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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3632

CORREIATION, EVALUATTION, AND EXTENSION OF LINEARIZED
THEORIES FOR TIRE MCTION AND WHEEL SHIMMY

By Robert F. Smiley
SUMMARY

An evaluation is made of the existing theories of linearized tire
motion and wheel shimmy. It is demonstrated that most of the previously
published theories represent varying degrees of approximation to a sum-
mary theory developed herein which is a minor modification of the basic
theory of Von Schlippe and Dietrich. In most cases where strong differ-
ences exist between the previously published theories and the summary
theory, the previously published theories are shown to possess certain
deficiencies.

A series of systematic approximations to the summary theory is
developed for the treatment of problems too simple to merit the use of
the complete summary theory, and procedures are discussed for applying
the summary theory and its systematic approximations to the shimmy of
more complex landing-gear structures than have previously been considered.

Comparisons of the existing experimental data with the predictions
of the summary theory and the systematic approximations provide a fair
substantiation of the more detailed approximaste theories. However, some
discrepancies exist which may be due to tire hysteresis effects or other
unknown influences. Thus, further work may be needed to explain these
discrepancies.

INTRODUCT ION

In the ground maneuvering of aircraft equipped with swiveling landing
gears there sometimes arises the problem of violent oscillations or shimmy
of the landing gear which may lead to falilure of the gear. In the past
this problem has been handled largely by means of various measures based
on practical experience. However, this empirical approach has not proved
entirely adequate. Moreover, for radically different types of complex
flexible landing gears it is highly doubtful whether any empirical approach
based purely on past experience could always safely and optimumly take into
account all of the possible conditions which a landing gear might be sub-
jected to in actual operation.
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A considerable amount of theoretical and experimental work on wheel
shimmy has been done, mostly in the past 25 years. (Most of the existing
papers on this subject are listed in ref. 1, which also presents a his-
torical discussion of the development of the wheel-shimmy problem.) How-
ever, most of these theoretical papers have not been .correlated with each
other or with the available experimental data, so that essentilally there
exists at present a large number of at least superficially different
theories of wheel shimmy and a fair amount of experimental data which has
not been correlated with many of these theories (refs. 2 to 23).

The primary purpose of the present paper 1s to clear up this partial
confusion of theories by demonstrating that most of the previously pub-
lished theories represent various approximations to one basic general
linearized theory derived herein and that most of the previously published
linearized theories which do not represent approximations to this general
theory possess certain undesirable characteristics. This basic general
theory, which is henceforth called the summary theory, 1s derived in such
a manner that It makes use of and is compatible with the soundest features
of practically all the previously published theories, insofar as this' is
possible at present; however, in the main this summary theory is a minor
modification of the theory proposed by Von Schlippe and Dietrich 1n refer-
ences 3, 4, and 5.

A second purpose of this paper is to develop a series of systematic
approximations to the summary theory suitable for use in the treatment
of problems too simple to merit the use of the complete summary theory
and to examine both these systematic approximations and the previously
published theories to determine how these theories are related to the
summary theory and how the predictions of these theories agree with the
avallable experimental data.

A final purpose of this paper is to illustrate procedures for applying
the summary theory and its approximations to complex types of flexible
landing-gear structures.

Although the primary purpose of this paper is concerned with the
wheel-shimmy problem, most of the material presented is directly appli-
cable to the more general problem of the motion of elastic tires under
arbitrary rolling conditions. Thus this material is pertinent to the
study of veering-off or ground looping, ground handling, and catapulting
stability of aircraft.

The material in this paper is arranged as follows. First, a detailed
statement of the problem is given, together with a detaililed outline of the
manner in which it is treated herein. Then, after a brief discussion of
the restrictions on the analysis, a linearized derivation is made for the
general Von Schlippe-Dietrich type of kinematic equations governing the
motion of elastic tires rolling without skidding. This analysis proceeds
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essentially in accordance with the theoretical analysis of Von Schlippe
and Dietrich except that the present analysis considers the subject of
tire tilt in slightly greater detail.

Next, the primary forces and moments acting on a rolling tire are
discussed and used to establish the equations of motion for arbitrary
rolling conditions. Then a systematic procedure is developed for forming
approximations to the summary theory.

The previously published theories are listed, discussed, and com-
pared with the summary theory and these systematic approximations.
Finally, the application of the summary and approximate theories to
several simplified landing gears is discussed. The first example is
chosen primarily to demonstrate the correlation between theory and experi-
ment, the second example to demonstrate the correlstion between the sum-
mary theory and its systematic approximations, and the remaining example
to illustrate the application of the theory to complex problems.

Some of the material presented herein was submitted to the University
of Virginia in partial fulfillment of the requirement for a Master of
Aeronautical Engineering degree.

SYMBOLS

a trail (perpendicular distance between ground-contact center
point and swivel axis)

sin K
r

a' = a - ELh
Al’AQ’AB coefficients defined by equations (115b)
By,B5 coefficients defined by equations (115b)

c lateral distance of center of pressure of vertical force
from XZ-plane '

S\ change in lateral distance of center of pressure of vertical
force from XZ-plane per unit of A

Cy change in lateral distance of center of pressure of vertical
force from XZ-plane per unit of ¥

cq distance from wheel center to center of gravity of swiveling

parts of landing gear
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distance from center of gravity of swiveling parts of
landing gear to swivel axis

hysteresis constants used in equation (128c)

tire parameter used by Bourcier de Carbon

differential operator with respect to distance,
or v'lDt( )

differential operator with respect to time, a( ) ‘or v D()

coefficients of linear differential equations

energy dissipated per cycle
frequency, V/Eﬂ

coefficients of linear differential equations

lateral force due to hysteresis effects

lateral inertia force resulting from lateral deformation
of tire

net lateral tire force acting on wheel

net lateral structural force acting on wheel

lateral force on tire due to lateral distortion of tire
lateral force on tire due to lateral tilt of ﬁire

vertical load on tire

lateral force on swiveling parts of landing gear due to
landing-gear strut

linear damping constant (Damping moment = g Di¥)

half-length of tire-ground contact area
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imaginary part of ( )

moment of inertia of the swiveling part of a landing gear
about an axis parallel to the swivel axis and passing
through the center of gravity of the swiveling part

polar moment of inertia of wheel and tire about an axis
perpendicular to the wheel axle

polar moment of inertia of tire (excluding solid wheel parts)
total polar moment of inertia of wheel and tire

moment of inertia of the swiveling part of a landing gear
about the swivel axis

excess of number of zeros over number of poles
parameter in stability-determination plots (appendix C)
lateral spring constant of landing-gear ‘strut

parameter used in appendix A

torsional stiffness of tire

total effective change in tire torsional stiffness due to
tire inertia effects

effective change in torsional stiffness of tire due to
lateral acceleration of tire

change in tire torsional stiffness due to centrifugal forces
lateral tire force due to tilt per radian of tilt angle

lateral stiffness of tire

total effective change in lateral stiffness of tire due to
tire inertia effects .

effective change in lateral stiffness of tire due to lateral
acceleration of tire
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change in lateral stiffness of tire due to centrifugal
forces

_ (oL + n)n™t

n!

tire constants; 1,

relaxation length
mass of swiveling parts of landing gear

mass of tire

mass of wheel including tire

mass of nonswiveling parts of landing gear

constant friction-damping moment

net structural tilting moment acting on wheel center
gyroscopic moment due to swiveling

twisting moment due to hysteresis effects

inertia moment resulting from lateral deformation of tire

net structural swiveling moment acting on wheel center
torsional moment on tire due to twist of tire

gyroscopic moment due to tilting
gyroscopic moment due to lateral distortion of tire

torsional moment on the swiveling parts of the landing gear
due to landing-gear strut and damper unit

damping moment about swivel axis

cornering power (lateral tire force per radian of yaw angle
during steady yawed rolling for yaw angle approaching
zero)
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ny parameter used in appendix A
1) complex roots of characteristic equations
P1,Po functions defined in appendix D

P10 Pp09P11 P71 05P01 7Pon functions defined in and after equations (80)

a4, parameter used in appendix A

r free tire radius

Tg polar radius of gyration of tire

r3 vertical distance from wheel axle to ground
Ty radius of cross section of tire torus

R tire parameter used by Bourcier de Carbon
R( ) real part of ( )

s circumferential coordinate on tire (fig. 1)
S wave length, En/vl

s tire parameter used by Bourcier de Carbon

t time

At time lag due to tire hysteresis

T Moreland's time-lag constant

T tire parameter used by Bourcier de Carbon
Tl,Tg,,.. functions of Dy correlating structural forces, moments,

and deflections

T time-lag constant for hysteresis moment
T% time-lag constant for hysteresis force

u = Csz(Ull cos kK - a)sin k
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Uy = CpF, (17 cos k - a)éin K

v

JosY15Y25
yi )yg

by

€

M,M0,M15M3
na:ni)ng

rolling velocity

width of tire-ground contact area

density

aFy + ¢, F, sin k)sin k

horizontal distance parallel to mean direction of rolling
motion

space~-fixed coordinate axes; the X-axis is horizontal and
parallel to the mean direction of rolling motion; the
Z-axis is vertical, and the Y-axis is perpendicular to the
XZ~plane. The XY-plane is the ground plane.

lateral distance of tire equator from XZ-plane

vertical distance up from XY (ground) plane

lateral deflection of tire equator from XZ-plane; subscript O
refers to the center of the ground-contact area, 1 +%o the
foremost point of the ground-contact area, 2 +to the rear-
most point of the ground-contact area, i +to equator points
off the ground; and g +to equator points on the ground

twist in tire, radians

half-width of twisting-moment---angular-deflection hysteresis
loop of tire

lateral wheel tilt, radians

lateral tire tilt resulting from lateral deformation, radians

pneumatic caster, K,/N

lateral deflection of center plane of wheel with respect to

the XZ-plane; subscript O refers to the point corresponding

to the center of the ground-contact area, 1 to the point
corresponding to the foremost point of the ground-contact
area, 3 to the center point of the wheel, a to the point
of attachment of the swiveling parts of the wheel to the
swivel axis;, 1 to wheel-plane points off the ground, and
g to wheel-plane points on the ground
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inertia-force parameter (eq. (46))
inertia-moment parameter (eq. (49))
hysteresis-moment parameter (egs. (62))

hysteresis-force parameter (egs. (60))

angle of rotation of wheel about the vertical Z-axis, radians

inclination of swivel axis, radians (fig. 5)

lateral distortion of tire equator with respect to the solid
parts of the wheel; subscript O refers to the center of
the ground contact area, 1 +to the foremost point of the
ground contact area, 2 +to the rearmost point of the ground
contact area, 1 to equator points off the ground, and g
to equator points on the ground

half-width of lateral-forcee-lateral-deflection hysteresis
loop of tire

cilrcular frequency of shimmy motion, 2xf or v,V

path frequency of shimmy motion, wt

tire tilt parameter (eq. (13))
spring constant for a linear restoring moment
aF, + ac%FZ + c,’FZ sin K)Sin K

tan
er

constants representing phase shift

constant defined by equations (33) and (50)

constant for gyroscopic moment GwlD

2
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¥ angle of rotation of wheel about the swivel axis, radians
® ' angular velocity of wheel about its axle ¢=¥3

Subscripts:

c critical

max maximum

STATEMENT OF THE PROBLEM AND GENERAL APPROACH

The purpose of this section is to define specifically the problem
considered in this paper and to clarify further the correlation between
the various parts of the paper.

The basic problem to be considered is the rolling motion and wheel
shimmy of a rigid wheel equipped with an elastic tire, when the wheel
is attached to scme supporting structure such as a landing-gear strut.
The motion of the rigid wheel can, of course, be completely described
by six independent variables corresponding to the three degrees of free-
dom in translation and rotation of the wheel. In addition to these
six degrees of freedom, there exists a seventh degree of freedom which
is associated with the distortion of the elastic tire or the track of
the tire on the ground which results from the application of a given
motion to the rigid wheel. Thus, in general, the motion of a rigid wheel
with an elastic tire represents a system of motion involving seven varia-
bles, and seven equations correlating these different variables are
required to solve for the motion of a landing gear under arbitrary rolling
conditions. 8Six of these equations will usually be the equations expres-
sing the sum of the forces or moments acting along each of the three
principal coordinate axes; the seventh relation will be an equation,
usually a kinematic equation; which correlates the tire distortion with
the other variables.

The present paper is not concerned with all seven degrees of free-
dom. Most of the paper is restricted to a consideration of cases of
wheel motion in which the wheel is rolling at an approximately constant
velocity v without braking, and consequently with constant angular
velocity w, and where no strong vertical oscillations are involved.
Thus, for example, effects of acceleration or deceleration, which are
known to have at least some influence on the rolling motion (see, for
example, the experimental evidence of ref. 17) are not considered.
Similarly, fore and aft oscillations of the wheel are excluded.
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When these three restrictions are applied, the seven-variable prob-
lem of a rolling wheel becomes reduced to the consideration of a system
involving the following four degrees of freedom: (1) swiveling of the
wheel about a vertical axis through the wheel center point, designated
by the symbol 6; (2) lateral tilting of the wheel with respect to a
vertical plane parallel to the direction of undisturbed motion, desig-
nated by the symbol 7; (3) lateral displacement of the wheel with
respect to a space-fixed reference axis parallel to the direction of
undisturbed motion, designated by the symbol n with various subscripts;
and (4) lateral displacement of the tire footprint on the ground (which
is a measure of the tire distortion), designated by the symbol Yor

(These coordinates and their positive directions are illustrated in
fig. 1.)

In order to obtain four equations correlating these four variables 6,
Y, T, and Yor the following procedure is used: After some remarks on

general restrictions, a kinematic relation between the four variables is
derived in the section entitled "Kinematic Relations for the Rolling
Tire." Next, the primary forces acting on the wheel from the ground,
including wheel inertia forces, are discussed in the sectilon entitled
"Forces and Moments on the Wheel." By utilizing these ground forces and
moments, the four basic equations of motion for the wheel, including the
kinematic equation, are set down in the section entitled "Equations of
Motion."

For many applications these equations of motion in their most gen-
eral form are relatively complicated and, although they are by no means
insolvable, it is profitable to simplify the equations for those problems
which do not require the detailed equations of the summary theory. There-
fore, a number of systematic approximations to the summary theory are
formulated in the section entitled "Systematic Approximations to the
Summary Theory." A second reason for establishing these systematic
approximations lies in the fact that they furnish a framework for com-
paring the summary theory with the other existing theories of wheel
motion, most of which are closely related to these systematic approxima-
tions. ©Such a comparison of the summary theory and its systematic approx-
imations with the existing theories of wheel motion is carried out in the
section entitled "Classification and Evaluation of Existing Theories."

In the last major section of this paper the summary theory and its
systematic approximations are applied to three illustrative types of
landing-gear configurations which are chosen either to illustrate agree-
ment between theory and experiment or to illustrate methods for applying
the theory to complex problems of wheel shimmy.
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GENERAL RESTRICTIONS .

Before entering upon the detailed derivation of the equations of
motion, some further restrictions on the analysis should be discussed.
First of all, the present paper is limited almost exclusively to lin-
earized theories. However, there is some question as to whether a lin-
earized theory is sufficient to describe the important features of wheel
shimmy. It appears at present that a linearized theory will provide at
least a fair qualitative description of stability boundaries for shimmy
and will indicate whether a given motion is stable or not. However,
agreement between theory and experiment, presented in a subsequent sec-
tion, is still not good enough quantitatively to warrant the conclusion
that nonlinear effects can always be neglected or replaced by equivalent
linear effects.

Another limitation of the linearized theory is that it does not
permit calculation of the maximum steady-state shimmy amplitude for those
steady-state self-excited shimmy motions which sometimes occur on actual
landing gears.

Although the preceding considerations suggest that nonlinear effects
in landing-gear motions may possibly be of importance for some practical
problems, their consideration is beyond the scope of the present paper
and henceforth only linearized theory is discussed. The only concession
to nonlinearity is made in appendix A, which presents a conventional
approximate method for converting a nonlinear shimmy damper to an equiva-
lent linear damper. It should, however, be noted that some attention has
been given to the development of nonlinear tire-motion theory in refer-
ences 18 to 21.

Another restriction arises in connection with the assumption adopted
throughout this paper that the finite width of the tire need not be taken
into account in developing a tire-motion theory for single tires of con-
ventional cross section. This assumption appears at present to be at
least partly justified on the basis of an experiment by Von Schlippe
and Dietrich (ref. 3); on the other hand, since their investigation of
this matter was extremely limited in scope, their experimental result
may not be completely typical. Consegquently, a more thorough evaluation
of tire-width effects seems desirable. Some theoretical work on this sub-
ject has been done by Von Schlippe and Dietrich (ref. 3) and later by
Rotta (ref. 2), but the matter is beyond the scope of the present paper.

KINEMATIC RELATIONS FOR THE ROLLING TIRE

In this section the kinematic equations for the motion of a rolling
tilted elastic tire without skidding are derived in accordance with the
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theoretical analysis of Von Schlippe and Dietrich (ref. 3 or 4). This
derivation differs only slightly from that analysis in that it omits
some refinements of the theory which are necessary for very wide tires
and it includes some influences of tilting of the tire in more detail.
While the modifications that are made in regard to tilt may not neces-
sarily be of practical importance in most cases, they may be of interest
in a few problems.

Specifically, the object of this section is to obtain a relation
correlating the absolute lateral deflection of the center point of the
tire ground-contact area Yo with the corresponding wheel coordinates

of lateral deflection 17 (for example, Mo ©Or n5), swivel angle 6,

and tilt 7y. (See fig. 1.) First, some geometric relations are set
down and some background information regarding tire distortion is dis-
cussed. Then this information is utilized to obtain a kinematic rela-
tion between the lateral deflection of the tire center line or equator
at the forward edge of the ground-contact area i and the coordi-

nates 1n, v, and 6. Next, a kinematic relation between the lateral
deflections of the tire equator at the cepter and forward edge of the
ground-contact area (designated yo and Yy, respectively) is estab-

lished. These two relations are combined to obtaln a basic kinematic
equation correlating Yo with 7%, 7, and 8.

The derivation of these kinematic relations 1s based upon the fol-
lowing physical concept: As a tire moves forward, the tire material on
the circumference just ahead of the ground-contact area is laid down or
developed on the ground without skidding and becomes the new forward por-
tion of the ground-contact area, so that the track of the tire is com-
pletely determined by the lateral-distortion coordinate of the foremost
ground-contact point Y1 and the slope of the distorted center line or

equator of the tire at that point.
GEOMETRIC REIATIONS

The primary geometric quantities involved in the problem of a
rolling tire are shown in figure 1, which gives an instantaneous view of
a distorted tire with respect to an arbitrary space-fixed XYZ coordinate
system, the X-axis being horizontal and parallel to the mean direction
of wheel motion, the Z-axis being perpendicular to the ground, and the
Y-axis being perpendicular to the ¥X- and Z-axes. Parts (a) and (b) of
this figure represent side and bottom views, respectively, of a rolling
wheel that is swiveled and tilted. For the sake of clarity, part (c) of
this figure, which shows an end view of the rolling tire, has been drawn
to a different scale from part (b) and represents the unswiveled condition.
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In dikcussing the geometric quantities, the following terminology and
symbols are used: The wheel center plane is the plane of symmetry of

the wheel perpendicular to the wheel axle. The tire center line or equa-~
tor comprises the tire points which on the undistorted tire are located
at the intersection of the tire outer circumference with the wheel cen-
ter plane; under the action of moments and lateral forces these tire
points are deflected laterally by an amount A with respect to the wheel
center plane. The symbol Xi designates the lateral deflection of tire

equator points which are not in contact with the ground and kg desig-

nates the lateral deflection of points which are in contact with the
ground. The point at the center of the ground-contact area is designated
by Ny- '

The lateral distance of the wheel plane from an arbitrary space-
fixed XZ-plane is designated by N3 for points off the ground at a ver-

tical height 2z and by Mg for points on the ground. The lateral dis-

tances of tire-equator points from this XZ-plane are similarly designated

by y; and Vg- The difference between y and 1 1is the lateral dis-
tortion A of the tire, or V

N o=y -0 (1)

and

A

1

g =Yg = Mg (2)

The tire contacts the ground in a finlte area having a finite width
and a length 2h. The width of this area is assumed to be negligibly
small; that is, the ground-contact area is assumed to be reduced to a
ground-contact line. The foremost ground-contact point (in the direction
of motion) is designated by the subscript 1, the rearmost point by the
subscript 2, and the center polnt by the subscript 0. Except for
braking and accelerating effects, the center point O has approximately
the same horizontal x-coordinate as the wheel axle.

Distances about the tire equator or circumference are measured in
terms of the circumferential coordinate s whose origin is taken at the
point O,

The wheel is assumed to move at constant velocity v approximately
in the direction of the X-axis. The wheel i$ laterally inclined with
respect to the vertical Z-axis by the tilt angle 7y and is swiveled with
respect to the XZ-plane by the swivel angle 6. Both ti1lt and swivel
angles are assumed to be small; that is, cos 6 = cos y =1, sin 8 = 0,
and sin y = 7.



NACA TN 3632 15

The center point of the wheel axle is located at a vertical dis-
tance r3 from the XY (ground) plane, a lateral distance r57 from

the intersection of the wheel plane and the XY-plane, and a lateral
distance n5 from the XZ-plane, where

(3)

-r

TIRE DISTCRTION

This section contains a short discussion of the features of tire
distortion which are pertinent to the derivation of the basic kinematic
relations of this paper.

Experimental and theoretical considerations (for example, see
refs. 3 and 2, respectively) indicate that, if the tire equator in the
ground-contact region is subjected to arbitrary lateral distortion, the
lateral distortion of the tire equator off the ground N; +tends to die

out as an exponentially decaying function of the circumferential dis-
placement s (for example, see fig. 2(a)). Thus, near tire point 1
off the ground the tire distortion will tend to approach the pattern
described by the equation

~8=h
and a similar equation will apply near tire point 2. The exponential
constant L 1is a tire characteristic having the dimension of length

and 1s called the relaxation length. The relaxation length near point 2
is not necessarily exactly the same as that near point 1; however, since
the former relaxation length will not be used in this paper in any criti-
cal calculations, this difference will not be taken into account.

In regard to the accuracy of equation (4) very near point 1, it
should be emphasized that this exponential variation is only an expression
of the equilibrium condition which the tire-equator distortion would
reach in the absence of any restraints. However, it is obvious that con-
ditions exist for which this distortion curve cannot be completely expo-
nential in form. For example, for the case of pure lateral deflection of
a stationary tire, the tire equator in the ground-contact zone is (neg—
lecting skidding) a straight line parallel to the wheel center plane and
extending from point 1 to point 2 (see solid lines in fig. 2(b)). Con-
sequently, the existence of an exponential curve Jjust to the right of
point 1, and including point 1, would imply the existence of a sharp
bend in the tire at point 1 such as is indicated in figure 2(a). Since
a sharp bend is impossible because of finite tire stiffness, it follows
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that, in general, on a stationary tire the exponential varistion given
by equation (4) cannot be valid close to point 1. However, experimental
evidence indicates that beyond a short transition region ahead of point 1
the tire-equator distortion curve does have an esséentially exponential
character (see solid lines in fig. 2(b)). As the wheel rolls ahead the
nonexponential transition region of the tire equator is laid down or
developed on the ground as it passes into the ground-contact zone, and
the more nearly exponential part of the equator curve moves down toward
the ground (see dashed lines in fig. 2(b)) and is eventually developed
on the ground, so that after rolling a short distance from rest and
during normal rolling conditions (fig. 2(c)) the tire-equator distortion
at the front end of the tire can approach the assumed exponential varia-
tion of equation (4).

