag, shown i n  sketch 2, appears i n  the form 

of a typica l  hysteresis loop. As can be seen from sketch 1, t h e  l a t e r a l  

Sketch 2 
Sketcll 1 

t i r e  deformation l~ lags behind the l a t e r a l  ground force FyA by a 

time increment At, where At i s  approximately equal t o  the r a t i o  of 
A% t o  the  maximum slope of the  curve of hg plot ted against time 
(which i s  hg v fo r  the assumed variat ion of ho 

max 

A s  a f i r s t  approximation f o r  quantitatively including t h i s  time-lag 
concept i n  the  present analysis, a t i r e  i s  
assumed t o  behave somewhat l i k e  a combina- 
t i o n  of a l inear  spring and a damper unit  
such as  i s  indicated i n  sketch 3, where the  
spring constant corresponds t o  the  previously 

p F; 
discussed t i r e  l a t e r a l  s t i f fness  Kh and a 1  

is  the coefficient of an equivalent l inear  
damper. Ine r t i a  forces a re  neglected f o r  the Sketch 3 

present argument, The d i f f e ren t i a l  equation f o r  t h i s  system i s  

and i t s  solution f o r  the  case of ho = s i n  vt gives a hysteresis 

loop of the  form indicated i n  sketch 2 where the time l ag  At becomes 

tan" 1"1"/ 
At = Kh 

v 

After equating equations ( 5 5 )  and ( 5 7 ) ,  al can be expressed by the 

re la t ion  al = tan(whbX.) so tha t  equation ( 5 6 )  can then be 
v 



written i n  the  form 

F~~ = KA + F~~ = ~ ~ ( h g  + TA D ~ A O )  (58 )  

where Fyh, the  l a t e r a l  force resul t ing from hysteresis effects ,  is  

and where 

% y, = t a n  - 
A%.ELx J 

With the  same type of reasoning the  hysteresis twisting moment i s  
given by the  equation 

(compare with eq. (59)) ,  where - 
t a n  L?rr G~ - 

Ta - ( v I ) - ~ a l  v 

& = t a n  - 
%I.ax J 

It i s  now seen tha t  the  determination of the  hysteresis force and 
moment from equations (59) and (61), respectively, depends on the  deter- 
mination of two quantit ies TA and T, which have the dimension of 

time and which w i l l  be called time-lag constants. The quantity TA, 
i n  particular,  can be considered closely analogous t o  Moreland's time- 
l ag  constant. I n  the  present case equations have been derived f o r  the 
time-lag constants a s  functions of the three variables vA, &, and Y. 

(see eqs. (60) and (62). ) However, it should be clear ly recognized tha t  
equations (60) and (62) a re  based i n  part  on arguments val id  only f o r  a 
standing t i r e .  These arguments may no longer be val id  f o r  a ro l l ing  
t i r e ,  and even i f  the  idea of a time-lag constant i s  s t i l l  valid, it i s  
l i k e l y  tha t  the time-lag constants w i l l  not be adequately predicted by 
equations (60) and (62), par t icu lar ly  i f  the quantit ies qy and 1, 
are  evaluated from s t a t i c  hysteresis loops. Moreover, it i s  basical ly  
unsound t o  assume tha t  the  hysteresis force i s  dependent only on the  
t i r e  l a t e r a l  dis tor t ion A. and i s  independent of the t i r e  t w i s t  aj 
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actual ly  the  hysteresis force (and the  hystere.sis moment) w i l l  i n  gen- 
e r a l  depend i n  a complex manner on both A. and a, and even f o r  a first 

approximation the  interaction of these two variables cannot necessarily 
be neglected. Thus it appears tha t  the  preceding hysteresis equations 
a re  based on rather  speculative and perhaps unsound assumptions, a t  l eas t  
from a quantitative point of view, and f o r  t h i s  reason these equations 
w i l l  not be incorporated in to  most of the derivations i n  subsequent par t s  
of t h i s  paper. On the other hand, the  preceding derivation may be suf - 
f i c i e n t l y  plausible t o  give some idea of the  order of magnitude of hys- 
t e r e s i s  effects ,  par t icular ly since Moreland has indicated i n  reference 12 
t h a t  h i s  experimental data (mostly unpublished) demonstrates the  exis t -  
ence of a time-lag ef fec t  i n  t i r e  motion; consequently, i n  a few par t s  of 
t h i s  paper some mention w i l l  be made of the  consequences of introducing 
the  hysteresis force and moment terms <hat have just  been derived into a 
wheel-shimmy analysis. 

STRUCTURAL FORCES AND MOMENTS 

The preceding discussion covers the  major ground forces and moments 
and the gyroscopic moments act ing on the  wheel. I n  addition, forces and 
moments are  exerted on the  wheel by the  supporting structure.  These w i l l  
be designated as  Fys f o r  the  net s t ruc tura l  force pa ra l l e l  t o  the Y-axis, 

MXS f o r  the net s t ruc tura l  l a t e r a l  t i l t i n g  moment, and Mzs fo r  the  net 

s t ruc tura l  swiveling moment. These forces and moments include shimmy 
damper moments, spring restoring moments, i ne r t i a  forces i n  a landing- 
gear structure (exclusive of the  wheel ine r t i a  force) ,  and spring forces 
a r i s ing  f romthe  f l e x i b i l i t y  of a landing-gear s t r u t  or  of the fuselage 
of an airplane. I n  general, most of these forces and moments can probably 
be considered approximately l inear  except shimmy damper moments; however, 
even these moments can be replaced as  a f i r s t  approximation by equivalent 
l inear  damping moments. (see, for  example, appendix A. ) 

Within the scope of a l inear  theory, these s t ruc tura l  forces and 
moments w i l l  depend i n  a l i nea r  manner on the wheel-center coordinates 73, 
6, and 7 according t o  expressions of the  type 
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where t he  T ' s  a r e  functions of t h e  d i f f e r e n t i a l  operator Dt, sometimes 
ca l led  t r ans f e r  functions, whose spec i f ic  forms w i l l  depend on t h e  type 
of landing gear i n  question. 

This concludes t he  discussion of t h e  forces  and moments ac t ing  on a 
r o l l i n g  wheel. Now these  quan t i t i es  w i l l  be u t i l i z e d  t o  s e t  up t h e  basic  
equations of motion f o r  a r o l l i n g  e l a s t i c  wheel. 

EQUATIONS OF MOTION 

DERIVATION OF TKE EQUATIONS OF MOTION 

I n  t h i s  sect ion t he  l inear ized  equations of motion f o r  a r o l l i n g  
e l a s t i c  wheel a re  s e t  down with t h e  a i d  of t h e  equations from t h e  pre- 
ceding sections.  

The sum of t h e  l a t e r a l  forces  ac t ing  on t h e  wheel p a r a l l e l  t o  t h e  
Y-axis i s  s e t  equal t o  t h e  i n e r t i a  react ion t o  give (see eqs. (20) 
and (27))  

2 
Fys + KA(y0 - 13 - r3y) - K77 = % Dt i 7 j  (66) 

or,  rearranging, 

The f i r s t  term i n  equation (66) i s  t he  s t r u c t u r a l  force ,  t h e  second 
term is  t h e  net force on t h e  wheel resu l t ing  from t i r e  e l a s t i c  and i n e r t i a  
forces  ( K ~  = KA + where MA i s  given by equation (53)), 

s t a t i c  
t h e  t h i r d  term i s  t h e  l a t e r a l  ground force  r e su l t i ng  from t i r e  tilt, and 

m, i s  t he  mass of t h e  wheel (including t h e  t i r e ) .  For reasons previously 
discussed, hysteres is  forces  and moments a re  not included e i t h e r  i n  t h i s  
equation or i n  t h e  following equations. 

Set t ing t h e  sum of t h e  l a t e r a l  t i l t i n g  moments about t h e  wheel center 
equal t o  t h e  i n e r t i a  react ion gives (see  eqs. (20), (27), (28), and (35) ) 
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The f i r s t  term i n  equation (68) i s  the s t ruc tura l  moment, the second 
term i s  the  moment resul t ing from the  ve r t i ca l  ground load, the  th i rd  
term i s  the  moment of the  ground forces resul t ing from t i r e  l a t e r a l  dis- 
t o r t ion  and tilt, the fourth term i s  the gyroscopic moment resul t ing from 
the  swiveling motion of the  wheel, and I,, i s  the  moment of ine r t i a  of 
the  wheel about an axis through i t s  center pa ra l l e l  t o  the  X-axis. 

Setting the  sum of the  swiveling moments about the wheel center equal 
t o  zero yields the  equation (see eqs. (24), (32), and (34)) 

The first term i n  equation (70) is  the s t ruc tura l  moment, the second term 
i s  the..net moment resul t ing from t i r e  e l a s t i c  and ine r t i a  forces exclusive 
of the gyroscopic moment due t o  t i r e  l a t e r a l  dis tor t ion (k = %sta t ic  +% 
where bJ& is  given by equation (54)), the  t h i r d  term i s  the  gyroscopic 
moment resul t ing from t i r e  l a t e r a l  dis tor t ion,  and the fourth term i s  the  
gyroscopic moment resul t ing from wheel l a t e r a l  tilt. 

Equations (67), (69), (71), and (16) or ( l g ) ,  together with the three 
auxi l iary equations (63) t o  (65), a re  the  basic equations of motion f o r  an 
e l a s t i c  wheel. I f  the T-functions i n  equations (63) t o  (65) a re  known f o r  
a par t icular  landing gear, these equations can be solved simultaneously t o  
determine the  ro l l ing  behavior of the  gear. 

Next the question ar i ses  a s  t o  the most profitable method of solut-lon 
of these equations f o r  prac t ica l  landing-gear problems. Essentially, the  
choice i s  between exact and approximate solution of the  equations. In the  
past,  exact solutions (omitting some of the l e s s  important terms previously 
mentioned) have been made only f o r  the  simplest case of a r ig id  swiveling 
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landing gear attached t o  a r ig id  fuselage ( re fs .  2, 4, and 5 ) .  Although 
the exact solution of these equations fo r  more complex problems does not 
appear t o  present any insurmountable d i f f i cu l t i e s ,  re la t ive ly  complex 
transcendental equations may be involved, so tha t  it i s  worthwhile t o  
examine the poss ib i l i ty  of finding simpler systematic approximations t o  
the  general equations. 

A second reason fo r  investigating systematic approximat ions t o  the 
summary theory ar i ses  i n  connection with the correlation of the  summary 
theory with the  other exis t ing theories.  Superficially, i n  i t s  present 
form, the summary theory does not close-3y resemble most of the  other 
exis t ing theories.  However, the approximat ions tha t  a re  presented sub- 
sequently make the correlations between the  different  theories f a i r l y  
easy t o  see. 

Subsequent sections of t h i s  paper w i l l  be concerned with the  problem 
of establishing a ser ies  of systematic approximations t o  the  general equa- 
t ions  and the  correlation of these approximations with the  other exis t ing 
theories of wheel motion. However, before proceeding with these two mat- 
t e r s  it i s  convenient t o  digress s l igh t ly  t o  consider the exact solution 
of the  general equations f o r  the case of steady yawed rol l ing,  i n  order 
t o  establ ish several re lat ions which w i l l  be useful i n  l a t e r  sections. 

EQUATIONS FOR STEADY YAWED ROLLING 

For an unt i l ted  wheel which r o l l s  a t  constant velocity a t  a constant 
small swivel or yaw angle, Yo(x + h) =  YO(^) = Constant, 0 = Constant, 

and ' I3  = 7 = 0, so tha t  equations (2) (with yo f o r  Yg), (16), (67), 
and (71) reduce, respectively, t o  the relat ions 

By combination of equations (72) and (73) the t i r e  l a t e r a l  dis tor t ion i s  
found t o  be 



By combination of equations (73) and (74) the  l a t e r a l  force on the  wheel 
i s  found t o  be 

The quantity Z1Kh, which represents the  l a t e r a l  force per uni t  yaw angle, 

i s  an important t i r e  character is t ic  called the cornering power or l a t e r a l  
guiding character is t ic  of the t i r e .  Later i n  t h i s  paper it i s  found con- 
venient t o  represent t h i s  quantity by a single symbol N, where 

Another property of the steady yawed ro l l ing  condition tha t  i s  of 
some in teres t  i s  the  distance of the  center of pressure of the  l a t e r a l  
force behind the center of the  t i r e ,  which i s  sometimes called the pneu- 
matic caster  E = -MZSJFyS. This quantity, according t o  equations (73) 
t o  (77), i s  equal t o  

SYSTEMATIC APPROXIMATIONS TO THE SUMMARY THEORY 

In t h i s  section the  poss ib i l i t i e s  f o r  simplifying the preceding 
equations of mot ion are  discussed, and a ser ies  of systematic approxima- 
t ions  t o  the general equations of the  summary theory i s  set  down. 

A l l  but one of the equations of motion (eqs. (16) or (19) , (63) 
t o  (63), (67) (69), and (71) ) are  usually simple l inear  equations and 
present no great d i f f i cu l t i e s  . The exception i s  the  kinematic equation, 
which was or iginal ly  transcendental i n  f o m  (eq. (16) ) and was l a t e r  
expressed as  an i n f i n i t e  ser ies  of l inear  terms (eq. ( lga ) ) .  The most 
promising way t o  simplify the kinematic equation appears t o  be t o  assume 
tha t  the ser ies  expansion i n  equation ( lga)  i s  a rapidly convergent 
ser ies  i n  which a l l  terms above a cer tain value of n can be neglected. 
The rapidi ty  of convergence of the  ser ies  and i t s  significance cannot be 
f u l l y  determined without a knowledge of the par t icular  landing-gear con- 
f igurat ion considered. However, some insight in to  t h i s  question can be 
obtained by considering the case of purely sinusoidal osci l la t ions of 

ivlx 
t h e  form yo = e , where the  quantity vl i s  the path frequency* 
Substitution of t h i s  expression in to  the in f in i t e  ser ies  i n  yo i n  equa- 

t i o n  ( lga)  yields 



where 

-. 
Another form f o r  the  p' s can be obtained by substi tuting the  rela-. 

i vlx 
t i o n  y = e  

0 
in to  equation (16).  h he resu l t  i s  

plm = cos vlh - Lvl s i n  vlh 

P2m 
= s in  vlh + Lvl cos vlh I 

The r a t e  of convergence of the p ser ies  of equations (80a) can be 
tes ted  f o r  any given frequency by substi tuting numerical values of L, 
h, and vl i n to  equations (80a) and (80b) and comparing the  individual 

terms. A typ ica l  comparison i s  shown i n  f igure 4 f o r  the conditions 
L = 0.8r9 and h = 0.51". The abscissa of t h i s  plot represents the  oscil-  
l a t ion ' s  wave length S = &/vl and the  ordinate represents the  p func- 

t ions.  The l abe l  p12 means t h a t  t h i s  curve represents the  sum of the 

f i r s t  two terms i n  the p ser ies ,  and the  other labels  a re  analogous, 
l m  

 h he approximation symbols w i l l  be explained l a t e r .  ) From t h i s  f igure 
it i s  seen tha t  the  ser ies  converge very rapidly. From a purely quali- 
t a t i v e  point of view the figure seems t o  indicate tha t ,  i n  dealing with 
shimmy wave lengths greater than approximately 4 t i r e  r ad i i ,  two terms 
i n  each ser ies  a re  suff ic ient  t o  represent f a i r l y  well the exact varia- 
t ions,  fo r  wave lengths greater than approximately 6 r ad i i  one term i n  
the  p2 ser ies  and two i n  the pl ser ies  a re  suff ic ient ,  and f o r  wave 

lengths greater than about 20 r a d i i  one term i n  each ser ies  i s  suff ic ient ,  
 h he wave lengths ci ted here represent only order of magnitude and are  
not necessarily quantitatively significant.)  To correlate these observa- 
t i ons  with the  conditions of wave length l ike ly  t o  be encountered i n  prac- 
t i c e  it can be s tated tha t  the experimental data of Von Schlippe and 
Dietrich ( r e f .  4 or 5 )  and JSantrowitz ( re f .  8 ) )  which are  probably f a i r l y  
typ ica l  i n  t h i s  respect, demonstrate wave lengths which a re  about 4 r a d i i  
long a t  zero ro l l ing  velocity and which increase with increasing ro l l ing  
velocity. Thus it appears possible tha t  the use of only a few terms i n  
the  ser ies  expansion may lead t o  a reasonable prediction of shimmy char- 
a c t e r i s t i c s  f o r  prac t ica l  operating conditions, 
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With the  preceding considerations i n  mind the  following approxima- 
t ions  t o  the general wheel-motion equations were established. 

APPROXIMATION A 

A s  a f i r s t  approximation t o  the  general kinematic equation (1%) a l l  
terns f o r  n > 3 w i l l  be neglected. 'Phis gives the  approximate differ-  
ent i a l  equation 

This equation, together with a l l  the general force and moment equations 
previously discussed, i s  referred t o  hereinafter as approximation A. 

APPROXIMATION B 

A second, l e s s  exact approximation fo r  equation (1%) is  obtained 
by se t t ing  2, = 0 f o r  n > 2. Thus 

This equation is  referred t o  as  approximation B. 

APPROXIMATION C 1  

Another, cruder approximation fo r  the general d i f ferent ia l  equa- 
t i o n  (19a) i s  obtained by neglecting a l l  terms i n  the  ser ies  f o r  n > l. 
This gives the d i f ferent ia l  equation 

which i s  referred t o  as  approximation C l .  
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APPROXIMATION C2 

A s  a s l ight  simplification of approximat'ion C l ,  the  re la t ive ly  
unimportant, or  a t  leas t  questionable, term involving 5 may be omitted 
from equatior- (83). This gives the  d i f ferent ia l  equation 

which i s  referred t o  as  approximation C2. 

With the a id  of equations (2) and (23), equation (84) can be written 
i n  the  more eas i ly  interpreted form 

A~ = -zla (85) 

or, by using i n  addition equations (20), (22), and (77), a s  

Thus, i n  t h i s  approximation the l a t e r a l  dis tor t ion of the  t i r e  is  direct ly 
proportional t o  the angular d is tor t  ion. 

The physical meaning of t h i s  approximation can be obtained by con- 
sidering tha t  equation (86) can a lso  be arrived a t  by l e t t i n g  the  ground- 
contact half-length h approach zero i n  the  general d i f ferent ia l  e p a -  
t i o n  (lga) (as was mentioned by Rotta i n  ref .  2) ,  since a l l  terms i n  the  
ser ies  f o r  n > 1 and the  tilt term are multiplied by h. Then equa- 
t i o n  ( lga)  (with 5 = 0 )  becomes 

or, by using i n  addition equations (2) and (23), 

Also, equation (77) fo r  the  yawed ro l l ing  becomes 

N = KAL 

and the  combination of equations (88) and (89) gives 
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Equation (99) i s  the same as  equation (86) f o r  any given combination of 
N and Kh. Thus, when written i n  the  form of equation (86), approxima- 
t i o n  C2 formally corresponds t o  the assumption of h = 0. 

Reliable qualitative r e su l t s  should be expected from approximation C2 
only when the neglected quantity h i s  small with respect t o  the char- 
ac t e r i s t  i c  'length of the  ro l l ing  motion i n  question ( fo r  example, the wave 
length s of a sinusoidal osc i l la t ion) .  Fortunately, t h i s  condition i s  
a t  leas t  sometimes sa t i s f i ed  f o r  prac t ica l  ro l l ing  conditions. 

