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SUMMARY 

The Janzen-Rayleigh method of expansion in powers of the stream 
Mach number ~ is utilized for the calculation of the velocity poten­
tial for steady subsonic flow past a paraboloid of revolution. Only the 
first two terms of this expansion are calculated) the first term being 
the incompressible expression for the velocity potential and the second 
being the term in Moo2. A closed expression is obtained for the second 
term in the form of a double infinite integral which contains Bessel 
functions under the integral signs . The methods of evaluating such inte ­
grals are not very numerous . Unfortunately) the present integral does 
not yield to any of them . No attempt is made in the present paper to 
evaluate numerically this double infinite integral. Expressions for 
the fluid velocity are given in the form of correction factors by which 
the corresponding expressions for incompressible flow are multiplied in 
order to take into account the effect of compressibility. 

INTRODUCTION 

The Janzen- Rayleigh method for the calculation of subsonic flow 
past an obstacle ) by expansion of the velocity potential in powers of 

t 
the undisturbed stream Mach number) has been extensively applied to two-
dimensional problems . A considerable void) however) exists in the liter­
ature insofar as applications of this method to three - dimensional axisym­
metric problems are concerned. Except for the case of flow past a sphere 
and sporadic efforts to treat the next simplest case of axisymmetric flml 
past a prolate spheroid) little has been accomplished in this area of 
subsonic compressible- flow theory . Clearly) then, future work utilizing 
the J anzen-Rayleigh method can be expended profitably on axisyrnmetric­
flow problems . A first step in this direction has been taken by 
A. L. Longhorn who recently , at the suggestion of M. J. Lighthill) recon­
sidered the problem of subsonic flow past a prolate spheroid . (See 
ref . 1. ) The problem treated in the present paper was begun sometime 
before the author became aware of the results of Longhorn . Fortunately) 
the ~wo problems complement one another in the sense that the one treated 
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by Longhorn is limited to closed bluff bodies, whereas the present one 
is concerned with a family of semi - infinite elongated bodies with round 
noses . 

The choice of the paraboloid of revolution as the solid body was 
made for several reasons . First , the paraboloid being a semi- infinite 
body and , in fact, a limiting case of the prolate spheroid, it was 
thought probable that the analysis might involve functions of a more 
elementary nature than for the case of a closed body . Second, the fluid 
speed at the surface rises monotonically from zero at the stagnation 
point to the undisturbed- stream value at infinity. Therefore, the criti­
cal value of the stream Mach number is unity, and hence there can be no 
transonic influence in the entire subsonic range. Final'ly, the Janzen­
Rayleigh method being a thoroughly rel iable one, the present investiga­
tion should provide useful information with regard to the question of the 
accuracy of the small- disturbance method for the calculation of compres­
sible flow past slender bodies in the neighborhood of the stagnation 
point . 

ANALYSIS 

The Janzen- Rayleigh method has often been described in the liter­
ature . In the present paper , therefore, only those equations necessary 
for the formulation of the probl em are used. The problem to be considered 
is the subsonic flow past a paraboloid of revolution fixed in a uniform 
stream of velocity U in the negative direction of the axis of symmetry. 
The nature ofaxisymmetrical flow is such that the motion is the same in 
every (meridian) plane through the axis of symmetry. The position of a 
point in a meridian plane may be fixed by rectangular Cartesian coordi­
nates x , y with the origin at the focus of the parabolic ' meridian pro­
file . (See fig . 1 . ) With the radius of curvature at the nose as the 
unit of length , the equation of the meridian profile becomes 

(1) 

For steady subsonic axisymmetric flows, the equation satisfied by 
the velocity potential ¢ is the equation of continuity 

o (2) 

where 

• 

.. 
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and 

q nondimensional speed of fluid with U as unit of velocity 

p density of fluid moving with speed q 

Poo density of fluid moving with undisturbed speed U 

Mach number of undisturbed stream, U 

Coo speed of sound in undisturbed stream 

r ratio of specific heats at constant pressure and constant 
volume 

If, now, a series expansion for ¢ in powers of M 2 
00 

is assumed, 
then 

where the first term ¢o is the velocity potential in incompressible 

flow. In this paper, only ¢l is calculated so that the form of ¢ 
to be found is 

(4) 

Thus, this expression for ¢ is substituted into equation (2), and equa­
tion (3) is ~tilized with 

2 2 

q2 = (~~) + (~) 
Then, when the coefficients of the zeroeth and first powers of 
equated to zero, the following pair of equations is obtained: 

£.Jy o¢o) + ~ (y o¢o) := 0 
ox~ ox oy~ oy 

and 

where ~ is the local velocity in incompressible flow. 