At the rear end of the tire the equator distortion curve during
rolling does not so closely approximate an exponential variation, since
at the rear end there is no process of laying down or development such
as is responsible for the exponential variation at the front end. How-
ever, since the rearward section of the tire equator is not used in any
critical calculations in this paper, its equator curve is also, for sim-
plicity, assumed to be exponential.

If equation (4) is accepted as the basic equation for tire-equator
lateral distortion near point 1 under rolling conditions, the total lat-
eral displacement of the tire firom the XZ-plane in this region can, by
use of equation (l), be written in the form

-8ch
L
yi = Tll + 7\18 (5)
Substituting the geometric relation 10y = ng - 72 (see fig. 1) into
equation (5) gives '
_S8~h

L

KINEMATIC EQUATION

By making use of the physical concepts discussed previously, together
with equation (6), it i1s now possible to establish as follows the basic
differential equation relating the tire deflection at the center of the
ground-contact area Yy, with the wheel coordinates 1, 8, and 7.

There is assumed to be perfect adhesion between tire and ground,
that is, no skidding. As the tire rolls forward (arbitrarily swiveling,
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tilting, and moving laterally) a distance dx, a new element of the tire
of circumferential length ds above and in front of point 1 is laid
down or developed on the ground. This tire element, before being laid
down on the ground, had the lateral-distortion variation given by equa-
tion (6). This equation, after differentiation with respect to s,
yields for a given instantaneous position of the tire the following rate
of change of distortion:

s-h
dy; _ dng dz 1., _ L
—_— -7 — == MNe
ds ds 7 ds L '+ (D
At point 1, where s = h and ¥y =¥yt
dy; dn
(dsl> = <ds ) - 7@_2) B % N (8)
1 1 1

The term (%ﬁ) is simply the sine of the angle between the ground and
1

the tire equator at point 1. (See fig. 1.) Just to the left of point 1
the tire is flattened on the ground, or %ﬁ = 0., If (%5) were not
s s
1

zero, the tire would have to have a sharp bend at point 1. However,
because of the finite bending stiffness of an actual tire, a sharp bend

is impossible; thus (%%) = 0 and equation (8) reduces to
1
dy dny
(___1) = (_%d ) -1 (9)
ds 1 S 1 L1

Further, since (%%) = 0, s 1is a horizontal coordinate near point 1.
1
The rate of change of wheel lateral displacement Mg with respect to

the horizontal coordinate x at any given instant is just the swivel
angle ©; hence

dyi

CANN

If the tire is assumed to have no sharp bernd at point 1,
dy dy. dy
(——i> = (——é) at this point. Then, since (;—5 is the slope of the
ds 1 ds 1 ds 1
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tire equator on the ground at point 1 and since no skidding is assumed
to exist, this slope must coincide with the track of the rolling tire

dyy
on the ground, which is = Thus,

dyy 1
& 9N

or, if differentiation with respect to x 1s designated by the operator

D = é% and the terms are rearranged,

LDy, =18 - N\ (11)

(Alternate derivations of this equation are presented in refs. 3 and k.)
A slightly more convenient form of equation (11) is obtained by substitu-
tion of the geometric relations kl =¥ - M and M = Mo + he (see

fig. 1) to give
(1 + L D)yl =M + (L + h)e (12)

Equation (12) is the basic equation for ¥y previously obtained by

Von Schlippe and Dietrich (refs. 3 and 4). It should be noted, however,
that no tilt terms appear in the equation. Although it is not known
whether the effect of tilt on the validity of equation (12) is important,
in view of the present lack of a reliable method for taking this tilt
effect into account, the following argument is presented to afford at
least a crude approach to the problem.

Equation (8) contains the tilt term 7(%%) which was set equal to

1 .
95) is zero because of the finite
ds 1

bending stiffness of the tire. (See fig. 1.) On the other hand, if it
is assumed that the bending stiffness of the tire is zero and if radial

tire distortion is neglected, (%g) will be equal to h/r and the tilt
1

zero on the grounds that the factor (

term 7h/r will enter into equations (9) to (12). As a somewhat ques-
tionable approximation, ‘it will now be assumed that a term of this type,
but smaller by the reduction factor & < 1, should appear in the dif-
ferential equations (9) to (12). Equation (12) then becomes

(1+LD)y, =ng+0(L+n) - 22y (13)
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A similar tilt term was derived by Greidanus (ref. 7) on the basis
of a slightly different argument. (Greidanus' term is discussed in a
subsequent section of this paper.) However, apparently no other detailed
tire-motion theory has included such a term.

Equation (13) is the fundamental kinematic relation for tire point 1.
The kinematic relations for points O and 2 are determined by the condition
of perfect adhesion between tire and ground. During the rolling process
each tire circumferential element first contacts the ground at point 1,
later proceeds to point O and then to point 2, after which it leaves the
ground. Consequently, with perfect adhesion each tire element at point 2
has the same lateral deflection that it had when it entered the contact
zone at point 1 a distance 2h ago; that is,

yo(x) = ¥ (x-2h) (14)

Similarly the kinematic relation for point O is

]

yo(x) yl(x-h)

or

v, (x) = yo(x+n) (15)

Finally, by combining equations (13), (15), and (3) the equation

[; + L ﬁ]yo(x+h) no(x) + [; + ﬁ]e(x) - E%E 7(x)

I

1)+ Ledo + [ry - BEh  a6)

is obtained. This is the basic kinematic equation correlating the tire
lateral deflection Yo under rolling conditions with the swivel angle 8,

the wheel lateral displacement Mo OF N3, and the lateral tilt 9y for
arbitrarily applied variations of 6, Mg ©F n3, and 7. However, this

transcendental form of the kinematic equation is not the most convenient
form for some purposes in this paper. In particular it is expedient to
remove the transcendental expression from equation (16) by use of a
series expansion.
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SERIES EXPANSION OF KINEMATIC EQUATION

The expression yo(x+h), after expansion in a Taylor seriles, gives

: 2
_ h
yb(x+h) = yo(x) +h Dyb(x) + Zf'Dzyb(X) oo oo e
00 hn n
= ¥o(x) + 2 _ I D yp(x) (172)
n=1 3°
n
where the operator p" represents g—ﬁa An alternative form of equa-
dx

tion (17a) which is useful later is

Yo(x+h) = ey (x) (170)

since the infinite series in hD is the series expansion of the exponen-
tial function. A third useful form of this equation is obtained by
expressing equation (17b) in terms of a time derivative Dy 1instead of
the space derivative D. Since it is assumed throughout this paper that
the rolling velocity v 1is constant, the correlation between these two
derivatives is given by the equation

py() -3 2xal)_,80)_ ()
t at  at ax dx

and hence equation (17b) can also be written in the form

-1
yolxn) = ™ Pty (x) (17c)

Differentiation of equations (17) gives the result

Dyy(x+h) = Dyp(x) + h DEyo(x) + % h2D3yo(x) ..

s ne1l

= Z___— A DnYo(X)

n=1 (n-1)1? (18a)
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or

A
Dyp(x+h) = DehDyo(x) =v lDtehV t yo(x) (18p)

Substitution of equations (17) and (18) into equation (16) gives after
rearrangement, with yo(x) written simply as Yo and similar treatment

of mng, 135 9, and 7:

- &b - ELh
o + 116 = 7 n5 + 116 + <?3 s?—->7
2
= 1
(l+ 1D+7"2D +...)yo
= n
=<1+§ an>y (19a)
n=1 0
where
1 =
1 L+h
1 = h
5 (2L+h)2
n-1
h
Zn=(nL+h)——=-—
or
Elh _ ¢Lh
T]O+Zle-—-I-_—7—‘r]3+7.lG+(r3-—-x—'—>7
= (1 + L D)ehDyo
1 hv_lDt
= |1 + Iv™-D, Je Yo (19v)

Equations (19a) and (19b) are alternative forms of the basic kinematic
equation (16) which are useful in subsequent sections of this paper.
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This concludes the derivation and discussion of the basic kinematic
equation correlating the lateral tire deflection Yo with the wheel

coordinates 86, Ngs and  7y. Next, attention will be directed to the

relationships existing between these coordinates and the forces and
moments acting on the wheel.

FORCES AND MOMENTS ON THE WHEEL

In this section the primary forces and moments acting on a rolling
wheel are discussed and, where possible, equations are set down for these
quantities. These equations are then utilized in later sections, together
with the preceding kinematic equation, to establish the equations of
‘motion for a rolling wheel.

The forces and moments considered fall into five general categories:
elastic forces and moments due to tire distortion, gyroscopic moments,
tire inertia forces and moments, hysteresis forces and moments, and
structural forces and moments.

Throughout this discussion, forces along the coordinate axes are
considered positive if they tend to move the wheel in the positive direc-
tions of the coordinate axes; moments about the coordinate axes X, ¥,
and Z or other parallel axes are considered positive if they tend to pro-
duce wheel rotation from the positive Y-axis toward the positive Z-axis,
from the positive Z-axis toward the positive X-axis, and from the posi-
tive X-axis toward the positive Y-axis, respectively.

ELASTIC FORCES AND MOMENTS DUE TO TIRE DISTORTION

Lateral Elastic Force

The lateral elasticity properties of a tire will be considered first.
If a static untilted tire is laterally deflected at its base with respect
to its rim by a lateral force Fy%, it produces an equal spring reaction

force roughly proportional to the mean lateral distortion N, .., or,
inversely, a lateral tire distortion WNj.,, creates a proportional
ground force Fy%. If the lateral distortion of the center of the ground-
contact line A, 1s taken as the mean distortion, then the elastic ground
force is

Fa =Bl =K (%0 - ) =¥a(o - 15 - 757)  (20)
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where K, 1s the lateral spring constant or side stiffness of the tire.
This relation is used by most investigators. However,; in references 2
to 5 a slightly different expression is used. In these references the
mean lateral distortion of the tire is defined as the average of the
distortions at the leading-edge and trailing-edge points of the ground-
contact area (points 1 and 2). The resulting equation for Fyk is

Fop = % K}\(Kl + 7\2) (21)

instead of equation (20). The true equation for Fy% is probably more

complicated than either of these two equations; however, since no plausi-
ble means of cobtaining a better equation is available, it appears advis-
able to select one of the above equations for use in this paper. Equa-
tion (21) may be slightly the better equation for a few special cases of
wheel motion, but equation (20) is much simpler to work with, and in most
cases of wheel motion it makes little difference which of the two equa-
tions is used. Therefore, for the sake of simplicity equation (20) is
adopted hereinafter as the basic equation for the lateral force on a
wheel due to lateral deformation of the tire. :

Torsional Elastic Moment

The torsional elasticity properties of a tire will be considered
next. If a tire is twisted on the ground about a vertical axis through
an angle a, there arises a restoring ground moment that is roughly
linearly proportional to the twist:

M, = Ko (22)

The tire twist o 1is equal to the mean angle hetween the track of the
tire on the ground and the wheel plane; that is, a = Dypeay - 8. Taking

the value of Dy,.., @s DyO gives
@ =Dyy - © (23)

and thus

M, = Ku,(DyO - e) = Ka(v-lDtyo - e) (24)

Most investigators of tire motion use this relation. However, in refer-
ences 2 to 5 the mean angle 1s taken equal to (kl - ka)/2h and thus

the moment equation

Mo = By - ho) (25)
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is obtained, which leads to relatively more complicated equations of
motion than does equation (24). Since there is no strong reason for
believing equation (25) to be a significant improvement over the simpler
equation (24), the latter is used in the analysis of this paper.

Melzer (ref. 10) has used the less accurate relation that the moment
due to tire twist is

M, = -K.© (26)

which implies the relation © >> Dy,. (See eq. (24).) Since this rela-

tion is not true in all practical cases, Melzer's theory should be viewed
with some caution.

Tilt Elastic Force

If a tire is tilted from the vertical Z-axis by an angle <y without
lateral distortion of the equator (AO = O), there arises a restoring

ground lateral force that is approximately linearly proportional to the
tilt angle (e.g., see ref. 2);

Fyy = K7 (27)

where K7 is the constant of proportionality. Most authors (excepting

Rotta in ref. 2) have not considered the effects of this force term
although they have considered other effects of the same order of magnitude.

Vertical-Load Center of Pressure

Under some circumstances the vertical load FZ influences the

wheel motion. In order to consider this influence it 1is necessary to
know the location of the center of pressure of this force. In the
XZ-plane (fig. 1) this center of pressure lies approximately below the
wheel axle in line with the point 0. In the YZ-plane the center of pres-
sure 1s shifted laterally from the intersection of wheel plane and
ground 74 as a result of lateral distortion %0 and tilt y. As a

first approximation, this shift may be taken as linearly dependent on
No and 7y so that the lateral distance c¢ of the center of pressure

from the XZ-plane becomes
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c =19+ cxko - Cy7

cxyo + (l - cx)no - c77

ey\o (l - c7\)'q3 + l}i - cx)r5 - cé]y (28)

where cy and c., are constants. (The signs of the terms are'chosen
so that e and c, are positive numbers.)

GYROSCOPIC MOMENTS

Gyroscopic Moment Due to Lateral Distortion of Tire

The origin of gyroscopic moments on a rolling untilted wheel with
lateral distortion of the tire at the ground (fig. 3) is considered next.
While the solid rim and axle parts of the wheel are untilted, lateral
deformation of the elastic tire causes the tire, on the average, to be

’ AT
tilted with respect to the wheel center plane by an amount 7 = ;—%—%g,

where r 1is the tire radius and T is a correction factor which indi-

cates the effective fraction of the total tire mass that is tilted at this
angle. Kantrowitz (ref. 8), apparently the only investigator who has con-

sidered thils at least theoretically significant factor, has suggested that
D AgT
M0’

= 1/2. This tilting action produces an angular velocity Doy = ;—;—Fg,

!
where Dy indicates differentiation with respect to time. This angular

velocity, together with the rotational velocity of the tire w, produces
a gyroscopic moment about the Z-axis of magnitude

where Iyt is the moment of inertia of the tire (excluding the solid

rim and axle) about the wheel axle. By using the relation Di( ) = v D( ),
equation (29) can also be expressed in the form

where the ratio v/w is, to a good enough approximation for this sec-
ondary term, equal to the tire radius r. Then, substituting for "\
and /v in equation (30) gives
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M, = Tyt DAy (31)
zZN T I'(I‘+I'§) 0

For later convenience, the result can be expressed in several alternate
abbreviated forms:

My = =TveDAg = -TV2D(YO - Mg) = -V Dt(yo - M3 - r57) (32)

T I
TR &

Another method for deriving an expression for T 1is discussed in a
subsequent section.

where

Gyroscopic Moment Due to Tilting of Wheel

If the entire wheel structure tilts at an angular velocity Dg7,
another gyroscopic moment arises of magnitude

IV
M27 = -Iyww Dy y z-——%ﬁ— Dt7 (34)

in addition to the term of equation (29). Here Iyw is the total polar
moment of inertia of the wheel (including the tire) about its axle.

Gyroscopic Moment Due to Swiveling of Wheel

If the wheel swivels at an angular velocity Dte, a tillting gyroscopic
moment also arises of magnitude

LV
My = ~Ly® Db ~- L D8 (35)

TIRE INERTIA FORCES AND MOMENTS

This section is concerned with an examination of the influence of
tire inertia forces and moments on a wheel rolling at high speeds. Two
types of such inertia effects are evaluated now in separate sections:
inertia forces and moments associated with lateral distortion and twisting
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of the tire, and centrifugal forces and moments. Then the overall effects
of these two types of inertia forces and moments are considered in another
section.

Inertia Forces and Moments Due to lLateral Distortion of Tire

At high rolling or shimmy velocities, tire inertia forces and moments
arise which are proportional to the relative accelerations of the different
parts of the tire (including the previously discussed gyroscoplc moment due
to tire lateral distortion, discussed here from a slightly different point
of view). A rough estimate of these forces and moments can be made as fol-
lows: One~third of the total mass of the tire mg 1s assumed to be loca-

ted on the periphery of the tire and to be subjected to the same accel-
erations with respect to the wheel hub as are tire particles on the equa-
tor line, while the remaining tire mass is assumed to be substantially
undisturbed. The "active" mass of the tire per unit circumferential
length is then mt/6ﬂr. The lateral acceleration of tire particles on

the right-hand side of the tire and off the ground in figure 1(a) will
be considered first. The lateral distortion of the tire in this region
is given by equation (4). The lateral relative velocity of a tire par-
ticle, obtained by differentiating this quantity with respect to time,
is

Sen

D —

A L
DAy = (Dt7‘l - -i]-'- Dts)e

The quantity Dis, which represents the peripheral velocity of tire

particles with respect to the wheel axle, is approximately equal to the
negative of the rolling velocity v, so that the velocity expression
becomes

s-h

-y oo

= v L

Differentiation of this result to give the relative acceleration of the
tire particles ylelds the result
s=-h

O

2 2 ov 2

The corresponding inertia force AF for this part of the tire is obtained
by integrating the product of this acceleration and the active mass per

m ssr
unit length to obtain the force term -g;— Jf Dy™N ds. Evaluation
r s=h
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of this integral, after replacing the upper limit by infinity for simpli-
fication of the result (which introduces no significant error because of

the rapidly decaying exponential function in thki), yields
myL 2_}\
‘ = --é-t-- + — Dt)\l + —— )\l (56)

The corresponding inertia moment AM 1is given by the expression

s~y a
E;_u/\ r sin @ Dt'%i ds

where r sin @ 1is the moment arm (see fig. 1(a)), s
by the relation s - h = r(9 - wl), and P, = sin—l %. Therefore, the
moment integral may be written in terms of @ in the form

_r(@-@l),

_m [T 2, v i T
M =-z= 0 r sin @ Dt kl + 5 Dtxl + ;5 Kl e r do
1 .

is related to ¢

Evaluation of this integral, after replacing the upper limit by infinity
(which introduces no appreciable error), ylelds the expression

. .
m rL<h+ L,/l ! )
M= 2 Qatexl +Zp + ¥ 7\) (37)
6n(L2 + r2) t L2 g

In a similar manner, for tire particles off the ground on the left-
hand side of the tire in figure l(a), the following expressions are
obtained for the inertia force and moment:

mtI‘< 2 2v v2 )
AF =-——ID. "N, = == D N, + A (38
6t t 2 L “t'2 L§ 2 )

2
mtrL<h + L1 - %) oo v 2

6ﬂ(L2 + r2) L

In these two expressions it 1s assumed, for reasons previously discussed,
that the relaxation length L 1is the gsame for both sides of the tire.
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In obtaining the inertia forces and moments for tire particles in
the ground-contact area, it is recognized that in practically all cases
where inertia forces are important the ground-contact line is almost a
straight line, so that the lateral distortion for tire particles in this
region can be expressed fairly well by the equation

?\g=7\o+Sd,
The corresponding velocity and acceleration are

2 2 2
Dt %g = D¢ %0 + s Dt a - 2v Dta

The total inertia force for this region is then

=h
m 2
Gir Jgoy © 8 S
mhg 2
=32 (0% - 2v D) (40)

and the inertia moment is

=h
.._._m,__t__fs dc'
AM = o . s thkg s

ho
= - gr DtECL ()-lnl)

The total inertia force F,;, obtained by summing the force terms

in equations (36), (38), and (40), can be stated conveniently in terms
of %O and o by using the relations N + Ay = 2N\ and N - A = 2ha,

which are valid for a substantially straight ground-contact line. The
result is

2
Fyi = -I;% Ql DtZAO + = 7\0> (k2)

where 1, = L + h. Similarly, the total inertia moment is
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M., =- + —|D, "o +
Z1 L2+I‘2 T t
2
J?G1+-L\/l —1%§> 5
I (2th?\0+9—‘16— (43)
L2 + r2

The significance of these inertia expressions will now be partly
evaluated by considering the inertia force for sinusoidal oscillations;

that 1s, where Ay = xomax sin vt and therefore thko = —vgko, 80
that equation (42) may be restated as

¥ =_&_(ﬁ _ zlv2>7\0 (k)

(An equation similar to equation (44) has been derived by Marstrand in

reference 20. Marstrand's equation, however, is based on a cruder repre-

sentation of the shape of the lateral distortion of the tire.)

In order to interpret the significance of the inertia force it is
noted that the tire force quantity which is of importance for the sub-
sequent analysis 1s the net tire force Fyn acting on the wheel, which

is equal to the sum of the ground force Fy% and the inertia force F

Fyn = Fyp + Fyy (45)

For a static tire, Fy% was set equal to K%ko (eq. (20)). 1In the

dynamic case the relation between ground force and lateral distortion
of the tire may be modified by the inertia effect. As a first approxi-
mation, it will be assumed that the modification of the ground force is
proportional to the inertia force, or

Fyn = B\ho - yfys (46)

where 1_  1is a number whose absolute value will be less than unity if

the modification of the ground force due to the inertia force is less
than the inertia force itself.

After combining equations (44), (45), and (46), the following
equation for the net tire force Fyn is obtained:

yi®
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Fyn = Fyp + Fuy = |Ky = (1 T IS PN (%7)
yo = Fyn + Fyy = Ky - (- ny) 5= - v BT

From the form of equation (47) it can be seen that, insofar as the ratio
of net tire force to lateral deformation is concerned, the effect of the
inertia force can be considered equivalent to a change in tire lateral
stiffness AK,  equal to

1

5, = ]

Similarly, from an examination of the terms containing o in the inertia
moment equation (43), it can be concluded that part of the effect of this
inertia moment is to change the tire torsional stiffness by an amount
NKy;, which is defined by

2
. - ~(1 - ’lz)mt rh(h + L \/1 - %g)(vE ) ng) i 9_3_1,2_ (49)

i 3?‘[ LE + I‘2 51‘

where 1n, 1s a number representing the torsional stiffness similar to
ny for the lateral stiffness. The remaining inertia-moment term in
equation (43), which is proportional to D¢y, is simply the previously

discussed gyroscopic moment due to lateral tire distortion. By comparing
this term with equation (32) it is seen that the coefficient T may be

T = (50)
32 (12 + 2)

Equation (50) gives approximately the same result as equation (33) with

Kantrowitz' assumption that Ty z'%. The discussion of the velocity

range in which these stiffness changes are important is postponed until
after the effects of centrifugal forces have been considered.