APPROXIMATI ON Dl 

Before considering the next approximation it should be remembered 
t h a t  a l l  of t he  terms neglected i n  the  preceding approximations were 
multiplf ed by the t i r e  ground-contact half -length h; thus these approxi- 
mations implied the  assumption of progressively smaller ground-contact 
length or progressively larger  wave length. In  order t o  simplify the 
equations fur ther ,  it is  necessary t o  make some assumptions about the 
other t i r e  properties. Three such assumptions w i l l  now be made t o  sim- 
p l i f y  fur ther  the equations of approximation C2. For the first approxi- 
mation, t o  be called approximat ion D l ,  the  simplification 

i s  adopted. Then it follows from equation (85) tha t ,  f o r  f i n i t e  a, 

which is  the basic equation f o r  t h i s  approximation. Thus f o r  t h i s  
approximation the  t i r e  i s  f ree  t o  twist  but not t o  deflect l a t e ra l ly .  
In f in i t e  l a t e r a l  s t i f fness  i s ,  theref ore, a l so  implied: 

For the  simplest form of wheel shimmy, due t o  t i r e  e l a s t i c i t y  rather  
than s t ruc tura l  e l a s t i c i t y  ( t o  be considered subsequently), equation (92) 
does not provide accurate information. For Wheel shimmy due largely t o  
s t ruc tura l  e l a s t i c i t y  rather  than t i r e  e l a s t i c i ty ,  t h i s  approximation may 
be of some value; actual ly  most exis t ing theories corresponding t o  t h i s  
approximation have been developed f o r  the primary purpose of considering 
the  influence of s t ruc tura l  e l a s t i c i t y  on wheel shimmy. 
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APPROXIMATION D2 

As a second s impl i f icat ion of approximation C2, t h e  assumption 

can be adopted. The corresponding theory i s  designated a s  approximation D2. 
From equation (83) it is  evident t h a t  t h i s  approximation implies t h a t ,  f o r  
f i n i t e  Ao, 

which i n  t u r n  implies t h a t  

Thus f o r  approximation D2 t h e  t i r e  i s  considered t o  be t o r s iona l l y  r i g i d  
but l a t e r a l l y  f l ex ib l e  . 

APPROXIMATION D3 

A t h i r d  s impl i f icat ion of approximakion C2 can be obtained by keeping 
t h e  quanti ty Z1 f i n i t e  but  considering t h e  t i r e  t o  have both i n f i n i t e  
l a t e r a l  s t i f f n e s s  and i n f i n i t e  t o r s iona l  s t i f f ne s s ,  or  

This approximation, which i s  designated as approximation D3, thus  repre- 
sen t s  t h e  case of a r i g i d  t i r e  and consequently a l s o  implies t h a t  
a = ho = 0. (~ormal ly ,  approximation D3'can a l s o  be in terpreted as t h e  
l imi t ing  subcase of approximation D l  where N = OJ or  a s  t h e  l imi t ing  
subcase of approximation D2 where KA = a. However, it should not be 
concluded t h a t  approximation D 3  i s  necessar i ly  i n f e r i o r  t o  these  other 
two approximat ions . ) 

A choice of seven s impl i f ied approximations based on t h e  summary 
theory i s  now available.  The problem remains of determining which, i f  
any, of these  approximations i s  t h e  simplest one which can be used f o r  
any pa r t i cu l a r  tire-motion problem. While it i s  not yet possible t o  
give a completely s a t i s f ac to ry  answer t o  t h i s  question, some ins ight  
i n t o  t h e  answer can be gained by comparing t h e  various approximations 
with t h e  previously published tire-motion theor ies ,  which a r e  at l e a s t  
p a r t l y  successful  and most of which a r e  c losely  r e l a t ed  t o  these  
approximat ions,  
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CLASSIFICATION AND EVALUATION OF EXISTING THEORIES 

In  t h i s  section the  major previously published theories of wheel 
motion are  b r i e f ly  reviewed, evaluated, and, wherever possible, corre- 
la ted  with the  preceding summary theory of t h i s  paper and i ts  approxi- 
mations. Each of the  major exis t ing theories i s  f i r s t  considered indi- 
vidually and then an abbreviated overall  summary c lass i f ica t ion  i s  
presented i n  tabular form. 

INDIVIDUAL REVIEW AND EVALUATION OF EXISTING THEORIES 

Von Schlippe and Dietrich 

The tire-motion theory of Von Schlippe and Dietrich ( re fs .  3 t o  5 ) ,  
of course, corresponds d i rec t ly  t o  the  summary theory of t h i s  paper, 
since the  summary theory was taken from t h e i r  theory with only minor 
modifications. These modifications include a more detailed consideration 
of some of the influences of l a t e r a l  tilt and of t i r e  i n e r t i a  forces and 
moments. It should be noted, however, t h a t  the Von Schlippe-Dietrich 
theory i s  more advanced than the  summary theory of t h i s  paper i n  tha t  it 
pa r t ly  takes in to  account the  width of, t he  ground-contact area. However, 
a s  was previously noted, t h i s  fac tor  i s  probably not of great prac t ica l  
importance. 

Rotta 

Rotta 's  tire-motion theory ( r e f .  2) corresponds t o  the  summary theory 
of t h i s  paper because it a lso  i s  based on the  Von Schlippe-Dietrich theory. 
Rotta 's  theory represents a s l igh t  extension of the  l a s t  theory t o  take 
in to  account more adequately most of the  e f fec ts  of t i r e  tilt and the  
width of the  ground-contact area. No i n e r t i a  forces due t o  t i r e  l a t e r a l  
d is tor t ion  or centrifugal forces a re  discussed. 

Bourcier de Carbon Advanced Theory 

Bourcier de Carbon (ref .  6)  has developed two closely related theories 
of t i r e  motion which are  similar t o  approximations B and C2. The f i r s t  of 
these w i l l  be referred t o  a s  the  Bourcier de Carbon advanced theory and the  
second a s  the  Bourcier de Carbon elementarytheory. 

# 

Bourcier de Carbon's advanced theory uses f ive  basic t i r e  properties 
which a re  correlated with those of the  present paper through the  following 
relat ions : 

b : 
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Equations (98) were obtained by comparing t h i s  theory with the corre- 
sponding approximation B. The symbols of Bourcier de Carbon are  over- 
scored and do not necessarily bear any re la t ion  t o  other symbgls - i n  tsis 
paper designated by the same l e t t e r s .  Although the symbols D, T, S, - 
and E: bear a simple re la t ion  t o  the  symbols used i n  the derivations of 
the  present paper, the  symbol bears a more complicated re la t ion  which 
i s  worth some detailed consideration. 

Bourcier de Carbon defined the  t i r e  property as  follows: I f  an 
unt i l ted  wheel i s  rol led forward while exposed t o  a constant turning 
moment about a ve r t i ca l  axis  and with - no side force, it w i l l  move i n  a 
c i rcu lar  path of a def ini te  radius; R i s  defined a s  the reciprocal of 
the  product of the  turning moment and the  path radius. Unfortunately, 
however, t h i s  constant-moment circle-rol l ing experiment i s  not eas i ly  
performed. Therefore, equation (98e), which expresses i? i n  terms of 
the  more eas i ly  measured fundamental quantit ies L, h, and K,, i s  of 

importance f o r  the  use of the  Bourcier de Carbon advaneed theory. 

In  t rea t ing  the  subject of tilt, Bourcier de Carbon omits many of 
the  de ta i l s  considered i n  t h i s  paper. For example, he implici t ly  assumes 
tha t  % = ch = cy = 5 = 0 and t h a t  the incl inat ion angle K i s  small 
(taking cos IC = 1). However, these omitted tilt terms may be a s  impor- 
t an t  as  the  terms considered (as  w i l l  be shown l a t e r ) ;  therefore, Bourcier 
de Carbon's considerations of tilt aree incomplete. 

It should be noted t h a t  i n  reference 6 cer ta in  misconceptions occur 
i n  the par t s  of the paper tha t  deal with comparisons between theory and 
experiment. I n  par t icular ,  some of the  experimental data quoted by 
Bourcier de Carbon from reference 3 of the present paper appears t o  be 
e i ther  misquoted or misinterpreted. Consequently, Bourcier de Carbon' s 



conclusion t h a t  t h e  experimental data of reference 3 provide a remarkable 
check of h i s  theory i s  not completely jus t i f i ed ;  ac tua l ly  these  experi- 
mental data provide only a f a i r  ind i rec t  check of t h e  theory. 

Gre idanus 

Another theory s imilar  t o  approximation B, except f o r  t h e  influence 
of tilt , i s  t h a t  of Greidanus ( r e f .  7) . Greidanus considers t h e  in f lu -  
ence of tilt i n  much greater  d e t a i l  than does Bourcier de Carbon; how- 
ever, he a l s o  fai ls  t o  consider t he  fo rce  term proportional  t o  %, and 
thus  h i s  r e s u l t s  a l so  do not f u l l y  describe t he  influence of tilt. 

I n  addit ion,  Greidanus' kinematic equation d i f f e r s  from equation (82) 
f o r  approximation B i n  t h a t  he has introduced a s l i g h t l y  d i f fe ren t  term 
associated with t i l t i n g  of t h e  t i r e .  I n  t h e  present terminology Greidanusv 
equation reads 

The difference between t h e  two equations l i e s  i n  t h e  coeff ic ient  of 7. 
For approximation B (eq. (82) )  t h e  coeff ic ient  i s  

and f o r  Greidanus' equation ( a f t e r  subs t i tu t ing  f o r  Z 2  from eq, ( l g a ) ) ,  

If r; i s  s e t  equal t o  Z + h L, t h e  two coef f ic ien t s  a r e  ident ical ;  ( 2)1 
thus  Greidanus' kinematic equation can be considered t o  be a pa r t i cu l a r  
case of t h e  corresponding equation of approximation Be 

No subsequent deta i led discussion of Greidanus' theory is  included 
i n  t h i s  paper because no complete t r ans l a t i on  of reference 7 i s  avai lable .  

Bourcier de Carbon Elementary Theory 

Bourcier de Carbon's elementary theory corresponds t o  approximation C2 
of t h i s  paper except f o r  t h e  minor shortcomings which were discussed i n  con- 
nection with t h e  Bourcier de Carbon advanced theory. The only di f ference 
i n  Bourcier de Carbonss two theor ies  i s  t h a t  t he  coeff ic ient  i s  taken 
a s  i n f i n i t y  i n  t h e  elementary theory but is f i n i t e  (see  eq. (98e) ) f o r  t h e  
advanced theory. The i n f i n i t e  value f o r  R corresponds t o  t h e  assump- 
t i o n  22 = 0, which was previously made i n  passing from approximation B 
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t o  approximation - C2 (compare eqs. (82) and (84)).  The physical s igni f i -  
cance of R = w i s  obvious from equation (98). It means tha t  h = 0, 

Melzer 

The Melzer theory of t i r e  motion ( re f .  10) i s  a l so  similar t o  
approximation C2 except f o r  de ta i l s  of the t i l t i n g  process. Otherwise 
Melzer's kinematic equation i s  ident ica l  with the kinematic equation of 
approximation C2 and of Bourcier de Carbon's elementary theory. However, 
Melzer's theory d i f fe rs  i n  tha t  it t r e a t s  the moment due t o  t i r e  twist 
as  proportional t o  the swivel angle -8 rather  than t o  the  t i r e  t w i s t  
angle Dyo - 9. This assumption would appear just i f ied only i f  << 9, 

which i s  not t rue  i n  general, It i s  interest ing t o  note t h a t  f o r  the 
simplest case of wheel shimmy (see section en t i t l ed  " ~ ~ ~ l i c a t i o n  t o  Wheel- 
Shimmy Problems - Case I") the Melzer approximation leads t o  one of the  
same s t a b i l i t y  boundaries and t o  the  same limiting high-speed shimmy f re-  
quency as  the more nearly correct approximation tha t  includes the  term i n  
DyO. This res t r ic ted  agreement, however, hardly jus t i f i e s  the  use of 

Melzer's approximation, since predictions made by means of the  two approxi- 
mations d i f f e r  with respect t o  divergence of the  shimmy osci l la t ions and 
with respect t o  another s t a b i l i t y  boundary. Moreover, f o r  simple problems 
the Melzer approximation is  not s ignif icant ly easier  t o  solve than the 
more nearly correct form including the  Dyo term. 

Moreland Advanced Theory 

Moreland has proposed three versions of a tire-motion theory i n  
references 11 and 12. The most advanced of these versions is  governed 
by the equation 

where T i s  a time-lag constant. This theory corresponds t o  a general- 
izat ion of approximat ion C2 (with pneumat j.c caster neglected, t ha t  i s ,  
E = o) ,  since fo r  T = 0 equation (102) i s  ident ical  with the basic 
equation f o r  approximation C2. However, fo r  T f 0 t h i s  theory i s  not 
d i rec t ly  compatible with the  summary theory and i t s  approximations. 



Moreland uses the following reasoning t o  establ ish t h i s  equation: 
F i r s t ,  it i s  known tha t  i n  steady yawed ro l l ing  a yaw angle a *is devel- 
oped as  a consequence of the application of a l a t e r a l  force 

Fyh 
according 

t o  the re la t ion  

which i s  the  basic equation f o r  approximation C2. However, f o r  the 
dynamic ro l l ing  case t h i s  equilibrium yaw angle obviously cannot be estab- 
l ished immediately upon application of a given side force; rather,  a 
f i n i t e  amount of time w i l l  be required f o r  the  equilibrium yaw angle t o  
develop. Moreland has attempted t o  take t h i s  f i n i t e  time lag  in to  account 
by modifying equation (104) t o  the new form of equation (102). I n  the  
l a t t e r  equation the  constant T i s  a measure of the time lag  of the  yaw 
angle behind the  applied force Fyhe 

This t ime-lag term introduced by Moreland does not correspond exactly 
t o  any of the terms i n  the summary theory, and t o  t h i s  extent Moreland's 
advanced theory i s  apparently incompat ib le  with the  summary theory, Row- 
ever, a p a r t i a l  reconciliation of the  two theories can be obtained through 
the  following considerations of hysteresis e f fec ts  a s  applied t o  approxi- 
mation C2: According t o  equation (58) the l a t e r a l  ground force, i f  tilt 
and ine r t i a  forces are  neglected, is  given by the equation 

and the kinematic equation f o r  approximation C2 i s  (eq. (85)) 

Combining equations (105) and (85) t o  eliminate ho and substi tuting 

KhZl = N yields the equation 

Equation (106) i s  formally ident ica l  with Moreland' s basic equation (102) 
i f  the hysteresis time constant Th i s  considered equivalent t o  Moreland's 

time constant T. The important points t o  be noted here are: (1) according 
t o  both views, the  t i r e  t w i s t  a lags behind the applied l a t e r a l  force Fyh, 

and (2) Moreland adopts the lateral-force equation Fyl = Kj,AO which implies 
t h a t  the  l a t e r a l  force and l a t e r a l  deformation are  i n  phase (although l a t e r a l  
force and twi s t . a re  not i n  phase), whereas according t o  approximation C 2  
(see eq. (105)) the l a t e r a l  force lags behind the l a t e r a l  deformation a s  a 
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consequence of the kinematic re la t ion  A = -Z1a. In  regard t o  the second 

point, since there are  apparently no pertinent eqerimental  data available, 
it i s  not possible t o  conclude which point of view, i f  e i ther ,  i s  correct. 

Why Moreland's time-constant concept has not been incorporated 
d i rec t ly  in to  the derivations of the  summary theory should be c lear  from 
the preceding discussion: It i s  n ~ t  cer tain whether Moreland's time- 
constant terms are  r ea l ly  independent of the terms already contained i n  
the summary theory or whether they are,  rather,  another way of looking 
a t  some terms which are already included i n  the summarytheory. More 
specifically,  Moreland's analysis does not include ine r t i a  forces and 
moments due t o  t i r e  l a t e r a l  distortion, hysteresis forces and moments, 
or the  higher 2, terms (z2, Z3, . . .), and f o r  cer tain conditions 

any of these factors  could be interpreted as  a time-constant e f fec t .  In 
view of these factors  and i n  view of the  lack of pertinent experimental 
data, a completely sat isfactory evaluation of the re la t ive  values of the 
summary theory and Moreland's advanced theory cannot be made i n  the 
present paper. 

Moreland Intermediate Theory 

A s  a simpler approximation f o r  h i s  advanced theory, Moreland has 
implied ( re f .  11) tha t  the influence of the time-lag term i n  the  basic 
equation f o r  h i s  advanced theory (eq, (102)) can be approximated f o r  the 
usual range of shimmy frequencies by using the  simpler kinematic equation 

Inasmuch as approximation C2 has the kinematic equation (85) 

and approximat ion D 2  has the  kinematic equation ( 9 5 ) ,  which could be 
written i n  the  form 

it follows from a comparison of these l a s t  three equations tha t  Moreland's 
intermediate theory f a l l s  somewhere between approximations C2 and D2. 
Since Moreland has not offered any concrete jus t i f ica t ion  f o r  t h i s  
approximat ion, fur ther  detailed discussion does not appear warranted 
here. 
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Moreland Elementary Theory 

Moreland's most elementary theory corresponds d i rec t ly  t o  approxi- 
mation D3, the case of a completely r ig id  t i r e ,  except tha t  it, l i k e  
Moreland's other two theories, does not take into account the  pneumatic 
caster  ( E  = 0).  

Temple Elementary Theory 

Temple has proposed an elementary theory fo r  the motion of t i r e s  
which i s  ident ical  with approximation D l  ( ref .  13) ,  Temple has chosen 
the  most general form of t h i s  approximation i n  tha t  he has considered 
both the t i r e  tors ional  s t i f fness  K, ( indi rec t ly  interpreted as  an 
increase i n  t r a i l )  and the  cornering power N. 

This theory was developed before experimental evidence pointing t o  
the  need f o r  more detailed considerations of t i r e  l a t e r a l  s t i f fness  was 
available. Subsequently, Temple has indicated a need f o r  more refined 
considerations of the t i r e  ( re f .  25) and has developed independently a 
theory (unpublished, but par t ly  described i n  re f .  21) similar t o  the  
theory of Von Schlippe and Dietrich. 

Maier 

Maier ( r e f .  14) has proposed a simplified theory similar t o  approxi- 
mation D l ,  with the  difference tha t  he makes the added assumption tha t  
the t i r e  tors ional  s t i f fness  K, is  zero. This theory, too, was devel- 
oped before there existed much experimental evidence pointing t o  the need 
f o r  more refined considerations f o r  shimmy behavior. 

Taylor 

Taylor ( re f .  l ? ) ,  i n  a br ief  paper, suggested another t i r e  motion 
theory which corresponds t o  approximation D2 except tha t  de ta i l s  of the  
tilt process a re  omitted. 