M 2 
00 

are 

(6) 



4 NACA TN 3700 

The velocity potential for incompressible flow past the paraboloid 
of revolution defined by equation (1) i s readily found to be 

where ¢o is nondimensional with the undisturbed velocity U as unit 

of vel oc i ty and the r adius of curvature at the nose as unit of length. 
Equation (7) sat isfies e quation (5) a nd the boundary conditions of van­
ishing normal velocity at the surface and of vanishing disturbance veloc­
ity infinitely far from the paraboloid . The expression for t he magnitude 
of the incompressible fluid velocity is 

(8) 

At thi s point it i s convenient to i ntroduce a new set of independent 
variables . Ideally, the appropriate coordinate system for the present 
problem is a parabolic one which define s mutually orthogonal families of 
confocal parabolas in a meridian plane . Thus , the conformal transformation 

gives 

X :::: ~ 2 _ ~2} 
Y ::= 2£ 11 

The elimination of the variable 11 in equations (9) yields 

x _ £2 y2 
= - 4£2 

Then the surfaces ~ = Constant ::= £0 are confocal paraboloids of revolu-

t ion with 
equal to 

t ions (9) 

the focus at the ori gi n and the radius of curvature at the nose 
2£02 • With thi s r adius of curvature as unit of length, equa-

are nondimensional and the solid boundary is given by £ ::= ~ 
o f2 

or equation (1). 
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The equations corresponding to "equations (5) and (6) are 

and 

where 

S2 := ~ and ~2:= ~ 

Al so , equations (7) and (8) become, respectively, 

¢ := -~ + ~ + ~ log 2~ o 2 

and 

211 
~ - 1 := - + .,.--..,....---,-

~ + ~ ~(~ + ~) 

Then, equation (11 ) for the velocity potent ial ¢l takes the form, 

1 

Tne complementary solution of this partial-differential equation is 
easily found by assuming a solution in product form: 

Then the homogeneous form of equation (14) becomes 

! ~ (~ 6.A) + 1. ~ (~ dB) := 0 
A d~ \ ~ B d~~ d~ 

(12) 

(13 ) 

(14) 
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or 

o 

(15) 

where A is an arb itrary real constant . Equations (15) are equivalent 
forms of Bessel ' s differential equation for cylinder functions of order 
zero . Therefore , 

and 

where Co represents any cylinder function of order zero . 

The nature of the present problem i s such that the cylinder fun~tion 
involving the variable ex. shall behave well for ex.~ 00 but not neces -
sarily for ex.~ 0 since ex. == ~ at the solid boundary and never takes 

on values less than that . On the other hand, the cylinder function 
involving ~ must be of such type that it behaves well for the entire 
range 0 ~ ~ ~ 00 . Clearly then, 

and 

where Ko is the modified Bessel function of the second kind and zero 

order and J o i s the Bessel function of the first kind and zero order. 
The graph of Ko resembles a rectangular hyperbola in the first quadrant 
and that of J o , a damped cosine wave . The gener al complementary solu­
tion ¢lc of equation (14) can then be written as 

(16) 

where the values of cn are arbitrary constants to be determined by 

means of the boundary condition that the fluid -velocity component normal 
to the surface of the paraboloid shall vanish. 

- - ----
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A suitable particular integral of equation (14) is now sought . 
Unfortunately, the right -hand side of that equation cannot be separated into 
a s um of products of functions of a alone and of ~ alone; hence, the 
task of finding a part i cular int egral directly from equ~tion (14) i s prac­
tically futile. However, by temporary use of polar coordinates as inde­
pendent variables the desired separation of variables can be achieved . 
Thus, 

x = r cos 8} 

y = r sin 8 

where the radius vector r i s nondimensional with the radius of curvature 
at the nose of the paraboloid as unit of length and where the angle 8 is 
measured positive counterclockwise. (See fig. 1.) 