Effects of Centrifugal Forces

Another inertia effect that may become significant at high speeds
is produced by the centrifugal forces acting on the individual mass ele-
ments of the tire. These centrifugal forces appear to increase the tire
stiffness, as will be demonstrated by a crude analysis which gives a
qualitative idea of this effect but which should not be regarded as pos-
sessing any strong quantitative merit.
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For the purpose of this estimate, one-half the mass of the tire is
assumed to be concentrated in the side walls and the other half is assumed
to be concentrated on the periphery. ’

If the tire lateral and torsional stiffnesses K, and K, are

assumed to be directly proportional to the tension in the side walls of
the tire, there will be two sources of tire stiffness: 1inflation pres-
sure, which produces a side-wall tension approximately equal to wp per
unit circumferential distance (where w is the tire width), and centri-

y ; ; s 1\ % v2
fugal force, which produces the side-wall tension SN\aa)\T corre-
r

sponding to the peripheral tire mass % me . Thus the lateral stiffness

of the tire may be expressed in the form

K\ « bnrSwp + mtv2

or, equivalently, as

2
_ B M
K\ = K%static(l + 1mr%«1p>

2
K
i 7‘sta’t:.’Lc

K%static + hnrzwp

It is evident from this equation that centrifugal force increases the
tire lateral stiffness by an amount AK%j:

2
mt VoK) .
AK?\ = static (51)

J hﬁrng

and the torsional stiffness by an amount Ade:

ARy, = mtV2detatic

2
e e (52)

Significance of Tire Inertia Effects With Respect
to Tire Stiffness

The significance of the two just discussed tire inertia effects on
the tire stiffness will now be considered.
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For the lateral stiffness of a tire, the effective change AK) from
the static value of K, 1is obtained by adding the two increments given

by equations (48) and (51). The resulting effective overall change in
tire lateral stiffness as a function of rolling speed and shimmy fre-
quency is

. ' 2
(- T1y)m’07’1"2 (- Ty mev? i FAstatic

3nr Anrl 4nr2wp

The first term, which involves the shimmy frequency, appears to be small
enough in comparison with K, so that it can probably be neglected for

most practical conditions. The last two terms have opposite signs if
ny < 1 and thus may represent two partly counterbalancing effects. The

second term arises from the previous considerations of the lateral accel-
eration of tire particles and tends to reduce the effective lateral stiff-
ness of the tire with increasing rolling velocity if ny < 1. The last

term arises from the previous considerations of centrifugal forces and
tends to increase the lateral stiffness. These last two terms indicate
that at high rolling speeds, if My < 1, the tire stiffness may either

drastically decrease or drastically increase, depending on which of the
two terms is larger. However, both terms happen to be of the same order
of magnitude and the derivations of both terms are based on concepts too
crude to Justify conclusions regarding which term is larger. Thus, the
only conclusion that can be drawn is that at sufficiently high rolling
speeds drastic changes in tire lateral stiffness may occur. Whether the
stiffness increases or decreases can probably be settled only by
experiment.

In order to give some quantitative measure of the velocity at which
these inertia effects become significant, some calculatlons were made to
determine the velocity at which the magnitude of the second term in equa-
tion (53) becomes equal to K). By making use of the static tire data in

reference 24 for several modern aircraft tires and assuming that My = o,

it was found that this velocity averaged approximately

400 Yr fps =~ 270 JE'mph, where r 1s expressed in feet. Similar esti-
mates for the velocity at which the third term in equation (53) becomes
equal to K) yielded approximately this same velocity. Moreover, since
this velocity is rather high compared with normal present-day landing
speeds, the inertia effects on tire lateral stiffness considered here
can probably usually be neglected.

For the torsional stiffness of a tire, the overall effective change
in torsional stiffness AK, due to tire inertia and centrifugal forces

is obtained by adding the two increments given by equations (49) and (52).
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The result is

2
eV detatic
b Swp

This equation is parallel to equation (53) for the lateral stiffness, so
that statements made previously concerning the lateral stiffness apply
here also.

(54)

Other Inertia Effects

The preceding discussion suggests that the effects of tire inertia
are to change tire stiffness at high speeds and to introduce a gyroscopic
moment. However, it should be recognized that other inertia effects will
come into play, probably at velocities close to those at which the pre-
viously mentioned inertia effects arise. For example, the basic kinematic
equation depends on the assumption of an exponentially distorted tire-
equator line corresponding to a definite "static" relaxation length.

This assumption is valid (if it is valid at all) only when the elastic
forces in the tire predominate over the inertia forces. Where inertia
forces are strong in comparison with elastic forces, it is at least
doubtful whether the relaxation length remains constant.

Although there are undoubtedly other effects of tire inertia in
addition to the ones discussed here, it appears probable that the impor-
tance of many tire inertia effects can be assessed by means of the fol-
lowing summary statement: The major effects of tire inertia on the rol-
ling motion appear to come into play at a velocity of an order of magnitude
of k00 YT fps = 270 Jr mph where r is expressed in feet. For con-
siderably smaller velocities, most inertia effects can probably be safely
neglected; for velocities of this order of magnitude or higher, many of
the basic assumptions of this paper, and of most other papers on this
subject, may be subject to considerable error.
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HYSTERESIS FORCES AND MOMENTS

In addition to the forces and moments previously discussed, certain
damping forces and moments arise as a consequence of the sometimes con-
siderable hysteresis losses which arise in the distortion of elastic
tires. Apparently the only significant attempt to deal with this hyster-
esis problem is reported by Von Schlippe and Dietrich in reference 5.1
This reference provides some valuable insight into the fundamental mech-
anism of the hysteresis process and presents an equation for the hysteresis
moment acting about the swivel axis of a shimmying wheel. However, even
though use of this hysteresis-moment equation leads to good agreement
between theoretical and experimental stability boundaries for a limited
amount of experimental data (as is shown subsequently in the present
paper), some parts of the analysis seem so unrealistic that it is ques-
tionable whether much confidence can be placed in the final results of
reference 5. Apparently, the only other significant contribution to the
hysteresis problem is provided by the analysis of Moreland in refer-
ences 11 and 12. In these references tire hysteresis forces as such are
not considered, but the idea is introduced that a tire possesses a char-
acteristic time-lag constant. In a subsequent section of the present
paper it is shown that this time-lag constant may be, at least in part,
a consequence of hysteresis effects. However, the interpretation of
Moreland's time-lag constant as a hysteresis effect presents some ques-
tionable features that are also discussed subsequently.

No completely satisfactory solution of the hysteresis problem has
been found yet. However, the following crude analysis of this problem
offers another point of view with a few qualitative merits not possessed
by the two previous analyses.

Consider the case 1n which a standing tire is subjected to a period-~
ical lateral deformation A, of the form

= i
xo %Omax sin vt

Under these conditions the lateral ground force Fy% on the tire is
experimentally observed to vary with time in the manner indicated in
sketch 1 and the corresponding variation of lateral ground force Fy%

lAlthough Von Schlippe and Dietrich considered hysteresis effects
in an earlier paper (ref. 4}, this earlier analysis leads to some con-
clusions which are not in agreement with the results of the later, more
detailed analysis of reference 5.
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with lateral tire distortion Ay, shown in sketch 2, appears in the form
of a typical hysteresis loop. As can be seen from sketch 1, the lateral

Fy)\

ey /8

V.

Sketch 2

4 ‘)102
TP

b

Sketch 1

tire deformation A, lags behind the lateral ground force Fy% by a
time increment At, where At is approximately equal to the ratio of
ANy to the maximum slope of the curve of Ay plotted against time

<which is N v for the assumed variation of KO):
max

AN
At o~ —O (55)

As a first approximation for quantitatively including this time-lag

concept in the present analysls, a tire is .
. < N
i§sumed to ?ehave sogewhat like a combina- 1w
ion of a linear spring and a damper unit LS P,
such as is indicated in sketch 3, where the / -
spring constant corresponds to the previously a
discussed tire lateral stiffness Kj) and a3 "

is the coefficient of an equivalent linear
damper. Inertia forces are neglected for the Sketeh 3
present argument. The differential equation for this system is

KMo + 81 Dhg = Fyp (56)

and its solution for the case of ko = %Omax sin vt gives a hysteresis

loop of the form indicated in sketch 2 where the time lag At becomes
tan™t o A

K
= —— (57)

After equating equations (55) and (57), a| can be expressed by the
K tan(AAO/xomax)

relation ay =
v

so that equation (56) can then be
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written in the form

where Fyh’ the lateral force resulting from hysteresis effects, is

Fyn = KT Dgho = KNIz D)g (59)
and where
tan (Ahg Koma ) 1 W
Ty = ( v/ X/ _ :%
\ (60)
T = tan k)
Omax

o

With the same type of reasoning the hysteresis twisting moment is
given by the equation

M,y = KT Do = K T, v Da (61)
(compare with eq. (59)), where
tan(&a/qmax) _ 1
v

(o8
Ta TV

(62)

JaYe?
X

tan

Tl

It is now seen that the determination of the hysteresis force and
moment from equations (59) and (61), respectively, depends on the deter-
mination of two quantities T% and Tm which have the dimension of

time and which will be called time-lag constants. The quantity TX’

in particular, can be considered closely analogous to Moreland's time-
lag constant. In the present case equations have been derived for the
time-lag constants as functions of the three variables e s and V.

(See egs. (60) and (62).) However, it should be clearly recognized that
equations (60) and (62) are based in part on arguments valid only for a
standing tire. These arguments may no longer be valid for a rolling
tire, and even if the idea of a time-lag constant is still valid, it is
likely that the time-lag constants will not be adequately predicted by
equations (60) and (62), particularly if the quantities ny and g

are evaluated from static hysteresis loops. Moreover, it is basically
unsound to assume that the hysteresis force is dependent only on the
tire lateral distortion Ay and is independent of the tire twist «j
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actually the hysteresis force (and the hysteresis moment) will in gen-
eral depend in a complex manner on both %O and «, and even for a first

approximation the interaction of these two variables cannot necessarily
be neglected. Thus it appears that the preceding hysteresis equations
are based on rather speculative and perhaps unsound assumptions, at least
from a quantitative polnt of view, and for this reason these equations
will not be incorporated into most of the derivations in subsequent parts
of this paper. On the other hand, the preceding derivation may be suf-
ficiently plausible to give some ldea of the order of magnitude of hys-
teresis effects, particularly since Moreland has indicated in reference 12
that his experimental data (mostly unpublished) demonstrates the exist-
ence of a time-lag effect in tire motion; consequently, in a few parts of
this paper some mention will be made of the consequences of introducing
the hysteresis force and moment terms that have just been derived into a
wheel-shimmy analysis.

STRUCTURAL FORCES AND MOMENT'S

The preceding discussion covers the major ground forces and moments
and the gyroscopic moments acting on the wheel. In addition, forces and
moments are exerted on the wheel by the supporting structure. These will
be designated as FyS for the net structural force parallel to the Y-axis,

M,; for the net structural lateral tilting moment, and M,q for the net

structural swiveling moment. These forces and moments include shimmy
damper moments, spring restoring moments, inertia forces in a landing-
gear structure (exclusive of the wheel inertia force), and spring forces
arising from the flexibility of a landing-gear strut or of the fuselage

of an alrplane. In general, most of these forces and moments can probably
be considered approximately linear except shimmy damper moments; however,
even these moments can be replaced as a first approximation by equivalent
linear damping moments. (See, for example, appendix A.)

Within the scope of a linear theory, these structural forces and
moments will depend in a linear manner on the wheel-center coordinstes 135

8, and 7y according to expressions of the type

Fys = T1(Dy) 15 + To(Dy)® + T3(Dy )7 (63)

MXS

il

T, (D) s+ T5(Dt)6 + T (Dy )7 (64)

M, = T7(Dt)n5 + ‘I'8(Dt)9 + T9(Dt)7 (65)
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where the T's are functions of the differential operator Dy, sometimes

called transfer functions, whose specific forms will depend on the type
of landing gear in question.

This concludes the discussion of the forces and moments acting on a

rolling wheel. - Now these quantities will be utilized to set up the basic
equations of motion for a rolling elastic wheel.

EQUATIONS OF MOTION

DERIVATION OF THE EQUATIONS OF MOTION

In this section the linearized equations of motion for a rolling
elastic wheel are set down with the aid of the equations from the pre-
ceding sections.

The sum of the lateral forces acting on the wheel parallel to the
Y-axis is set equal to the inertia reaction to give (see egs. (20)

and (27))
Fo. + K ( - M= - T > Ky =m D° (66)
ys ¥ B\Vo - N3 - Tz 7V T 0 Y T

or, rearranging,

Fus + K\yo - (K% + mW'Dt2>ﬂ5 - (K?\r3 + K7)7 =0 (67)

The first term in equation (66) is the structural force, the second
term is the net force on the wheel resulting fram tire elastic and inertisa

forces K, =K + AK where AK is given by equation
( A = Brraic X 5\ g ¥ eq (53));

the third term is the lateral ground force resulting from tire tilt, and

is the mass of the wheel (including the tire). For reasons previously
discussed, hysteresis forces and moments are not included either in this
equation or in the following equations.

Setting the sum of the lateral tilting moments about the wheel center
equal to the inertia reaction gives (see egs. (20), (27), (28), and (35))

Mys + Fy {C7\YO + (l - C)\>T]5 + [(l - 07\)1"5 - cy]y - 715} +

.V o)
[Kx(yo - M3 - r57) - Kyy]r5 - i? D6 = I, D 7 (68)
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or

Iywv
MXS + (K’)\I‘B + cm}\)YO - [K‘)\I'B + FZC’)\]T]B - 7 Dte -

2 . 2
[%%ra + K rs - Fzr5(1 - cx) + Fye, + Iy Dt:}y =0 (69)

The first term in equation (68) is the structural moment, the second
term is the moment resulting from the vertical ground load, the third
term is the moment of the ground forces resulting from tire lateral dis-
tortion and tilt, the fourth term is the gyroscoplc moment resulting from
the swiveling motion of the wheel, and I,y is the moment of inertia of

the wheel about an axis through its center parallel to the X-axis.

- Setting the sum of the swiveling moments about the wheel center equal-:
to zero yields the equation (see egs. (24), (32), and (34))

M, + Kd(v_lDtyo - 9) - TV Dt(yO - Mz - r37) - Iifv Dy = Iy Dt26 (70)

or

-1 - 2 I
Mys + (Kﬁy - TV)DtyO + TV Dghiz - (Ka + Iy Dy )9 - (w%z - Tra)v Dyy =0

(71)

The first term in equation (70) is the structural moment, the second term
is the.net moment resulting from tire elastic and inertia forces exclusive

of the gyroscoplc moment due to tire lateral distortion (K& = detatic + AK&

where AK, 1is given by equation (54)), the third term is the gyroscopic
moment resulting from tire lateral distortion, and the fourth term is the
gyroscopic moment resulting from wheel lateral tilt.

Equations (67), (69), (71), and (16) or (19), together with the three
auxiliary equations (63) to (65), are the basic equations of motion for an
elastic wheel. If the T-functions in equations (63) to (65) are known for
a particular landing gear, these equations can be solved simultaneously to
determine the rolling behavior of the gear.

Next the question arises as to the most profitable method of solution
of these equations for practical landing-gear problems. Essentially, the
choice is between exact and approximate solution of the equations. In the
past, exact solutions (omitting some of the less important terms previously
mentioned) have been made only for the simplest case of a rigid swiveling
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landing gear attached to a rigid fuselage (refs. 2, k, and 5). Although
the exact solution of these equations for more complex problems does not
appear to present any insurmountable difficulties, relatively complex
transcendental equations may be involved, so that it is worthwhile to
examine the possibility of finding simpler systematic approximations to
the general equations.

A second reason for investigating systematic approximations to the
summary theory arises in connection with the correlation of the summary
theory with the other existing theories. Superficially, in its present
form, the summary theory does not closely resemble most of the other
existing theories. However, the approximations that are presented sub-
sequently make the correlations between the different theories fairly
easy to see,

Subsequent sectionsg of this paper will be concerned with the problem
of establishing a series of systematic approximations to the general equa-
tions and the correlation of these approximations with the other existing
theories of wheel motion. However, before proceeding with these two mat-
ters it is convenient to digress slightly to consider the exact solution
of the general equations for the case of steady yawed rolling, in order
to establish several relations which will be useful in later sections.

EQUATIONS FOR STEADY YAWED ROLLING

For an untilted wheel which rolls at constant velocity at a constant
small swivel or yaw angle, yo(x + h) = yo(x) = Constant, 6 = Constant,

and 15 =7 = 0, so that equations (2) (with Yo for yg), (16), (67),

and (71) reduce, respectively, to the relations

Mo = Yo (72)

Yo = (L +h)e =10 (73)
Fyg + K.y = O (74)
M, , - K8 =0 (75)

By combination of equations (72) and (73) the tire lateral distortion is
found to be
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By combination of equations (75) and (7&) the lateral force on the wheel
is found to be

F X, 0

| ys = ~hiky
The quantity ZlKi’ which represents the lateral force per unit yaw angle,

is an important tire characteristic called the cornering power or lateral
guiding characteristic of the tire. Iater in this paper it is found con-
venient to represent this quantity by a single symbol N, where

N = 1Ky (77)

Another property of the steady yawed rolling condition that is of
some interest is the distance of the center of pressure of the lateral
force behind the center of the tire, which is sometimes called the pneu-
matic caster € = 'Mzs/Fys' This quantity, according to equations (73)

to (77), is equal to

75 KCL (78)

SYSTEMATIC APPROXIMATIONS TO THE SUMMARY THEORY

In this section the possibilities for simplifying the preceding
equations of motion are discussed, and a series of systematic approxima-
tions to the general equations of the summary theory is set down.

All but one of the equations of motion (egs. (16) or (19), (63)
to (65), (67), (69), and (T71)) are usually simple linear equations and
present no great difficulties. The exception is the kinematic equation,
which was originally transcendental in form (eq. (16)) and was later
expressed as an infinite series of linear terms (eq. (19a)). The most
promising way to simplify the kinematic equation appears to be to assume
that the series expansion in equation (19a) is a rapidly convergent
series in which all terms above a certain value of n can be neglected.
The rapidity of convergence of the series and its significance cannot be
fully determined without a knowledge of the particular landing-gear con-
figuration considered. However, some insight into this question can be

obtained by considering the case of purely sinusoidal oscillations of
ivqx
the form Vo =¢ L , where the quantity: V1 is the path frequency.

Substitution of this expression into the infinite series in y5 in equa-
tion (192) yields
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<1 +> 1y Dn>yo = (P1o *+ 1Poe) Yo (79)

n=1

where

2 L
ploo . 1 - levl + Zhvl - s s

(80=a)

- 3 J>.
p200 llvl 15v1 +-Z5vl s o s

Another form for the p's can be obtained by substituting the rela=
iVlX

tion Vo =€ into equation (16). The result is

P1e = COS vih - Lv; sin v;h

(80b)

Pog, sin vlh + Lvl cos vlh

The rate of convergence of the p series of equations (80a) can be
tested for any given frequency by substituting numerical values of L,
h, and v; into equations (80a) and {(80b) and comparing the individual

terms. A typical comparison is shown in figure 4 for the conditions
L =0.8r, and h = 0.5r. The abscissa of this plot represents the oscil-
lation's wave length S = Eﬂ/vl and the ordinate represents the p func-

tions. The label Py, means that this curve represents the sum of the
first two terms in the Plo series, and the other labels are analogous.

(The approximation symbols will be explained later.) From this figure
it is seen that the series converge very rapidly. From a purely quali-
tative point of view the figure seems to indicate that, in dealing with
shimmy wave lengths greater than approximately U4 tire radii, two terms
in each series are sufficlent to represent fairly well the exact varia-
tions, for wave lengths greater than approximately 6 radii one term in
the p, series and two in the Pq series are sufficient, and for wave

lengths greater than about 20 radii one term in each series is sufficient.
(The wave lengths cited here represent only order of magnitude and are

not necessarily quantitatively significant.) To correlate these observa-
tions with the conditions of wave length likely to be encountered in prac-
tice it can be stated that the experimental data of Von Schlippe and
Dietrich (ref. 4 or 5) and Kantrowitz (ref. 8), which are probably fairly
typical in this respect, demonstrate wave lengths which are about 4 radii
long at zero rolling velocity and which increase with increasing rolling
velocity. Thus it appears possible that the use of only a few terms in
the series expansion may lead to a reasonable prediction of shimmy char-
acteristics for practical operating conditions.
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With the preceding considerations in mind the following approxima-
tions to the general wheel-motion equations were established.

APPROXIMATION A

As a first approximation to the general kinematic equation (19a) all
terms for n > 3 will be neglected. This gives the approximate differ-
ential equation

£Lh
+ 1,0 - =2
Mo ™ “1 =7

]

2 3
Yo * iy Dyb + 22 D Yo + 15 D7yq

I

¢§lh
g + 140 + (r5 - —;—)7 (81)

This equation, together with all the general force and moment equations
previously discussed, is referred to hereinafter as approximation A.

APPROXIMATION B

A second, less exact approximation for equation (19a) is obtained
by setting 1, =0 for n > 2. Thus

£1h
Mg + 146 = 7

[l

s + 1,0 + (?3 - §%9>7 (82)

This equation 1s referred to as approximstion B.
APPROXIMATION Cl1

Another, cruder approximation for the general differential equa-
tion (19a) is obtained by neglecting all terms in the series for n > 1.
This gives the differential equation

gLh
Mo + 1.6 - = 7

Yo + Zl Dyo

N3 + 118 ; (?3 - 5%&)7 (83)

which is referred to as approximation Cl.
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APPROXIMATION C2

As a slight simplification of approximation Cl, the relatively
unimportant, or at least questionable, term involving £ may be omitted
from equation (83). This gives the differential equation

Yo + 13 Dyg =g + 118 = nz + 110 + T3y (8k)

which is referred to as approximation C2.

With the ald of equations (2) and (23), equation (84) can be written
in the more easily interpreted form

or, by using in addition equations (20), (22), and (T7), as
F i '
Ao D U 7\ e 7 (86)
Thus, in this approximation the lateral distortion of the tire is directly
proportional to the angular distortion.

The physical meaning of this approximation can be obtained by con-
sidering that equation (86) can also be arrived at by letting the ground-
contact half-length h approach zero in the genersl differential equa-
tion (19a) (as was mentioned by Rotta in ref. 2), since all terms in the
series for n > 1 and the tilt term are multiplied by h. Then equa-
tion (19a) (with & = O) becomes

Yo + LDyg = ng + L8 (87)
or, by using in addition equations (2) and (25),

A= -La (88)
Also, equation (77) for the yawed rolling becomes

and the combination of equations (88) and (89) gives

}\:-—IE-(I | (90)
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Equation (90) is the same as equation (86) for any given combination of
N sand Kp. Thus, when written in the form of equation (86), approxima-
tion C2 formally corresponds to the assumption of h = O.

Reliable qualitative results should be expected from approximation C2
only when the neglected quantity h is small with respect to the char-
acteristic length of the rolling motion in guestion (for example, the wave
length s of a sinusoidal oscillation). Fortunately, this condition is
at least sometimes satisfied for practical rolling conditions.

APPROXIMATION D1

Before considering the next approximation it should be remembered
that all of the terms neglected in the preceding spproximations were
multiplied by the tire ground-contact half-length hj; thus these approxi- .
mations implied the assumption of progressively smaller ground-contact
length or progressively larger wave length. In order to simplify the
equations further, it is necessary to make some assumptions about the
other tire properties. Three such assumptions will now be made to sim-
plify further the equations of approximation C2. TFor the first approxi-
mation, to be called approximaticn D1, the simplification

is adopted. Then it follows from equation (85) that, for finite «a,

N =0 (92)

which 1s the basic equation for this approximation. Thus for this
approximation the tire is free to twist but not to deflect laterally.
Infinite lateral stiffness is, therefore, also implied:

Ky = (93)

For the simplest form of wheel shimmy, due to tire elasticity rather
than structural elasticity (to be considered subsequently), equation (92)
does not provide accurate information. For wheel shimmy due largely to
structural elasticity rather than tire elasticlity, this approximation may
be of some value; actually most existing theories corresponding to this
approximation have been developed for the primary purpose of considering
the influence of structural elasticity on wheel shimmy.
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APPROXIMATION D2

As a second simplification of approximation C2, the assumption

can be adopted. The corresponding theory is designated as approximation D2.
From equation (85) it is evident that this approximation implies that, for
finite MA,,

a =0 (95)

which in turn implies that

Ka=eN=m (96)

Thus for approximation D2 the tire is considered to be torsionally rigid
but laterally flexible.