Kantrowitz and Wylie 

The preceding theories fo r  t i r e  motion, which include most of the  
known theories,  may a l l  be considered as closely related t o  the  summary 
theory of t h i s  paper. However, two other well known theories,  one by 
Kantrowitz ( r e f .  8) and one by Wylie ( re f .  9) ,  apparently cannot be 
derived from the summary theory and thus cannot be accurately classif ied 
here with respect t o  the  other theories.  They possess some of the merits 
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of approximation B but i n  other respects  a r e  l e s s  adequate than approxima- 
t i o n  C 2 .  To point out t h e  def ic iencies  of these '  two theor ies  it i s  su f f i -  
c ien t  t o  consider two simple cases of t i r e  motion a s  follows: 

On t h e  other hand, Kantrowit z ' basic  equation, which i s  

The first case t o  be considered i s  t he  steady s t ra igh t - l ine  motion 
of a nonswiveling, un t i l t ed ,  r o l l i n g  wheel which is  not yawed with respect  
t o  i t s  d i rec t ion  of motion (a = 0 ) ,  which x 

gives f o r  t h i s  steady unyawed case (with Dho = D8 = 0) 

i s  inclined by an angle 8 (equal  t o  t h e  
swivel angle) t o  t h e  reference X-axis, 
and which has no l a t e r a l  forces  or  moments 
ac t ing  on t h e  wheel, (see  sketch.) Obvi- 
ously, f o r  t h i s  case there  w i l l  be no lat-  
e r a l  d i s t o r t i on  of t h e  t i r e ,  or  

This equation i s  obviously incorrect ,  s ince it implies t h a t  t h e  l a t e r a l  
d i s t o r t i on  of a s t ra igh t  r o l l i n g  wheel, which ac tua l l y  must be zero, 
depends on t h e  choice of t h e  coordinate axes t o  which 8 i s  re fe r red ,  
Only f o r  t h e  spec ia l  case of a wheel running along t he  reference ax i s  
( t ha t  i s ,  f o r  0 = 0 )  i s  Kantrowit,z9 theory correct  i n  t h i s  respect ,  and 
i n  an ac tua l  shimmy problem t h i s  condition i s  possible only f o r  t h e  case 
of zero t r a i l ;  hence Kantrowitz' theory cannot necessar i ly  be expected 
t o  give r e l i a b l e  r e s u l t s  f o r  t r a i l s  d i f fe ren t  from zero. Thus KantrowitzP 
theory i s  of a t  l e a s t  doubtful value f o r  p r ac t i c a l  shimmy calcula t ions ,  

\ I 
\ 

I n  order t o  evaluate t h e  Wylie theory, consider t he  case of steady 
un t i l t ed  yawed r o l l i n g  of a wheel moving p a r a l l e l  t o  t h e  X-axis. (see 
sketch, ) Obviously, t h e  l a t e r a l  d i s to r -  
t i o n  of t h e  t i r e  Ag w i l l  depend only 
on t h e  swivel angle 8 (8 = a) and not 
a t  a l l  on t h e  absolute l a t e r a l  displace- Direction of 

ment of t h e  wheel Q ~ .  On t h e  other  hand dx wheel motlon 

t h e  basic  equation of Wylie, which i n  t h e  
present terminology i s  Y 

Y 
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gives f o r  t h i s  steady case (where Dyo = DO = .o)  the  re la t ion  yo = IB 

or, by using equation ( 2 ) ,  

This eq,,ation s t a t e s  the  obviously incorrect conclusion tha t  t he  t i r e  
d is tor t ion  i s  dependent on go or, i n  other words, t ha t  it depends on 

the  choice of the  coordinate axes. Thus, only f o r  the  special  case 

"0 
= 0 i s  Wylie's theory plausible i n  t h i s  respect, and q0 = 0 implies 

tha t  the reference axis  must pass through the  path of the  wbeel. Since 
t h i s  condition i s  sa t i s f ied  i n  an actual  shimmy motion only f o r  the 
special  case of zero trail,  Wylie's theory, l i ke  Kantrowitzl, can be 
f u l l y  val id  only f o r  zero t r a i l  and, consequently, t h i s  theory i s  a l so  
of doubtful value f o r  prac t ica l  shimmy calculations. 

It might be noted tha t  the  preceding d i f f i cu l ty  concerning Wylie's 
theory could be removed by the  logica l  procedure of adding the term qo 
t o  the right-hand side of Wylie's equation (109) t o  give the  new basic 
e quat ion 

Another questionable point i n  these two theories i s  tha t  the  
Kantrowitz theory, as  previously noted, predicts tha t  the  l a t e r a l  dis- 
t o r t ion  i n  yawed ro l l ing  pa ra l l e l  t o  the X-axis (see previous sketch) i s  

and so does the Wylie theory i f  the reference axis i s  chosen t o  give 
-qO = 0. On the other hand, the summarytheory has fo r  t h i s  yawed case 

the re la t ion  

(see eq. (85 ) . )  The difference ar i ses  from the f a c t  t ha t  Kantrowitz 
and Wylie did not expl ic i t ly  consider the ground-contact length 2h i n  
t h e i r  derivation. 

Other Theories 

I n  addition t o  the just discussed theore t ica l  papers dealing par- 
t i c u l a r l y  with the  subject of landing-gear shinrmy, a number of relevant 
papers ex is t  which are  e i ther  largely of h i s to r i ca l  interest ,  which deal 
par t icu lar ly  with automobile shimmy problems, which deal only b r i e f ly  
with landing-gear shimmy problems, which deal with other tire-motion 
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problems such as  yawed ro l l ing  and veering-off or ground looping, or which 
deal with the  determination of t i r e  s t i f fness  parameters. Although these 
papers are  of some interest ,  they do not appear t o  contain any important 
contributions which are  not contained i n  the theories just reviewed. The 
reader is  referred t o  reference 1 f o r  a substantially complete l i s t i n g  
and brief  discussion of most of the  papers i n  t h i s  class. 

Of par t icular  h i s to r i ca l  in te res t  among the  investigations not con- 
sidered here i n  d e t a i l  a re  the work of Broulhiet ( re f .  23) and the  work - 
of Fromm (discussed i n  re f .  22) . These two investigators independently 
were apparently the f i r s t  t o  recognize the  importance of l a t e r a l  distor- 
t i o n  and cornering power of t i r e s  i n  the wheel shimmy problem. Taking 
these factors  into account, both authors developed tire-motion theories 
whose kinematic relat ions correspond t o  tha t  of approximation C 2  of the 
present paper. 

TABULAR CLASSIFICATION OF EXISTING THEORIES 

In  order t o  permit eas ie r  visualization and comparison of the merits 
of the  theories discussed, t he  major assumptions of the  various theories 
of t i r e  motion are  collected i n  tab le  I. This table  l ists the nature 
of the assumptions made i n  regard t o  the primary t i r e  parameters N, 
KA, , E, and In f o r  each of the  theories discussed. 

APPLICATION TO WHEEL-SHIMMY PROBLFSIS 

In the preceding sections of t h i s  paper a set  of basic d i f fe rent ia l  
equations f o r  the motion of an e l a s t i c  wheel has been derived and compared 
with the corresponding equations of most of the previously exis t ing theo- 
r i e s .  These comparisons have indicated tha t ,  from a mostly qualitative 
point of view, the summary theory of t h i s  paper and the systematic approx- 
imations t o  it incorporate the  major merits of the  existing theories of 
t i r e  motion and avoid some of t h e i r  disadvantages. However, it s t i l l  
remains t o  investigate how best t o  apply the theory t o  specific landing- 
gear problems, t o  investigate the  question of the  absolute or quantitative 
accuracy of the  summary theory and of the  other theories,  and, i f  the  
summary theory be found sat isfactory,  t o  establ ish the  simplest systematic 
approximation t o  it which w i l l  give re l iab le  information regarding any 
part icular  problem i n  t i r e  motion. The best way t o  accomplish these vari-  
ous aims appears t o  be through a discussion of the  shimmy of several par- 
t i c u l a r  landing-gear configurations. In t h i s  section three part icular  
landing-gear configurations are  discussed which range i n  complexity from 
the  simplest case of a r ig id  swiveling landing gear t o  the most general 
case of a gear of a rb i t ra ry  complexity. 
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DESCRIPTION OF PARTICULAR CASES CONSIDERED 

The f i r s t  landing-gear configuration considered, which i s  designated 
case I, i s  i l l u s t r a t e d  i n  f igure  5 .  It consis ts  of a r i g i d  landing gear 
whose only degree of freedom other than  t i r e  d i s t o r t i on  i s  ro ta t ion  of 
t h e  wheel about an incl ined swivel axis ,  which may be opposed by a l i n e a r  
spring or  damper. This pa r t i cu l a r  configuration is  chosen because most 
of t he  ex i s t ing  experimental data  have been obtained f o r  such a configu- 
ra t ion .  Thus, t h i s  configuration makes it possible t o  discuss and evalu- 
a t e  t he  summary theory, i t s  systematic approximations, and t h e  ex i s t ing  
theor ies  with respect  t o  agreement with experiment i n  regard t o  t h e  var- 
ious important charac te r i s t i cs  of a shimmy motion, such a s  s t a b i l i t y  
boundaries, shimmy frequency, and divefgence. 

The second landing-gear configuration, case 11, i s  an un t i l t ed  
landing gear possessing two degrees of freedom aside  f r o m t i r e  d i s to r t ion .  
This landing-gear configuration, which i s  i l l u s t r a t e d  i n  f igure  6, con- 
s i s t s  of a wheel f r e e  t o  swivel but not t o  tilt, which tu rns  about a 
r i g i d  v e r t i c a l  swivel ax i s  at tached by a spring k t o  t h e  supporting 
s t ruc ture ,   his spring i s  an  idealized representation of t h e  l a t e r a l  
f l e x i b i l i t y  of an ac tua l  landing-gear s t r u t . )  This confi,o;uratfon i s  d i s -  
cussed f o r  two purposes : (1 )  t o  i l l u s t r a t e  t h e  e f f ec t  of s t r uc tu r a l  
e l a s t i c i t y  on wheel shimmy behavior and (2) t o  provide an example which 
i s  b e t t e r  sui ted than case I f o r  bringing out t he  r e l a t i v e  merits  of 
several  of t he  systematic approximation theor ies  f o r  a case involving 
s t r u c t u r a l  f l e x i b i l i t y .  

The t h i r d  landing-gear configuration considered i s  a modification 
of t he  gear of case 11. In case I1 the  landing gear was considered t o  be 
connected t o  i t s  supporting structwre by a s ingle  spring; i n  case I11 
t h i s  s ingle  spring i s  replaced by a more complex s t ruc ture  described by 
some t r ans f e r  function.  This case i s  chosen mainly t o  demonstrate t h e  
appl icat ion of t h e  theory t o  complex problems f o r  which t h e  t rans fe r -  
function concept may be of value,  

CASE I 

General Derivation 

In  t h l s  sect ion t h e  basic  equation of motion w i l l  be derived according 
t o  the  summary theory f o r  t h e  spec ia l  case of an inclined,  r i g id ,  swiveling 
landing gear (case I ) ,  which i s  i l l u s t r a t e d  i n  f igure  5 .  This equation of 
motion could be obtained by making use of t h e  previously derived equations 
of motion f o r  t h e  completely general  case; however, it can more easlly be 
derived here i n  a s l i g h t l y  d i f fe ren t  forrr; f o r  t h i s  par t i cu la r  problem, 
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The geometric quantit ies which enter the  discussion of t h i s  par t icular  
landing gear are  indicated i n  figure 7 .  This gear has a swivel axis lying 
i n  the  XY-plane and i s  inclined forward from the  ve r t i ca l  Z-axis by a con- 
s tant  angle K . The perpendicular distance a between the  ground-contact 
center point 0 and the swivel axis i s  called the t r a i l .  The swivel axis 
i s  assumed t o  move with constant velocity v along the X-axis without 
l a t e r a l  mot ion from the XZ-plane . 

Rotation of the wheel structure about the  inclined swivel axis by an 
amount I) resu l t s  i n  a component 0 of angular rotat ion about the ve r t i -  
c a l  axis of magnitude 

8 = $ cos K (111) 

a component y of rotat ion about the X-axis (tilt) of magnitude 

y = -$ s i n  K 

and a l a t e r a l  deflection vO of magnitude 

where a l l  angles except K are considered small. 

The sum of a l l  moments about the swivel axis must equal the ine r t i a  
2 2 2 

reaction I D $ = I v D $, where 'I t $ I$ 
i s  the moment of ine r t i a  of the 

wheel structure (including the wheel) about the  swivel axis.  The moments 
about the swivel axis are  assumed t o  consist of the moments resul t ing 
from the previously discussed forces and moments tha t  a r i se  from t i r e  
d is tor t ion  and ground loads plus the  moments applied t o  the wheel by the  
supporting structure,  which are  assumed t o  consist of a restoring spring 
of moment p$ and a l inear  damper of moment g Dt$ = gv D$, where p 
and g are  constants. Thus, summation of the  moments about the swivel 
axis  gives the d i f f e ren t i a l  equation 

where the first term i s  the  t o t a l  ground force due t o  t i r e  l a t e r a l  dis- 
t o r t ion  and tilt (see eqs. (20) and (27 )  ) times i t s  moment arm a; the 
second term i s  the ve r t i ca l  force times i t s  moment-producing frac- 
t i o n  s i n  K times i t s  moment arm (see eq. (28));  the th i rd  term i s  the 
moment about the Z-axis due t o  t i r e  twist  (see eq. (24)) corrected by 
cos f o r  the component about the  swivel axis; the  remaining terms on 
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t h e  left-hand s ide  represent t h e  gyroscopic torque due t o  l a t e r a l  t i r e  
d i s t o r t i on  (see eq. ( 32 ) ) ,  t h e  spring res to r ing  moment, and t h e  l i nea r  
damper moment. Now by making use of equations (111) t o  (113), equa- 
t i o n  (114) can be wri t ten  i n  t h e  form 

where 

2 A2 = a w  cos K + gv 

2 A3 = a KA + cos2, + p + p, 

B1 = -K& cos K + -rv2cos K 

B2 = aKA + cAFz s i n  K 

and 

pK = aKy s i n  K - a;FZ s i n  K + acAFz s i n  K + c 
2 f z  s i n  K ( 1 1 5 ~  ) 

The general r e l a t i o n  between 9 and yo f o r  t h i s  case i s  found by sub- 

s t i t u t i n g  f o r  vO, 7, and 0 ,  according t o  equations (111) t o  (113) i n  

t h e  general  kinematic equation ( lga )  . Thus 

m n k Lh 
yo + 2, D yo = -a* + 2 Jr cos n + 7 Jr s i n  a 

n=l  
1 

or ,  abbreviating, 

a = l + -  SLh t a n  K 

and rearranging, 

s ince  2 = 1. Different ia t ing t h i s  r e su l t  gives 0 
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which can a lso  be written as  

m 
n 

(all cos K - a ) ~ $  = D yo n=l 

and, similarly, 

Substituting these relat ions in to  equation (115) and multiplying through 
by aZ1 cos K - a gives 

Finally,  a f t e r  adding a l l  terms of l i k e  order, substi tuting N = ZIKh 

(eq. (77)), substi tuting f o r  some of the  A ' s ,  and using equation (116), 
there  resu l t s  the equation 

where 

2 Fo = oaN cos K + K, cos K + p + pK + Y, 

2 F1 = a N + alK, cos K + pZl + pKZ1 + gv + oZ1m 
(120b) 

F2 = A1 + A2Z1 + A3Z2 

Fn = A1Zne2 + A2Zn-1 + '32, 

and 
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Systematic Approximations 

Equations (120) provide the  general  d i f f e r e n t i a l  equation of f r ee  
motion f o r  case I. The corresponding equations f o r  t h e  systematic approxi- 
mations A t o  D 3  a r e  obtained a s  follows. 

Approximation A ,  - The basic  equation f o r  approximation A i s  obtained 
by s e t t i n g  2, equal t o  0 f o r  n > 3 i n  equations ( 1 2 0 ) ~  The resu l t ing  
equation can be s t a t ed  i n  t he  following form: 

where 

EO = I v21 3 
2 E~ = I v z 2  + ( an2cos  K + g v ) ~  \k 3 

2 2 E2 = 1,,,v211 + (am cos K + gv KA + Ka cos K + p + p 1 ( 121b ) 
2 2 2 2 E~ = I,,,v + (am cos r + gv)zl + (a K~ + K, cos r + p + p, 

2 2 2 E4 = a N + alKa cos K + pZ1 + pKZl + gv + aZ1m cos K 

2 E3 = uaN cos K + & cos K + p + pK + % J 
and 

P, = ( a 5  - aFz + acAF, + c F s i n  K 
Y Z  

( 121c ) 
uK = ch~,(oll cos K - a s i n  r 1 

Approximation B. - In  order t o  obtain approximation B, s e t  Z3 equal 

t o  0 i n  equations (121b). This gives t he  d i f f e r e n t i a l  equation 

where 



NACA TN 3632 

E~ = I + V ~ Z ~  + (arv2cos K + gv)12 

2 2 E2 = 1$v2 + ( a m  cos K + gv)ll + (a2Kh + Ka cos K + p + pK ( 122b ) 

2 2 E3 = a 2 ~  + atK, cos K + pZl + pKll + gv + oZlnr cos K 

2 E4 = aaN cos K + K, cos K + p + pK + 

 h he corresponding equation with inclusion of hysteresis e f fec ts  i s  
l i s t e d  i n  appendix B e  ) 

Approximation C 1 .  - The equation f o r  approximation C 1  i s  obtained by 
se t t ing  Z 2  'equal t o  0 i n  the  equation f o r  approximation B. The 

resul t ing d i f f e ren t i a l  equation i s  

where 

2 2 E~ = I v + ( a n  cos K + gv)zl + 
2 2 I ( 123b ) 

E2 = a2N + atKa cos K + pZl + pKZl + gv + oZln cos K 

2 E3 = oaN cos K + Ka cos K + p + pK + \ 

Approximation C2.- The equation f o r  approximation C2 i s  obtained by 
se t t ing  5 equal t o  0 i n  the equation f o r  approximation C 1 .  The 
resul t ing d i f fe rent ia l  equation i s  

where 



2 ( 124b ) 
E2 = a 2 ~  + ari, cos K + pll + pKll + gv + Z17v cos% 

2 E3 = aN cos K + K, cos K + p + pK + u,el 

and 

uK1 = cAF,(zl cos K - a)s in  K ( 1 2 4 ~ )  

 h he corresponding equation, with hysteresis e f fec ts  included, i s  l i s t e d  
i n  appendix B. )  

Approximation D l . -  The d i f f e ren t i a l  equation f o r  approximation D l  
i s  obtained by se t t ing  Z1 equal t o  0 i n  the  equation f o r  approxima- 
t i o n  C2.  The resu l t  i s  the  d i f f e ren t i a l  equation 

where 

Eo = I$v 2 

El = a' '~  + aK, cos K + gv 

2 E2 = aN cos K + Ka cos K + p + wK J 
and 

w = ( a ~ ~  - aFZ + cf ,  s i n  K s i n  K 
K ) 

Approximation D2. - The d i f f e ren t i a l  equation f o r  approximat ion D2 
i s  obtained by dividing a l l  terms i n  equations (124) by Z1 and then 

se t t ing  Z1 equal t o  co and using the relat ions N / 2 1  = KA and 

r i , / Z 1  = cKh. The resul t ing equation i s  
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where 

Eo = I$v 2 

E~ = a n 2 c o s  K + gY 

2 2 E2 = a2~$, + a€Kh cos K + p + p, + n cos a 

2 E3 = a 5  cos K + €5 cos R + c F s i n  K cos K h Z  

Approximat ion D3. - The d i f f e ren t i a l  equation f o r  approximat ion D3  
i s  obtained by dividing the  E ' s  f o r  approximation D l  by N and then 
se t t ing  N equal t o  03. The resul t ing d i f f e ren t i a l  equation i s  

Previously Published Theories 

I n  the  preceding section the  d i f fe rent ia l  equations a re  se t  down 
f o r  case I according t o  the  summary theory and the- systematic approxi- 
mations thereto,  complete with a l l  pertinent de ta i l s ,  including a number 
of second-order terms so a s  t o  enable the  direct  application of these 
equations t o  actual  problems. I n  the  present section the  d i f f e ren t i a l  
equations f o r  the previously published theories are l i s t e d  fo r  the  pur- 
pose of making clear  the differences i n  the basic structure of the  d i f -  
f e r e n t i a l  equations resul t ing from the application of these theories t o  
case I. I n  order t o  avoid ~bscur ing  the  more important differences 
between the equations of the  various theories, a l l  terms a re  omitted 
whose inclusion i n  any shimmy theory should be completely s t raight-  
forward (such as the  spring restoring-moment coefficient p and the  
damping coefficient g) and a lso  a l l  inclination effects .  Although the 
l a t t e r  e f fec ts  are  not necessarily negligible, they do appear t o  be of 
second-order importance and t h e i r  omission here should not a l t e r  the  
basic structure of these equations. With these omissions - tha t  i s ,  for  
g = p = K = 0 - t h e  d i f f e ren t i a l  equations f o r  case I according t o  the 
previously published theories a re  as  follows i n  the  terminology of the 
present paper : 

Von Schlippe-Dietrich and Rotta theories.- The basic equation of 
motion f o r  t h i s  case according t o  the Von Schlippe-Dietrich theory, a f t e r  
neglect of the  effects  of t i r e  width, corresponding t o  equation (120a) 
f o r  the  summary theory, i s  
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where 

The symbol gl i s  a hysteres is  damping coeff ic ient  defined by t h e  equation 

where dl and d2 a re  hys te res i s  constants. Aside from t h e  omission of 
some inc l ina t ion  e f f ec t s  and other terms, a s  discussed previously, t h e  only 
differences between equations (128) and equations (120) f o r  t h e  summary 
theory l i e s  i n  t h e  inclusion of t h e  hys te res i s  term involving gl and i n  

t h e  addi t ion of t h e  terms i n  brackets i n  equations (128b). Rot ta ' s  cor- 
responding equations, a f t e r  neglect of t i r e  width e f f ec t s ,  would be t h e  
same a s  equations (128) except t h a t  Rotta omitted t h e  hysteres is  term. 
A s  was previously noted, t h e  Von Schlippe-Dietrich theory and Ro t t a f s  
theory d i f f e r  only s l i g h t l y  i n  t h e i r  respective considerations of t h e  
influences of tilt and t i r e  width, nei ther  of which e f f e c t s  a re  considered 
here. 