The polar equation of the parabolic meridian profile i s 

1 r = - --:::---
1 + cos 8 

(18) 

and the expressions for the incompressible velocity potential and fluid 
speed given by equations (7) and (8), respectively, are 

¢o = -r cos 8 + 1 log r(l + cos 8) 
2 

(19) 
q 2 = 1 - 1+ 1 

0 r 2r2(1 + cos 8 ) 

Thus , at the upper surface of the paraboloid of revolution, the expression 
for the i ncompressible fluid speed is simply 

q = sin 1 e 
o 2 

It is interesting to note the curious f act that this expression for the 
velocity at the surface of a paraboloid of revolution is precisely the 
same as that for the velocity at the surface of a two- dimensional para­
bolic cylinder. The explanation lies i n Munk's rule which states that 
the surface velocity on any ellipsoid immersed in a uniform flow along 
a principal axis is the projection of the maximum velocity (in the pres ­
ent case, unity) on the tangent plane to the surface . (See ref. 2 .) This 
is obviously the same for both a parabolic cylinder and a paraboloid of 
revolut ion in view of the fact that Munk's rule includes the two­
dimensional case. 
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When equations (17) and (19 ) are utilized, differential equation (6) 
for the velocity potential ¢l take s the following form: 

(20) 

where ~ = cos 8. 

Note that the desired separ at i on of variables has been achieved on 
t he right-hand side of equation (20 ). The task of finding a particular 
integral then becomes a routine problem. The following particular inte­
gral ¢lp of equation ( 20) has been constructed with the poi nt in mind 

t hat it be well behaved everywhere at the surface of the boundary and i n 
t he field of flow: 

¢l = ~ ~ - 81 log r (1 + ~) 3 + -~-Jl - l og 2 _ _1_ -
P ~ r 8r2 L 1 + ~ 

~ ~ r ~ log (1 t ~) - log 2 dJ 

c Jo 1 - ~ J (21) 

This particul ar integral may be expressed in terms of parabolic coordi­, 
nates by means of the followlng equations of transformation : 

r = a + 13 
( 22) 

a - 13 
~ x __ _ 

a + 13 

The general solution for the velocity potential ¢l then becomes 

¢l 
1 a - 13 1 1 Sa3 

1 ~ log 2 - .i..._ 
= 4 a + 13 - - -- l og + 

8 a + 13 (a + 13) 2 8(a + 13)2 2 2a 

1 a - 13 1 2 2a 
(1 + 

1 a - 13 log ~lOg~ - - - og - -+ 
4 a + 13 a + 13 2 a + 13 a + 13 

a-13 J ! ~f a+[3 _lo_g_(_1_+_~_)_-_1_o_g_2 d~ 
2 a + 13 0 1 - ~ 

(23 ) 
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where the arbitrary constants cn are determined by means of the bound­

ary condition that the normal component of the fluid velocity at the sur­
face of the paraboloid shall vanish. In addition, there is the require­
ment that the disturbance velocity shall vanish at infinity for points 
not near the paraboloid. Now, ¢o' being the solution for incompressible 

flow, satisfies these boundary conditions, and hence ¢l must also sepa­

rately satisfy them. An examination of equation (23) shows that the dis­
turbance velocity vanishes at infinity. The normal boundary condition 

( d¢l\ _ 0 then yields the following equation for the determination of 
Oa, j~ -

the arbitrary constants: 

1 3 {1(1 - 213) [-1 + log(l + 2138 + 
+ 213) 2 

(1 + 213)log 2} + 1 - 413 [_ ! log22 + 
(1 + 2(3)4 2 

* log2(l + 2~) + I(~~ 

~ F(I3) (24) 

where , for convenience of expression, 

and 

1-213 =f 1+2[3 log (l + j..!) 

0 1 - j..! 

- log 2 
dj..! 