APPROXIMATION D3

A third simplification of approximation C2 can be obtained by keeping
the quantity ll finite but considering the tire to have both infinite
lateral stiffness and infinite torsional stiffness, or

K7\=Ka=N=°° (97)

This approximation, which is designated as approximation D3, thus repre-
gsents the case of a rigid tire and consequently also implies that

a = AO = 0. (Formally, approximation D3 can also be interpreted as the
limiting subcase of approximation D1 where N = «» or as the limiting
subcase of approximation D2 where K% = o, However, it should not be
concluded that approximation D3 is necessarily inferior to these other
two approximations.)

A choice of seven simplified approximations based on the summary
theory is now available. The problem remains of determining which, if
any, of these approximations is the simplest one which can be used for
any particular tire-motion problem. While it is not yet possible to
glve a completely satisfactory answer to this question, some insight
into the answer can be gained by comparing the various approximations
with the previously published tire-motion theories, which are at least
partly successful and most of which are closely related to these
approximations.
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CIASSIFICATION AND EVALUATION OF EXISTING THEORIES

In this section the major previously published theories of wheel
motion are briefly reviewed, evaluated, and, wherever possible, corre-
lated with the preceding summary theory of this paper and its approxi-
mations. Bach of the major existing theories is first considered indi-
vidually and then an abbreviated overall summary classification is
presented in tabular form.

INDIVIDUAL REVIEW AND EVALUATION OF EXISTING THEORIES

Von Schlippe and Dietrich

The tire-motion theory of Von Schlippe and Dietrich (refs. 3 to 5),
of course, corresponds directly to the summary theory of this paper,
since the summary theory was taken from their theory with only minor
modifications. These modifications include a more detailed consideration
of some of the influences of lateral tilt and of tire inertia forces and
moments. It should be noted, however, that the Von Schlippe-Dietrich
theory 1is more advanced than the summary theory of this paper in that it
partly takes into account the width of the ground-contact area. However,
as was previously noted, this factor is probably not of great practical
importance.

Rotta

Rotta's tire-motion theory (ref. 2) corresponds to the summary theory
of this paper because it also is based on the Von Schlippe-Dietrich theory.
Rotta's theory represents a slight extension of the last theory to take
into account more adequately most of the effects of tire tilt and the
width of the ground-contact area. No inertia forces due to tire lateral
distortion or centrifugal forces are discussed.

Bourcier de Carbon Advanced Theory

Bourcier de Carbon (ref. 6) has developed two.closely related theories
of tire motion which are similar to approximations B and C2. The first of
these will be referred to as the Bourcier de Carbon advanced theory and the
second as the Bourcier de Carbon elementary theory.

Bourcier de Carbon's advanced theory uses five basic tire properties
which are correlated with those of the present paper through the following
relations:

L3 ]
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D=z (98a)

T=2L 98b

& (98b)

5= El; (98¢c)

€E=¢ = %% (984d)

= - by _ 2(L+h) (98e)

1K, K, h(2L + h)

Equations (98) were obtained by comparing this theory with the corre-
sponding approximation B. The symbols of Bourcier de Carbon are over-
scored and do not necessarily bear any relation to other symbols in tgis
paper designated by the same letters. Although the symbols D, T, 8,
and € bear a simple relation to the symbols used in the derivations of
the present paper, the symbol R bears a more complicated relation which
is worth some detailed consideration.

Bourciler de Carbon defined the tire property R as follows: If an
untilted wheel is rolled forward while exposed to a constant turning
moment about a vertical axis and with no side force, it will move in a
circular path of a definite radius; R 1is defined as the reciprocal of
the product of the turning moment and the path radius. Unfortunately,
however, this constant-moment circle-rolling experiment 1s not easily
performed. Therefore, equation (98e), which expresses R in terms of
the more easily measured fundamental quantities L, h, and K , is of

importance for the use of the Bourcier de Carbon advaneed theory.

In treating the subject of tilt, Bourcier de Carbon omits many of
the details considered in this paper. For example, he implicitly assumes
that =C) = Cy = £ = 0 and that the inclination angle x 1is small
(taking’ cos k ~ 1). However, these omitted tilt terms may be as impor-
tant as the terms considered (as will be shown later); therefore, Bourcier
de Carbon's considerations of tilt are- incomplete.

It should be noted that in reference 6 certain misconceptions occur
in the parts of the paper that deal with comparisons between theory and
experiment. In particular, some of the experimental data quoted by
Bourcier de Carbon from reference 3 of the present paper appears to be
either misquoted or misinterpreted. Consequently, Bourcier de Carbon's
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conclusion that the experimental data of reference 3 provide a remarkable
check of his theory is not completely Jjustified; actually these experi-
mental data provide only a fair indirect check of the theory.

Greidanus

Another theory similar to approximation B, except for the influence
of tilt, is that of Greidanus (ref. 7). Greidanus considers the influ-
ence of tilt in much greater detail than does Bourcier de Carbon; how-
ever, he also fails to consider the force term proportional to K7, and

thus his results also do not fully describe the influence of tilt.

In addition, Greidanus' kinematic equation differs from equation (82)
for approximation B in that he has introduced a slightly different term
associated with tilting of the tire. In the present terminology Greidanus®
equation reads

(99)

R

Yo + 13 Dyg + 1p Dy = ng + 146 - 1,

The difference between the two equations lies in the coefficient of 7.
For approximation B (eq. (82)) the coefficient is

iLh

= (100)

and for Greidanus' equation (after substituting for 1, from eq. (19a)),

E-::—%)f (101)

If & 1is set equal to (I;+-%)/L, the two coefficients are identical;

thus Greidanus' kinematic equation can be considered to be a particular
case of the corresponding equation of approximation B.

No subsequent detailed discussion of Greidanus' theory is included
in this paper because no complete translation of reference T is available.

Bourcier de Carbon Elementary Theory

Bourcier de Carbon'’s elementary theory corresponds to approximation C2
of this paper except for the minor shortcomings which were discussed in con-
nection with the Bourcier de Carbon advanced theory. The only difference
in Bourcier de Carbon's two theories is that the coefficient R is taken
as infinity in the elementary theory but is finite (see eq. (98e)) for the
advanced theory. The infinite value for R corresponds to the assump-
tion 1o = O, which was previously made in passing from approximation B
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to approximation C2 (compare egs. (82) and (84)). The physical signifi-
cance of R = » is obvious from equation (98). It means that h = O.

Melzer

The Melzer theory of tire motion (ref. 10) is also similar to
approximation C2 except for details of the tilting process. Otherwise
Melzer's kinematic equation is identical with the kinematic equation of
approximation C2 and of Bourcier de Carbon's elementary theory. However,
Melzer'!s theory differs in that it treats the moment due to tire twist
as proportional to the swivel angle -8 rather than to the tire twist
angle Dyy - 6. This assumption would appear justified only if Dyo < 6,

which is not true in general. It is interesting to note that for the
simplest case of wheel shimmy (see section entitled "Application to Wheel-
Shimmy Problems — Case I") the Melzer approximation leads to one of the
same stabllity boundaries and to the same limiting high-speed shimmy fre-
quency as the more nearly correct approximation that inecludes the term in
Dyo. This restricted agreement, however, hardly justifies the use of

Melzer's approximation, since predictions made by means of the two approxi-
mations differ with respect to divergence of the shimmy oscillations and
with respect to another stability boundary. Moreover, for simple problems
the Melzer approximation is not significantly easier to solve than the

more nearly correct form including the Dyy term.

Moreland Advanced Theory

Moreland has proposed three versions of a tire-motion theory in
references 11 and 12. The most advanced of these versions 1s governed
by the equation

F
@+ T Dia ~-Do_ (102)
11 N
or
2
T1,v D7y + 1y Dyy + yg = ng + Tlyv D8 + 1,6 (103)

where T 1s a time-lag constant. This theory corresponds to a general-
ization of approximation C2 (with pneumatic caster neglected, that is,

€ = 0), since for T = 0 equation (102) is identical with the basic
equation for approximation C2. However, for T % 0 this theory is not
directly compatible with the summary theory and its approximations.
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Moreland uses the following reasoning to establish this equation:
First, it 1s known that in steady yawed rolling a yaw angle a 'is devel-
oped as a consequence of the application of a lateral force Fy% according

to the relation
F
a =—-.._y_)\_ (lo).}.)

which is the basic equation for approximation C2. However, for the
dynamic rolling case this equilibrium yaw angle obviously cannot be estab-
lished immediately upon application of a given side force; rather, a
finite amount of time will be required for the equilibrium yaw angle to
develop. Moreland has attempted to take this finite time lag into account
by modifying equation (104) to the new form of equation (102). In the
latter equation the constant T is a measure of the time lag of the yaw
angle behind the applied force Fy%‘

This time-lag term introduced by Moreland does not correspond exactly
to any of the terms in the summary theory, and to this extent Moreland's
advanced theory is apparently incompatible with the summary theory. How-
ever, a partial reconciliation of the two theories can be obtained through
the following conslderations of hysteresis effects as applied to approxi-
mation C2: According to equation (58) the lateral ground force, if tilt
and inertia forces are neglected, is given by the equation

Fy%

Mo t Iy Dyhg = K (105)

and the kinematic equation for approximation C2 is (eq. (85))

Combining equations (105) and (85) to eliminate A, and substituting
Kal7 = N yilelds the equation

F
o + Ty Dia =-——%&- (106)

Equation (106) is formally identical with Moreland's basic equation (102)
if the hysteresis time constant T, 1is considered equivalent to Moreland's

time constant- T. The Important points to be noted here are: (1) according
to both views, the tire twist o lags behind the applied lateral force Fy%,

and (2) Moreland adopts the lateral-force equation Fyx = K\Ag which implies

that the lateral force and lateral deformastion are in phase (although lateral
force and twist-are not in phase), whereas according to approximation C2
(see eq. (105)) the lateral force lags behind the lateral deformation as a
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consequence of the kinematic relation A = —Zlm. In regard to the second

point, since there are apparently no pertinent experimental data available,
it is not possible to conclude which point of view, if elther, is correct.

Why Moreland's time-constant concept has not been incorporated
directly intc the derivations of the summary theory should be clear from
the preceding discussion: It is not certain whether Moreland's time-
constant terms are really independent of the terms already contained in
the summary theory or whether they are, rather, another way of looking
at some terms which are already included in the summary theory. More
specifically, Moreland's analysis does not include inertia forces and
moments due to tire lateral distortion, hysteresis forces and moments,
or the higher 1, terms (12, 1z, o o .), and for certain conditions

any of these factors could be interpreted as a time-constant effect. 1In
view of these factors and in view of the lack of pertinent experimental
data, a completely satisfactory evaluation of the relative values of the
summary theory and Moreland's advanced theory cannot be made in the
present paper.

Moreland Intermediate Theory

As a simpler approximation for his advanced theory, Moreland has
implied (ref. 11) that the influence of the time-lag term in the basic
equation for his advanced theory (eq. (102)) can be approximated for the
usual range of shimmy frequencies by using the simpler kinematic equation

40170 = -Ag (107)
Inasmuch as approximation C2 has the kinematic equation (85)
.Ll(]a = —)\0

and approximation D2 has the kinematic equation (95), which could be
written in the form

o Q = ...')\O

it follows from a comparison of these last three equations that Moreland's
intermediate theory falls somewhere between approximations C2 and D2.
Since Moreland has not offered any concrete justification for this
approximation, further detailed discussion does not appear warranted

here.
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Moreland Elementary Theory

Moreland's most elementary theory corresponds directly to approxi-
mation D3, the case of a completely rigid tire, except that it, like
Moreland's other two theories, does not take into account the pneumatic
caster (e = 0).

Temple Elementary Theory

Temple has proposed an elementary theory for the motion of tires
which is identical with approximation D1 (ref. 13). Temple has chosen
the most general form of this approximation in that he has considered
both the tire torsional stiffness K, ‘(indirectly interpreted as an
increase in trail) and the cornering power N.

This theory was developed before experimental evidence pointing to
the need for more detailed considerations of tire lateral stiffness was
available. Subsequently, Temple has indicated a need for more refined
considerations of the tire (ref. 25) and has developed independently a
theory (unpublished, but partly described in ref. 21) similar to the
theory of Von Schlippe and Dietrich.

Maier

Maier (ref. 14) has proposed a simplified theory similar to approxi-

mation D1, with the difference that he makes the added assumption that
the tire torsional stiffness K, 1is zero. This theory, too, was devel-

oped before there existed much experimental evidence pointing to the need

for more refined considerations for shimmy behsvior.

Taylor

Taylor (ref. 15), in a brief paper, suggested another tire motion
theory which corresponds to approximation D2 except that details of the
tilt process are omitted.

Kantrowitz and Wylie

The preceding theories for tire motion, which include most of the
known theories, may all be considered as closely related to the summary
theory of this paper. However, two other well known theories, one by
Kantrowitz (ref. 8) and one by Wylie (ref. 9), apparently cannot be
derived from the summary theory and thus cannot be accurately classified

here with respect to the other theories. They possess some of the merits
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of approximation B but in other respects are less adequate than approxima-
tion C2. To point out the deficiencies of these two theories it is suffi-
cient to consider two simple cases of tire motion as follows:

The first case to be considered is the steady straight-line motion
of a nonswiveling, untilted, rolling wheel which 1s not yawed with respect
to its direction of motion (a = 0), which

T X

is inclined by an angle 8 (equal to the ~__
swivel angle) to the reference X-axis,
and which has no lateral forces or moments D,
acting on the wheel. (See sketch.) Obvi- “%Qggiw
ously, for this case there will be no lat- fon
eral distortion of the tire, or
Y
?\O=O
On the other hand, Kantrowitz' basic equation, which is
N+ LDAg =18 - 1, D8 ' (108)

gives for this steady unyawed case (with DN\g = DB = O)
)\O=Le

This equation is obviously incorrect, since it implies that the lateral
distortion of a straight rolling wheel, which actually must be zero,
depends on the choice of the coordinate axes to which 8 is referred.
Only for the special case of a wheel running along the reference axis
(that is, for © = 0) is Kantrowitz' theory correct in this respect, and
in an actual shimmy problem this condition is possible only for the case
of zero trail; hence Kantrowitz' theory cannot necessarily be expected

to give reliable results for trails different from zero. Thus Kantrowitz’
theory is of at least doubtful value for practical shimmy calculations.

In order to evaluate the Wylie theory, consider the case of steady
untilted yawed rolling of a wheel moving parallel to the X-axis. (See
sketch.) Obviously, the lateral distor- x
tion of the tire Ag will depend only
on the swivel angle © (6 = a) and not "o
at all on the absolute lateral displace-
ment of the wheel mng. On the other hand

tion of
Direc io_
wheel motion

the basic equation of Wylie, which in the
present terminology is ¥

Yo + L Dy =16 - 1, D6 (109)
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gives for this steady case (where Dyy = Do =,O) the relation Yo = e

or, by using equation (2),

Ao =18 - 19

This equation states the obviously incorrect conclusion that the tire
distortion is dependent on 1ng or, in other words, that it depends on

the choice of the coordinate axes. Thus, only for the special case
no = 0 1is Wylie's theory plausible in this respect, and ng5 = O implies

that the reference axis must pass through the path of the wheel. Since
this condition is satisfied in an actual shimmy motion oniy for the
special case of zero trail, Wylie's theory, like Kantrowitz', can be
fully valid only for zero trail and, consequently, this theory is also
of doubtful value for practical shimmy calculations.

It might be noted that the preceding difficulty concerning Wylie's
theory could be removed by the logical procedure of adding the term g
to the right-hand side of Wylie's equation (109) to give the new basic
equation

Yo *+ LDyy =18 - 1, D8 + 1 (110)

2

Another questionable point in these two theories is that the
Kantrowitz theory, as previously noted, predicts that the lateral dis-
tortion in yawed rolling parallel to the X-axis (see previous sketch) is

and so does the Wylie theory if the reference axis 1s chosen to give
o = 0. On the other hand, the summary theory has for this yawed case

the relation
N = (L + n)e

(See eq. (85).) The difference arises from the fact that Kantrowitz
and Wylie did not explicitly consider the ground-contact length 2h in
their derivation.

Other Theories

In addition to the just discussed theoretical papers dealing par-
ticularly with the subject of landing-gear shimmy, a number of relevant
papers exist which are either largely of historical interest, which deal
particularly with automobile shimmy problems, which deal only briefly
with landing-gear shimmy problems, which deal with other tire-motion



NACA TN 3632 57

problems such as yawed rolling and veering-off or ground looping, or which
deal with the determination of tire stiffness parameters. Although these
papers are of some interest, they do not appear to contain any important
contributions which are not contained in the theories Jjust reviewed. The
reader is referred to reference 1 for a substantially complete listing
and brief discussion of most of the papers in this class.

Of particular historical interest among the investigations not con-
sidered here in detail are the work of Broulhiet (ref. 23) and the work -
of Fromm (discussed in ref. 22). These two investigators independently
were apparently the first to recognize the importance of lateral distor-
tion and cornering power of tires in the wheel shimmy problem. Taking
these factors into account, both authors developed tire-motion theories
whose kinematic relations correspond to that of approximation C2 of the
present paper.

TABULAR CIASSIFICATION OF EXISTING THEORIES

In order to permit easier visualization and comparison of the merits
of the theories discussed, the major assumptions of the various theories
of tire motion are collected in table I. This table lists the nature
of the assumptions made in regard to the primary tire parameters N,

K, Ky» €, and 1, for each of the theories discussed.

APPLICATION TO WHEEL-SHIMMY PROBLEMS

In the preceding sections of this paper a set of basic differential
equations for the motion of an elastic wheel has been derived and compared
with the corresponding equations of most of the previously existing theo-
ries. These comparisons have indicated that, from a mostly qualitative
point of view, the summary theory of this paper and the systematic approx-
imations to it incorporate the major merits of the existing theories of
tire motion and avoid some of their disadvantages. However, it still
remains to investigate how best to apply the theory to specific landing-
gear problems, to investigate the question of the absolute or quantitative
accuracy of the summary theory and of the other theories, and, if the
summary theory be found satisfactory, to establish the simplest systematic
approximation to it which will give reliable information regarding any
particular problem in tire motion. The best way to accomplish these vari-
ous aims appears to be through a discussion of the shimmy of several par-
ticular landing-gear configurations. In this section three particular:
landing-gear configurations are discussed which range in complexity from
the simplest case of a rigid swiveling landihg gear to the most general
case of a gear of arbitrary complexity.
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DESCRIPTION OF PARTICULAR CASES, CONSIDERED

The first landing-gear configuration considered, which is designated
case I, is illustrated in figure 5. It consists of a rigid landing gear
whose only degree of freedom other than tire distortion is rotation of
the wheel about an inclined swivel axis, which may be opposed by a linear
spring or damper. This particular configuration is chosen because most
of the existing experimental data have been obtained for such a configu-
ration. Thus, this configuration makes it possible to discuss and evalu-
ate the summary theory, its systematic approximations, and the existing
theories with respect to agreement with experiment in regard to the var-
ious important characteristics of a shimmy motion, such as stability
boundaries, shimmy frequency, and divergence.

The second landing-gear configuration, case II, is an untilted
landing gear possessing two degrees of freedom aside from tire distortion.
This landing-gear configuration, which is illustrated in figure 6, con-
sists of a wheel free to swivel but not to tilt, which turns about a
rigid vertical swivel axis attached by a spring k to the supporting
structure. (This spring is an idealized representation of the lateral
flexibility of an actual landing-gear strut.) This configuration is dis-
cussed for two purposes: (1) to illustrate the effect of structural
elasticity on wheel shimmy behavior and (2) to provide an example which
is better suited than case I for bringing out the relative merits of
several of the systematic approximstion theories for a case involving
structural flexibility.

The third landing-gear configuration considered is a modification
of the gear of case II. 1In case II the landing gear was considered to be
connected to its supporting structure by a single spring; in case III
this single spring is replaced by a more complex structure described by
some transfer function. This case is chosen mainly to demonstrate the
application of the theory to complex problems for which the transfer-
function concept may be of value.

CASE T

General Derivation

In this section the basic equation of motion will be derived according
to the summary theory for the special case of an inclined, rigid, swiveling
landing gear (case I), which is illustrated in figure 5. This equation of
motion could be obtained by making use of the previously derived equations
of motion for the completely general case; however, it can more easily be
derived here in a slightly different form for this particular problem.
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The geometric quantities which enter the discussion of this particular
landing gear are indicated in figure 5. This gear has a swivel axis lying
in the XY-plane and is inclined forward from the vertical Z-axis by a con-
stant angle &. The perpendicular distance a between the ground-contact
center point O and the swivel axis is called the trail. The swivel axis
is assumed to move with constant velocity v along the X-axis without
lateral motion from the XZ-plane.

Rotation of the wheel structure about the inclined swivel axis by an
amount V¥ results in a component 6 of angular rotation about the verti-
cal axis of magnitude

@ = V¥ cos k (111)

a component ¢ of rotation about the X-axis (ti1t) of magnitude

7y = -} sin k : (112)
and a lateral deflection To of magnitude

No = ~avy ' (113)
where all angles except k are considered small.