Bourcier de Carbon advanced theory.- The Bourcier de Carbon advanced 
theory leads t o  t h e  fourth-order d i f f e r e n t i a l  equation 



Bourcier de Carbon elementary theory.- The coefficients f o r  the 
Bourcier de Carbon elementary theory are  obtained by se t t ing  Z 2  equal 

t o  0 i n  equations (129) f o r  the  advanced theory. The resul t ing third-  
order d i f f e ren t i a l  equation i s  

where 

Me1zer.- Melzerfs theory gives the third-order d i f f e ren t i a l  equation 

where 
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Moreland advanced theory,- Moreland's advanced theory leads t o  t h e  
f ourth-order d i f f e r e n t i a l  equation 

where 

Moreland elementary theory.- Moreland's elementary theory gives t h e  
d i f f e r e n t i a l  equation 

Taylor.- Taylor's theory leads t o  t h e  third-order d i f fe ren$ ia l  
e quat ion 

where 

Temple elementary theory.- The second-order d i f f e r e n t i a l  equation f o r  
t h e  Temple elementary theory i s  
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where 

Maier.- The second-order d i f f e ren t i a l  equation of Maier's theory 
i s  

where 

Kantrowitz.- Kantrowitz' theory leads t o  the third-order d i f fe r -  
e n t i a l  equation 

where 

Wy1ie.- Wylie's theory leads t o  the third-order d i f f e ren t i a l  equation 

3 2 Eo D YO + El D YO + E2 D Y ~  + E3y0 = 0 ( 138a ) 
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Stab i l i t y  of Motion 

The basic equations of motion having been established according t o  
the  various theories f o r  a r ig id  swiveling landing gear, a t ten t ion  w i l l  
be directed next t o  the meaning of these different equations with respect 
t o  prediction of the  shimmy behavior of the landing gear. However, before 
going into t h i s  subject i n  d e t a i l  it may be useful t o  discuss b r i e f ly  
what sor t  of information is  desired about the  motion of a landing gear. 
Basically, the most important question i s  whether or not the  motion is  
s table  - t ha t  is, does the wheel tend t o  move i n  a s t raight  l i ne  (with 
decaying shimmy osci l la t ions or decaying aperiodic motion) or does the 
t i r e  tend t o  move l a t e r a l l y  out from i t s  rec t i l inear  course (with diver- 
gent shimmy osci l la t ions or divergent aperiodic motion). To answer t h i s  
question of s t a b i l i t y  f o r  l inear  systems, the  analytic methods of Routh 
( r e f .  26) or Hurwitz ( r e f .  27) or graphical methods similar t o  those 
introduced by Nyquist ( re fs .  28 t o  31) a re  available. A brief  discussion 
of these methods i s  given i n  appendix C. Any of these methods w i l l  pro- 
vide fo r  most cases a procedure f o r  determining whether any part icular  
combination of landing-gear parameters and ro l l ing  velocity is  s table  
or unstable. 

In  general, f o r  complicated problems, rather than investigate the  
s t a b i l i t y  of a landing gear by these methods f o r  a l l  possible conditions 
it may be more convenient and sometimes more valuable t o  draw various 
types of s t a b i l i t y  diagrams describing the system i n  question. For 
example, f o r  case I a typica l  experimental type of s t a b i l i t y  diagram i s  
shown i n  figure 7, which presents boundaries between the regions of s ta -  
b i l i t y  and ins t ab i l i t y  a s  functions of t r a i l  and ro l l ing  velocity f o r  a 
specific landing-gear model. Another useful type of s t a b i l i t y  diagram 
f o r  some problems might be a plot  of boundaries between stable and unsta- 
b l e  regions as functions of damping moment and ro l l ing  velocity. 

In determining these s t a b i l i t y  boundaries, use i s  made of the  well- 
known fac t  t ha t  the motion of a l inear  system can change from a s table  
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t o  an unstable condition only where t h e  motion i s  purely o sc i l l a t o ry  - 
t h a t  i s ,  where any variable,  f o r  example \Ir, i s  of t h e  form 

or  where t h e  motion i s  purely uniform, of t h e  form 

Thus a l l  possible s t a b i l i t y  boundaries can be obtained by d i r e c t l y  sub- 
s t i t u t i n g  expressions of t h e  form of equations (139) and (140) i n to  t h e  
basic  d i f f e r e n t i a l  equations. I n  connection with t h e  question of what 
form of t h e  d i f f e r e n t i a l  equation t o  use, it i s  of some importance t o  note 
t h a t  t h e  f i n a l  form, where t h e  equatfon i s  expressed i n  terms of one 
var iable ,  i s  of ten not t h e  most convenient form t o  use. For example, 
f o r  case I t h e  purely o sc i l l a t o ry  boundaries a r e  most advantageously 
obtained by using equations (115) and (117) with t h e  subs t i tu t ions  

The advantage of t h i s  pa r t i cu l a r  choice a r i s e s  from the  f a c t  t h a t  it leads 
t o  two algebraic equations, one of which does not include t h e  damping 
parameter g. This i so l a t i on  of t he  parameter g usual ly  eases s l i g h t l y  
t h e  mathematical labor of solving f o r  t h e  purely o sc i l l a t o ry  boundaries. 

The equations governing t h e  s t a b i l i t y  boundaries f o r  case I f o r  t h e  
general  theory and f o r  t h e  systematic approximations a re  l i s t e d  i n  
appendix D. 

Comparison and Evaluation of t h e  Summary Theory and Its 

Systematic Approximat ions 

The dual  object of t h e  present sect ion i s  (1) t o  assess  fu r the r  t h e  
value of t h e  summary theory by comparisons between t h e  predic t ions  of 
t h i s  theory and t h e  avai lable  experimental data f o r  case I conditions 
and ( 2 )  t o  determine, by comparison of t h e  r e l a t i v e  predictions of t h e  
summary theory and i t s  systematic approximations, what i s  t h e  simplest 
s a t i s f ac to ry  systematic approximation t o  t h e  summary theory. Discussion 
of t h e  previously published theor ies ,  a s  applied t o  case I conditions, 
i s  contained i n  a subsequent section.  
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For convenience the  following discussion i s  divided in to  separate 
considerat ions of stability-boundary conditions and unstable shimmy 
conditions. 

Stability-boundary conditions.- The present section discusses theo- 
r e t i c a l  and experfmental stability-boundary conditions insofar as  they 
a r e  influenced by the t i r e  parameters 2, (where n = 1, 2, . . . E ,  

K7' 
ch9 N, and T and by hysteresis effects .  In  the major part  of 

t h i s  discussion the s t a b i l i t y  boundaries t o  be considered w i l l  be of the  
type obtained by plot t ing curves of t r a i l  against ro l l ing  velocity fo r  
those t r a i l  conditions tha t  separate regions of s t a b i l i t y  and ins t ab i l i t y .  
The general shapes of these s t a b i l i t y  boundaries f o r  case I, according 
t o  the  summary theory and the systematic approximat ion theories A t o  D3,  
a r e  sketched i n  figure 8 f o r  the  special  condition of no damping or gyro- 
scopic moments (g  = T = 0 ) .  It is  seen tha t  the  summary theory and 
approximations A t o  C2 each predict t ha t  a t  high speeds the  motion i s  
s table  f o r  large t r a i l s  and unstable f o r  small t r a i l s ;  t he  horizontal 
boundary l i n e  i s  the same f o r  each case, and i s  generally located a t  a 
t r a i l  roughly equal t o  the t i r e  radius.  h his boundary i s  theoret ical ly  
completely independent of the spring restoring moment p Dt$ and i s  

re la t ive ly  independent of swivel-axis inclination K . )  Approxiwtions D l ,  
D2, and D 3  f a i l  t o  predict t h i s  boundary. Also, these three approxima- 
t ions,  together with approximations C 1  and C 2 ,  f a i l  t o  predict any effect  
of ro l l ing  velocity on the low-speed s t a b i l i t y  boundaries, whereas, 
according t o  approximation B, f o r  suf f ic ien t ly  small speeds the motion 
becomes s table  f o r  a l l  small t r a i l s  and, according t o  the  higher theories, 
f o r  most of the small- t ra i l  region. Also, at low speeds and large (usually 
impractical) t r a i l s  the higher theories (B and above) indicate t h a t  the 
motion becomes unstable a t  suf f ic ien t ly  small speeds. The ef fec ts  of the  
omitted damper and gyroscopic-moment terms would be t o  reduce the  s ize of 
the  regions of ins tab i l i ty .  

( a )  Effect of higher 2, terms: A s  a f i r s t  t e s t  of the summary 
theory and i ts  systematic approximations there are  available the  experi- 
mental data of Von Schlippe and Dietrich ( r e f s  . 3, 4, and 5 )  which were 
obtained with a small model landing gear equipped with a pneumatic t i r e  
of 26 cm (10 in.  ) diameter. This model landing gear was tes ted  a t  re la-  
t i v e l y  low speed conditions where the  higher in terms (12, Z3, . .) , 

a re  of some importance; consequently, these data provide an opportunity 
f o r  t e s t ing  the re la t ive  and absolute va l id i ty  of the  summary theory and 
the  higher approximations A t o  C2 (which d i f f e r  essent ial ly  only by t h e i r  
inclusion or omission of the  higher 2, terms). 

The basic landing gear and t i r e  constants f o r  the Von Schlippe- 
Dietrich model, which was t e s t ed  only i n  the  unt i l ted  condition ( K  = O), 
a s  taken from references 3 and 5 ,  are as follows: 
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KA = 45 &/em 

The quan t i t i es  Z1, h, and t h e  higher 2,'s were calculated from the  

previously discussed re la t ions  2 1  = N / K ~ ,  h = Z1 - L, and 

n = ( n ~  + h)hn-l/n! (see eqs. (77) and ( lga) . )  

The experimental data obtained by Von Schlippe and Diet r ich f o r  
t h i s  model a r e  shown i n  f igures  9 and 10, together with t h e  corresponding 
predic t ions  of t h e  summary theory and t h e  systematic approximations A 
t o  C2. (Also shown a re  t he  predic t ions  of t h e  theory of Von Schlippe 
and Diet r ich which a re  discussed i n  a l a t e r  sect ion. )  Figure 9 presents 
stability-boundary p lo t s  of t r a i l  against  velocity,  and f igure  10 pre- 
sen t s  t h e  frequency at  these  s t a b i l i t y  boundaries a s  a function of veloc- 
i t y .  No theo re t i c a l  curves a r e  shown on these  f igures  f o r  approxima- 
t i o n s  D l ,  D2, and D 3  since these  approximations a r e  too  crude t o  give 
any de ta i l ed  information f o r  t h i s  problem; they  predic t  e i t h e r  completely 
s t ab l e  or  completely unstable motion f o r  a l l  pos i t ive  t r a i l s  (see  f i g .  8).  
The equations used t o  calcula te  t h e  t heo re t i c a l  curves i n  these  two f i g -  
ures  a re  given i n  appendix D. I n  these  calcula t ions  t h e  gyroscopic torque 
term involving T has been neglected since T is  unknown f o r  these  data. 
A rough value of T could perhaps be estimated, but such a dubious e s t i -  
mate did not appear necessary because t h e  term involving T, according 
t o  any reasonable estimate of T, would be of no importance i n  t h e  veloc- 
i t y  range of these experimental data .  

I n  comparing t he  t heo re t i c a l  curves i n  f igures  9 and 10 it i s  
observed t h a t  approximation A gives a boundary very close t o  t h a t  of t h e  
summary theory. Approximation B does not give a s  close agreement but it 
i s  s t i l l  f a i r l y  good and, more important, f o r  most of the  t r a i l  range 
t h e  di f ference between approximation B and t h e  summary theory is  small 
a s  compared with t h e  difference between t he  summary theory and t h e  experi- 
mental data. As was previously noted, approximations C 1  and C2 (which a r e  
i den t i ca l  f o r  t h e  present condition of K = 0 )  predic t  a t r a i l - v e l o c i t y  
s t a b i l i t y  boundary which is  independent of ve loc i ty  so t h a t  t h i s  approxi- 
mation i s  an  inadequate representation of t h e  summary theory a t  low veloc- 
i t i e s .  However, a t  high speeds approximations C 1  and C2 give t h e  same 
s t a b i l i t y  boundary and frequency a s  t h e  higher approximations. 
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As a fur ther  a id  i n  comparing the different systematic approximations 
with the summary theory, figure 11 presents a plot of the l inear  damping 
coefficient g required t o  s tab i l ize  the  motion of the Von Schlippe- 
Dietrich model a t  a medium t rai l  of 7 cm as  calculated according t o  the  
summary theory and the various systematic approximat ions ( the equations 
used are  presented i n  appendix D). This figure confirms the  conclusions 
drawn from figures 9 and 10 t h a t  approximation A i s  a very good repre- 
sentation of the summary theory and t h a t  approximation B i s  a l so  a good 
representation of the summary theory. However, more importantly, f ig -  
ure 11 demonstrates tha t  approximations C 1  and C2 also give a f a i r l y  good 
representation of the summary theory with respect t o  prediction of the 
maximum amount of damping (i .e . , the maximum value of g) required fo r  
s tab i l iz ing  the motion. Approximations D l ,  D2, and D 3  a re  s e e n t o  give 
inadequate representat ions of the  summary theory. 

The preceding conclusions are,  of course, only proven t o  be valid 
f o r  the specific conditions of the  Von Schlippe-Dietrich model t e s t s .  
However, they are  believed t o  be val id  f o r  most prac t ica l  ro l l ing  
conditions. 

In considering the correlation between theory and experiment fo r  the 
Von Schlippe-Dietrich t e s t  conditions, it i s  noted tha t  t he  experimental 
s t a b i l i t y  boundary i n  figure 9 i s  of the  same general shape as  tha t  given 
by the summary theory and approximations A and B but tha t  it l i e s  t o  the 
r ight  of the  theore t ica l  curves and thus indicates tha t  the experimental 
system i s  more stable than the theore t ica l  system. Similarly, t he  experi- 
mental frequency-velocity curve i n  figure 10 f a l l s  below the theore t ica l  
curves. These discrepancies a re  perhaps a resul t  of the neglect of hys- 
t e r e s i s  damping i n  the calculation of the theore t ica l  curves of figures 9 
and 10 and a re  discussed more f u l l y  i n  the next section. 

(b) Effect of hysteresis: In  order t o  investigate whether the  dis- 
crepancies between theory and experiment shown i n  figures 9 and 10 might 
be explained by a consideration of hysteresis effects ,  some re su l t s  of 
calculations involving hysteresis e f fec ts  a re  shown i n  figures 12 and 13 
f o r  the same t e s t  conditions as i n  figures 9 and 10. Figures 12 and 13 
present theore t ica l  calculations of t ra i l -ve loc i ty  and frequency-velocity 
s t a b i l i t y  boundaries, respectively, both with and without consideration 
of hysteresis effects ,  together with Von Schlippe and Dietrich's experi- 
mental data. The curves fo r  the  Von Schlippe-Dietrich theory were cal- 
culated by using Von Schlippe and Dietrich" theory with t h e i r  hysteresis 
equations (see eqs. 128), whereas the  curves f o r  approximation B were 
calculated by using the  equations f o r  hysteresis e f fec ts  derived i n  the  
present paper (see appendix B) . The values of and indicated 

i n  these figures,  which were used i n  these calculations, were estimated 
from s t a t i c  hysteresis-loop data, par t ly  unpublished and pa r t ly  published 
i n  reference 24. The values of dl and d2 used were taken from refer-  
ence >, It i s  observed from these figures tha t  there i s  a considerable 
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difference between t h e  calcula t ions  according t o  e i t h e r  theory, depending 
on whether hys te res i s  e f f ec t s  a r e  included or omitted. Moreover, it i s  
seen t h a t  e i t h e r  theory provides f a i r l y  good agreement with t he  experimen- 
t a l  da ta  when t h e  hysteres is  e f f e c t s  a re  taken i n to  account. These f a c t s  
suggest t h a t  hysteres is  e f f ec t s  may be an important f ac to r  which must be 
taken i n t o  account i n  order t o  obtain good agreement between theory and 
experiment. On t h e  other hand, nei ther  t he  Von Schlippe-Dietrich nor the  
present paper's consideration of t h e  hysteres is  e f f ec t s  seems t o  r e s t  on 
a completely sound foundation. Thus it appears safe  t o  conclude only t h a t  
since two d i f fe ren t  approaches t o  t h e  hysteres is  problem indicate  t h a t  
hys te res i s  e f f e c t s  a r e  important, a more rigorous analysis  of t h e  hysteres is  
problem would be worthwhile. 