Now, the range of the variable ~ along the upper surface of the solid 
boundary extends from 0 to 00. Therefore, the determination of the 
complementary function ¢lc must proceed along lines corresponding to 

the passage from a Fourier series to a Fourier integral. Thus, multi­
plying both sides of equation (24) by if,Jo('mJf3)dVf3 and integrating from 
o to an arbitrary upper limit b give 
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(25) 

where Al ' A2 ' . are different values of A for which Jo(bAn) O. 
In equation (25) , use has been made of t he well- known orthogonality 
condition 

The quantity run is now defined as bAnfb , and the upper limit b 

is taken to be very large . The difference between two consecut ive vallles 
of ffin may then be obtained by considering large zeros (bAn ) of J o • 
Thus, the approximat ing formula for t he nth zero is 

Hence, the distance between consecut ive zeros approaches rt and the 
difference between two consecutive value s of fin becomes 

or 

Now, for large values of bAn, 

Ow = ~ 
b 

1 1 - = - Ow 
b rt 

Jl(bAn ) = 
sin (bAn - ~) 

~~ bAn 

or with the aid of equat i on (26) , 

(26) 
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It follows then from equation (25) that 

Introducing this e2Q.Jress ion for dn into equation (16) for the comple ­
mentary func t ion ¢lc ' replacing the summat ion by integrat ion , and letting 

the upper limit s go to infinity lead to the following expression : 

Inserting this expression for the complementary function into equat ion (23 ) 
then yields the exact form f or the second term in the Janzen-Rayleigh 
method for the calculation of subsonic flow past a paraboloid or revolu­
t i on . Equation (27) can be verified by means of the boundary condition 

and the recurrence relation 

Thus the well- known Fourier-Bessel integral (ref . 3) i s obtained : 

NUMERICAL CONSIDERATIONS 

Attempts to evaluate the right - hand side of equation (27), or even 
to reduce it to a single infinite integral, have thus far proved fruit ­
less . I t appears certain that , in order to obtain numerical results, 
equation ( 27) for ¢lc or its derivatives with regard to ~ and ~ 
must be calculated directly . This calculation is not done in the present 
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paper . Rather, in pr eparation for such numerical computations it is 
necessary to eValuate the integral appearing in the expression (eq. (24)) 
for F ( i3 ) ; thus , 

1-213 
1(13) = 11+213 log (l + j.l) - log 2 dj.l 

o 1 - j.l 
(0 ~ 13 ~ (0) 

Then, the following expansions are considered : 

and 

It follows that 

Hence 

00 

l og (l + j.l) = - 2:= (_l)n ~ 
n=l n 

log 2 

l og(l + j.l) - l og 2 

1 - j.l 

n=l 

~ (_l)n t 
n=l n m=l 

1(13) =f:... (-l)nt=. j.lm 
n=l n m=l m 

(-1< j.l<: 1) 

m- l j.l 

(- l ~ j.l~ 1 ) ( 28) 

Note that the convergence has been improved by the act of integr at i on to 
include j.l = - 1 . Thus , 

where 

Now 

2 
log 2 
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and 

Therefore , 

lim I(~ ) = ~ log22 
J3~ 0 

0 . 58224 

For ~~oo or ~~-l, equation ( 28) gives 

l im 
~~ oo 

00 ( n n m 
1(13 ) = 2::= 2L L l:JJ.: 

n=l n m=l ill 

or after rearrang~ment of terms on the right - hand side 

00 ( _l) n 00 Sn 
lim I(~) = - L n Sn + L 2n(2n + 1) 
~~oo n=l n=l 

1(13) + ~ Sn 
n=l 2n( 2n + 1) 

13 

The series on the right - hand side can be rendered more rapidly convergent 
by repeated application of Kummer ' s transformation (ref . 4) ; thus , 

lim I(~) = 1{ 2 _ 11og22 + 19 + 2 £.. 1 + 
~--7oo 12 2 60 4 n=l (n + 1)(2n + ~)(2n + 5) 

15 ~ Sn 
~ n=l n(2n + 1)( 2n + 3) (2n + 5) 