The sum of all moments about the swivel axis must equal the inertia

2D2¢, where IW is the moment of inertia of the

. 2
reaction IW Dt V= IWV
wheel structure (including the wheel) about the swivel axis. The moments
about the swivel axis are assumed to consist of the moments resulting
from the previously discussed forces and moments that arise from tire
distortion and ground loads plus the moments applied to the wheel by the
supporting structure, which are assumed to consist of a restoring spring
of moment p¥ and a linear damper of moment g DgV = gv DY, where p

and g are constants. Thus, summation of the moments about the swivel
axis gives the differential equation

_[?%(yo - no) - Ky%]a -F, [Exyo + (l - c%)no - 077]sin K+

Kz(Dyo - 9)cos K = TV2D(yo - no)cos kK - p¥ - gv D¥ = vangw (11k)

where the first term is the total ground force due to tire lateral dis-
tortion and tilt (see egs. (20) and (27)) times its moment arm a; the
second term is the vertical force times its moment-producing frac-
tion sin k times its moment arm (see eq. (28)); the third term is the
moment about the Z-axis due to tire twist (see eq. (24)) corrected by
cos ¥ for the component about the swivel axis; the remaining terms on
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the left-hand side represent the gyroscopic torque due to lateral tire
distortion (see eq. (32)), the spring restoring moment, and the linear
damper moment. Now by making use of equations (111) to (113), equa-

tion (114) can be written in the form

2
AlDW+A2-D\1;+A5\v+BlDyO+B2yO=O

where
o) B
A2 = a'rVZCOS K + gv
Az = aQKx + Ky cosSk + p+ pe [
Bl = =K, cos ® + TVECOS K
B2 = aKx + chz sin K J
and

Py = aK7 sin an sin Kk + ach sin k + Csz sin2K

Z

(115a)

(115b)

(115¢)

The general relation between ¥ and Yo for this case is found by sub-
stituting for 1y, 7, and 6, according to equations (111) to (113) in

the general kinematic equation (19a). Thus

[+ 2]
Yo + > in Dnyo = -ay + 1,V cos Kk + E%E ¥ sin k
n=1
or, abbreviating,

o=1+ EEE tan &
ri

and rearranging,

[20] 0
, n n
(czl cos Kk = a)w =Yy * Eil [ D Yo = Eio i, D Yo

since ZO-= 1. Differentiating this result gives

00

n+l
(Gll cos k - a)DW = gio lnD Yo

(116)

(117)
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which can also be written as

©o

(011 cos & - a)Dy = 2‘_; . Dnyo (118)
n=

and, similarly,r

=2 1,0, (119)

(611 cos K - a)D 2

Substituting these relations into equation (115) and multiplying through
by ch cos K - a gives

[00) o ¢) o0
1, I n
Aléln_szo+A2;_ Zn_lDy0+A5§ 1, Dy, +

Bl(cll Ccos K = a)Dyo + B2(cll COS K = a)yo =0

Finally, after adding all terms of like order, substituting N = ZlKﬁ

(eq. (77)), substituting for some of the A's, and using equation (116),
there results the equation

oo
n
E F,Dyy=0 (120a)
n=0
where
FO = gaN cos Kk + Kd cosgn + P+ P+ Uy
Fl = aEN + a'k cos k + pll + pKZl + gv + dllW2c052K
@ ¢ (120b)
Fpo=Agly o+ Aply o + Agly (n>2) )
and
u, = CXFzQUZl CO8 K = a)sin K
‘ (120¢)
a' =a + (1 - c)ll cos kK = a - E%E sin k
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Systematic Approximations

Equations (120) provide the general differential equation of free
motion for case I. The corresponding equations for the systematic approxi-
mations A to D5 are obtained as follows.

Approximation A.- The basic equation for approximation A is obtained
by setting 1, equal to O for n >3 in equations (120). The resulting
equation can be stated in the following form:

b 2
Eg D5yo +E{ Dyp + Ep DByO + Ez D7yg + Ey Dyg + Es5yg = O (121a)

where

Eg = Iyv@ly D

E, = IWV212 + (aTv2cos K + gv)l5

B, = vagll + (awzcos K+ gv)12 + (a2K7\ + K cosTk + p + pn)'z5 \ (1210)
E3 = vag + (aTvecos K + gv)ll + (azK% + Kﬁ cosgn + p + pn)l2

Eu = aEN + a'Ka cos K + plq + Pely + & + Ullrvecosgn

caN cos k + Ko cosgn +p P+

eal
Ul
Il

O
il

(aK? - aFZ + ackFZ + csz sin n)sin K
(121c)
u = chZ(ch cOS K - a)sin K

Approximation B.- In order to obtain approximation B, set 15 equal

to O in equations (121b). This gives the differential equation

b 3 2
Ey D'yg + Ey D7yy + E, D7y + Bz Dyy + Eyyy = O (122a)

where
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o h
E, = vaell + (aTVECOS Kk + gv>12
2 2
E2 = va2 + (aTVECOS K + gv)ll + (a Ky + Ka cos K + p + pn)l2 > (122p)

3 = a®N + a'Ka cos kK + pll + pKll + gv + chTvzcosen

=
|

2

=
==
[t}

call cos k + Kd COsTK + P + P + U,

~F
(The corresponding equation with inclusion of hysteresis effects is
listed in appendix B.)

Approximation Cl.- The equation for approximation Cl is obtained by
setting 1, equal to O 1in the equation for approximation B. The

resulting differential equation is

3 2 : -
Eq D7yo + By D7yg + B, Dyg + Egyg = O (12%a)
where
2

Eo = Ty iy A
E, = vag + (aTVECOS K + gv)ll

5 5 5 . (123b)
E2 = a“N + a'Ka cos K + pll + pnll + gv + cllTv cos“k
E5 = gaN cos Kk + K& cosk + P+ P + U

-

Approximation C2.- The equation for approximation C2 is obtained by
setting & equal to O in the equation for approximation Cl. The
resulting differential equation is

Eq DJyg + By DPyg + Ep Dyg + Bsyg = O (124a)

where
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E. = I,vol : )
o7 1L
2 2
El = va + (aTv cos K + gv)ll
5 5 o ¢ (124p)
E2 = a“N f aKd cos Kk + pll + pKZl + gv + llTv cos“k
E5 = aN cos k + K& coszn + P+ P+ Wy
~’
and
Uy = CXFz(ll cos K - a)sin K (124e)

(The corresponding equation, with hysteresis effects included, is listed
in appendix B.)

Approximation Dl.- The differential equation for approximation D1
is obtained by setting 1; equal to O in the equation for approxima-

tion C2. The result is the differential equation

Eg D7yg + By Dy + Egyg = O (1258)
where
By = I,v° )
El = a2N + aKa cos K + gv L (l25b)
Er = all cos k + Kd cosk + P+ W 3
and
W, o= (aK7 - &F, + c,F, sin K)sin K (125¢)

Approximation D2.- The differential equation for spproximation D2

is obtained by dividing all terms in equations (12k4) by Zl and then

setting 17 equal to « and using the relations N/ll = K; and

Ki/ll = eKi. The resulting equation is
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where
2 ™
EO = va
El,= aTVQCOS K+ gv | (126b)
E2 = aEK%~+ aeK% Cos k + p + P, + Tvacosgn
2.

Ez = a cos K + € cos“K + c,F,_, sin k cos &

3 = ak, N Nz J

Approximation D3.- The differential equation for approximation D3
is obtained by dividing the E's for approximation D1 by N and then
setting N equal to =, The resulting differential equation is

a Dyy + yg cos & =0 (127)

Previously Published Theories

In the preceding section the differential equations are set down
for case I according to the summary theory and the systematic approxi-
mations thereto, complete with all pertinent details, including a number
of second-order terms so as to enable the direct application of these
equations to actual problems. In the present section the differential
equations for the previously published theories are listed for the pur-
pose of making clear the differences in the basic structure of the dif-
ferential equations resulting from the application of these theories to
case I, In order to avold gbscuring the more important differences
between the equations of the various theories, all terms are omitted
whose inclusion in any shimmy theory should be completely straight-
forward (such as the spring restoring-moment coefficient p and the
damping coefficient g) and also all inclination effects. Although the
latter effects are not necessarily negligible, they do appear to be of
second-order importance and their omission here should not alter the
basic structure of these equations. With these omissions — that is, for
g =p =& = 0 — the differential equations for case I according to the
previously published theories are as follows in the terminology of the
present paper:

Von Schlippe-Dietrich and Rotta theories.~ The basic equation of
motion for this case according to the Von Schlippe-Dietrich theory, after
neglect of the effects of tire width, corresponding to equation (120a)
for the summary theory, is

> F, 'O = 0 (128a)
n=0
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where

o
O
I

aN + K,

Fl' = N + akK, + g1v

¥

' 2 1
Fol= IRl o+ gvl o+ (a K, + Ka>1n + E-l-,- ah'K, (17 - a)]
> (128b)

(=24, ...)

T 2 2 11 n-1
Fn = va Zn—2 + glvln_l + (a Ky + Kd)ln Eﬁ-h. K, (11 - aﬂ

(n=3,5,...)

J

The symbol g is a hysteresis damping coefficient defined by the equation

dy
g = (128c)
v2 + dgame
where d; and dp are hysteresis constants. Aside from the omission of
some inclination effects and other terms, as discussed previously, the only
differences between equations (128) and equations (120) for the summary
theory lies in the inclusion of the hysteresis term involving g1 and in

the addition of the terms in brackets in equations (128b). Rotta's cor-
responding equations, after neglect of tire width effects, would be the
same as equations (128) except that Rotta omitted the hysteresis term.

As was previously noted, the Von Schlippe-Dietrich theory and Rotta's
theory differ only slightly in their respective considerations of the
influences of tilt and tire width, neither of which effects are considered
here.

Bourcler de Carbon advanced theory.- The Bourcier de Carbon advanced
theory leads to the fourth-order differential equation

By Dtyo + By Dy, + Ep Diyg + E5 Dyy + Ejyg = O (129a)
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E, = vaezg ]

By = Iyvily

Ep = I,v? + (aEK% + Kﬁ)le , (129b)
Es = a?N + &k,

E), = al + K,

Bourcier de Carbon elementary theory.- The coefficients for the
Bourcier de Carbon elementary theory are obtained by setting 12 equal

to 0 1in equations (129) for the advanced theory. The resulting third-
order differential equation is

Eo D’y + Ey Dyq + B, Dy, + Egy, = O © (130a)
where
2 =
2
El = IWV |
' (130b)
E, = a2l + ak,
E5 = alN + Kd
v,

Melzer.- Melzer's theory glves the third~order differential equation

5 2
Eo D'yg + By D%y + E, Dy + Ezyy = 0 (131a)
where
5 ™
= 2
5 ‘ > (131v)
E3 = alN + KG:
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Moreland advanced theory.- Moreland's advanced theory leads to the
fourth-order differential equation ‘

Eq D'yg + Ey DPyo + Bp DPyg + Eg Dyy + Eyyp = O (132a)
where
3 )
Ey = I,T1;v
E, = L1
Ep = I,v2 + aThv (132p)
Ez = 8N + aTNv
E4=aN

-/

Moreland elementary theory.- Moreland's elementary theory gives the
differential equation

Taylor.- Taylor's theory leads to the third-order differential
equation

2
E, Dyo + By D yg + Ep Dyy + B,yo = O (134a)
where
-2 )
EO Iv
E, = 0
( (134v)
2
Eg = K‘)\a

Temple elementary theory.- The second-order differential equation for
the Temple elementary theory is

2
Ey Dy + By Dyy + Epyg = O (135a)



NACA TN 3632 69

where
2 )
EO = I\Vv
E; = a®N + aK o (135b)
E, = all + Ky

Iy

Maier.- The second-order differential equation of Maier's theory
is

Eo Dy, + By Dyg + Eoyg = O (1362)
where
-
2
EO = va
E, = a°N ( : (136
1 =2 36b)
E2 = alN

Kantrowitz.- Kantrowitz' theory leads to the third-order differ=-
ential equation

2
E, D7y, + By Do + Ep Dy + Esy, =0 (137a)
where
Ey = IvoL
E. = Ive + aloN + 1
1 2 2Kc,,
(137b)
By = O

Wylie.- Wylie's theory leads to the third-order differential equation
hyLie

5 2 -
Eg D?yg + By D7yg + By Dy + Exyg = O (138a)
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where

-

Ep = IveL

E, = Iv2 + al. N + 1

1 o oKy,

5 0 (138b)
E2 = g“N + aK&
= a

Ey = (all + Ka)(l + L)

-

Stability of Motion

The basic equations of motion having been established according to
the various theories for a rigid swiveling landing gear, attention will
be directed next to the meaning of these different equations with respect
to prediction of the shimmy behavior of the landing gear. However, before
going into this subject in detail it may be useful to discuss briefly
what sort of information is desired about the motion of a landing gear.
Basically, the most important question is whether or not the motion is
stable — that is, does the wheel tend to move in a straight line (with
decaying shimmy oscillations or decaying aperiodic motion) or does the
tire tend to move laterally out from its rectilinear course (with diver-
gent shimmy oscillations or divergent aperiodic motion). To answer this
questlon of stability for linear systems, the analytic methods of Routh
(ref. 26) or Hurwitz (ref. 27) or graphical methods similar to those
introduced by Nyquist (refs. 28 to 31) are available. A brief discussion
of these methods is given in appendix C. Any of these methods will pro-
vide for most cases a procedure for determining whether any particular
combination of landing-gear parameters and rolling velocity is stable
or unstable.

In general, for complicated problems, rather than investigate the
stability of a landing gear by these methods for all possible conditions
it may be more convenient and sometimes more valuable to draw various
types of stability diagrams describing the system in question. For
example, for case I a typical experimental type of stability diagram 1is
shown in figure T, which presents boundaries between the regions of sta-~
bility and instability as functions of trail and rolling velocity for a
specific landing-gear model. Another useful type of stability diagram
for some problems might be a plot of boundaries between stable and unsta-
ble regions as functions of damping moment and rolling velocity.

In determining these stability boundaries, use is made of the well-
known fact that the motion of a linear system can change from a stable
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to an unstable condition only where the motion is purely oscillatory —
that is, where any variable, for example YV, is of the form

ivax
Y=L (139)
or where the motion is purely uniform, of the form
Vo= (140)

Thus ‘all possible stability boundaries can be obtained by directly sub-
stituting expressions of the form of equations (139) and (140) into the
basic differential equations. In connection with the question of what
form of the differential equation to use, it 1s of some importance to note
that the final form, where the equation is expressed in terms of one
variable, is often not the most convenient form to use. For example,

for case I the purely oscillatory boundaries are most advantageously
obtained by using equations (115) and (117) with the substitutions

(141)

The advantage of this particular choice arises from the fact that it leads
to two algebraic equations, one of which does not include the damping
parameter g. This isolation of the parameter g usually eases slightly
the mathematical labor of solving for the purely oscillatory boundaries.

The equations governing the stability boundaries for case I for the
general theory and for the systematic approximations are listed in
appendix D.

Comparison and Evaluation of the Summary Theory and Its
Systematic Approximations

The dual object of the present section is (1) to assess further the
value of the summary theory by comparisons between the predictions of
this theory and the available experimental data for case I conditions
and (2) to determine, by comparison of the relative predictions of the
summary theory and its systematic approximations, what is the simplest
satisfactory systematic approximation to the summary theory. Discussion
of the previously published theories, as applied to case I conditions,
is contained in a subsequent section.
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For convenience the following discussion is divided into separate
considerations of stability-boundary conditions and unstable shimmy
conditions.

Stability-boundary conditions.~ The present section discusses theo-
retical and experimental stability-boundary conditions insofar as they

are influenced by the tire parameters 1, (where n=1,2, .. .), &,

Ky,' Cy\s N, and T and by hysteresis effects. 1In the major part of

this discussion the stabllity boundaries to be considered will be of the
type.obtained by plotting curves of trail against rolling velocity for
those trail conditions that separate regions of stability and instability.
The general shapes of these stability boundaries for case I, according
to the summary theory and the systematic approximation theories A to D3,
are sketched in figure 8 for the special condition of no damping or gyro-
scopic moments (g = T = 0). It is seen that the summary theory and
approximations A to C2 each predict that at high speeds the motion is
stable for large trails and unstable for small trails; the horizontal
boundary line is the same for each case, and is generally located at a
trail roughly equal to the tire radius. (This boundary is theoretically
completely independent of the spring restoring moment p D¢y and is

relatively independent of swivel-axis inclination k.) Approximations D1,
D2, and D3 fail to predict this boundary. Also, these three approxima-
tions, together with approximations Cl and C2, fail to predict any effect
of rolling velocity on the low-speed stability boundaries, whereas,
according to approximation B, for sufficiently small speeds the motion
becomes stable for all small trails and, according to the higher theories,

for most of the small-trail region. Also, at low speeds and large (usually

impractical) trails the higher theories (B and above) indicate that the
motion becomes unstable at sufficiently small speeds. The effects of the
omitted damper and gyroscopic-moment terms would be to reduce the size of
the regions of instability.

(a) Effect of higher ln, terms: As a first test of the summary

theory and its systematic approximations there are available the experi-
mental data of Von Schlippe and Dietrich (refs. 3, 4, and 5) which were
obtained with a small model landing gear equipped with a pneumatic tire
of 26 em (10 in.) diameter. This model landing gear was tested at rela-
tively low speed conditions where the higher 1, terms (1o, 15, o o .)

are of some importance; consequently, these data provide an opportunity
for testing the relative dnd absolute validity of the summary theory and
the higher approximations A to C2 (which differ essentially only by their
inclusion or omission of the higher 1, terms).

The basic landing gear and tire constants for the Von Schlippe-
Dietrich model, which was tested only in the untilted condition (k = 0),
as taken from references 3 and 5, are as follows:
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Iy ~ 0.53 + 0.0025a° cm-kg-sec®

L = io cm
N = 640 kg/radian
K, = 3,040 cm-kg/radian
Ky = 45 kg/em g

The quantities 1;, h, and the higher l,'s were calculated from the
previously discussed relations 17 = N/K%, h =14 - L, and
1 = (nL + h)a"1/nt (See eqs. (77) and (19a).)

The experimental data obtained by Von Schlippe and Dietrich for
this model are shown in figures 9 and 10, together with the corresponding
predictions of the summary theory and the systematic approximations A
to C2. (Also shown. are the predictions of the theory of Von Schlippe
and Dietrich which are discussed in a later section.) Figure 9 presents
stability-boundary plots of trail against velocity, and figure 10 pre-
sents the frequency at these stability boundaries as a function of veloc-
ity. No theoretical curves are shown on these figures for approxima-
tions D1, D2, and D3 since these approximations are too crude to give
any detailed information for this problem; they predict either completely
stable or completely unstable motion for all positive trails (see fig. 8).
The equations used to calculate the theoretical curves in these two fig-
ures are given in appendix D. In these calculations the gyroscopic torque
term involving T has been neglected since T 1s unknown for these data.
A rough value of T could perhaps be estimated, but such a dubious esti-
mate did not appear necessary because the term involving T, according
to any reasonable estimate of T, would be of no importance in the veloc-
ity range of these experimental data.

In comparing the theoretical curves in figures 9 and 10 it is
observed that approximation A gives a boundary very close to that of the
summary theory. Approximation B does not give as close agreement but it
is still fairly good and, more important, for most of the trail range
the difference between approximation B and the summary theory is small
as compared with the difference between the summary theory and the experi-
mental data. As was previously noted, approximations Cl and C2 (which are
identical for the present condition of k = 0) predict a trail-velocity
stability boundary which is independent of velocity so that this approxi-
mation is an inadequate representation of the summary theory at low veloc-
ities. However, at high speeds approximations Cl and C2 give the same
stability boundary and frequency as the higher approximations.
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As a further aid in comparing the different systematic approximations
with the summary theory, figure 11 presents a plot of the linear damping
coefficient g required to stabilize the motion of the Von Schlippe-
Dietrich model at a medium trail of 7 cm as calculated according to the
summary theory and the various systematic approximations (the equations
used are presented in appendix D). This figure confirms the conclusions
drawn from figures 9 and 10 that approximation A is a very good repre-
sentation of the summary theory and that approximation B is also a good
representation of the summary theory. However, more importantly, fig-
ure 11 demonstrates that approximations Cl and C2 also give a fairly good
representation of the summary theory with respect to prediction of the
maximum amount of damping (i.e., the maximum value of g) required for
stabilizing the motion. Approximations D1, D2, and D3 are seen to give
inadequate representations of the summary theory.

The preceding conclusions are, of course, only proven to be valid
for the specific conditions of the Von Schlippe-Dietrich model tests.
However, they are believed to be valid for most practical rolling
conditions.

In considering the correlation between theory and experiment for the
Von Schlippe-Dietrich test conditions, it is noted that the experimental
stability boundary in figure 9 is of the same general shape as that given
by the summary theory and approximations A and B but that it lies to the
right of the theoretical curves and thus indicates that the experimental
system is more stable than the theoretical system. Similarly, the experi-
mental frequency-velocity curve in figure 10 falls below the theoretical
curves. These discrepancies are perhaps a result of the neglect of hys-
teresis damping in the calculation of the theoretical curves of figures 9
and 10 and are discussed more fully in the next section.

(b) Effect of hysteresis: In order to investigate whether the dis-
crepancies between theory and experiment shown in figures 9 and 10 might
be explained by a consideration of hysteresis effects, some results of
calculations involving hysteresis effects are shown in figures 12 and 15
for the same test conditions as in figures 9 and 10. Figures 12 and 13
present theoretical calculations of trail-velocity and frequency-velocity
stability boundaries, respectively, both with and without consideration
of hysteresis effects, together with Von Schlippe and Dietrich's experi-
mental data. The curves for the Von Schlippe-Dietrich theory were cal-
culated by using Von Schlippe and Dietrich's theory with their hysteresis
equations (see eqs. 128), whereas the curves for approximation B were
calculated by using the equations for hysteresis effects derived in the
present paper (see appendix B). The values of ) and N, indicated

in these figures, which were used in these calculations, were estimated
from static hysteresis-loop data, partly unpublished and partly published
in reference 24. The values of d; and dp wused were taken from refer-

ence 5. It is observed from these figures that there is a considerable
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difference between the calculations according to either theory, depending
on whether hysteresis effects are included or omitted. Moreover, it is
seen that either theory provides fairly good agreement with the experimen-
tal data when the hysteresis effects are taken into account. These facts
suggest that hysteresis effects may be an important factor which must be
taken into account in order to obtain good agreement between theory and
experiment. On the other hand, neither the Von Schlippe-Dietrich nor the
present paper's consideration of the hysteresis effects seems to rest on
a completely sound foundation. Thus it appears safe to conclude only that
since two different approaches to the hysteresis problem indicate that
hysteresis effects are important, a more rigorous analysis of the hysteresis
problem would be worthwhile.

(c) Effect of 17: The next test of the summary theory makes use of
1

the experimental data of Melzer (ref. 10), who performed a series of tests
with an untilted (ﬁ = 0) solid rubber tire 7 cm. (3 in.) in diameter at
sufficiently-high speeds so that his data would be expected to fall con-
siderably to the right of the curved-line low-speed stability-boundary
curve in the first two sketches of figure 8. For this velocity range the
predictions of the summary theory and approximations A to C2 are identical;
they all predict that the undamped (g = T = T\ =Ty = 0) motion is stable

for all values of trail a greater than 15 = N/K%; that is, the critical

value of trail a, at which the motion changes from an unstable state to
a stable one is given by the relation a, = ll. (Even if gyroscopic moments

are taken into account, this equation is only slightly modified throughout

a relatively large range of rolling velocity; however, for very large veloc-
ities this relation breaks down as a result of the gyroscopic moment and
the motion becomes stable for all positive trails. This phenomenon will

be discussed in a subsequent section.) The prediction a. = Zl is well

confirmed by Melzer's tests, as is illustrated in the following table of
data taken from reference 10, which lists the experimental values of 1

together with the trail required for stability for several conditions of
vertical loading:

F,, kg 1 2 2.8 3.6

1, =N/K, ecm | 2.58 | 2.85 | 3.22 | 3.40

8u, CI 2.5 3.0 3.1 3.4

These particular data were taken for the case where no spring restoring
force acted on the model landing gear (p = 0). Similar good agreement
was obtained for the case where a strong linear spring restoring moment
was present (p > K,). For this case, according to the summary theory
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and approximations A to C2, the stability boundary for the positive trail
condition is the same as for the case of no spring restoring force. This
prediction is well confirmed by Melzer's tests, as is illustrated in the
following table of data also taken from reference 10.

F,, kg 1 2 2.8 3.6
ll = N/Kk’ cm 1.96 2.60 2.90 2.91
8y, CI 2.0 2 - 2.25 ~2,7 ~2.8

(The difference between the values of 17 1in these two tables is merely

a consequence of changes in tire characteristics between the corresponding
tests.)