( c )  Effect  of Z1: The next t e s t  of t h e  summary theory makes use of 
t h e  experimental data of Melzer ( r e f .  l o ) ,  who performed a s e r i e s  of t e s t s  
with an u n t i l t e d  (K = 0)  so l i d  rubber t i r e  7 cm. (3 i n . )  i n  diameter a t  
suff ic ient ly-high speeds so  t h a t  h i s  data  would be expected t o  f a l l  con- 
s iderably  t o  t h e  r i gh t  of t h e  curved-line low-speed stability-boundary 
curve i n  t h e  f i r s t  two sketches of f igure  8. For t h i s  ve loc i ty  range t h e  
predic t ions  of t h e  summary theory and approximations A t o  C2 a r e  ident ical ;  
they  a l l  predic t  t h a t  t h e  undamped (g  = T = Th = T, = 0) motion i s  s t ab le  
f o r  a l l  values of t r a i l  a g rea te r  than Z1 = N / K ~ ;  t h a t  i s ,  t he  c r i t i c a l  

value of t r a i l  a, at  which t h e  motion changes from an unstable s t a t e  t o  
a s t ab l e  one i s  given by t h e  r e l a t i o n  a, = 21. ( ~ v e n  i f  gyroscopic moments 

a r e  taken i n t o  account, t h i s  equation i s  only s l i g h t l y  modified throughout 
a r e l a t i v e l y  l a rge  range of r o l l i n g  velocity; however, f o r  very l a rge  veloc- 
i t i e s  t h i s  r e l a t i o n  breaks down as a r e su l t  of t h e  gyroscopic moment and 
t h e  motion becomes s tab le  f o r  a l l  pos i t ive  t r a i l s .  This phenomenon w i l l  
be discussed i n  a subsequent sect ion. )  The predic t ion ac = Z1 i s  well  

confirmed by Melzer' s t e s t s ,  a s  i s  ' i l l u s t r a t ed  i n  t h e  following t a b l e  of 
data taken from reference 10, which l ists  the  experimental values of Z1 
together with t h e  t r a i l  required f o r  s t a b i l i t y  f o r  several  conditions of 
v e r t i c a l  loading: 

These pa r t i cu l a r  data were taken f o r  t h e  case where no spring res to r ing  
force  acted on t he  model landing gear ( p  = 0 ) .  Similar good agreement 
was obtained f o r  t h e  case where a strong l i n e a r  spring res to r ing  moment 
was present ( p  > k). For t h i s  case, according t o  t h e  summarytheory 
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and approximations A t o  C2, t h e  s t a b i l i t y  boundary f o r  t h e  pos i t ive  t r a i l  
condit ion i s  t h e  same a s  f o r  t h e  case of no spring res to r ing  force .  This 
predic t ion i s  wel l  confirmed by Melzer's t e s t s ,  a s  is  i l l u s t r a t e d  i n  t h e  
following t a b l e  of data  a l so  taken from reference 10. 

 h he difference between t he  values of 2 1  i n  these  two t ab l e s  is  merely 
a consequence of changes i n  t i r e  charac te r i s t i cs  between t h e  corresponding 
t e s t s . )  

I n  order t o  assess t he  significance of t he  preceding comparisons of 
theory and experiment it should be noted t h a t  t h e  t heo re t i c a l  r e l a t i o n  
ac  = 2 1 ,  calculated f o r  g = T = TA = T, = 0, i s  independent of spring 

res to r ing  moment p and t i r e  t o r s iona l  s t i f f n e s s  K, and, i n  t h e  veloc- 

i t y  range discussed, can be shown t o  be not strongly influenced by gyro- 
scopic or  hysteres is  moments (T,  TA, and T,) or  by t h e  higher 2,'s 

('29 2 ,  . ) Consequently, t h i s  comparison t e l l s  p r ac t i c a l l y  nothing 
about t h e  correctness of t he  manner i n  which these  important quan t i t i es  
have been inser ted i n to  t h e  summary theory. On t h e  other hand, t h e  theo- 
r e t i c a l  r e l a t i o n  ac = Z1 depends almost e n t i r e l y  on t h e  correctness of 
t h e  kinematic equation of t h e  summary theory which, f o r  Melzer's t e s t  
conditions, reduces t o  the  kinematic equation of approximat ion C2 
(es .  (85)) :  

Thus, t h e  r e s u l t s  of t h e  preceding comparison indicate  t h a t  t he r e  e x i s t s  
a range of r o l l i n g  speeds i n  which t h e  kinematic equation of t h e  summary 
theory, a s  wel l  a s  of approximations A t o  C2, i s  reasonably correct  
(except possibly f o r  t h e  terms involving 6, which a re  as yet not evalu- 
a ted  and a r e  not very important).  

It can be sa id  with sa fe ty  t h a t  t h e  range of ve loc i ty  f o r  which t h e  
theory gives good agreement with Melzer's model data  corresponds t o  f u l l -  
sca le  conditions somewhere ins ide  t h e  p r ac t i c a l  r o l l i n g  speed range and 
possibly covering much of t h e  p r ac t i c a l  range. However, t h e  preceding 
comparison de f in i t e ly  does not prove anything about t he  adequacy of t h e  
summary theory f o r  small ve loc i t i e s  o r  f o r  t h e  highest ve loc i t i e s  which 
may be encountered i n  pract ice .  
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Further confirmation of t he  preceding conclusions i s  provided by 
t h e  experimental data  of Schrode ( r e f .  17) who performed t e s t s ,  s imilar  
t o  those of Melzer, f o r  r e a l i s t i c  pneumatic t i r e s  a s  large  a s  39 cm (15 i n . )  
i n  diameter, a s  compared with t h e  small 7 cm (3 in . )  so l i d  rubber t i r e  
t e s t e d  by Melzer . Schrode obtained t r a i l - ve loc i t y  stability-boundary 
p lo t s  of t h e  type i l l u s t r a t e d  i n  f igure  7. These stability-boundary p l o t s  
indicate  t h e  same r e su l t  a s  Melzer's data, namely, t h a t  t he r e  e x i s t s  a 
range of ve loc i ty  i n  which t he  motion i s  s tab le  above a ce r t a in  c r i t i c a l  
t r a i l  a, and unstable below it.  his ve loc i ty  range f o r  t h e  data  i n  
f igure  7 i s  approximately 60 t o  160 km/hr.) It i s  not poss ible  t o  check 
quan t i t a t ive ly  t h e  t heo re t i c a l  stability-boundary equation a, = Z1 f o r  

Schrode's data  because Schrode provides no information su i tab le  f o r  accu- 
r a t e l y  evaluating Z1. However, some qua l i t a t ive  confirmat ion may be 
found, since t h e  quanti ty Z1 always appears t o  be of t h e  order of magni- 

tude of t h e  t i r e  radius  r and f o r  Schrode's data  a, i s  found t o  be of 
t h i s  same order of magnitude (emg., see f i g .  7 ) .  Thus Schrode's experi- 
mental data appear t o  confirm t h e  previously drawn conclusion t h a t  the re  
e x i s t s  a ve loc i ty  range i n  which t h e  kinematic equations of t h e  summary 
theory and approximations A t o  C2 a r e  val id .  

Dietz and Harling have presented some s imilar  stability-boundary 
curves i n  reference 16 which a l s o  confirm t h e  foregoing conclusions. 

(d)  Effect  of 5 :  Some ins ight  i n t o  t h e  e f f e c t  of t h e  tilt param- 
e t e r  5 can be obtained by an examination of t h e  e f f e c t s  of swivel-axis 
inc l ina t ion  K on t h e  s t a b i l i t y  boundaries according t o  t h e  predic t ions  
of approximation C 1  f o r  t h e  condition where damping, spring-restoring,  
and gyroscopic moments a re  neglected ( g  = p = T = 0) i n  order t o  i s o l a t e  
t h e  e f f ec t s  of incl inat ion.  ( ~ h e s e  assumptions appear t o  be j u s t i f i e d  
f o r  t h e  experimental conditions discussed i n  t h i s  sect ion. )  Under these  
assumptions one t heo re t i c a l  s t a b i l i t y  boundary i s  given by t h e  equation 

5Lh s i n  K ac  = z1 C O S  K + - r ( 142 ) 

Experimental data su i tab le  f o r  t e s t i n g  t h i s  r e l a t i o n  a re  avai lable  i n  
reference 16 f o r  an inc l ina t ion  range of -20' < K < 20' f o r  one constant- 
ve loc i ty  condition. These experimental data, some of which had t o  be 
s l i g h t l y  extrapolated from t h e  data  i n  reference 16, a r e  shown i n  f i g -  
ure 14 together with t h e  predic t ions  of equation (142) f o r  values of ( 
equal t o  0 and 1. Although reference 16 does not supply t h e  values of L, 
h, and Z1 needed f o r  calcula t ions ,  t h e  assumed values indicated on t h e  

f igure  a re  probably accurate enough t o  j u s t i f y  t h e  following more or  l e s s  
qua l i t a t ive  observations.  h he value of 2 1  was chosen so  a s  t o  make t h e  
calculated and experimental values agree f o r  t he  case K = 0.) It i s  noted 
t h a t  t h e  experimental va r ia t ions  and t h e  t h e o r e t i c a l  va r ia t ions  f o r  5 = 0 
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a r e  i n  f a i r l y  good agreement and a lso  tha t  these two variations a re  more 
or  l e s s  symmetrical with respect t o  posit ive and negative values of K .  

On the  other hand, the theore t ica l  curves f o r  5 > 0, such as  the  indicated 
curve f o r  5 = 1, w i l l  a l l  be unsymmetrical. Thus, it appears tha t  5 i s  
probably close t o  zero. I n  t h i s  connection it might be noted tha t  
Greidanus' theory, which i s  the  only known theory tha t  uses a term cor- 
responding t o  5, implies a value of 5 > 1 (compare eqs . (100) and (101) ) . 

(e)  Effects of I$ and ch: In order par t ly  t o  assess the  importance 

of the  t i r e  parameters Ky and ch, the special  case of approximation C 2  

where T = p = 0 and Z1 cos K - a = 0 w i l l  be considered. While t h i s  

par t icu lar  case i s  of no prac t ica l  importance i n  it se l f ,  i t s  examinat ion 
permits some insight in to  the  e f fec ts  of the  t i r e  parameters Ky and ch. 

For t h i s  case the damping required t o  s tab i l ize  the motion is  given by the  
inequality 

3 2 2  > O  [ a ( a ~  + I& cos K gvzl + Ilgv + g Y z1 

where pK i s  given by equation (115~) .  It i s  evident from t h i s  re la t ion  
t h a t  PK is  a s tab i l iz ing  term i f  posit ive and destabilizing i f  negative, 
Also, according t o  reference 2, Ky may be as  large as Fz and, according 

t o  reference 24, ch O e 7 5  Thus, according t o  equation ( 1 1 5 ~ ) ~  i f  the 

small sin2. term i s  neglected, pK may be posit ive f o r  posit ive K ,  

whereas i f  the Ky, ch, and c terms are  neglected (as  has been done 
7 

i n  a l l  previous investigations except r e f .  2) then p, i s  always negative 

f o r  posit ive K .  Therefore, i f  s i tuat ions should a r i se  wherein pK is  

important, it i s  not necessarily safe t o  neglect the  terms involving ch 
and 5 t ha t  a re  used i n  the  determination of p . (see eq. (115~)  .) 

K 

( f ) - ~ f f e c t  of cornering power N: As a rough check on the  variat ion 
of the t i r e  cornering power N under dynamic conaitions, there  are avail-  
able experhenta l  frequency data obtained by Melzer i n  connection with h i s  
previously mentioned t e s t s  on an uninclined ( K  = 0) model landing gear 
equipped with a sol id  rubber t i r e  of 7 cm (3 in. ) diameter ( r e f .  10) .  For 
t h e  higher velocity conditions of Melzerts t e s t s ,  the predictions of the 
summary theory and approximations A t o  D l  lead t o  the frequency equation 

f o r  an uninclined and undamped landing gear, t ha t  i s ,  f o r  K = T = g = 0 .  



NACA TN 3632 79 

( ~ n c l u s i o n  of the effect  of f i n i t e  T i n  t h i s  equation would not signif - 
i cant ly  a l t e r  t h i s  equation f o r  the  t e s t  conditions t o  be discussed herein.) 
Some of Melzerfs experimental data are  compared with the predictions of 
t h i s  equation i n  the  following t ab le  f o r  the condition p = 0. The experi- 
mental data shown represent Melzer's data f o r  the  highest veloci ty  condi- 
t i ons  tes ted.  

The theore t ica l  and experimental values are  seen t o  be i n  f a i r  agreement. 
However, the  experimental values are  somewhat smaller than the corresponding 
theore t ica lva lues .  This discrepancy i s  believed t o  be largely due t o  the  
f ac t  t ha t  these experimental t e s t s  were not conducted a t  suf f ic ien t ly  small 
values of shimmy amplitude f o r  the  assumptions of a l inearized theory t o  
be valid.  Specifically, a l l  of Melzer's frequency data were obtained f o r  
maximum swivel angles of 5' or larger .   h he data shown i n  the preceding 
tab le  correspond t o  the condition 8, = 5 O . )  Moreover, Melzer's data 

indicate tha t  there is  a f a i r l y  def ini te  decrease i n  shimmy frequency with 
increasing maximum swivel angle. A sample plot  of Melzer's data i l l u s -  
t r a t i n g  t h i s  effect  i s  given i n  figure 15. Also shown i s  the theore t ica l  
calculation, which is  val id  only f o r  8, = oO. I f  allowance i s  made f o r  
a cer tain amount of experimental error ,  extrapolation of the  experimental 
data t o  8, = 0' could be considered as  confirmation of the theory. It 

should be noted, however, t ha t  much of the r e s t  of Melzer's data, while 
not necessarily disputing t h i s  conclusion, do not so c lear ly  support it. 
Also, p lo ts  of the type of f igure 15 are  of l imited significance since 
each t e s t  point shown corresponds t o  a different  ro l l ing  velocity.  I n  
view of these considerations, the only reasonable conclusion tha t  can be 
reached appears t o  be tha t  Melzer' s data roughly confirms the theore t ica l  
frequency and does not conclusively dispute i t s  quantitative accuracy. 

FZ, kg 

"/ll 

calculated, 

experimental, CPS 

Melzer has a l so  conducted frequency t e s t s  on the  same model with an 
additional strong restoring spring (spring s t i f fness  several times the  
t i r e  tors ional  s t i f fness ) .  A comparison of theore t ica l  and experimental 
frequencies f o r  t h i s  t e s t  i s  shown i n  the  following table:  

3.6 2.8 

0.88 

5 - 1  

4 -7  

0.47 

3 08 

3.3 

0.44 

4.0 

2.7 

0.78 

4.5 

3 -5 

0.73 

4.8 

4.1 



The much be t t e r  agreement obtained f o r  t h i s  case i s  explained by the  pre- 
dominant influence of the  spring restoring moment, since f o r  large values 
of p t he  model system approaches the condition of a simple tors ional  
osc i l l a to r  with moment of i n e r t i a  I* and spring constant p, f o r  which 

condition the  well-known frequency equation i s  2nf = \I-. 

Fz9 kg 

a/21 

fcalculated, 

experimental' 'PS 

3 0 6 

In  order t o  assess the significance of the  preceding comparisons, 
t he  m a n t i t i e s  involved i n  the theore t ica l  equation (143) - a, N, K,, 

2.0 

0,77 

582 

4 e 9  

0.69 

505 

5.8 

2.8 

p, and I - w i l l  be considered. The quantit ies a, p, and I$ are 

0.86 

5 a 8  

5 085 

0.69 

5 04 

5845 

eas i ly  measured constants and, f o r  most of Melzerl s data, K& i s  much 

0.86 

5 9 7 

509 

smaller than aN; therefore, t h e  preceding f a i r  agreement between theory 
and experiment indicates tha t  t he  quantity N ( the t i r e  cornering power), 
which was considered t o  be a constant i n  the  preceding calculations, 
actual ly  does not vary extremely with ro l l ing  velocity and shimmy f re -  
quency - a t  l eas t  not f o r  Melzer' s t e s t  conditions. 

(g) Effect of gyroscopic torque: The next question t o  be considered 
i s  the influence of the  gyroscopic torque resul t ing from l a t e r a l  dis tor-  
t i o n  of the  t i r e .  A l l  pertinent experimental data obtained a t  very high 
speeds (e.g., r e f .  10; see a l so  f ig .  7) demonstrate tha t  a t  suf f ic ien t ly  
high speeds the  previously discussed conclusion t h a t  high-speed motion i s  
unstable f o r  t r a i l s  l e s s  than Z1 i s  no longer valid.  Instead, the 

experimental data show tha t  a t  these very high speeds ins t ab i l i t y  a t  any 
given posit ive t r a i l  ceases above a cer tain c r i t i c a l  velocity. The exis t -  
ence of t h i s  c r i t i c a l  velocity w i l l  now be shown t o  resu l t ,  a t  l eas t  i n  
pari;, from the  gyroscopic action which was previously included only i n  
Kantrowit z ' theory ( r e f .  8) but was not specif ical ly  mentioned there.  
The simplest systematic approximation tha t  adequately provides f o r  t h i s  
e f fec t  i s  approximation C2. I n  order t o  i so la te  the  gyroscopic effect ,  
t he  special  condition of no tilt (K = 0)  and no spring-restoring force 
(p = 0) or damper (g  = 0) w i l l  be considered. For t h i s  condition the 
equation f o r  the  s t a b i l i t y  boundary of approximation C 2  (or ~ 1 )  reads 



where the underlined terms are  the  gyroscopic terms, For the  computation 
of the  c r i t i c a l  velocity vc t h i s  equation may be simplified s t i l l  fur ther  

i f  it i s  realized t h a t  the quantity a?Z1 i s  s m a l l  i n  comparison with the 

moment of i n e r t i a  about the swivel axis; hence, f o r  an approximate 

calculation the  term' arv2z1 can be omitted. Then solution of equa- 

t i o n  (la) for  the c r i t i c a l  velocity vc above which the system is s table  
yields the expression 

which i s  observed t o  give an i n f i n i t e  c r i t i c a l  velocity f o r  zero gyroscopic 
action (T  = 0 ) .  

The only available experimental data containing enough information 
on the  t i r e  constants tha t  a re  necessary f o r  checking the va l id i ty  of 
equation (145) a re  Melzerf s data ( re f .  10) and even these data do not 
provide the required gyroscopic moment; therefore, it can only be crudely 
estimated a s  follows: The mass of the t i r e  w i l l  be of the  order of m a p i -  

tude wl [a (r - r4 )]nrk2, where r i s  the  overall  t i r e  radius, rq  the 

radius of the  cross section of the  t i r e  torus, and wl t he  average t i r e  

density. The moment of ine r t i a  w i l l  be the mass times the  radius of 
gyration r squared; thus, with T = 1 2  according t o  Kantrowitz, g 
T (eq, (33)) becomes 

For the  usual t i r e  rq * 0.3r, 
r3 

i s  s l igh t ly  smaller than r (say 

r5 - O.pr),  and rg i s  probably around 0.8r. Then, t o  a crude approxi- 
- 

mation, T * 0.21wlr3. For Melzer's sol id  rubber t i r e  r = 3.5 cm and 

w, is  probably about lom6 kg-sec2/cm4 (specif ic  gravity of 1 )  ; thus 
-L 

T = 10-5 kg-sec2/cme C r i t i c a l  veloci t ies  calculated from equation (145) 
with t h i s  value of T a re  compared i n  figure 16 with some of Melzer's 
experimental data f o r  one t e s t  condition a t  varzous values of a The 

calculated and experimental values of c r i t i c a l  velocity a re  seen t o  be of 
the  same order of magnitude, Since neglect of the gyroscopic moment 
gives, theoret ical ly ,  an in f in i t e  c r i t i c a l  velocity, t h i s  agreement indi- 
cates tha t  the gyroscopic moment i s  an important fac tor  i n  producing s t a -  
b i l i t y  a t  high veloci t ies .  Also, the theore t ica l  calculation is  conserva- 
t i ve ,  t ha t  i s ,  the  unstable region i s  overestim&ted. The quantitative 
agreement between theory and experiment i s  f a i r  but f a r  from excellent, 
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One probable reason f o r  some of the disagreement i s  the re la t ive ly  crude 
procedure used f o r  estimating the  parameter 7.. Another possible explana- 
t i o n  may l i e  i n  hysteresis effects ,  a s  folLows : 

If the  d i f f e ren t i a l  equation f o r  approximation C 2  (see eq. (124a)) 
i s  modified t o  take in to  account hysteresis forces and moments i n  the 
manner suggested i n  t h i s  paper, a modified d i f f e ren t i a l  equation resu l t s  
(see eq. ( ~ 2 )  ), which has the  s t a b i l i t y  boundary equation 

f o r  the  same conditions as  the corresponding equation (144), namely, 
K = p = g = 0. After neglecting the  underlined terms, which are  re la t ive ly  
small a t  large veloci t ies ,  t h i s  equation can be expressed i n  the  simpler 
and more eas i ly  interpreted form 

This equation indicates tha t  the effect  of f i n i t e  hysteresis (that is, 
TA f 0; T, f 0 )  i s  t o  reduce the  c r i t i c a l  velocity below what it would 

be f o r  no hysteresis effect  (3 = T, = 0). This resu l t  i s  a lso indicated 

. i n  f igure 16, where calculated and experimental curves a re  shown f o r  the  
previously discussed high-speed conditions of Melzer ' s model t e s t s ,   h he 
values of Th and T, needed f o r  these calculations were obtained from 

equations (60), (62), and (143)) by using the  previously mentioned e s t i -  
mated values of $ = 0 , l  and rl, = 0.2, based on s t a t i c  hysteresis 

loops.) I n  figure 16 the experimental data l i e  between the  theore t ica l  
curves f o r  '?nysteresis considered" and "hysteresis not considered. " The 
theore t ica l  calculation tha t  includes hysteresis i s  extremely unconserva- 
t i v e  . Two conclusions can be drawn from these observations. F i r s t ,  i f  
the  actual  hysteresis effect  a t  high speeds i s  only a fract ion of the cal-  
culated effect ,  t h i s  fac t  might explain the difference between the  experi- 
mental curve and the  theoret ical  curve tha t  does not include hysteresis,  
Second, as  was previously noted, it i s  evident tha t  the treatment of 
hysteresis e f fec ts  i n  the  present paper i s  inadequate and unconservative 
a t  high veloci t ies ,  