"" 1.060 

Finally, for 0 < J3 < 00 or ~2 < 1 , 

00 ~n+l n ( _l)m 
= log 2 log(l -~) ~ ~ 

- n=l n + 1 m=l ---m---

00 2n+l 
= log 2 log(l - ~) - ~ log(l + ~)log(l - ~) + ~ ~n + 1 t2n 

n=l 
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wher e 

t2n 1 - 1 1 1 1 
S2n - Sn - + - - 4+ · . . - - == 

2 3 2n 

Thus , 

00 

413 t 2n ( 1 - 2(3 ) 2n+l 
1 (13) = 1. l og l og 2 (1 + 2(3 ) + L 

2 1 + 213 2n + 1 1 + 213 
(0 < 13 < co ) 

n==l 

Wi th the a i d of e quat ions ( 29 ) and (30) the funct i on F( 13 ) can be com­
puted f or all fi ni te val ues of 13 . For 0 < 13 < co , the expr ess i on f or 
F(13) in equation ( 24 ) be come s 

F(/3) == 1 J1(1 _ 2(3) t l + log(l + 2(3 )J + (1 + 2(3 )l og 2} + 
(1 + 2(3 )3- l2 
1 - 4\3 r1 l og 213 

(1 + 2(3) 4 L2 

co 
l og 2 (1 + 2\3 ) + ~ 

n=l 

t 2n (1 _ 213) 2n+ll 
2n + 1 1 + 213 J 

Tabl e I lists value s of F ( 13 ) and 1( \3) for the range 0 < 13 < 9, 
and f igures 2 and 3 show t he gr aphs of e ach . For the l ater purpose of 
calculating the velocity di st r i bution in the ne i ghbor hood of t he stag­
nat ion poi nt and also along the axis of symmetry of t he flow, gener al 
expres s i ons are pre sented in the following se ction . 

where 
a nd 

CALCULATION OF FLUID VELOCITY AT THE SOLID BOUNDARY 

AND ALONG THE AXIS OF SYMMETRY OF FLOW 

The flui d veloci ty at a poi nt on the body i s given by 

d¢ 1 d¢ 
q =-= --
s dS T] J dT] 

is t he element of ar c i n the direct i on i n which 

Then, in t erms of the variable 13 = T]2 , 

i ncr eases « 



NACA TN 3700 15 

(31) 

With the aid of equations (12) and (23 ), equation (31) yields the fol ­
lowing expression for the fluid speed along the solid boundary for the 
range 0 <: ~ < 1: 

qsM., qso~ + M.,2{(11+-2:)4 rog 1: 2~ log -2 (-1-~-2-~-) + 2I (~)] 

1 - 213 log(l + 213 ) (1 - 213 ) (1 + 4/3) 1 2 1 
+ 

(1 + 2~)4 
og 

413 2 (1 + 2/3 )4 1 + 2/3 2(1 + 2/3)2 

6 - 5 log 2 1 4 log 2 + (~lC) 1 (32) 
2(1 + 213)3 (1 + 2/3 ) /3 a = 1: 

2 

where q = ,~ is the magnitude of the fluid velocity at the sur­
so V 1 + 213 

face in incompressible flow and ¢lc is given by equation (27). 

The fluid velocity along the axis of symmetry of the flow is given 
by 

Then with the aid of equations (12) and ( 23 ), 

q .. == q 1 + Moo2 [ - log 8x + 1(1 + 1(122) + 8x2(d~lC) J 
~oo ~o 4x(2x _ 1) x 00, 

/3=0 

where q == - 1 + Jl is the velocity of the fluid along the axis of 
xo 2x 

symmetry in incompressible flow . Equations (32) and (33) have the form 
of correction factors by which qso and qxo are multiplied i n order 

to take into account the effect of compressibility. It may be desirable 
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to utilize the arc length s~ of the parabolic meridian profile as the 

reference variable r ather than ~ . The arc length s~, with the r adius 
of curvature at the nose as unit of l ength, is given by 

or 

s i n ~ 1 
s~ == 1 + co~ 8 + ~ log 

+ sin ~ 
cos ~ 

2 

For purposes of comparison) cons ider the two-dimensional case of uniform 
subsoni c flow past a parabolic cylinder . The following formulas) corre ­
sponding to equati9ns (32) and (33) ) are eas ily obtained from reference 5: 