In order to assess the significance of the preceding comparisons of
theory and experiment it should be noted that the theoretical relation
ac = 17, calculated for g =7 = T% = Ty, = 0, is independent of spring

restoring moment p and tire torsional stiffness K, and, in the veloc-

ity range discussed, can be shown to be not strongly influenced by gyro-
scopic or hysteresis moments (T, Ty, and Ty) or by the higher ln's

(12, 15, « « «)o Consequently, this comparison tells practically nothing

about the correctness of the manner in which these important quantities
have been inserted into the summary theory. On the other hand, the theo-
retical relation a, = l; depends almost entirely on the correctness of

the kinematic equation of the summary theory which, for Melzer's test
conditions, reduces to the kinematic equation of approximation C2

(eq. (85)):

7\0 = —'I.l(l

Thus, the results of the preceding comparison indicate that there exists
a range of rolling speeds in which the kinematic equation of the summary
theory, as well as of approximations A to C2, is reasonably correct
(except possibly for the terms involving ¢, which are as yet not evalu-
ated and are not very important).

It can be said with safety that the range of velocity for which the
theory gives good agreement with Melzer's model data corresponds to full-
scale conditions somewhere inside the practical rolling speed range and
possibly covering much of the practical range. However, the preceding
comparison definitely does not prove anything about the adequacy of the
summary theory for small velocities or for the highest velocities which
may be encountered in practice.
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Further confirmation of the preceding conclusions is provided by
the experimental data of Schrode (ref. 17) who performed tests, similar
to those of Melzer, for realistic pneumatic tires as large as 39 cm (15 in.)
in diameter, as compared with the small T cm (3 in.) solid rubber tire
tested by Melzer. Schrode obtained trail-velocity stability-boundary
plots of the type illustrated in figure 7. These stability-boundary plots
indicate the same result as Melzer's data, namely, that there exists a
range of velocity in which the motion is stable above a certain critical
trail a, and unstable below it. (This velocity range for the data in
figure T is approximately 60 to 160 km/hr.) It is not possible to check

quantitatively the theoretical stability-boundary equation a, = Zl for

Schrode's data because Schrode provides no information suitable for accu-
rately evaluating 17. However, some qualitative confirmation may be

found, since the quantity 1; always appears to be of the order of magni-

tude of the tire radius r and for Schrode's data a, 1is found to be of
this same order of magnitude (e.g., see fig. 7). Thus Schrode's experi-
mental data appear to confirm the previously drawn conclusion that there
exists a velocity range in which the kinematic equations of the summary
theory and approximations A to C2 are valid.

Dietz and Harling have presented some similar stability-boundary
curves in reference 16 which also confirm the foregoing conclusions.

(d) Effect of &: Some insight into the effect of the tilt param-
eter €& can be obtained by an examination of the effects of swivel-axis
inclination k on the stabllity boundaries according to the predictions
of approximation Cl for the condition where damping, spring-restoring,
and gyroscopic moments are neglected (g = p = T = 0) in order to isolate
the effects of inclination. (These assumptions appear to be Jjustified
for the experimental conditions discussed in this section.) Under these
assumptions one theoretical stability boundary is given by the equation

gELh

8. = 1y cos k + Z—sin (142)

Experimental data suitable for testing this relation are available in
reference 16 for an inclination range of -20° < k < 20° for one constamt-
velocity condition. These experimental data, some of which had to be
slightly extrapolated from the data in reference 16, are shown in fig-

ure 14 together with the predictions of equation (142) for values of &
equal to O and 1. Although reference 16 does not supply the values of L,
h, and Zl needed for calculations, the assumed values indicated on the

figure are probably accurate enough to justify the following more or less
qualitative observations. (The value of 17 was chosen so as to make the
calculated and experimental values agree for the case k = 0.) It is noted
that the experimental variations and the theoretical variations for £ = 0O
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are in fairly good agreement and also that these two variations are more

or less symmetrical with respect to positive and negative values of k.

On the other hand, the theoretical curves for § > 0, such as the indicated
curve for £ = 1, will all be unsymmetrical. Thus, it appears that £ is
probably close to zero. In this connection it might be noted that
Greidanus' theory, which is the only known theory that uses a term cor-
responding to &, implies a value of & > 1 (compare egs. (100) and (101)).

(e) Effects of K7 and ey In order partly to assess the importance
of the tire parameters K, and ¢y, the special case of approximation C2
where T =p =0 and Zl cos Kk = a =0 will be considered. While this

particular case is of no practical importance in itself, its examination

permits some insight into the effects of the tire parameters K7 and Cy»

For this case the damping required to stabilize the motion is given by the
inequality

[%(aN + K, cos K) + pnlé]gvll + Iwgv5 + ggvell >0

where p is given by equation (115c). It is evident from this relation
that Py is a stabilizing term if positive and destabilizing if negative.

Also, according to reference 2, K7 may be as large as F, and, according

to reference 2k, cy ™ 0.75. Thus, according to equation (115c), if the
small sin®k term is neglected, p, may be positive for positive «k,

whereas if the K Cy\ s and c. terms are neglected (as has been done

7}

in all previous investigations :xcept ref. 2) then Pk is always negative
for positive k. Therefore, if situations should arise wherein Py is
important, it is not necessarily safe to neglect the terms involving e\
and K7 that are used in the determination of ¢ . (See eq. (115¢).)

(f)-Effect of cornering power N: As a rough check on the variation
of the tire cornering power N under dynamic conditions, there are avail-
able experimental frequency data obtained by Melzer in connection with his
previously mentioned tests on an uninclined (k = 0) model landing gear
equipped with a solid rubber tire of 7 ecm (3 in.) diameter (ref. 10). For
the higher velocity conditions of Melzer's tests, the predictions of the
sumary theory and approximations A to D1 lead to the frequency equation

_1,pN+ Ky + p
f = 5 ___-T;———-— (143)

for an uninclined and undamped landing gear, that is, for kK =T =g = 0,
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(Inclusion of the effect of finite T in this equation would not signif-
icantly alter this equation for the test conditions to be discussed herein.)
Some of Melzer's experimental data are compared with the predictions of
this equation in the following table for the condition p = 0. The experi-
mental data shown represent Melzer's data for the highest velocity condi-
tions tested.

F,, ke | 2.8 3.6

a/ly 0.47 0.78 0.4% 0.73 0.88
P ol oulateds CDE 5.8 | 4.5 | ko | 4.8 | 5.1
fexperimentals CPS | 3.3 5.5 2.7 b1 k.7

The theoretical and experimental values are seen to be in fair agreement.
However, the experimental values are somewhat smaller than the corresponding
theoretical values. This discrepancy is believed to be largely due to the
fact that these experimental tests were not conducted at sufficiently small
values of shimmy amplitude for the assumptions of a linearized theory to

be valid. Specifically, all of Melzer's frequency data were obtained for
maximum swivel angles of 59 or larger. (The data shown in the preceding
table correspond to the condition Gm = 5°.) Moreover, Melzer's data

indicate that there is a fairly definite decrease in shimmy frequency with
increasing maximum swivel angle. A sample plot of Melzer's data illus-
trating this effect is given in figure 15. Also shown is the theoretical
calculation, which is valid only for 6 = 0°. 1If allowance is made for
a certain amount of experimental error, extrapolation of the experimental
data to Oy = 0° could be considered as confirmation of the theory. It

should be noted, however, that much of the rest of Melzer's data, while
not necessarily disputing this conclusion, do not so clearly support it.
Also, plots of the type of figure 15 are of limited significance since
each test point shown corresponds to a different rolling veloeity. In
view of these considerations, the only reasonable conclusion that can be
reached appears to.be that Melzer's data roughly confirms the theoretical
frequency and does not conclusively dispute its quantitative accuracy.

Melzer has also conducted frequency tests on the same model with an
additional strong restoring spring (spring stiffness several times the
tire torsional stiffness). A comparison of theoretical and experimental
frequencies for this test is shown in the following table:
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Fy; ke 2.0 2.8 3.6

a/ly 0.77 | 0.69 0.86 0.69 | 0.86
fealculatear CPS 5.2 | 5.4 1 5.7 | 5.5 5.8
fexperimentals CPS | 4.9 5.45 | 5.9 5.8 5.85

The much better agreement obtained for this case is explained by the pre-
dominant influence of the spring restoring moment, since for large values
of p the model system approaches the condition of a simple torsional

oscillator with moment of inertia IW and spring constant p, for which

condition the well-known frequency equation is 2nf =‘/p/Iw.

In order to assess the significance of the preceding comparisons,
the Guantities involved in the theoretical equation (143) — a, N, Ky»

p, and IW — will be considered. The quantities a, p, and IW are

easily measured constants and, for most of Melzer's data, K, is much

smaller than aN; therefore, the preceding fair agreement between theory
and experiment indicates that the quantity N (the tire cornering power),
which was considered to be a constant in the preceding calculations,
actually does not vary extremely with rolling velocity and shimmy fre-
quency — at least not for Melzer's test conditions.

(g) Effect of gyroscopic torque: The next question to be considered
is the influence of the gyroscopic torque resulting from lateral distor-
tion of the tire. All pertinent experimental data obtained at very high
speeds (e.g., ref. 10; see also fig. T) demonstrate that at sufficiently
high speeds the previously discussed conclusion that high-speed motion is
unstable for trails less than 15 1is no longer valid. Instead, the

experimental data show that at these very high speeds instability at any
given positive trail ceases above a certain critical velocity. The exist-
ence of this critical velocity will now be shown to result, at least in
part, from the gyroscopic action which was previously included only in
Kantrowitz' theory (ref. 8) but was not specifically mentioned there.

The simplest systematic approximation that adequately provides for this
effect is approximation C2. In order to isolate the gyroscopic effect,
the special condition of no tilt (¢k = 0) and no spring-restoring force

(p = 0) or damper (g = 0) will be considered. For this condition the
equation for the stability boundary of approximation C2 (or Cl) reads

(vacg + aTVCEZl)(aEN + aK, + 117v02> = vacell(aN + Ky) (14k)
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where the underlined terms are the gyroscopic terms. For the computation
of the critical velocity v, this equation may be simplified still further

if it is realized that the quantity aTZl is small in comparison with the
moment of inertia I¢ sbout the swivel axis; hence, for an approximate
calculation the term aTv211 can be omitted. Then solution of equa-~

tion (144) for the critical velocity Ve above which the system is stable
yields the expression

\/(zl - & )(al + Ky) (145)

ZlT

which is observed to give an infinite critical velocity for zero gyroscopic
action (T = 0).

The only available experimental data containing enough information
on the tire constants that are necessary for checking the validity of
equation (145) are Melzer's data (ref. 10) and even these data do not
provide the required gyroscopic moment; therefore, it can only be crudely
estimated as follows: The mass of the tire will be of the order of magni-

tude L 2n r - T}, )inr, <, where 1r 1is the overall tire radius, 1), the
. )fre,? )y Ty

radius of the cross section of the tire torus, and w; the average tire

density. The moment of inertia will be the mass times the radius of
gyration Ty squared; thus, with T = 1/2 according to Kantrowitz,

T (eq. (33)) becomes

2 2
W T), (r - ru)rg
r(r + r5)

T =

For the usual tire r) = 0.3r, r, is slightly smaller than r (say

3

r5 =~ 0.9r), and r is probably around 0.8r. Then, to a crude approxi-

g
mation, T = O.21w1r3. For Melzer's solid rubber tire r = 3.5 ecm and
w1 is probably about 10‘6 kg—sece/cmy (specific gravity of 1); thus

T =~ 1072 kg-secg/cm. Critical velocities calculated from equation (145)
with this value of T are compared in figure 16 with some of Melzer's
experimental data for one test condition at various values of a/ll. The

calculated and experimental values of critical velocity are seen to be of
the same order of magnitude. Since neglect of the gyroscopic moment
gives, theoretically, an infinite critical velocity, this agreement indiw-
cates that the gyroscopic moment is an important factor in producing sta-
bility at high velocities. Also, the theoretical calculation is conserva-
tive, that is, the unstable region is overestimated. The quantitative
agreement between theory and experiment is fair but far from excellent.
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One probable reason for some of the disagreement is the relatively crude
procedure used for estimating the parameter T. Another possible explana-
tion may lie in hysteresis effects, as follows:

If the differential equation for approximation C2 (see eq. (124ka))
is modified to take into account hysteresis forces and moments in the
manner suggested in this paper, a modified differential equation results
(see eq. (B2)), which has the stability boundary equation

(tyve? + arv®iy + &PMyv, + ak Tov, )(a%N + sk, +

s o a C

2
7,3_'r,vc2 + allly v, + KaTa,vc) = Iyve Zl(aN + Ka) (146)

for the same conditions as the corresponding equation (lhh), namely,

Kk =p =g =0, After neglecting the underlined terms, which are relatively

small at large velocities, this equation can be expressed in the simpler
and more easily interpreted form

aNTHy + T .
2 i A+ Kl v

v
Cc ZlT c

(1 - a)(an + K, ) (1)

llT

This equation indicates that the effect of finite hysteresis (that is,
o # 03 T, % O) is to reduce the critical velocity below what it would

be for no hysteresis effect (T% =T, = O). This result is also indicated

in figure 16, where calculated and experimental curves are shown for the
previously discussed high-speed conditions of Melzer's model tests. (The
values of T) and T, needed for these calculations were obtained from

equations (60), (62), and (143), by using the previously mentioned esti-
mated values of my = 0.1 and 7, = 0.2, based on static hysteresis

loops.) In figure 16 the experimental data lie between the theoretical
curves for “hysteresis considered" and "hysteresis not considered." The
theoretical calculation that includes hysteresis is extremely unconserva-
tive. Two conclusions can be drawn from these observations. First, if
the actual hysteresis effect at high speeds 1s only a fraction of the cal-
culated effect, this fact might explain the difference between the experi-
mental curve and the theoretical curve that does not include hysteresis.
Second, as was previously noted, it is evident that the treatment of
hysteresis effects in the present paper is inadequate and unconservative
at high velocities. :

In concluding this discussion of gyroscopic torque, it should be
noted that for the case of a rigid landing gear the critical design con-
dition (velocity at which shimmy is most intense) occurs at low rolling
speeds where the gyroscopic moment is insignificant. Thus, the inclusion



NACA TN 3632 83

of this gyroscopic moment in the theory is of somewhat academic interest
(at least for case I) and it probably could be safely omitted in practical
design calculations.

Unstable shimmy conditions.- As a further overall check of the sum-
mary theory and its systematic approximations, the experimental data of
Kantrowitz (ref. 8) for unsteady shimmy conditions are available.

The significant features of unsteady shimmy motion are the divergence
and frequency of the oscillation, which are simply the real and imaginary
parts of the roots of the characteristic algebraic equation corresponding
to the differential equation in question. Xantrowitz has msde measure-
ments of these quantities for a model tire of 4-inch diameter at inclina-
tion angles k of 50 and 20° with corresponding trails of about 0.08r
and 0.31r, respectively (ref. 8). His experimental results for k = 5°
are presented in figure 17, together with corresponding theoretical cal-
culations made according to approximation B, which is the simplest system-
atic approximation to the summary theory which describes, at least quali-
tatively, the shimmy phenomena throughout the complete range of rolling
velocity. The theoretical and experimental frequencies are seen to be in
fairly good agreement. The theoretical and experimental divergences are
in fair qualitative agreement, but the experimental variation is sometimes
considerably below the corresponding theoretical one. This quantitative
disagreement may be due to several factors. First, hysteresis effects
are neglected in the theoretical calculations. Although use of the hys-
teresis force and moment equations derived in this paper would not com-
pletely explain the disagreement, it is believed that these hysteresis
equations are not accurate enough, particularly at small trails (a = 0.08r
for the data in fig. 17), to justify the conclusion that the disagreement
cannot be explained by hysteresis effects. A second partial explanation
of the disagreement arises from the fact that the theoretical calculations
may be based on insufficiently accurate values of the necessary tire param-
eters, since Kantrowitz did not make direct measurements of all of the most
fundamental tire parameters, such as h, a, N, and K,. Specifically, he

measured iny the quantity L, a quantity approximately equal to
all cos k + K cos® k for 2 values of k, and the path frequency v; and

trail a for kinematic shimmy (shimmy with velocity approaching zero).
The basic tire parameters used for calculating the theoretical curves in
figure 17 were approximately deduced from these quantities as follows:

The quantity h was obtained from equation (D1) .after setting v equal
to O and substituting Kantrowitz' experimental values of 1L, Vi and a

for kinematic shimmy. This procedure for determining the quantity h is
not necessarily accurate since equation (D1) neglects hysteresis effects.
The tire deflection needed for calculating the trail was estimated from
figure 8 of reference 2. The trail was computed from the tire radius,
the tire deflection, and the inclination. With the aid of this estimated
value of trail the tire parameters N and Km can be obtained from
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Kantrowitz' approximate values for aN cos k + Ky cos®k. In addition,

most tire tilt effects were neglected; specifically, & and p, were

taken equal to zero. While the foregoing procedure will probably give
roughly correct values for most of the fundamental tire constants, it is
believed that the limitations of this procedure and the neglect of hys-
teresis effects are sufficient to prohibit the making of any strong point
out of the discrepancies between theory and experiment in figure 17. Thus,
to summarize, it appears that Kantrowitz' data furnishes only a rough over-
all confirmation of the summary theory. Although quantitative agreement

is poorer than for most of the previously discussed experimental data,

this poorer agreement is not necessarily significant.

This completes the discussion of case I with respect to the summary
theory and its systematic approximations. Next, attention will be directed
to a discussion of case I with respect to the predictions of some of the
previously published theories.

Predictions of Some of the Previously Published Theories

Some interesting features of the previously published theories in
relation to case I are discussed in the following paragraphs. Comments
on the influence of swivel-axis inclination will not be repeated
here.

The theory of Von Schlippe and Dietrich gives predictions which are
substantially the same as the predictions of the summary theory, as can
be seen by a comparison of the predictions of these two theories in fig-
ures 9 and 10 for Von Schlippe and Dietrich's model test conditioms.
Hysteresis effects were neglected in computing both sets of theoretical
curves. In comparing these two theories it should be noted that the only
difference in the two sets of theoretical curves arises from a slight dif-
ference in the expressions used for the elastic forces and moments of the
tire (see section entitled "Forces and Moments on the Wheel" and the com-
ments after equation (128)). The Von Schlippe-Dietrich theory also pro-
vides for some tire width effects, but these effects are believed to be
relatively small for the present test conditions and were not taken into
account in computing the theoretical curves in figures 9 and 10. From
these figures it is seen that the differences between the stability bound-
aries and frequency curves for the Von Schlippe-Dietrich theory and the
sumary theory are usually small in comparison with the differences between
the theoretical curves and the experimental data. Thus, it seems reason-
able to conclude that there is no significant difference between the main
features of the summary theory and the Von Schlippe-Dietrich theory.

Bourcier de Carbon's advanced theory provides essentially the same
predictions as approximation B and will thus probably give a reasonable
prediction of shimmy behavior for the complete velocity range. Similarly,
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Bourcier de Carbon's elementary theory, corresponding to approximation C2,
will probably give reasonable predictions for the high velocity range.

Melzer's theory correctly predicts the existence of the large-trail
stability boundary given by the equation a, = 11, but it also predicts

the existence of stable motion in the small negative trail region between
zero trail and a trail equal to -€ = —K&/N. The latter prediction is in

disagreement with the experimental data of Von Schlippe and Dietrich

(ref. 5) who conducted some tests in this trail range and found the motion

there to be unstable.

The stability boundary according to Moreland's advanced theory for
the case of no damping or spring-restoring forces (see eq. (132a)) is
given by the equation

6] NZlB FE 1 - Tiac ll
1

v\ vy _ 1 1 Ze (148)

where
N1,T2
T =
2
Ty

This equation is plotted in figure 18 for zero time constant (for which
case Moreland's theory reduces to the subcase of approximation C2 for
which € = K, = 0) and for several finite values of the time-constant
parameter To. It is seen that if 7, 1s large, a large-trail stability

boundary no longer exists at the trail a, = 1y. Since the actual exist-

ence of this large-trail stability boundary has already been demonstrated,
it appears likely that T, cannot be very large. On the other hand, if

T is small the introduction of the time-constant term produces an almost

linear decrease of critical trail with increasing velocity until a certain

limiting velocity (equal to ll/T) is reached; above this velocity all

motion is stable. Thus, the influence of the time-lag constant term is
somewhat like that of the previously discussed gyroscopic moment due to

tire distortion or the hysteresis force and moment, which may also produce

stability at high velocities. However, in regard to the general shape of
the critical trail-velocity curve, the variations predicted by considera-
tion of the gyroscopic or hysteresis effects (se¢ solid and dashed lines

in fig. 16) appear more like those of the experimental data (figs. T or 16)

than does the nearly linear variation predicted from Moreland's time-lag
term for small To.

Moreland's elementary theory, Temple'é elementary theory, and Maier's
and Taylor's theories are too crude to give any details for case I.



86 NACA TN 3632

Kantrowitz' theory incorrectly predicts instability for all positive
trails in the absence of damping or gyroscopic moments. (This prediction
is a consequence of the fact that the third coefficient in Kantrowitz'®
differential equation (137a) is zero.)

Wyliefs theory (see egs. (138)) correctly predicts the existence of
stability at large trails; however, the predicted value of critical trail
is glven by the equation

ac(ae + €)Nl, = IvoL (149)

for kK = 0. This relation implies that the critical trail is a continu-
ously increasing function of velocity, whereas the previously discussed
experimental data clearly indicate that the critical trail rapidly reaches
the maximum value 1. Also it is noted that the last of Wylie's equa-

tions (138b) contains the factor 1 + a/L, which does not appear in any

of the other theories. This term appears as a consequence of the earlier
mentioned fact that Wylie's theory does not correctly predict the influ-
ence of trail for the yawed rolling condition. It might be noted that if
Wylie's theory were modified to remove this difficulty, as suggested in
equation (llO), then this factor 1 + a/L would be replaced by 1; thus

the modified Wylie theory would be more consistent with the other equations.
Also, for high velocities the modified Wylie theory would more correctly
predict a definite critical trail according to the relation a; = L.

Practical Application

Before concluding the discussion of case I, it is perhaps pertinent
to comment on whether the preceding theoretical predictions for this
idealized case can be applied to practical landing-gear problems. Moreland
has demonstrated that neglect of the torsional and lateral elasticity of
the landing-gear strut can sometimes lead to false predictions of stability
in an actually unstable system (ref. 12). For example, for too large tor-
sional damping the torsional damper unit effectively locks the swiveling
structure against torsional movement with respect to its point of attach-
ment to the landing gear strut, so that torsional movement of the swiveling
structure is possible only as a conseqguence of the always finite torsional
stiffness of the strut. In other words, for too large damping the damper
unit and strut combination behaves like a pure torsion spring and is thus
ineffective for damping purposes. In regard to lateral strut stiffness
Moreland has pointed out that for a rigid tire, corresponding to approxi-
mation D3, if the strut is prohibited from lateral motion, as is assumed
for case I, the motion is stable; on the other hand, if the strut is
assumed to be of stiffness approaching infinity, the system may be unsta-
ble. While this particular criticism of the practical value of case I
for infinite stiffness applies only to approximation D3, still for finite
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strut stiffness of the same order of magnitude as the tire lateral stiff-
ness the theoretical equations of the other approximate theories may also
be unconservative.