I n  concluding t h i s  discussion of gyroscopic torque, it should be 
noted tha t  f o r  the  case of a r ig id  landing gear the c r i t i c a l  design con- 
d i t ion  (velocity a t  which shimmy i s  most intense) occurs a t  low ro l l ing  
speeds where the  gyroscopic moment i s  insignificant.  Thus, the inclusion 
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of t h i s  gyroscopic moment i n  the theory i s  of somewhat academic in t e res t  
( a t  l eas t  f o r  case I) and it probably could be safely omitted i n  prac t ica l  
design calculations, 

Unstable shimmy conditions. - A s  a fur ther  overall  check of the  sum- 
mary theory and. it s systematic approximations, the experimental data of 
Kantrowitz ( re f .  8) f o r  unsteady shimmy conditions a re  available, 

The significant features of unsteady shimmy motion are  the divergence 
and frequency of the osci l la t ion,  which are simply the r e a l  and imaginary 
par t s  of the roots of the character is t ic  algebraic equation corresponding 
t o  the  d i f f e ren t i a l  equation i n  question. IGzntrowitz has made measure- 
ments of these quantit ies f o r  a model t i r e  of 4-inch diameter a t  inclina- 
t i o n  angles K of 5' and 20' with corresponding t r a i l s  of about O . 0 8 r  
and 0 .3h ,  respectively ( r e f .  8) . H i s  experimental resu l t s  f o r  K = 5 O  

a re  presented i n  figure 17, together with corresponding theore t ica l  cal- 
culations made according t o  approximation B, which i s  the simplest system- 
a t i c  approximation t o  the summary theory which describes, a t  l eas t  quali- 
ta t ive ly ,  the  shimmy phenomena throughout the complete range of ro l l ing  
velocity. The theore t ica l  and experimental frequencies a re  seen t o  be i n  
f a i r l y  good agreement. The theore t ica l  and experimental divergences are  
i n  f a i r  qual i ta t ive agreement, but the  experiment a 1  variat ion i s  sometimes 
considerably below the corresponding theore t ica l  one. This quantitative 
disagreement may be due t o  several factors.  F i r s t ,  hysteresis e f fec ts  
a re  neglected i n  the  theore t ica l  calculations. Although use of the  hys- 
t e r e s i s  force and moment equations derived i n  t h i s  paper would not com- 
p le te ly  explain the  disagreement, it i s  believed tha t  these hysteresis 
equations a re  not accurate enough, par t icular ly a t  small t r a i l s  (a = 0,081- 
f o r  the data i n  f i g .  17), t o  ju s t i fy  the  conclusion tha t  t he  disagreement 
cannot be explained by hysteresis e f fec ts ,  A second p a r t i a l  explanation 
of the disagreement a r i ses  from the  f a c t  tha t  the theore t ica l  calculations 
may be based on insuff icient ly  accurate values of the necessary t i r e  param- 
e te rs ,  since Kantrowitz did not make direct measurements of a l l  of the most 
fundamental t i r e  parameters, such a s  h, a, N, and Specifically, he 

measured only the  quantity L, a quantity approximately equal t o  
aN cos K + & cos2 K f o r  2 values of K ,  and the path frequency vl and 

t r a i l  a f o r  kinematic shimmy (shimmy with velocity approaching zero). 
The basic t i r e  parameters used f o r  calculating the  theore t ica l  curves i n  
figure 17 were approximately deduced from these quantit ies as  follows: 
The quantity h was obtained from equation (Dl) a f t e r  se t t ing  v equal 
t o  0 and substi tuting Kantrowitz' experimental values of L, vl, and a 

f o r  kinematic shimmy. This procedure f o r  determining the quantity h i s  
not necessarily accurate since equation ( D l )  neglects hysteresis effects .  
The t i r e  deflection needed fo r  calculating the  t r a i l  was estimated from 
figure 8 of reference 2. The t r a i l  was computed from the  t i r e  radius, 
the t i r e  deflect ion, and the  inclination. With the a id  of t h i s  estimated 
value of t r a i l  the t i r e  parameters N and can be obtained from 
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2 Kantrowitz' approximate values f o r  aN cos tc + K, cos K. I n  addition, 
most t i r e  tilt ef fec ts  were neglected; specifically,  5 and p, were 

taken equal t o  zero. While the foregoing procedure w i l l  probably give 
roughly correct values f o r  most of the  fundamental t i r e  constants, it i s  
believed tha t  the l imitations of t h i s  procedure and the  neglect of hys- 
t e r e s i s  e f fec ts  a re  suff ic ient  t o  prohibit the  making of any strong point 
out of the  discrepancies between theory and experiment i n  figure 17, Thus, 
t o  summarize, it appears tha t  Kantrowitz' data furnishes only a rough over- 
a l l  confirmat ion of the summary theory. Although quantitative agreement 
i s  poorer than f o r  most of the previously discussed experimental data, 
t h i s  poorer agreement i s  not necessarily significant.  

This completes the discussion of case I with respect t o  the  summary 
theory and i t s  systematic approximations. Next, a t ten t ion  w i l l  be directed 
t o  a discussion of case I with respect t o  the  predictions of some of the  
previously published theories.  

Predictions of Some of the  Previously Published Theories 

Some interest ing features of the  previously published theories i n  
re la t ion  t o  case I are  discussed i n  the  following paragraphs. Comments 
on the  influence of swivel-axis inclination w i l l  not be repeated 
here. 

The theory of Von Schlippe and Dietrich gives predictions which are  
substant ial ly  the  same as  the predictions of the summary theory, as  can 
be seen by a comparison of the predictions of these two theories i n  f ig -  
ures 9 and 10 f o r  Von Schlippe and Dietrich's model t e s t  conditions. 
Hysteresis e f fec ts  were neglected i n  computing both se t s  of theore t ica l  
curves. I n  comparing these two theories it should be noted tha t  the  only 
difference i n  the two se t s  of theore t ica l  curves a r i ses  from a s l ight  dif-  
ference i n  the expressions used f o r  the  e l a s t i c  forces and moments of the  
t i r e  (see section en t i t l ed  "Forces and Moments on the Wheel1' and the  com- 
ments a f t e r  equation (128)). The Von Schlippe-Dietrich theory a lso  pro- 
vides fo r  some t i r e  width effects ,  but these e f fec ts  are  believed t o  be 
re la t ive ly  small f o r  the present t e s t  conditions and were not taken into 
account i n  computing the theoret ical  curves i n  figures 9 and 10. From 
these figures it i s  seen tha t  the  differences between the  s t a b i l i t y  bound- 
a r i e s  and frequency curves fo r  the  Von Schlippe-Dietrich theory and the 
surmnarytheory are  usually small i n  comparison with the  differences between 
the  theoret ical  curves and the  experimental data. Thus, it seems reason- 
able t o  conclude tha t  there i s  no significant difference between the  main 
features  of the  summary theory and the Von Schlippe-Dietrich theory. 

Bourcier de Carbon's advanced theory provides essent ial ly  the  same 
predictions as  approximation B and w i l l  thus probably give a reasonable 
prediction of shimmy behavior f o r  the  complete velocity range, Similarly, 
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Bourcier de Carbon's elementary theory, corresponding t o  approximation C2, 
w i l l  probably give reasonable predictions for  tkte high velocity range. 

Melzer's theory correctly predicts the existence of t h e  l a rge - t r a i l  
s t a b i l i t y  boundary given by the  equation ac = 11, but it a lso  predicts 

the  existence of s table  motion i n  the  small negative t r a i l  region between 
zero t r a i l  and a t r a i l  equal t o  -6. = -GIN. The l a t t e r  prediction i s  i n  

disagreement with the  experimental data of Von Schlippe and Dietrich 
( r e f ,  3)  who conducted some t e s t s  i n  t h i s  t ra i l  range and found t h e  motion 
there t o  be unstable. 

The s t a b i l i t y  boundary according t o  Moreland's advanced theory f o r  
the  case of no damping or spring-restoring forces (see eq. (132a)) f s  
given by the  equation 

where 

This equation i s  plotted i n  f igure 18 f o r  zero time constant ( for  which 
case Moreland's theory reduces t o  the subcase of approximation C2 f o r  
which E = K&, = 0)  and f o r  several f i n i t e  values of the time-constant 
parameter 72. It i s  seen tha t  i f  -r2 is  large, a l a rge - t r a i l  s t a b i l i t y  

boundary no longer ex is t s  a t  t he  t r a i l  a, = 21. Since the  ac tua l  exis t -  

ence of t h i s  la rge- t ra i l  s t a b i l i t y  boundary has already been demonstrated, 
it appears l i ke ly  tha t  -r2 cannot be very large.  On the  other hand, if 

T2 
is small the  introduction of the  time-constant term produces an almost 

l inear  decrease of c r i t i c a l  t r a i l  with increasing veloci ty  u n t i l  a cer ta in  
l imit ing velocity (equal t o  Z1/~) i s  reached; above t h i s  veloci ty  a l l  
motion i s  stable.  Thus, the influence of the  time-lag constant term i s  
somewhat l i k e  t h a t  of the  previously discussed gyroscopic moment due t o  
t i r e  dis tor t ion or the hysteresis force and moment, which may a lso  produce 
s t a b i l i t y  a t  high veloci t ies .  However, i n  regard t o  the general shape of 
the  c r i t i c a l  t ra i l -ve loc i ty  curve, the variations predicted by considera- 
t i o n  of the  gyroscopic or hysteresis e f fec ts  (see sol id  and dashed l ines  
i n  f i g .  16) appear more l ike  those of the experimental data (f igs .  7 or  16) 
than does the  nearly l inear  var iat ion predicted from Moreland' s time-lag 
term f o r  small 72. 

Moreland' s elementary theory, Temple s elementary theory, and Maier ' s 
and Taylor's theories are  too crude t o  give any de ta i l s  f o r  case I, 
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Kantrowitz' theory incorrectly predicts in s t ab i l i t y  f o r  a l l  posit ive 
t r a i l s  i n  the  absence of damping or gyroscopic moments.  h his prediction 
i s  a consequence of the  f ac t  t h a t  t he  th i rd  coefficient i n  Kantrowitz' 
d i f f e ren t i a l  equation (137a) i s  zero. ) 

Wylieqs theory (see eqs. (138)) correctly predicts the  existence of 
s t a b i l i t y  a t  large t r a i l s  ; however, the  predicted value of c r i t i c a l  t r a i l  
i s  given by the  equation 

f o r  K = 0. This re la t ion  implies tha t  the c r i t i c a l  t r a i l  i s  a continu- 
ously increasing function of velocity, whereas the previously discussed 
experimental data clear ly indicate t h a t  the c r i t i c a l  t r a i l  rapidly reaches 
the  maximum value I I .  Also it i s  noted tha t  the l a s t  of Wylie's equa- 

t i ons  (138b) contains the  fac tor  1 + a / ~ ,  which does not appear i n  any 
of the  other theories.  This term appears as  a consequence of the  ea r l i e r  
mentioned f ac t  t ha t  Wylie's theory does not correctly predict the  inf lu-  
ence of t r a i l  f o r  the  yawed ro l l ing  condition. It might be noted tha t  i f  
Wylie's theory were modified t o  remove t h i s  diff icul ty ,  a s  suggested i n  
equation (110), then t h i s  fac tor  1 + a / ~  would be replaced by 1; thus 
the  modified Wylie theory would be more consistent with the  other equations. 
Also, f o r  high ve loc i t ies  the modified Wylie theory would more correctly 
predict  a def in i te  c r i t i c a l  t r a i l  according t o  the  re la t ion  a, = L. 

Prac t ica l  Application 

Before concluding the  discuss%on of case I, it i s  perhaps pertinent 
t o  comment on whether the  preceding theore t ica l  predictions f o r  t h i s  
idealized case can be applied t o  prac t ica l  landing-gear problems. Moreland 
has demonstrated tha t  neglect of the  tors ional  and l a t e r a l  e l a s t i c i t y  of 
the  landing-gear s t r u t  can sometimes lead t o  f a l se  predictions of s t a b i l i t y  
i n  an actual ly  unstable system ( re f .  12).  For example, f o r  too large to r -  
s ional  damping the  tors ional  damper uni t  effect ively locks the swiveling 
s t ructure against tors ional  movement with respect t o  i t s  point of attach- 
ment t o  the  landing gear s t ru t ,  so tha t  tors ional  movement of the  swiveling 
s t ructure i s  possible only as  a consequence of the  always f i n i t e  tors ional  
s t i f fness  of the s t ru t .  I n  other words, f o r  too large damping the  damper 
uni t  and s t r u t  combination behaves l i k e  a pure torsion spring and i s  thus 
ineffective fox damping purposes. I n  regard t o  l a t e r a l  s t r u t  s t i f fness  
Moreland has pointed out tha t  f o r  a r ig id  t i r e ,  corresponding t o  approxi- 
mation D3, i f  the s t r u t  i s  prohibited from l a t e r a l  motion, as  is  assumed 
f o r  case I, the motion i s  stable;  on the other hand, i f  the  s t r u t  is  
assumed t o  be of s t i f fness  approaching inf ini ty ,  the  system may be unsta- 
ble .  While t h i s  par t icular  cr i t ic ism of the  prac t ica l  value of case I 
f o r  in f in i t e  s t i f fness  applies only t o  approximation D3, s t i l l  f o r  f i n i t e  
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s t r u t  s t i f fness  of the same order of magnitude as  the t i r e  l a t e r a l  s t i f f -  
ness the theore t ica l  equations of the other approximate theories may a lso  
be unconservative. 

CASE I1 

This section i s  concerned with the idealized landing gear shown i n  
f igure 6. This landing gear consists of a wheel f r e e  t o  swivel about an 
uninclined always-vertical swivel axis tha t  i s  attached by a horizontal 
l inear  spring, of spring constant k, t o  the supporting structure.  This 
configuration, case 11, i s  discussed here f o r  two reasons: it I l lu s t r a t e s  
the effect  of s t ruc tura l  e l a s t i c i t y  on wheel shimmy, and it i s  be t t e r  
suited than case I fo r  evaluating approximations D l ,  D2, and D 3  a s  applied 
t o  landing-gear problems involving s t ruc tura l  e l a s t i c i ty .  (1t may be 
recalled tha t  these three approximations were of l i t t l e  value i n  dealing 
with a r ig id  landing-gear s t r u t  (case I) ; however, f o r  a f lex ib le  s t r u t  
these approximations may sometimes be of value.) In discussing case 11, 
and a lso  l a t e r  cases, no fur ther  mention w i l l  be made of the  previously 
published theories or of the  question of agreement between theory and 
experiment; a l l  discussion w i l l  be res t r ic ted  t o  the  s m a r y  theory and 
i t s  systematic approximat ions. 

The discussion of case I1 proceeds a s  follows: The equations of 
motion f o r  case I1 are derived according t o  the  summary theory and i t s  
systematic approximations. As f o r  case I, it i s  more convenient t o  rede- 
r ive  these equations of motion i n  a s l ight ly  different  manner rather  than 
t o  apply the  equations derived e a r l i e r  f o r  the  completely general case. 
After these derivations a re  made the  equations f o r  the  s t a b i l i t y  bound- 
a r i e s  are  established. Finally, the damping required t o  prevent shimmy 
i s  presented i n  curves a s  a function of s t r u t  s t i f fness  and ro l l ing  velocity 
f o r  a specific sample landing-gear configuration according t o  the  predic- 
t ions of approximations C, D l ,  D2, and D3.  o or t he  present case approxi- 
mations C 1  and C2 are  ident ical  and are  henceforth referred t o  col lect ively 
as  approximation C.) These curves are  u t i l i zed  t o  obtain some insight in to  
tpe accuracies of the  predictions of approximations D l ,  D2, and D3  with 
respect t o  the  more advanced approxhation C.  

General Derivation 

The derivation of the equation of motion f o r  the summary theory pro- 
ceeds a s  follows. The de ta i l s  of the  landing gear considered are  i l l u s -  
t r a t ed  i n  figure 6. This gear has a r ig id  symmetrical swiveling part  
having a mass m and a moment of ine r t i a  about i t s  center of gravity Io. 
The nonswiveling part  of the landing gear consists of a spring of s t i f f -  
ness k with an attached mass ml. The l a t e r a l  displacement of the  
swivel axis i s  designated as  va. 



Setting the  sum of the  l a t e r a l  spring and ine r t i a  forces acting on 
the  swiveling par t  equal t o  the  ine r t i a  reaction of i t s  center of gravity 

m ~ ~ ~ ( ~ ~  - c29) yields the  re la t ion  

Substitution f o r  A. from the re la t ion  

(see f i g .  6) yields, a f t e r  rearrangement, 

Setting the  sum of the  moments about the  center of gravity of the  
swiveling part  equal t o  the  i n e r t i a  reaction yields the  r e su l t  

(see f i g .  6) where I. represents the  moment of ine r t i a  of the swiveling 
s t ructure a t  i t s  center of gravity (1, = It - ~ n c ~ ~ ) .  Substituting f o r  

a and according t o  equations (23) and (151) then yields, a f t e r  
rearrangement, 

The t h i r d  equation f o r  t h i s  system f o r  the  general case i s  given by 
the  kinematic re la t ion  of equation ( lga)  or (19b). When 7 i s  omitted, 
t he  space derivatives a re  replaced by time derivatives, and q0 is set  

equal t o  qa - ae, t h i s  re la t ion  becomes 

from equation (19a) or 

from equation (19b) . 
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The three equations (l52),  (154), and (l55a) or (155b) completely 
describe the motion of the  landing gear according t o  the summary theory 
i n  terms of the  three variables yo, qa, and 8. The corresponding equa- 

t ions  f o r  the  systematic approximations are  obtained as follows. 

Systematic Approximat ions 

Approximation A. - For case 11, the  three governing equations of 
motion f o r  approximation A are  t h e  force and moment equations (152) 
and (154) and the kinematic equation: 

Equation (156) is  obtained by omitting a l l  2,' s f o r  n > 3 i n  the  gen- 
e r a l  kinemat i c  equation (155a) . 

Approximation B.- The three governing equations of motion f o r  approxi- 
mation B a re  the force and moment equations (152) and (154) and the  kine- 
matic re la t ion  

which i s  obtained by omitting the  Z j  term i n  equation (156). 

Approximation C.-  The kinematic equation f o r  approximation C i s  
obtained by omitting the  Z 2  term i n  equation (157) The resul t ing 

re la t ion  i s  

The force and moment equations (152) and (154) a l so  apply f o r  t h i s  approxi- 
mation. However, a s l ight ly  simpler form of these equations can be obtained 
by substi tuting f o r  va, according t o  equation (158b), i n  the  terms con- 

ta ining Khva and 
'71, i n  these two equations. With t h i s  substi tution, 

the  force equation becomes 
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and (using the re la t ion  K, = EN) the moment equation becomes 

Equations (158a), (159) (or (152)), and (160) (or (154)) describe the  
motion f o r  a p p r o x h t i o n  C . 

Approximation D l . -  The equations of motion f o r  approximation D l  a re  
obtained by se t t ing  A0 equal t o  0, or 

YO = va - a' ( 161 

and 

KA = OJ 

i n  the  force and moment equations (139) and (160) . Thus 

Equations (162) and (163) completely describe the motion f o r  approxima- 
t i o n  D l .  

Approximation D2. - The equations f o r  approximation D2 are  obtained 
as  follows. I n  the force equation (152) se t  a equal t o  0, or 

e = v - ~ D ~ ~ ~  

which gives the re la t ion  
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For the  moment equation (153), s e t  a equal t o  -hO/zl (eq* (85)) 
according t o  ap-proximation C, and apply equations (151) and (164)- The 
r e su l t  i s  

Equations (165) and (166) a re  the  basic equations f o r  approximation D2. 