~~8 cos 8 _ 4 cos ~ log 2 cos 
2 sin ~ 2 

2 

and 

where 

CONCLUDING REMARKS 

In conclusion, the pr esent paper pr.Qvides an addit:i_onal example to 
the sparse literature on subsonic axisymmetrical flow. The attempt has 
been made to choose as solid boundary a shape which does not require 
involved and cumbersome analysis but, at the same time , which is of 
interest to both theoret ical and applied aerodynamicists . Attention is 
particularly dire cted to the double infinite integral of equation (27). 
Such integrals ) involving Bessel functions under the integral Signs) are 
not only of great interest to the pure mathematician but are also of 
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extreme importance in many branches of mathematical physics. The addi­
tion of another one to the large number of such integrals which have 
already been evaluated can generally be counted upon to aid in the solu­
tion of many problems in varied fields . 

Langley Aeronautical Laboratory, 
Nat ional Advisory Committee for Aeronautics, 

Langley Field, Va ., March 14, 1956 . 
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TABLE I 

TABUlATED VALUES OF THE FUNCTIONS I ( 13 ) AND F ( 13 ) 

13 1(13 ) F(13) 13 1(13) F(13) 

0 - 0.58224 -1. 62932 0.875 0.20199 0.07033 
. 02083 -. 54184 -1 .18932 1.000 .25103 . 04879 
.04167 -.50378 -.85251 1.200 .31729 .02452 
.06250 -. 46788 -.59387 1.400 .37215 .00895 
.08333 -. 43393 -. 39490 1 .600 .41845 -.00105 
.10417 -.40176 -. 24175 1· 700 .43900 -.00461 
.12500 -. 36666 -.12398 1.800 .45812 -. 00146 
.14583 -. 34222 -.03368 1.900 .47591 -. 00974 
.16667 -.31459 .03524 2.000 .49255 -. 01155 
.18750 -. 28825 . 08742 2·500 .56184 -. 01612 
.20833 -. 26309 .12650 3.000 .61442 -.01693 
. 22917 -. 23905 .15527 3.500 .65589 -. 01633 
. 25000 -. 21602 .17595 4.000 .68955 -.01523 
.31250 - .15249 .20490 5 .000 .74108 -.01283 
.37500 -. 09606 .20510 6.000 . 77160 -.01074 
.43750 -. 04555 .19195 7.000 .80804 -.00904 
.50000 0 .17329 8.000 .83123 - .00171 
.56250 .04132 .15309 9.000 .85016 -.00664 
.62500 .07901 .13333 00 1 .06000 0 
· 75000 .14535 . 09829 

- - - ---- - .. ~ 
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Figure 1.- Profile of paraboloid of revolution in meridian xy-plane . 

u 

I 

s; 
~ 

~ 
\..N 
-.J o 
o 

I-' 
\0 



20 NACA TN 3700 

- 1.8 

-1.6 

-1.1. 

- 1. 2 

-1.0 

r ip ) -.8 

- .6 

- .1. 

- . 2 

\ 
\ I--- j.---" 

------

o 

1\ / 
/' 

. 2 

.4 
o .4 .8 1. 2 1.6 2 . 0 2.4 2 .8 3 .2 3 .6 4.0 

Figure 2 . - The boundary functi on F (~) plotted a gai nst ~ . 



z .8-
>-
() 

>-

t" 

" " " ;; 
'< 

." .& 
;; 
c: 
< 
~ 

.4 

.2 

r(1') 

/ 

o / 
V 

/ 
/ 

-.2 

. / 
/ 

-.4 

/ 
-.6 

o .4 

--------~ 
~ -----

/' 
v 

/ 
V 

/ 

/ 

.8 1.2 1.6 2.0 2.4 2.8 

~ 

Figure 3.- The integral I(~) plotted against ~. 

- l..-----f.---~ 
I 

3.2 3.6 4.0 

~ 

t:r1 

~ 
~ 

1-3 
~ 

\..N 
--:) 
o o 

I\) 
f-' 