CASE II

This section is concerned with the idealized landing gear shown in
figure 6. This landing gear consists of a wheel free to swivel about an
uninclined always-vertical swivel axis that is attached by a horizontal
linear spring, of spring constant k, to the supporting structure. This
configuration, case II, is discussed here for two reasons: it illustrates
the effect of structural elasticity on wheel shimmy, and it is better
suited than case I for evaluating approximations D1, D2, and D5 as applied
to landing-gear problems involving structural elasticity. (It may be
recalled that these three approximations were of little value in dealing
with a rigid landing-gear strut (case I); however, for a flexible strut
these approximations may sometimes be of value.) In discussing case II,
and also later cases, no further mention will be made of the previously
published theories or of the question of agreement between theory and
experiment; all discussion will be restricted to the summary theory and
its systematic approximations.’

The discussion of case II proceeds as follows: The equations of
motion for case II are derived according to the summary theory &nd its
systematic approximations. As for case I, it is more convenient to rede-
rive these equations of motion in a slightly different manner rather than
to apply the equations derived earlier for the completely general case.
After these derivations are made the equations for the stability bound-
aries are established. Finally, the damping required to prevent shimmy
is presented in curves as a function of strut stiffness and rolling velocity
for a specific sample landing-gear configuration according to the predic-
tions of approximations C, D1, D2, and D3. (FPor the present case approxi-
mations Cl and C2 are identical and are henceforth referred to collectively
as approximation C.) These curves are utilized to obtain some insight into
the accuracies of the predictions of approximations D1, D2, and D3 with
respect to the more advanced approximation C.

General Derivation

The derivation of the equation of motion for the summary theory pro-
ceeds as follows. The details of the landing gear considered are illus-
trated in figure 6. This gear has a rigid symmetrical swiveling part
having a mass m and a moment of inertia about its center of gravity I,.
The nonswiveling part of the landing gear con81sts of a spring of stiff-
ness k with an attached mass m;. The lateral displacement of the

swivel axis 1s designated as 7.
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Setting the sum of the lateral spring and inertia forces acting on
the swiveling part equal to the inertia reaction of its center of gravity

thQ(na - c26) yields the relation
2 2 2
KNy - kng - m Dgng =m D ny - mep Dy 0 (150)
Substitution for %o from the relation

?\o":yO'Tlo::)’o"na*'ae (151)
(see fig. 6) yields, after rearrangement,

2 2 2
K%yo - (ml Dt + n Dt + Ki + k)na + (mc2 Dt + aKi)e =0 (152)

Setting the sum of the moments about the center of gravity of the
swiveling part equal to the inertia reaction yields the result

2 _ 2
Ko - ¥\Nyeq - knge, = my Dinge, - g Db - PO = Tv DAy = I, D, (153)

(see fig. 6) where I, represents the moment of inertia of the swiveling
structure at its center of gravity (io\= IW - mc22). Substituting for

a and %O according to equations (23) and (151) then yields, after
rearrangement,

- 2
(rv Dy - K, v lDt + Kicl)yo + (m.lc2 Dy~ - 1v D + ke, - Kicl)na +

2
(Io D, + gDy + Tav D + P + K+ aclKi)e =0 (154)

The third equation for this system for the general case is given by
the kinematic relation of equation (19a) or (19p). When v 1is omitted,
the space derivatives are replaced by time derivatives, and o is set

equal to 1ng - ad, this relation becomes

- - 2
-(l + 13V lDt + v 2Dt + . . .)yo + (Zl - a)e +ng =0 (155a)
from equation (19a) or
-1 :
- hv™D
-(1 + Lv lDt)e t Yo * (Zl - a)@ + My =0 (155Db)

from equation (19b).
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The three equations (152), (154), and (155a) or (155b) completely
describe the motion of the landing gear according to the summary theory
in terms of the three variables yg, 1,, and 8. The corresponding equa-

tions for the systematic approximations are obtained as follows.

Systematic Approximations

Approximation A.- For case II, the three governing equations of
motion for approximation A are the force and moment equations (152)
and (154) and the kinematic equation:

_<l + llv-lbt + 7,2v—2Dt2 + ZBV-BDtB)yO + (Zl - a)e +n, = 0 (156)

Equation (156) is obtained by omitting all 1ip's for n> 3 in the gen-
eral kinematic equation (155a).

Approximation B.- The three governing equations of motion for approxi-
mation B are the force and moment equations (152) and (154) and the kine-
matic relation

- - 2 :
..(1 + 19V J'Dt + 1oV 2Dt )yo + (7,’1 - a)e +1q, =0 (157)
which is obtained by omitting the 15 term in equation (156).

Approximation C.- The kinematic equation for approximation C is
obtained by omitting the 12 term in equstion (157). The resulting

relation is

-1
-Q.+ 1v Dt>yb + (Zl - a)e +1q, =0 (158a)
or
Mg = (l + M}f ~ (l - >e (158b)

The force and moment equations (152) and (154) also apply for this approxi-

mation. However, a slightly simpler form of these equations can be obtained

by substituting for mn,, according to equation (158b), in the terms con-
taining K%na and Tna in these two equations. With this substitution,
the force equation becomes
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- 2 2 2 =
-Nv lDtyo - (ml D, +m Dt + k)qa + (mc2 Dt- + N>6 = Q (159)

and (using the relation Kd = €N) the moment equation becomes

2
N1D -1 ' 2
- K%t - W (ep + e)D{}yo + <m102 D~ + kcg)na +
I o) NTvDy _
LIO DS+ gDy + Lo (cl + e)N}G =0 (160)

Equations (158a), (159) (or (152)), and (160) (or (154)) describe the
motion for approximation C.

Approximation Dl.- The equations of motion for approximation D1 are
obtained by setting No equal to O, or

Yo = Mg - a8 (161)
and
K')\:

in the force and moment equations (159) and (160). Thus

2 2 - -
_(ml D~ +m D" + Nv lDJG + k)na + (mc2 Dt2 + alv lD + N) =0 (162)

2 -1/ 2
&2102 Dt - Nv (cl + E)Dt + kcé]na + [%o Dt + g Dt +
-] . _
aNv (cl + e)Dt + P+ (cl + e)lﬂe =0 (163)

Equations (162) and (163) completely describe the motion for approxima-
tion D1.

Approximation D2.~ The equations for approximation D2 are obtained
as follows. In the force equation (152) set a equal to O, or

-1p

Y0 (16k)

6 =v

which gives the relation
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- - 2
(mczv Ip.2 + ak,v Ip, + K%)yo - (m1 D% +m D2+ K + k)qa =0 (165)

For the moment equation (153), set o equal to —%O/ll (eq. (85))

according to approximation C, and apply equations (151) and (164). The
result is ’

-1 3 -1 2 2 -1 =1,
[Iov Dt + gv "Dy +aTDt +Tth+pV Dt+a(cl+e)K?\v Dt+

2
(Fl + e)K%]yo + [%1c2 Dt - TV Dt - (cl + e)Kﬁ + cE#]"a =0 (166)
Equations (165) and (166) are the basic equations for approximation D2.
Approximation D3.- The basic equation for approximation D3 is obtained

by first solving the equations (162) and (163) of approximation D1 simul-
taneously to eliminate either ng, or 0 and then letting N approach

so that all terms not multiplied by N wvanish. The resulting equation,
after dividing out the factor N and using the relation cqy + co = a,

can be expressed in terms of 6 as

([IO + ma(a + €) + mey(cq + e)] D,G5 + {[ml(a + €) +

2

m(cy + e)]v + g pD "+ [p + ak(a + <—:)]Dt + vk(a + e))e =0 (167)

Stability Boundaries

The stability boundaries for case II are obtained in the same manner
as those for case I. For the summary theory they are obtained as follows.

Purely oscillatory boundaries.- The equations for the purely oscil-
latory motion boundaries are obtained by substituting into the differen-
tial equations the expressions

ivt
0 = emaxe

= ei(Vt+cl) ; ein(cos o + 1 sin g
e T]a‘max namax ‘ 1 1)

i(vt+oon) vt

Yo = Y0,,,° = Y08 (°0S Op + 1 sin op) (168)
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Substitution of these relations into equations (152), (154), and (155b),

differentiation and cancellation of ein, and separation of real and

imaginary parts into separate equations yields the expressions:

From equation (152),

| 2 2
Kk(yomax cos 02) + (mlv + mv© - Ky - k)(namax cos cl) +
2 =
<aK7\ - me,v )emax =0 (169)
and
(v, sin o) + (mv® + m? - Ky - k)("amax sin 0)) =0 (170)

From equation (154),

t
cl.KNi<yOmax cos 02) - ('rvv - Kmv"lV) (yomax sin 02) +

(—mlc2v2 + cek - °1K7\> (namax cos cl) + TVYVY (namax sin O‘l) +
2 a
(—Iov T aclK%>6maX =0 (171)
and

. =1 2
clK7\ (yomax sin 02) + (TV'V - Kav v)(yomax cos 02) + (—mcgv +

kc‘2 - K}\cl> (namax sin crl) - TVV (Tla cos cl) + (gv + 'ravv)emax =0
(172)

From equation (155b),

“P1co (yomax cos 02)+p2°° (yomax sin 02) + (7';L - a) Omax* (namax cos cl) =0

(173)
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and _
- 0s O,) - sin o \ + sing. =0 174
Pem(yomax ¢ 2) pl”(yomax 2) namax 1 (a7 )

Equations (169) to (174) can be considered as six linear simultaneous
algebraic equations with no constant terms in the five variables

yomax cos Oy, yomax sin oy, Neyny CO° 01, Maggy sin 01, and emax’
Then for this system of equations to have solutions other than zero it is
necessary that the determinant of the coefficients of any group of five
of these six equations should equal zero. The determinant for equa-~

tions (169), (170), (171), (173), and (1Th) is

-1 2
clK)\ -TVY + Ku,v v mmepV c2k - clk)\ T™vY 'Io"e +p+ K(1 + aclK)\
N 0 (mg + m)/® - By - x 0 ak, - me?
2
0 K 0 (ml LA IaER N 0 =0  (1m)

ot Po 1 0 1, ~a

~Ps -Py 0 1 [¢]

and the determinant for equations (169), (170), (172), (173), and (174)
is

vV -~ Kuv_lv N -TVY -mcev2 + key - Kyeg gv + Tavy
K7\ o} (ml + m)v2 -K -k o] aky - mcav2
o} K\ 0 (ml + m)v2 -k -k o} =0 (176)
P Po 1 o] 11 - a
-Po -py 0 1 0

where P, = P and Po = Poy for the summary theory. The corresponding
equations for approximation A are obtained by setting Pl equal to 1 - 12

and Ps equal to 11Vl - ZBVlE, for approximation B by setting pl

equal to 1 - nglz and Ps equal to llvl’ and for approximation C by
setting P, equal to 1 and Ps equal to, Zlvl.

The two equations (175) and (176) completely describe the conditions
governing purely oscillatory modes of motion according to the summary
theory and approximations A to C (other groupings by fives of the equa-
tions merely lead to repetition of these two relations). The procedure
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for obtaining the stability boundaries for each of the other systematic
approximations (Dl, D2, and D3) is similar to that just outlined. The
resulting stability-boundary equations for the other approximations are
listed in appendix E.

Purely uniform motion.- For purely uniform motion all variables will
have constant values which may be represented as

® = Opax
Mo = Map,«
yO - YOmax

Substitution of these relations into equations (152), (154), and (155)
yields the results

a8 - (K7\ + k) Tagey * 590, = ©
(p + K, + aclK%)emax + (czk - ClKi)namax + clK)\yomax =0
(Zl - a)emax * T]ama.X - yOmax =0

For nonzero solutions of these three equations the determinant of the
coefficients of O nax’ namax’ and 'yomax must be zero. Evaluation of

this determinant gives simply

It
O

a + € +

(177)

=0

Character of the Motion Between Stability Boundaries

In order to determine the character of the landing-gear motion (sta-
ble or unstable) between stability boundaries it is first convenient to
solve the equations of motion for each approximation simultaneously to
obtain a single linear differential equation in one variable for each
approximation. From these differential equations the stability of the
motion may be determined by examining the corresponding characteristic
equations by any of the methods discussed in appendix C. These charac-
teristic equations for case II, according to the various systematic
approximations, are listed in appendix F.
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Evaluation of Approximations D1, D2, and D5

In the earlier discussion of case I it was not possible to present
a fair relative evaluation of the three parallel spproximate theories DI,
D2, and D3 since for case I none of these theories provides any realistic
information. However, for case II such a comparison can be made between
the predictions of these three approximations and the more accurate
approximation C, and a specific example will be discussed here for a sam-
ple landing-gear configuration having the relative dimensions and proper-
ties L = 0.8r, h =a = 0.5r, ci =c, = 0.25r, € =0.3r, m = 0.35m,

Iy = mrg, and T =p = 0. The actual calculated behavior of this landing

gear in terms of damping required for stablility as a function of rolling
velocity according to approximation C is shown in figure 19 for four
values of the ratio of strut stiffness to tire stiffness k/Kx. It is

seen from this figure that as the stiffness of the strut is decreased
from infinity the damping requirement is increased. Also, for large
values of strut stiffness the region of maximum damping required lies at
low speeds, whereas for small values of strut stiffness it lies at higher
speeds.

The theoretic predictions of the three theories D1, D2, and D3
for this sample landing gear are compared in figure 20 with the corre-
sponding predictions of the more accurate approximation C (from fig. 19)
for three values of strut stiffness, k = 0.2K,, 1.0K , and 5.0K). It

is seen that for each strut stiffness approximations D2 and D3 provide a
considerable overestimate of the damping required for stability. On the
other hand, approximation D1 gives results in good agreement with those

of approximation C for the ratios k/Kk = 0,2 and 1.0, but this approxi=-

mation greatly underestimates the damping for the large value of strut
stiffness k/Kx = 5.0,

In view of the comparisons of figure 20, it appears that approxima-
tions D2 and D3 will not, in general, give reliable gquantitative estimates
of the damping required for stability. It appears that approximation D1
may give reasonable results for some cases in which the lateral stiffness
of the strut does not greatly exceed the lateral stiffness of the tire.
Since this latter conclusion is based on only one set of landing-gear
parameters, the degree to which it is valid in general would require a
more extensive investigation for a range of landing-gear properties.

Practical Application

One limitation on the practical application of the preceding equa-
tions for case II lies in the assumption that the damping is simply pro-
portional to the angular swiveling velocity D.6. As was previously

mentioned, Moreland has demonstrated that this assumption is sometimes
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unreliable since it implies a neglect of the torsional flexibility of the
landing-gear strut, which in turn can sometimes lead to a false prediction
of stability for heavily damped systems (see ref. 11 or 12). Thus, for
systems in which torsional flexibility of the strut is important, it will
be necessary to replace the damper unit of case II by a damper and spring
in series, as has been done by Moreland (refs. 11 and 12), where the
spring represents the strut torsional stiffness. This particular case

of a series damper-spring unit applied to the landing gear of case II is
not considered separately in this paper; it is, however, included in the
more general case III to be considered next.

CASE ITI

The next type of landing-gear construction to be considered is chosen
largely to illustrate the application of the summary and approximate
theories to more complex problems than have previously been considered
by now making use of transfer-function concepts. This landing gear is
assumed to be of the same general type as that of case II except for the
following generalizations. In case II the lateral deflection character-
istics of the landing-gear strut were represented by a single spring and
mass combination, or, more precisely, the force exerted on the swiveling
part of the landing gear by the strut was set equal to

F, = .-(k +m D2)n, (178)

For case III it is assumed that the strut (or, more generally, the sup-
porting structure) is a more complex linear system than is a spring-mass
combination, so that the strut force-deflection relation of equation (178)
can be generalized to the new form

F, = T (Dg) 1, (179)

where T;45 1s a function of the differential operator Dy which repre-

sents the transfer function correlating F, and 1.

n

Similarly, the moment on the swiveling part due to the strut, which was
previously set equal to

Mg = -(p + & D)8 (180)

2Moreland, in reference 11, has advanced a similar generalization of
the strut lateral-deflection characteristics by means of a concept of
"virtual elasticity." However, Moreland's generalization is less general
in that it does not provide for the existence of strut structural-damping
forces.
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for case II, is now generalized to the form
Mg = -T71(Dg)® (181)

The differential equations for case III are easily obtained from the

corresponding differential equations for case II by replacing Kk + my Dtg
by TlO and p + g Dt by Tll‘ For example, for approximation D1 equa-
tions (162) and (163). are replaced by the new relations

-[m D, + N IDg + TlO(Dt):I ng + (m«;2 D% + alv™iD, + N)e =0 (182)

['Nv"l (cq + €)y + cleO(Dt>] Ng + [Io DyZ + alv™H(cy + €)D, +

(cl + e>N + Tll<Dt)]e =0 (183)

which lead to a characteristic equation of an order depending on the order
of the T's. If the T's are analytically defined functions, the calcu-
lation of the stability of the motion and the stability boundaries pro-
ceeds exactly as for case II. However, if the T's are not analytically
defined functions (for example, if they are determined by experimental
tests) a slightly different procedure of the following type is needed.

In order to determine partial information about Typ» the swiveling
part of the landing gear can be removed and the remaining strut can be

ivt
subjected to a periodical lateral force Fn =F elv (either by cal-
max

culation or by actual vibration tests). The resulting lateral-deflection
response of the structure will have a certain amplitude and phase shift
which are given by the relation

1
= F 184
U T (18k4)

which is obtained by substitution of the sinusoidal variation for Fﬂ
into equation (179). The function l/Tlo(iv) is a complex function of

the circular frequency v, the absolute value of which represents the
amplitude response and the argument of which represents the phase shift;
it is generally called the frequency-response function of the system.,

Similarly, a frequency-response function is defined for the response
of the landing-gear strut to torsional moment oscillations by the relation
(see eq. (181))



98 NACA TN 3632
8 =- — 1 My (185)

With the aid of the experimental or calculated functions Tlo(iv)

and Tll(iv), the stability boundaries for any of the theories may be
obtained by the usual procedure of substituting expressions of the form

ein into the corresponding differential equation together with the T's.
For example, for approximation D3 the basic differential equation is

{[?o + mcl(cl + e)]Dt5 + En(cl + e)v]th + [Ill(iv) + a(a-&e)Tlo(ivi]Dt +
v(a + G)TlO(ivi} 8 =0 (186)

(obtained by converting eq. (167) to apply to case III), and the stability
boundaries for purely oscillatory motion (obtained by setting © equal

to V% in equation (186) and separating real and imaginary parts) are
given by the simultaneous equations

—m(cl + e)vv2 - vI [Tll(i'v) + ala + e)Tlo(iv)] + v(a + e)R[Tlo(iv)] =0

(187)
_Iov3 - mey (cl + e)v5 + VREDll(iV) + ala + e)TlO(iv)J +

v(a + e)I[flo(iv)] =0 (188)

where R and I represent the real and imaginary parts of the bracketed
functions. Analogous equations are obtained in a similar manner for the
other approximations.

In regard to the question as to whether any particular motion between
stability boundaries is stable or not, case IIT may present a more diffi-
cult problem if the forms of the T-functions are not known in terms of
ratios of polynomials, that is, if only the frequency-response variations
are known. In this event, for example, the usual form of the Routh-Hurwitz
stability criteria (which is applicable to polynomial forms only) cannot
be applied and criteria of the Nyquist type must be used. A brief dis-
cussion of these criteria is contained in appendix C.

The procedure for applying the summary and systematic approximation
theories to cases of arbitrary complexity is essentially the same as the
procedure discussed above for case III, the only important difference
being that for the general case the equations of motion (egs. (16) or
(19), (63), (64%), (65), (67), (69), and (T1)) are more numerous and more

complicated. No new concepts need to be discussed.



NACA TN 3632 99

CONCILUDING REMARKS

This paper has presented a correlation and evaluation of the pre-
viously published theories of linearized tire motion and wheel shimmy
and has demonstrated that the major merits of all of these theories are
contained in a summary theory which represents a minor modification of
the basic theory of Von Schlippe and Dietrich. In cases where there are
strong differences between the existing theories and the summary theory,
the previously published theories have, in the main, been demonstrated
to possess certain deficiencies except for Moreland's advanced theory,
for which no adequate evaluation was possible.

A series of systematic approximations to the summary theory has been
developed herein for the treatment of problems too simple to merit the
use of the complete summary theory. These systematic approximations have
been shown to resemble closely the previously published theories except
that in some details they avoid some of the limitations encountered in
these theories,

Comparison of the existing experimental data with the predictions
of the summary theory and its systematic approximations has indicated a
fairly good degree of correlation between the higher approximations and
the existing experimental data for the cases investigated. However,
since the agreement 1s far from perfect in some respects and since most
of the limited amount of existing experimental data was obtained with
small models there still remains the question as to whether the theory
is safely applicable to full-scale conditions. In particular, the impor-
tance of hysteresis damping remains undetermined.

In regard to the determination of the various tire constants required
for theoretical shimmy calculations, it is noted that the existing perti-
nent experimental data, mostly contained in references 21, 24, and 32
to 37, are extremely limited and apply mostly to small, obsolete, or
foreign tires. Furthermore, although various attempts have been made
to correlate and to reconcile theoretically the experimental data (e.g.,
ref. 2 or 38), there still apparently does not exist any fully reliable
theoretical means for predicting all of the needed elastic characteristics
of tires. In view of these considerations, a need exists for additional
experimental data on modern tire characteristics and also for a more ade-
quate evaluation of the existing data to determine whether these data can
be applied by scale laws to predict the characteristics of any tire with
tolerable accuracy.

In regard to the adequacy of a linearized theory of tire motion, it
can be stated only that there is as yet no strong indication that a non-
linear theory is required for prediction of the stability boundaries.
If, however, a knowledge of the large-angle (nonlinear) behavior is
required, a theoretical system for dealing with this problem could be
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developed on the basis of assumptions of the type advanced by Kelley,
Rotta, and Temple (see refs. 18, 19, and 21 (p. 36), respectively).

Langley Aeronautical laboratory,
National Advisory Committee for Aeronsutics,
Lengley Field, Va., January 13, 1956.
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APPENDIX A

CAICULATION OF EQUIVALENT VISCOUS DAMPERS

GENERAL CASE

In the derivations and equations in this paper, only linear damping
terms were introduced so that the resulting equations would remain lin-
earized. However, the demping moments caused by friction, hysteresis
losses, and the ordinary shimmy dampers are nonlinear and therefore it
is necessary to replace these nonlinear moments with equivalent linear
viscous moments. The equivalent viscous moment is usually determined
by assuming that linear and nonlinear damping moments are equivalent if
they dissipate the same amount of energy during each cycle of shimmy
oscillation.

For a linear damper of moment g Di¥ the energy dissipated per cycle
of sinusoidal oscillation is (for V = Yy, sin vt)

JFEﬂ
E = g D ¥ ay
o t

and, since th = Wmaxv cos vt. and 4y = wmaxv cos vt dt,

5 25
E=gw . ‘/h cosvt d(vt)
0

which gives

E = nngmaxz

Therefore the linear damping constant g 1is related to the energy loss
per cycle by the relation

g = £

Wiy

5 (A1)

By using this relation an effective value of linear damping constant can
be calculated for any nonlinear damper if the energy dissipation per cycle
is known.
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VELOCITY~-DEPENDENT DAMPING

By using eqﬁation (A1) Rotta (ref. 2) has calculated the effective
damping constant for damping moments of the type

D
|Dg¥]

oy
My = M, + a, D V| (A2)

The first term represents friction damping and the second represents
fluid demping. The exponent ny will probably always be between 1 and 2.