Approximation D3. - The basic equation f o r  approximation D3 i s  obtained 
by f i r s t  solving the  equations (162) and (163) of approximation D l  simul- 
taneously t o  eliminate e i t h e r  11, or 9 and then l e t t i n g  N approach a, 

so t h a t  a l l  terms not multiplied by N vanish. The resul t ing equation, 
a f t e r  dividing out the  fac tor  N and using the  re la t ion  cl + c2 = a, 

can be expressed i n  terms of 9 a s  

S tab i l i t y  Boundaries 

The s t a b i l i t y  boundaries f o r  case I1 are obtained i n  the  sane manner 
as those f o r  case I. For the  summary theory they are  obtained as  follows. 

Purely osci l la tory boundaries.- The equations f o r  the  purely osci l -  
l a t  ory mot ion boundaries a re  obtained by substi tuting into the  d i f f  eren- 
t i a l  equations the  expressions 

9 = B,,e 
i v t  

- i(vt+al) - - i v  t 
e (cos al + i s i n  01) 

va - samaxe vainax 

i (v t+a2) - i v  t 
Ya = Y h x e  - yomXe (cos o2 + i s i n  og) ( 168 
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Substitution of these relat ions in to  equations (152), (154), and (155b), 

different iat ion and cancellation of ei*, and separation of r e a l  and 
imaginary par t s  in to  separate equations yields the expressions: 

From equation (.l52), 

( 2 
(yomax 

cos 02) + mlv2 + my - K~ ( .OS 5) + - 'lamax 

and 

K 2 2 
A(,omaX s i n  02) + ( m p  + mv - KA - k) ('g,,x s i n  ol) = o (170) 

From equation (154), 

e l 4  (yomax cos 02) - (mv - % v - ~ v ) ( ~ ~  x s i n  02) + 

(-mlc2v2 + c2k - c ~ K ~ )  ('lamax cos ol) + wv(rlBmax s i n  ol) + 

and 

-1 
%.A (yomax s i n  02) + (mv - K ~ V  v ) ( y %ax cos o 2 ) + (-mc2v2 + 

kc2 s i n 4 )  - wv("'l&max cos %) + ( g v +  -ravv)e max = o 

( 172 

From equation (l55b), 
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and 

- P ~ ~ ( ~ o ~ ~  cOs ~ 2 )  - p 1 - L  s in  u2) + %nax s i n u  = O  (174) 
1 

Equations (169) t o  (174) can be considered as  s i x  l inear  simultaneous 
algebraic equa$ions with no constant terms i n  the  f ive  variables 
Yomax COS a2' Yomax s in  a22 %nax cos ul, %nax s i n  a l ,  and @ m x e  

Then f o r  t h i s  system of equations t o  have solutions other than zero it i s  
necessary tha t  the  determinant of the  coefficients of any group of f i v e  
of these s i x  equations should equal zero. The determinant f o r  equa- 
t ions  (169)' (170)' (171)' (173) , and (174) is  

and the determinant f o r  equations (169), ( 170 )~  (172), (1731, and (174) 
i s  

where - P1 - Plm and P2 = ppo fo r  the summary theory. The corresponding 

equations fo r  approximation A are obtained by se t t ing  p equal t o  1 - 22%'1 
2 

1 
and p equal t o  llVl  - 2 v f o r  approximation B by se t t ing  p 2 3 1 '  1 

2 
equal t o  1 - 2*Vl and p equal t o  21vl, and f o r  approximation C by 2 

se t t ing  pl equal t o  1 and p2 equal t o ,  21vl. 

The two equations (175) and (176) completely describe the  conditions 
governing purely osci l la tory modes of motion according t o  the  summary 
theory and approximations A t o  C (other groupings by f ives  of the equa- 
t ions  merely lead t o  repet i t ion of these two re la t ions) .  The procedure 
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f o r  obtaining the s t a b i l i t y  boundaries f o r  each of the other systematic 
approximations ( D l ,  D2, and D3) i s  similar t o  tha t  just outlined, The 
resul t ing stability-boundary equations f o r  the  other approximat ions a re  
l i s t e d  i n  appendix E. 

Purely uniform motion. - For purely unif orm motion a l l  variables w i l l  
have constant values which may be represented as 

Substitution of these relat ions into equations (l52),  (l54), and (155) 
yields  the  r e su l t s  

For nonzero solutions of these three equations the determinant of the  
coefficients of emax, 'lamax, and yomx must be zero. Evaluation of 

t h i s  determinant gives simply 

Character of the  Motion Between Stabi l i ty  Boundaries 

In  order t o  determine the  character of the  landing-gear motion (s ta -  
b l e  or unstable) between s t a b i l i t y  boundaries it i s  f i r s t  convenient t o  
solve the  equations of mot ion f o r  each approximat ion simultaneously t o  
obtain a single l inear  d i f f e ren t i a l  equation i n  one variable f o r  each 
approximation. From these d i f f e ren t i a l  equations the s t a b i l i t y  of the  
motion may be determined by examining the corresponding character is t ic  
equations by any of the methods discussed i n  appendix C. These charac- 
t e r i s t i c  equations f o r  case 11, according t o  the various systematic 
approximations, a re  l i s t e d  i n  appendix F. 
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Evaluation of Approximations D l ,  D2, and D3 

In  the  e a r l i e r  discussion of case I it was not possible t o  present 
a f a i r  re la t ive  evaluation of the three pa ra l l e l  approximate theories D l ,  
D2, and D3 since f o r  case I none of these theories provides any r e a l i s t i c  
information. However, f o r  case I1 such a comparison can be made between 
the  predictions of these three approximations and the  more accurate 
approximation C ,  and a specific example w i l l  be discussed here f o r  a sam- 
ple  landing-gear configuration having the  re la t ive  dimensions and proper- 
t i e s  L = 0 . 8 r ,  h = a = ~ . ? r ,  c l = c 2 = 0 . 2 5 r ,  ~ = 0 . 3 r ,  ml=0.35m, 

2 I, = mr , and T = p = 0. The ac tua l  calculated behavior of t h i s  landing 
gear i n  terms of damping required f o r  s t a b i l i t y  as  a function of ro l l ing  
velocity according t o  approximation C i s  shown i n  figure 19 f o r  four 
values of the  r a t i o  of s t r u t  s t i f fness  t o  t i r e  s t i f fness  k/KA. It i s  

seen from t h i s  f igure tha t  as  the  s t i f fness  of the strut i s  decreased 
from in f in i ty  the damping requirement i s  increased. Also, f o r  large 
values of s t r u t  s t i f fness  the  region of maximum damping required l i e s  a t  
low speeds, whereas fo r  small mlues  of s t r u t  s t i f fness  it l i e s  a t  higher 
speeds. 

The theoret ic  predictions of the three theories  D l ,  D2, and D3 
f o r  t h i s  sample landing gear a re  compared i n  f igure 20 with the  corre- 
sponding predictions of the  more accurate approximation C (from f i g .  19) 
f o r  three values of s t r u t  s t i f fness ,  k = 0.2KA, 1.OK , and 5.0K~. It 

i s  seen tha t  fo r  each s t r u t  s t i f fness  approximations D2 and D3 provide a 
considerable overestimate of the  damping required f o r  s t ab i l i t y .  On the 
other hand, approximation D l  gives resu l t s  i n  good agreement with those 
of approximation C f o r  the r a t io s  k/KA = 0.2 and 1.0, but t h i s  approxi- 

mation great ly  underestimates the  damping f o r  the  large value of s t r u t  
s t i f fness  k/Kh = 5.0. 

I n  view of the comparisons of f igure 20, it appears tha t  approxima- 
t ions  D2 and D3 w i l l  not, i n  general, give re l iab le  quantitative estimates 
of the  damping required f o r  s t ab i l i t y .  It appears tha t  approximation D l  
may give reasonable resu l t s  fo r  some cases i n  which the l a t e r a l  s t i f fness  
of the  s t ru t  does not greatly exceed the l a t e r a l  s t i f fness  of the  t i r e .  
Since t h i s  l a t t e r  conclusion is based on only one se t  of landing-gear 
parameters, the degree t o  which it i s  valid i n  general would require a 
more extensive investigation f o r  a range of landing-gear properties. 

Prac t ica l  Application 

One limitation on the prac t ica l  application of the preceding equa- 
t ions  fo r  case I1 l i e s  i n  the assumption tha t  t he  damping i s  simply pro- 
portional t o  the angular swiveling velocity Dt6. As was previously 

mentioned, Moreland has demonstrated tha t  t h i s  as sumption i s  sometimes 
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unreliable since it implies a neglect of the  tors ional  f l e x i b i l i t y  of the  
landing-gear s t r u t ,  which i n  tu rn  can somet&s lead t o  a f a l se  prediction 
of s t a b i l i t y  f o r  heavily damped systems (see re f .  11 or 12) .  Thus, f o r  
systems i n  which tors ional  f l e x i b i l i t y  of the  s t r u t  i s  important, it w i l l  
be necessary to  replace the  damper unit  of case I1 by a damper and spring 
i n  ser ies ,  as  has been done by Moreland ( r e f s ,  11 and 12) ,  where the 
spring represents the s t r u t  tors ional  s t i f fness .  This par t icular  case 
of a ser ies  damper-spring uni t  applied t o  the  landing gear of case I1 i s  
not considered separately i n  t h i s  paper; it i s ,  however, included i n  the  
more general case I11 t o  be considered next. 

CASE I11 

The next type of landing-gear construction t o  be considered is  chosen 
largely t o  i l l u s t r a t e  the  application of the  summary and approximate 
theories  t o  more complex problems than have previously been considered 
by now making use of transfer-function concepts. This landing gear i s  
assumed t o  be of the  same general type as  tha t  of case I1 except f o r  the  
following generalizations. In  case I1 the l a t e r a l  deflection character- 
i s t i c s  of the  landing-gear s t r u t  were represented by a single spring and 
mass combination, or, more precisely, the force exerted on the  swiveling 
part  of the landing gear by the  s t r u t  was se t  equal t o  

For case I11 it i s  assumed tha t  the s t ru t  (or, more generally, the sup- 
porting s t ructure)  i s  a more complex l inear  system than i s  a spring-mass 
combination, so tha t  t he  s t r u t  force-deflection re la t ion  of equation (178) 
can be generalized t o  the  new form 

where T10 is  a function of the  d i f f e ren t i a l  operator Dt which repre- 

sents the  t ransfer  function correlating F and qae 2 
9 

Similarly, the moment on the  swiveling part  due t o  the s t ru t ,  which was 
previously set  equal t o  

 orela land, i n  reference 11, has advanced a similar generalization of 
the  s t r u t  la teral-deflect ion character is t ics  by means of a concept of 
"v i r tua l  e las t ic i ty ."  However, Moreland's generalization i s  l e s s  general 
i n  tha t  it does not provide f o r  the existence of s t ru t  structural-damping 
forces , 
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f o r  case 11, i s  now generalized t o  t h e  form 

The d i f f e r e n t i a l  equations f o r  case 111 are  e a s i l y  obtained from t h e  
corresporiding d i f f e r e n t i a l  equations f o r  case I1 by replacing k + ml Dt 2 

by T10 and p + g Dt by Tll. For example, f o r  approximation D l  equa- 

t i o n s  (162) and (163). a r e  replaced by t h e  new re la t ions  

which lead t o  a charac te r i s t i c  equation of an order depending on t h e  order 
of t h e  T1s .  I f  t h e  T ' s  a r e  ana ly t i c a l l y  defined functions, t h e  calcu- 
l a t i o n  of t h e  s t a b i l i t y  of t h e  motion and t h e  s t a b i l i t y  boundaries pro- 
ceeds exact ly  as f o r  case 11. However, i f  t h e  T ' s  a re  not ana ly t i c a l l y  
defined functions ( f o r  example, i f  they  a r e  determined by experimental 
t e s t s )  a s l i g h t l y  d i f fe ren t  procedure of t h e  following type is  needed. 

I n  order t o  determine p a r t i a l  information about TlO, t h e  swiveling 

pa r t  of t h e  landing gear can be removed and t h e  remaining s t r u t  can be 

i v  t 
subjected t o  a per iod ica l  l a t e r a l  force  F 7 = F  e ( e i t he r  by ca l -  

?mx 
cula t ion o r  by ac tua l  v ibrat ion t e s t s )  . The resu l t ing  la tera l -def  l e c t  ion 
response of t h e  s t ruc ture  w i l l  have a ce r t a in  amplitude and phase s h i f t  
which a r e  given by t he  r e l a t i o n  

which i s  obtained by subs t i tu t ion  of t h e  s inusoidal  var ia t ion  f o r  
F9 

i n t o  equation (179). The function l / ~ ~ ~ ( i v )  i s  a complex function of 

t h e  c i r cu l a r  frequency v, t h e  absolute value of which represents t h e  
amplitude response and t h e  argument of which represents t h e  phase s h i f t ;  
it is  generally cal led t h e  frequency-response function of t h e  system. 

Similarly, a frequency-response function i s  defined f o r  t h e  response 
of t h e  landing-gear s t r u t  t o  t o r s iona l  moment o sc i l l a t i ons  by t h e  r e l a t i o n  
(see eq. (181)) 
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With t h e  a i d  of t h e  experimental o r  calculated functions ~ ~ ~ ( i v )  
and ~ ~ ~ ( i v ) ,  t h e  s t a b i l i t y  boundaries f o r  any of t h e  theor ies  may be 
obtained by t h e  usual  procedure of subs t i tu t ing  expressions of t h e  form 
e ivt i n t o  t h e  corresponding d i f f e r e n t i a l  equation together  with t he  T ' s . 
For example, f o r  approximation D3 t h e  basic  d i f f e r e n t i a l  equation i s  

(obtained by converting eq. (167) t o  apply t o  case 111), and t h e  s t a b i l i t y  
boundaries f o r  purely o sc i l l a t o ry  motion (obtained by s e t t i n g  6 equal 

t o  e i n  equation (186) and separating r e a l  and imaginary p a r t s )  a r e  
given by t h e  simultaneous equations 

where R and I represent t h e  r e a l  and imaginary pa r t s  of t h e  bracketed 
functions.  Analogous equations a r e  obtained i n  a s imilar  manner f o r  t h e  
other  approximat ions. 

I n  regard t o  t h e  question a s  t o  whether any pa r t i cu l a r  motion between 
s t a b i l i t y  boundaries i s  s t ab le  o r  not, case I11 may present a more d i f f i -  
c u l t  problem i f  t h e  forms of t h e  T-functions a r e  not known i n  terms of 
r a t i o s  of polynomials, t h a t  is, i f  only t he  frequency-response var ia t ions  
a r e  known. I n  t h i s  event, f o r  example, t h e  usual  form of t h e  Routh-Hurwitz 
s t a b i l i t y  c r i t e r i a  (which i s  applicable t o  polynomial f orms only) cannot 
be applied and c r i t e r i a  of t h e  Nyquist type must be used. A b r i e f  d i s -  
cussion of these  c r i t e r i a  i s  contained i n  appendix C. 

The procedure f o r  applying t h e  summary and systematic approximation 
theor ies  t o  cases of a r b i t r a r y  complexity i s  e s sen t i a l l y  t h e  same a s  t h e  
procedure discussed above f o r  case 111, t h e  only important difference 
being t h a t  f o r  t h e  general case t h e  equations of motion (eqs. (16) or  
(191, (63),  (64),  (65), (67), (69),  and (71)) a r e  more numerous and more 
complicated. No new concepts need t o  be discussed, 
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CONCUTDING REMARKS 

This paper has presented a correlation and evaluation of the pre- 
viously published theories of l inearized t i r e  motion and wheel shimmy 
and has demonstrated tha t  the major merits of a l l  of these theories a re  
contained i n  a summary theory which represents a minor modification of 
the basic theory of Von Schlippe and Dietrich. I n  cases where there are  
strong differences between the exis t ing theories and the summary theory, 
the previously published theories have, i n  the main, been demonstrated 
t o  possess cer tain deficiencies except f o r  Moreland's advanced theory, 
f o r  which no adequate evaluation was possible. 

A ser ies  of systematic approximat ions t o  the  summary theory has been 
developed herein f o r  the treatment of problems too simple t o  merit the  
use of the complete summary theory. These systematic approximations have 
been shown t o  resemble closely the  previously published theories except 
tha t  i n  some de ta i l s  they avoid some of the  l imitations encountered i n  
these theories.  

Comparison of the exis t ing experimental data with the predictions 
of the  s m a r y  theory and i ts  systematic approximations has indicated a 
f a i r l y  good degree of correlation between the higher approximations and 
the exis t ing experimental data f o r  the cases investigated. However, 
since the agreement i s  f a r  from perfect i n  some respects and since most 
of the  limited amount of existing experimental data was obtained with 
small models there s t i l l  remains the  question as  t o  whether the theory 
i s  safely applicable t o  ful l -scale  conditions. I n  par t icular ,  the impor- 
tance of hysteresis damping remains undetermined. 

I n  regard t o  the determinationof the  various t i r e  constants required 
fo r  theore t ica l  shimmy calculations, it i s  noted tha t  the exis t ing pe r t i -  
nent experimental data, mostly contained i n  references 21, 24, and 32 
t o  37, a re  extremely limited and apply mostly t o  small, obsolete, or 
foreign t i r e s .  Furthermore, although various attempts have been made 
t o  correlate and t o  reconcile theoret ical ly  the  experimental data (e.g., 
re f .  2 or 38 ) ,  there s t i l l  apparently does not exis t  any f u l l y  re l iab le  
theore t ica l  means f o r  predicting a l l  of the needed e l a s t i c  character is t ics  
of t i r e s .  I n  view of these considerations, a need exis t s  f o r  additional 
experimental data on modern t i r e  character is t ics  and also f o r  a more ade- 
quate evaluation of the existing data t o  determine whether these data can 
be applied by scale laws t o  predict the characteristics of any t i r e  with 
tolerable  accuracy. 

I n  regard t o  the adequacy of a l inzarized theory of t i r e  motion, it 
can be s tated only tha t  there is  a s  yet no strong indication tha t  a non- 
l inear  theory i s  required fo r  prediction of the s t a b i l i t y  boundaries. 
I f ,  however, a knowledge of the  large-angle (nonlinear) behavior i s  
required, a theore t ica l  system f o r  dealing with t h i s  problem could be 
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developed on the  basis  of assumptions of the type advanced by Kelley, 
Rotta, and Temple (see refs .  18, 19, and 21 (p.  36), respectively).  

Langley Aeronaut i c a l  Laboratory , 
National Advisory Committee f o r  Aeronautics, 

Langley Field, Va., January 13, 1956. 
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APPENDIX A 

CALCULATION OF EQUIVALENT VISCOUS DAMPERS 

GENERAL CASE 

I n  the derivations and equations i n  t h i s  paper, only l inear  damping 
term's were introduced so tha t  t he  resul t ing equations would remain l i n -  
earized. However, the  damping moments caused by f r i c t ion ,  hysteresis  
losses, and the  ordinary shimmy dampers are  nonlinear and therefore it 
i s  necessary t o  replace these nonlinear moments with equivalent l i nea r  
viscous moments. The equivalent viscous moment i s  usually determined 
by assuming tha t  l inear  and nonlinear damping moments a re  equivalent i f  
they dissipate the  same amount of energy during each cycle of s h i m  
osci l la t ion.  

For a l inear  damper of moment g Dt$ t he  energy dissipated per cycle 

of sinusoidal osc i l la t ion  i s  ( fo r  \Ir = qmx s i n  v t )  

and, since Dt$ = Ifmx v cos vt and d$ = $mXv cos vt dt ,  

which gives 

Therefore the  l inear  damping constant g i s  re lated t o  the  energy loss  
per cycle by the re la t ion  

By using t h i s  re la t ion  an effect ive value of l inear  damping constant can 
be calculated f o r  any nonlinear damper i f  the energy dissipation per cycle 
i s  known. 