Rotta's calculations proceed essentially as follows: First, the
total energy dissipated is calculated from the relation

v
E:hf maXMqu; (A3)
0

where

V= Yoy sin vt (Air)

After combining equations (Al) to (A4) and integrating, the following
equation for g 1s obtained:

M

—S 4
TWyax InVma

n,-1 n,-1 /2 a4
g = LT vt Ef cos + vt a(vt) (A5)
o
It is seen that the damping constant depends on the amplitude V.3
for nqy > 1 it is large at small angles due to the first term and is

large at large angles due to the second term. The minimum value of the

equivalent damping constant (obtained by setting dig equal to O)
max

occurs at the angle
M l/nl
\lfm = 2 (A6)
ny /2 n+1
qnV (nl - l)\/m c

os vt d(vt)
0

and the corresponding minimum damping constant becomes
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ny-1
g =M, " qnl/nlkn ( (A7)
where
1/n
k = oy fﬁ/z cos™ Tt a(vt) /l (A8)
n nj-1 0

n(nl - l) 11

For the special case of velocity-squared damping (n = 2) equation (A7)

51-[ o]

FRICTION DAMPING

The equivalent damping constant for friction damping (constant
moment Mg), obtained by setting q, equal to O in equation (A5), is

g = _..)-_I-Iilﬂ_. (AlO)

TWiax
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APPENDIX B

DIFFERENTIAL EQUATIONS FOR CASE I WITH INCLUSION

OF HYSTERESIS EFFECTS

If the differential equations of approximations B and C2 for case I
(see eqgs. (122) and (124), respectively) are modified to take into account
the hysteresis force and moment expressions derived in this paper, the
following differential equations are obtained:

For approximation B,

Ey D*yo + Ey DIyg + Ep D2y + Ex Dy, + EhyO‘% 0 (Bla)
where
Eq = Lyv2l, ]
E; = I\[,vzll + (a-rvgcos K + gv)7,2 + (a2K7\T7\ + KTy cosen) 12v
E, = Iv2 + (aTvecOS K+ gv)ll + (agKA-+ K, cos®k + @ + pK)Z2 +
(aQNTK + a'k T, cos K) v | r(Blb)
2eosk +

E5 = a®N + a'Ka cos Kk + ply + pKZl + gv + olyTv

2
(cal\lT% cos K + KcLTor, cos K.)V

= 2
Eu—oaNcosn+KacosK+p+pK+uK

For approximation C2,

) 2
By D'y + Eq D% + E, Dy, + E, Dy + ¥y = O (B2a)
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where
o) N
EO = IWV Zl
El = I\l!-v:2 + (a'rvgcos K + gv)ll + (B.ENT-)\ + aK T, cos K)V
Ey = aeN + akK, cos k + ply + pely + gv + Zl'rvzcosgn o (B2b)

(aN‘I'7\ cos & + K T c052n>v 1

E5=aNcosn+Kacosgm+p+pK+unl
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APPENDIX C

STABILITY CRITERTIA

In this appendix a brief review is presented of most of the existing
methods for examining the stability of motion of systems whose motions are
governed by linear differential equations of the type

£(Dt)8 = O (c1)
The solution of this type of equation consists of terms of the form
o = Pt (c2)
whence
Dtne = pnept = p"o (c3)

Substitution of equation (C3) into equation (Cl) yields the algebraic
equation

£(p) =0 (Ck)

for the p's. Equation (C4) is called the characteristic equation -of
the differential equation (Cl).

The type of motion for the linear system is determined by the char-
acter of the complex roots of the characteristic equation. Most impor-
tant, the motion 1s entirely stable if and only if the characteristic
equation possesses no roots having positive real parts. Several proce-
dures are available for determining whether a particular characteristic
equation has such roots with positive real parts.

One procedure which is useful in cases where the characteristic
equation (C4) can be written in the polynomial form
n-1

aopn + a;p + .. .+a,=0 (c5)

is the well-known Routh-Hurwitz criterion which makes use either of the
Routh test functions (ref. 26) or of the equivalent Hurwitz determinants.
In Hurwitz' form the requirement for stability (or no roots with positive
real parts) is that ag and all of the n determinants

Dy =28y
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for u=1, 2, . « . n must be greater than zero, or, in the alternate
form of Cremer (ref. 39), all of the ap's and either the even or the

odd Hurwitz determinants must be positive.

This criterion is particularly suited for examining the stability
of linear systems with polynomial-type differential equations of low
order. However, for high-order polynomial-type differential equations
this criterion may not be the easiest to use and for nonpolynomial-type
equations the criterion is not directly applicable. For such cases use
can be made of the graphical-type criterion originated by Nyquist
(refs. 28 to 31). Some discussion of criteria of this type is contained
in most books dealing with servomechanisms or feedback amplifiers (for
example, refs. 29 and 31). These references provide the necessary theo-
retical information for applying these criteria and the theory will not
be repeated here; however, it may be useful to set down here, together
with an example, one mechanical procedure for applying this criterion
and a few pertinent comments.

Consider a differential equation with the characteristic equation (B4)
for a case where the function f(p) cannot necessarily be easily expressed
in a simple polynomial form which can be handled by the usual Routh-Hurwitz
criterion. (This may be the case, for example, where part of the func-
tion f(p) is evaluated from experimental frequency-response data.)

The function f(p) is assumed to be a single-valued function of p
which is real when p is real. It is also assumed that the function f£(p)
has no poles in the region of the complex p-plane where the real part of
p 1s greater than zero. When the equations of motion are set up in the
manner followed in this paper, the condition of no poles in this region
is usually satisfied for actual landing gears since this condition implies
only that the landing-gear strut, as represented by equations or experi-
mental curves, possesses some damping or is at least not inherently an
unstable structure. For example, for the equations of case III, only the
poles of the functions Ty4(p) and Ty1(p) could lead to such poles.

However, if, for example, Tlo(p) had such a pole, equation (161) would

indicate the possibility of a steady or divergent oscillating force FTl
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corresponding to this pole, even if the lower end of the landing-gear
strut were held fixed (na = 0); this obviously cannot occur in actuality.

In order to decide whether the motion of the system described by
equation (Ck) is stable, the following procedure may be followed:

(1) Determine the variation of f(p) in equation (Ck) for the case
of pure sinusoidal oscillations, that is, for p = iv in the range
0< v< o,

(2) Plot the real part of f(iv) against the imaginary part for
the complete range 0« v < w, Thls will give a curve such as is illus-
trated in figure 21 for a sample case. As v varies from O to =
this curve will move about the origin through a net angle of Jx radians,
this angle being considered positive in a counterclockwise sense. (J =1
for the case illustrated in fig. 21.)

(3) Determine the asymptotic behavior of the characteristic func-
tion f(p) or f(iv) for p—>® or v—»w; at this limit the function
will behave as f(p) « pJ or f£{iv) « vJ, whence J can be determined.

(4) Under the preceding restrictions f£(p) being a single-valued
function of p, real when p 1is real, and having no poles in the half-
plane R(p) > 0), it can be shown that the motion corresponding to the
differential equation is stable if and only if 2J = j. (In the sample
case of fig. 21, wvhere J =1 and j = 2, the motion is therefore
stable.)

1n conclusion it might be noted that, although either the preceding
Nyquist type stability criterion or the Routh-Hurwitz criterion can
usually be applied to most of the approximate equations discussed in
this paper, they cannot be directly applied to some equations of trans-
cendental form such as those of the summary theory, since such equations
may correspond to infinite-order linear differential equations (for
example, see eq. (120)); hence, an infinite number of Hurwitz determinants
would have to be evaluated or the Nyquist type plot would circle the
origin an infinite number of times.
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APPENDIX D

STABILITY BOUNDARIES FOR CASE I

The following equations describe the conditions under which purely
oscillatory motion is possible for case I for the summary theory and the
systematic approximations.

For the summary theory and approximations A to C2,

5 (a2K7\ + Ky cos®k + p + QK> (p12 + p22) + l:(aKx + cF, sin n)pl - vypoK, cos n] (all cos k - a) o1)
ve = D1

I\yv12<p12 + p22> = TV¥Pp (021 cog K ~ a) cos K

and

(oll cos K = a>E>2(aK?\ + cF, sin K.) + lel< - Tv2> cos R]
g= : - aTvV cos Kk

ViV (p12 + p22)

where, for the summary theory,

(D2)

Py = Py, = COS vih - Lv; sin vqh

Py =

|
g
Y
8
I

= sin vlh + Lvl cos vlh

for approximation A,

for approximation B,
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and for approximations Cl and C2,
p, =1

Py =13

For approximations D1 and D3 purely oscillatory motion does not
exist.

For approximation D2,

5 8°K, + acKy cos k + p + pg + TvicosZk

W2 = (D3)
Ly

2 . .
g =v IW(aK% cos K + EKA cos“k + CXFZ sin Kk cos k

- aT cos k| (Dh)
aaKﬁ + aeK% cos K + p + P + TVECOSEK

The stability boundaries for uniform motion are obtained by setting
the coefficient of the y5 terms in the various differential equations

equal to zero. For example, for the summary theory and approximations A
and B the equation '

call cos Kk + K% 0052K + P+ Pty =0

describes this stability boundary.
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APPENDIX E

STABILITY BOUNDARIES FOR CASE II

The equatidns governing purely oscillatory modes of oscillation for
case II are as follows for approximation D1, D2, and D3:

For approximation DI,

2. [I° + mcl(cl + e) + ma(a + e)] 2 _ IE: + ak(a + s)]
v@ =

[(ml + m)v2 - ]{- [Io(mo + m) + mmlcaa:lvl+ + IE["k + mkc22 + mln(a + €) + mN(cl + e) + p(ml + m)-Jv2 - kE: + N{a + e)]}

(E1)

1 {En(cl te)+m(at e)] ve-k(a +<—:)} [(mla+mcl) Ve + N -ak]

g = -Nv = (E2)
[(ml + m)v2 - k] + 1\T2\r'2v2
For approximation D2,
v [Io(ml + m) + mmlczg] vb' - [IO(K-)\ + k) + p(ml + m) + mc22k + lexa(a + €) + mK?\“l(cl + e)] Vs [p(Km + 'k) + kK7\a(a. + e)] (E32)
Tvz(ml + m) - Tk
4 2
-V {( Tam, + 'rclm)v - [a'rk+ lex(a +€)+ mK)\(cl + e)]v + kK7\(a +€)
g =
ve [(ml+ m)v2 - (K7\ +k):|
(E3b)
For approximation D3,
P + akla + €
ve = ( ) (Eka)

Io + ma(a + €) + mcl(cl + e)

g = vl:k(a + e)v—2 - m(cl + e) - ml(a + e)] (Ebb)
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APPENDIX F

CHARACTERISTIC EQUATIONS FOR CASE IT

The characteristic equations for case II are as follows for the
summary and systematic approximation theories:

For the summary theory and approximations A to C2,

K\ -(ml + m)p2 -K -k mc2p2 + aK7\
(-rv - Kav"l)p + °1K7\ mlc2p2 - TVD + kc2 - K7\°l Iop2 + (g + Tav)p + p + Ky + aclK)\ =0
~f(p) 1 1, -8

where, for the general theory,

£(p) = (1 + Lv‘]p) BV

for approximation A,
f(p) =1+ Zlv—lp + sz"gp2 + 13v“5p5
for approximation B,
£(p) = 1+ v lp + 1,v3p?
and for approximation Cl or C2,

f(p) = 1 + 1vp
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For approximation D1 the characteristic equation’is

[?o(ml + m) + mmlcgz.]pLL + g@nl + m) + Nv'11}o + mla(a +€) +

mcl(cl + e)] >p3 + [(Io + mcez)k + p(m:L + m) + mI\I(cl + e) +

mN(a + €) + ng"l]p2 + [a(a + et 4 g:]k + DNV_l}P +

[p + (a + e)lﬂk =0
For approximation D2,
[IOle + m) + mmlceé]v-lp5b+ [%mla + Tme, + g(ml + m)v-]p4 +
[io(KA + k)v'l + p(ml + nbv’l + Tvénl + m) + kmcazv‘l + mla(a + e)Kjv_l +
mcl(c + e)KI)\v"l]p5 + [}ak + g(Kj + k)v-l + m(cl + e)K% + ml(a + e)Ki]pe +

['rvk + p(K7\ + 1«:)v':L + akK (a + e)v"l]p + kkKp(a + €) =0

For approximation D3 see equation (167).
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TABIE T

PRIMARY ASSUMPTIONS FOR THE VARIOUS THEORIES OF TIRE MOTIONT

Theory N|K\| Kg| €| 21| l2| 15| In(n> 3) Remarks
Summary theory FIP|F|F|F |F |F F
Approximation A F|P |F|F|F |F |F 0
Approximation B FI¥F |F|F|F |F |O 0
Approximations Cl and C2 ¥IF|F|F|F 0|0 0 .
Approximation D1 Flw |F|F|0 10 |0 0 Assumes laterally rigid tire
Approximation D2 w|lF [0 | F|lw -0 |0 0 Assumes torsionally rigid tire
Approximation D3 wlow [w | F|IF 10 |0 0 Assumes laterally and torsionally rigid tire
Von Schlippe-Dietrich and Rotta|F|F (F | F|F |F | F F
Bourcier de Carbon advanced F|IFP |F | F|IF |F 0 0
Greldanus FIF F|F{FP |P |O 0
Bourciler de Carbon elementary |F|F |F | F|F 0 0 0
Melzer FIF |F|FP|F O[O 0 Assumes tire twist angle = swivel angle
Moreland advanced FIF O |O|F 0} o] 0 Introduces time-constant term
Moreland intermediate FIF|O|[O|F |O | O 0 Implies extremely large 11 value
Moreland elementary wl o | o | O|F 0 0 0 Assumes laterally and torsionally rigid tire
Temple elementary Fio | F|[F|O 0|0 0 Assumes laterally rigild tire
Maier Fl| o 0 0{0 0 0] 0 Assumes laterally rigid tire
Taylor ol F o | O] » 0 0 0 Assumes torsionally rigid tire
Kantrowitz FIFI|F|F|F |0 |O 0 For trail not equal to zero both of these
Wylie FIF | FI|P|F 0 {0 0 theories can lead to erroneous conclusions

1The symbol F indicates a finite number.
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Tire equator

-
(L %

f

A Tire equator
!‘3 J—
sin‘l(%%)l T
!
X v i W, r3
- V)|
g = TMp l Yz ¥
(a) Side view. ™ SN
Yy 0
s 1] | T TT] ' - - -
— _jo ¢ v (c) End view for tilted unswiveled conditions.
~— 7\}\ 3 Mo Yo g g Vi —s
a

—__ Intersection of wheel center

plane with ground plane
Tangent to tire equator at center of ground-contact area.
Track of tire on ground

Intersection of wheel center plane with a horizontal
plane through the wheel center

Tire equator

Ground-contact area

t (b) Bottom view for tilted swiveled conditions.

Figure l.- Geometric relations for a rolling elastic tire. (For the sake of clarity parts (b)
and (c) of this figure are drawn to different scales. The positive X-axis is the direction
of undisturbed motion.)
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Tire equator

> 7

Ground-contact area

(a) Assumed theoretical shape of tire equator distortion for a stationary
twisted tire. v = 0.

12 E:Exponential region
\\,.‘

Transition region

(b) Actual shape of tire equator distortion for an untwisted tire at
rest (solid lines) and just after starting to roll (dashed lines).

(227777
_zzaznggqb
LA

5 ———

(c) Actual shape of tire equator distortion for a rolling tire.

Figure 2.~ Tire equator distortion.
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Figure 3.- Effective tire tilt due to lateral distortion of tire,
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/ Poy hpproximations B, Cl, and C2
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Figure 4.- Variation of pj and pp with shimmy wave length. L = 0.8r;

h = 0.5r.
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——T

Direction of motion

Swivel axis

—! X

Ground projection of
wheel center plane

Ground-ccntact area

Y

Figure 5.~ Configuration of landing gear for case I.
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End view

Vertical swivel axis

s>
[[h] L
side view - MA—[] m
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///—-Swivel axis

Center of gravity of
swiveling structure

Bottom view

Figure 6.- Configuration of landing gear for case II.
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g 16
[9]
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=]
s Unstable region
B 8

Stable region
| | | | | |
0 50 100 150 © 200 250

Velocity, v, km/hr

Figure T.- Experimental stability boundary for a tire 29 cm in diameter
(from ref. 17).



Trail, a

Trail, a

Unstable///
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Stable

Unstable

Stable

Unstable

Velocity, Vv

Summary theory and approximation A

Stable

Unstable

Stable

Velocity, v

Approximstions Cl and C2

Figure 8.- Qualitative comparison of the stability-boundary predictions
for case I according to the summary and systematic approximation
theories neglecting damper and gyroscopic moments (g =1=0).

Velocity, v
Approximations D1 and D3

Velocity, v

Approximation B

Unstable

Velocity, Vv

Approximation D2
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Trail,a, cm.

Von Schlippe~-Dietrich theory =
o —— — -~ Surmary theory
—— - ——— Approximation A g=1=0 )
—— -~ —— Approximastion B 94 .
—— ——-—_ Approximations Cl and C2 f Stability boundaries
16 O Experimental data
-
O] n]
O
O
O O

(Unstable motion on lower right-hand
side of stability boundaries)

{ | " ] |
0 200 400 600 800 1000 1200

Velocity, v, cm/sec

Figure 9.- Comparison of theoretical and experimental predictions of the
stability boundaries for the Von Schlippe-Dietrich test model of ref-
erences 35 to 5. (Hysteresis effects are neglected in these theoreti-
cal curves.)
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@) ——————— Von Schlippe~Dietrich theory
// — — — — Summary theory
/ o ——— -~ —— Approximstion A
/, o —— -~ — Approximation B
L /, —— === — Approximstions Cl and C2
O Experimental data
| ] | ] | |
0 200 1400 600 800 1000 1200

Velocity, v, cm/sec

Figure 10.- Comparison of theoretical and experimental shimmy frequencies
on the stability boundary for the Von Schlippe-Dietrich test model of
references 3 to 5. (Hysteresis effects are neglected in these theo-

retical curves.)
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Damping constant, g, kg-cm-sec

129
30 -
25| =
Summary theory
______ Approximation A
—— — —— Approximation B
20 —— ~ - —— Approximations Cl and C2
— — -— — Approximation D2
!
I
151
I
10{
I
]
,/
5
lf
No damping required according to approximations Dl and D3
| l ‘ ' '
. 2 T, L 5 6 X 103

Velocity, v, cm/sec

Figure 11.- Theoretical calculations of the damping required to stabilize

the motion of the Von Schlippe-Dietrich model landing gear at a trail
of T cm.



Trail,a, cm

16

12

Von Scplippe—Dietrich theory (dy = 900 kg-cm/radian, d, = 0,065 cm~l) Stability
— — Approximation B (m = 0.1, n = 0.2) boundaries
O Experimental data

-

Hysteresis not
considered

(Unstable motion on lower right hand
side of stability boundaries)

! ! ! | I
200 1,00 600 800 1000 1200

Velocity, v, cm/sec

Figure 12.- Effects of hysteresls on the stability boundaries for the
Von Schlippe-Dietrich test model of references 3 to 5.
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20

Von Schlippe-Dietrich theory (dy = 900 kg-cm/radian; dy = 0.065 cm1)
— — Approximation B (m = 0.1 my = 0.2)
O Experimental data

16 +— | —

// 7 O
Hysteresis not /
considered ///

-
no
f
—~—
AN
O

//// é? Hysteresis considered

Frequency, f, cps.

! | ] | | J
0 200 L0O 600 800 1000 1200

Velocity, v, cm/sec

Figure 13.- Effects of hysteresis on the shimmy frequency for the Von Schlippe~
Dietrich test model of references 3 to 5.
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Critical trail, a,, cm

¢t

8 —
ee—m———— — £ =1
//
/
— - O g =0
~ - O
6
L=
O Partly extrapolated experimental data from reference 16
————1} Equation (142) (assuming L = 5em, 19 < 7.5 cm, h = 2.5 cm)
2 -
0 ] i | | | )
-20 -10 0 10 20 30

Tnclination of swivel axis, & , deg

Figure 1lh4.- Influence of swivel-axis inclination on the stability boundary.
Tire approximately 12 cm in diameter; F, = 6.25 kg; v = 19 km/hr.
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9 O [l
[9] q@l
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8§ °r
& .
o O Theoretical calculation for 65 =0
= [0 Experimental data from reference 10
| | 1 ] ]
0 10 20 30 L0 50

Maximum swivel angle, 6p

Figure 15.- Influence of shimmy amplitude on the shimmy frequency.



m———— Theoretical calculations e .
~———O — Experimental data from reference 10 | Stability boundaries
1.0 —
\ @)
\ .
\ Equation (145) .
\ (hysteresis not considered
B8 \
\ N ©
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\
\
6+ \ ©
Ve BEquation (147)
\ (hysteresis considered)
\
oh<f \
l
/
-
02 - /
/
(Stable motion on right
of stability boundaries)
| | | | | i _J
0 200 Loo 600 800 1000 1200 1hoo

Velocity, v, cm/sec

Figure 16.- Comparison of theoretical and experimental variations of criti-
cal trail with rolling velocity. r = 3.5 cmj 17 = 3.22 cmj N = 12.3 kg;

Ky = 5.9 kg-cm; n?\ = 0.1; n, = 0.2.
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Figure 17.- Comparison of theoretical and experimental shimmy frequency
and divergence for Kantrowitz' experimental data. x = 59.
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Dimensionless trail,
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Stable region for T, = 0

\

- Unstable region

Stable region for T5> O
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Dimensionless velocity, v{ —=

Figure 18.- Variation of critical trail with rolling velocity according
to Moreland's advanced theory.
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106' — ) X
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L)
N

Dimensionless damping constant, g/ i
P

| | | I ' |
0 1 2 3 N 5

Dimensionless velocity, vm/Nr

Figure 19.- Influence of strut stiffness on damping required for stability
according to approximation C for a sample landing gear. L = 0.8r;
h =a=0.5r; ¢; =c, = 0.25r; € = 0.3r; my = 0.35m; I, = mr2; T=p=0.
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2.8 r - N
k £ . = 5.0
Y 0.2 oy 1.0 'y 5
- . / .
2.0 - ; i /
I’ Approximation € !
— — — — jpproximation DIl
—— - — Approximation D2
————— Approximation D3
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N /
/ / (No damping required for D1
/ in this velocity range.)
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u ; / 2 I
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Dimensionless velocity, v \/m/_Nr

Figure 20.~ Compai'ison of damping required for stability according to approximations C, D1,
D2, and D3 for a sample landing gear. L = 0.8r; h = a =0.5r; ¢ =cp = 0.25r; € = 0.3r;

my = 0.35m; I =mr2; T=p = 0.
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Figure 21.- Variation of the function £(iv) for the linear differential
equation having the characteristic equation

L 3 2 .
£(p) =2 + 6p Zeap +50p + 50 _ ,
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