VELOC ITY-DEPENDENT DAMPING 

By using equation (Al) Rotta ( r e f .  2) has calculated t h e  e f fec t ive  
damping constant f o r  damping moments of t he  type 

The f i r s t  term represents f r i c t i o n  damping and the  second represents 
f l u i d  damping. The exponent nl w i l l  probably always be between 1 and 2. 

Rotta ' s calculations proceed essen t ia l ly  a s  follows : F i r s t ,  t he  
t o t a l  energy dissipated i s  calculated from the  re la t ion  

where 

q = qWx s i n  v t  (A4 

After combining equations ( A l )  t o  ( ~ 4 )  and integrating,  the  following 
equation f o r  g i s  obtained: 

nl-1 nl-1 4 'I2 nl+l 
g = 4 M ~  + qnqmX v IS, cos vt (A?) 

"v 'hax 

It i s  seen t h a t  the  damping constant depends on the  amplitude qmax; 
f o r  nl > 1 it i s  large a t  small angles due t o  the  f i r s t  term and i s  

l a rge  a t  large angles due t o  t he  second term. The minimum value of t he  

dg e q u a t o  0) e quivalent damping const ant btained by se t t i ng  - 
d4fmax 

occurs at t h e  angle 

Mo 

' / 2  nl+l 
cos vt 

and the  corresponding minimum damping constant becomes 
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where 

For t h e  spec ia l  case of velocity-squared damping (n  = 2) equation ( ~ 7 )  
reduces t o  t h e  r e l a t i on  

FRICTION DAMPING 

The equivalent damping const ant  f o r  f r i c t i o n  damping ( const an t  
moment N o ) ,  obtained by s e t t i n g  qn equal t o  0 i n  equation ( ~ 5 ) ,  i s  



APPENDIX B 

DIFFERENTIAL EQUATIONS FOR CASE I WITH INCLUSION 

OF HYSTERESIS EFFECTS 

I f  t h e  d i f f e r e n t i a l  equations of approximations B and C2 f o r  case I 
(see eqs. (122) and (124), respectively) a r e  modified t o  take i n t o  account 
t h e  hysteresis  force and moment expressions derived i n  t h i s  paper, the  
following d i f f e r e n t i a l  equations are  obtained : 

For approximatior, B, 

where 

2 (a NTA + a t  KaTa cos I;) v 

2 2 E3 = a 2 ~  + afKa cos K + pZl + pKZ1 + gv + o l l ~  cos I; + 

COS + K ~ T ~  cOs2K) v 

E4 = oaN cos K + Ka cos2" + p + pK + uK 

For approximat ion C2, 
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where 

2 E~ = I,,,v + (arv'cos n + gv)zl + ( a 2 q  + a % ~ ~  cos n)v 

E2 = a 2 ~  + a& cos n + pZl + pnZ1 + gv + Z ~ T V ~ ~ O S ~ K  + ( ~ 2 b  

(aNTA cos n + S T a  cos2n) v 

E3 = aN cos K + cos2n + p + p, + lkl 
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APPENDIX C 

STABILITY CRITEBIA 

In  t h i s  appendix a br ie f  review i s  presented of most of t h e  ex i s t i ng  
methods f o r  examining t h e  s t a b i l i t y  of motion of systems whose motions a r e  
governed by l i n e a r  d i f f e r e n t i a l  equations of t h e  type 

The solut ion of t h i s  type of equation consis ts  of terms of t h e  form 

whence 

Subst i tu t ion of equation ( ~ 3 )  i n t o  equation (~1)  yields  t h e  a lgebraic  
e  quat ion 

f o r  t h e  p ' s .  Equation ( ~ 4 )  i s  cal led t he  charac te r i s t i c  equation of 
t h e  d i f f e r e n t i a l  equation (~1) .  

The type of motion f o r  t h e  l i nea r  system i s  determined by t h e  char- 
a c t e r  of t he  complex roots  of t h e  charac te r i s t i c  equation. Most impor- 
t a n t ,  t he  motion i s  en t i r e ly  s tab le  i f  and only i f  t h e  cha rac t e r i s t i c  
equation possesses no roots  having pos i t ive  r e a l  pa r t s .  Several proce- 
dures a r e  avai lable  f o r  determining whether a  pa r t i cu l a r  cha rac t e r i s t i c  
equation has such roots  with pos i t ive  r e a l  pa r t s .  

One procedure which i s  use fu l  i n  cases where t h e  cha rac t e r i s t i c  
equation ( ~ 4 )  can be wr i t t en  i n  the  polynomial form 

i s  t he  well-known Routh-Hurwitz c r i t e r i on  which makes use e i t h e r  of t he  
Routh t e s t  functions ( r e f .  26) or  of t h e  equivalent Hurwitz determinants. 
I n  Hurwitz' form t h e  requirement f o r  s t a b i l i t y  (or  no roo ts  with pos i t ive  
r e a l  p a r t s )  i s  t h a t  a. and a l l  of t h e  n  determinants 
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f o r  u = 1, 2, . . . n must be greater  than zero, or ,  i n  t h e  a l t e rna t e  
form of Cremer ( r e f .  39), a l l  of t h e  an 's  and e i t h e r  t h e  even o r  t h e  
odd Hurwit z determinants must be posi t ive .  

This c r i t e r i o n  i s  pa r t i cu l a r l y  sui ted f o r  examining t h e  s t a b i l i t y  
of l i n e a r  systems with polynomial-type d i f f e r e n t i a l  equations of low 
order. However, f o r  high-order polynomial-type d i f f e r e n t i a l  equations 
t h i s  c r i t e r i o n  may not be t h e  ea s i e s t  t o  use and f o r  nonpolynomial-type 
equations t h e  c r i t e r i o n  i s  not d i r e c t l y  applicable. For such cases use 
can be made of t h e  graphical-type c r i t e r i o n  originated by Nyqu'ist 
( r e f s .  28 t o  31). Some discussion of c r i t e r i a  of t h i s  type i s  contained 
i n  most books dealing with servomechanisms o r  feedback amplif iers ( f o r  
example, r e f s .  29 and 31). These references provide t h e  necessary theo- 
r e t i c a l  information f o r  applying these  c r i t e r i a  and t h e  theory w i l l  not 
be repeated here; however, it may be usefu l  t o  s e t  down here, together 
with an example, one mechanical procedure f o r  applying t h i s  c r i t e r i o n  
and a few per t inent  comments . 

Consider a d i f f e r e n t i a l  equation with t h e  cha rac t e r i s t i c  equation (~4) 
f o r  a case where t h e  function f ( p )  cannot necessari ly be e a s i l y  expressed 
i n  a simple polynomial form which can be handled by t he  usual  Routh-Hurwitz 
c r i t e r i on .   his may be t h e  case, f o r  example, where par t  of t h e  func- 
t ion f (p) i s  evaluated from experimental f requency-response data. ) 

The function f ( p )  i s  assumed t o  be a single-valued function of p 
which is  r e a l  when p i s  r e a l .  It i s  a l s o  assumed t h a t  t h e  function f ( p )  
has no poles i n  t h e  region of t h e  complex p-plane where t h e  r e a l  pa r t  of 
p is  greater  than zero. When t h e  equations of motion a re  s e t  up i n  t h e  
manner followed i n  t h i s  paper, t h e  condition of no poles i n  t h i s  region 
i s  usual ly  s a t i s f i e d  f o r  a c tua l  landing gears since t h i s  condition implies 
only t h a t  t h e  landing-gear s t r u t ,  a s  represented by equations or  experi- 
mental curves, possesses some damping o r  i s  at  l e a s t  not inherent ly  an 
unstable s t ruc ture ,  For example, f o r  t h e  equations of case 111, only t h e  
poles of t h e  functions T ~ ~ ( ~ )  and T l l ( ~ )  could lead t o  such poles. 

However, i f ,  f o r  example, T ~ ~ ( ~ )  had such a pole, equation (161) would 

indicate  t h e  p o s s i b i l i t y  of a steady o r  divergent o sc i l l a t i ng  force  F~~ 
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corresponding t o  t h i s  pole, even i f  the  lower end of the  landing-gear 
s t r u t  were held fixed (va = 0); t h i s  obviously cannot occur i n  actual i ty .  

I n  order t o  decide whether the motion of the system described by 
equation ( ~ 4 )  i s  stable,  the following procedure may be followed: 

(1) Determine the  variat ion of f ( p )  i n  equation ( ~ 4 )  f o r  the case 
of pure sinusoidal osci l la t ions,  t ha t  i s ,  f o r  p = i v  i n  the range 
o <  v <  me  

(2) Plot the  r e a l  part  of f ( i v )  against the  imaginary part  f o r  
the  complete range 0 < v < w e  This w i l l  give a curve such as  i s  i l l u s -  
t r a t ed  i n  figure 21 for  a sample case. A s  v varies from 0 t o  
t h i s  curve w i l l  move about the  or igin through a net angle of Jfi radians, 
t h i s  angle being considered posit ive i n  a counterclockwise sense. (J = 1 
f o r  the case i l l u s t r a t ed  i n  f i g .  21.) 

(3) Determine the asymptotic behavior of the character is t ic  func- 
t i o n  f (p) or f ( i v )  f o r  p +  m or v j m ;  a t  t h i s  l imit  the function 
w i l l  behave as f (p) a: pJ or f f iv )  O: vJ,  whence j can be determined. 

(4)  Under the  preceding res t r ic t ions  f (P)  being a single-valued 
function of p, r e a l  when p i s  rea l ,  and having no poles i n  the  half-  
plane R ( ~ )  > 0) ,  it can be shown tha t  the motion corresponding t o  the  
d i f fe rent ia l  equation i s  s table  i f  and only i f  25 = j. (1n the  sample 
case of f ig .  21, where J = 1 and j = 2, the  motion i s  therefore 
s table .  ) 

In  conclusion it might be noted tha t ,  although e i the r  the preceding 
Nyquist type s t a b i l i t y  c r i te r ion  or the  Routh-Hurwitz c r i te r ion  can 
usually be applied t o  most of the  approximate equations discussed i n  
t h i s  paper, they cannot be direct ly .appl ied t o  some equations of trans- 
cendental form such as  those of the summary theory, since such equations 
may correspond t o  infinite-order l inear  d i f f e ren t i a l  equations ( for  
example, see eq. (120) ) ; hence, an in f in i t e  number of Hurwitz determinants 
would have t o  be evaluated or the  Nyquist type plot would c i r c l e  the 
or igin an in f in i t e  number of times. 



NACA TN 3632 

APPENDIX D 

STABILITY BOUNDARlES FOR CASE I 

The following equations describe the  conditions under which purely 
osci l la tory motion i s  possible f o r  case I f o r  the summary theory and the 
systematic approximat ions. 

For the summary theory and approximations A t o  C2, 

( a 2 ~ h  + I& cos2r + p + p 2 

v2 = 
K) (~1' + ) + [(a~h + 

sin r)pl - v1p21(, Cos r] (oil COS K - 
I ~ v ~ ~ ( P ~ ~  + pg2) - T V ~ ~ ~ ~ Z ~  cos r - a ) cos K 

and 

(all cos . - a. p2 a~~ + C ~ F ,  sin ir) + vlpl(% - m2)cos tt] 
B = ( - a m  cos K 

where, fo r  the  summary theory, 

- P1 - Ploo = COS vlh - Lvl s i n  vlh 

P2 = 92, = sin vlh + Lvl C O S  vlh 

f o r  approximat ion A, 

fo r  approximation B, 
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and f o r  approximations C1 and C2, 

For approximations D l  and D 3  purely osci l la tory motion does not 
ex is t .  

For approximation D2, 

2 ~ ~ ( a ~ j ,  cos K + eKA cos K + chFa s i n  K cos K .=.[ ) 
a 2 ~ h  + aeKh cos K + p + pK + TV~COS*K 

The s t a b i l i t y  boundaries f o r  unif orm motion are  obtained by se t t ing  
t h e  coefficient of the  yo terms i n  the  various d i f f e ren t i a l  equations 

equal t o  zero. For example, f o r  the  summary theory and approximations A 
and B the  equation 

2 aaN cos K + KA cos K + p + pK + uK = 0 

describes t h i s  s t a b i l i t y  boundary. 
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APPENDIX E 

STABILITY BOUNDARIES FOR CASE I1 

The equations governing purely oscillatory modes of oscillation for 
case I1 are as follows'for approximation Dl, D2, and D3: 

For approximation Dl, 

For approximat ion D2, 

For approximation D3, 
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APPENDIX F 

CHARACTERISTIC EQUATIONS FOR CASE I1 

The characteristic equations for case I1 are as follows for the 
summary and systematic approximation theories: 

For the summary theory and approximations A to C2, 

where, for the general theory, 

f(p) = (1 + ~v-5) ehv-5 

for approximation A, 

f(~) = 1 + zlv-lp + z2v-S2 + ~ ~ v - 3 ~ 3  

for approximation B, 

f(p) = 1 + llv-$ + l2V-S2 

and for approximation C1 or C2, 
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For approximation Dl the characteristic equation is  

K 

For approximation D2, 

k o ( m l  + m )  + m1c$]v-lp' + a + mcl + g(ml + m)v-l]p4 + 

vml + p(ml + m)v-l + n ( m l  + m) + k m ~ ~ ~ v ' l  + mla(a + r ) v m l  + 

mc ( c  + + g ( ~ ~  + k1v-l + m(cl + s ) ~ ~  + ml(a + 
1 

[mk + P ( K ~  + k ) v - l +  a%(a + E ) V  p + k~A(a  + e )  = o 

For approximation D 3  see equation (167). 
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TABU I 

PRINARY ASSUMPTIONS FOR THE VARIOUS THEORIES OF TIRE  MOTION^ 

%he symbol F indicates a f i n i t e  number. 

Theory 

Summary the  or  y 
Approximation A 
Approximat ion B 
Approximations C 1  and C2 
Approximation D l  
Approximat ion D 2  
ApproxFmat ion D3 

Von Schlippe-Dietrich and Rotta 
Bourcier de Carbon advanced 
Gre idanus 
Bourcier de Carbon elementary 
Melzer 
Moreland advanced 
Moreland intermediate 
Moreland elementary 
Temple elementary 
Maier 
Taylor 

Kantrowit z 
Wylie 

N 

F 
F 

F 

Kh 

F F  
F F  
F F  
F F  
F m  
m F  
m m  

F 
F 

F F  
F 

F F  
F F  
F F  
m m  

F m  
F m  
m F  

F F  
F F  

% 

F 
F 
F 
F 
F 
m 

F 
F 
F 
F 
F 
0 
0 
m 

F 
0 
m 

F 
F 

E 

F 
F 

F 

2 1  

F F  
F F  
F F  
F F  
F O  
F m  
F F  

F 
F 

F F  
F 

F F  
O F  
O F  
O F  
F O  
0 0  
O m  

F F  
F F  

22 

F 
F 
F 
0 
0 
0 
0 

F 
F 
F 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

23 

F 
F 
0 
0 
0 
0 
0 

F 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

Zn(n > 3) 

F 
0 
0 
0 
0 
0 
0 

F 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 

Remarks 

Assumes l a t e r a l l y  r i g i d  t i r e  
Assumes tors ional ly  r i g i d  t i r e  
Assumes l a t e r a l l y  and tors ional ly  r i g i d  t i r e  

Assumes t i r e  twist angle = swivel angle 
Introduces time-constant term 
Implies extremely la rge  2 1  value 
Assumes l a t e r a l l y  and tors ional ly  r i g i d  t i r e  
Assumes l a t e r a l l y  r i g i d  t i r e  
Assumes l a t e r a l l y  r i g i d  t i r e  
Assumes tors ional ly  r i g i d  t i r e  

For t r a i l  not equal t o  zero both of these 
theor ies  can lead t o  erroneous conclusions 
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Tire equator 

Ground-contact a r e  S-h - -  
L 

( a )  Assumed theore t ica l  shape of t i r e  equator d is tor t ion  f o r  a  s ta t ionary 
twisted t i r e .  v = 0. 

nent i a l  region 

(b)  Actual shape of t i r e  equator d is tor t ion  f o r  an untwisted t i r e  a t  
r e s t  ( so l id  l i nes )  and jus t  a f t e r  s t a r t ing  t o  r o l l  (dashed l i n e s ) .  

( c )  Actual shape of t i r e  equator d is tor t ion  f o r  a  ro l l ing  t i r e .  

Figure 2.- Tire  equator dis tor t ion.  



Figure 3 . -  Effective t i r e  tilt due t o  l a t e r a l  d is tor t ion  of t i r e ,  





motion Direction of 

/-- Swivel axis 

I 
Y 

Figure 5.- Configuration of landing gear f o r  case I. 
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End view 

Side view 

/Center of gravity of 
I 

I swiveling structure 
Y 

Rottom view 

Figure 6. - Configuration of landing gear f o r  case 11. 



Unstable region 

Velocity, v, km/hr 

Figure 7.- Experimental s t a b i l i t y  boundary f o r  a t i r e  29 cm i n  diameter 
(from ref .  17) . 
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Van ~chlippe-Dietr ich theory 
- - -- Summary theory 
--- Approximation A 
_ _ -  Approximation B Stabi l i ty  boundaries 
- - - -  Approximations C1 and C2 

0 Experimental data 

Velocity, v, cm/sec 

Figure 9. - Coinparison of t h e o r e t i c a l  and experimental p red ic t  ions of t h e  
s t a b i l i t y  boundaries f o r  t h e  Von Schlippe-Dietrich t e s t  model of r e f -  
erences J t o  5 .  ( ~ ~ s t e r e s i s  e f f e c t s  a r e  neglected i n  these  t h e o r e t i -  
c a l  curves.) 
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Yon Schlippe-Dietrich theom 
---- Summary theory 
--- Approximation A 
---- Approximation B 

4 ----- Approximations C1 and C2 
0 Experimental data 

0 200 400 600 800 1000 1200 

Velocity, v, cm/sec 

Figure 10.- Comparison of theore t ica l  and experimental shimmy frequencies 
on the s t a b i l i t y  boundary f o r  the Von Schlippe-Dietrich t e s t  model of 
references 3 t o  5 .  ( ~ y s t e r e s i s  e f fec ts  are  neglected i n  these theo- 
r e t i c a l  curves.) 



I /  \ Summary theory 
I I --- - - -A~~roximation A 

0 ~&roximation B 
m -Approximations C1 and C2 
21 \ Approximation D2 

111 11 NO w i n g  required according to approximations Dl and D3 

0 1 2 3 4 5 6 X 10' 
Velocity, v, cm/sec 

Figure 11.- Theoretical calculations of the damping required to stabilize 
the motion of the Von Schlippe-Dietrich model landing gear at a trail 
of 7 cm. 
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0 Theoretical calculation f o r  8, = 0 

Experimental data from reference10 

Maximum swivel angle, 8, 

Figure 15.- Influence of shimmy amplitude on the  shimmy frequency. 
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Approximation B 
- - 0 - - Experimental data 

Velocity, fps 

Velocity, fps 

Figure 17. - Comparison of theore t ica l  and experimental shimmy frequency 
and divergence f o r  Kantrowitz' experimental data. K = 5'. 
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Dimensionless velocity, vdm/~r 

Figure 19.- Influence of s t r u t  s t i f fness  on damping required f o r  s t a b i l i t y  
according t o  approximation C f o r  a sample landing gear. L = 0.8r; 
h = a = 0.5r; c1 = c2 = 0.25r; E = 0.3r; q = O.35m; I, = mr2;  r = p = 0. 



c,E!Eia 
g

E
E

zi 
.d

 
.A

 
.d

 .?
I 

L
h
L
k
 

a
a
a
a
 

2
2
2
2
 



Figure 21.- Variation of the  function f ( i v )  f o r  the  l inea r  d i f f e ren t i a l  
equation having the  character is t ic  equation 




