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SUMMARY

The Janzen-Rayleigh method of expansion in powers of the stream
Mach number M, is utilized for the calculation of the velocity poten-
tial for steady subsonic flow past a paraboloid of revolution. Only the
first two terms of this expansion are calculated, the first term being
the incompressible expression for the velocity potential and the second

being the term in Mmg. A closed expression is obtained for the second

term in the form of a double infinite integral which contains Bessel
functions under the integral signs. The methods of evaluating such inte-
grals are not very numerous. Unfortunately, the present integral does
not yield to any of them. No attempt is made in the present paper to
evaluate numerically this double infinite integral. Expressions for

the fluid velocity are given in the form of correction factors by which
the corresponding expressions for incompressible flow are multiplied in
order to take into account the effect of compressibility.

INTRODUCTION

The Janzen-Rayleigh method for the calculation of subsonic flow
past an obstacle, by expansion of the Yelocity potential in powers of
the undisturbed stream Mach number, has been extensively applied to two-
dimensional problems. A considerable void, however, exists in the liter-
ature insofar as applications of this method to three-dimensional axisym-
metric problems are concerned. Except for the case of flow past a sphere
and sporadic efforts to treat the next simplest case of axisymmetric flow
past a prolate spheroid, little has been accomplished in this area of
subsonic compressible-flow theory. Clearly, then, future work utilizing
the Janzen-Rayleigh method can be expended profitably on axisymmetric-
flow problems. A first step in this direction has been taken by
A. L. Longhorn who recently, at the suggestion of M. J. Lighthill, recon-
sidered the problem of subsonic flow past a prolate spheroid. (See
ref. 1.) The problem treated in the present paper was begun sometime
before the author became aware of the results of Longhorn. Fortunately,
the two problems complement one another in the sense that the one treated
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by Longhorn is limited to closed bluff bodies, whereas the present one
is concerned with a family of semi-infinite elongated bodies with round
noses.

The choice of the paraboloid of revolution as the solid body was
made for several reasons. First, the paraboloid being a semi-infinite
body and, in fact, a limiting case of the prolate spheroid, it was
thought probable that the analysis might involve functions of a more
elementary nature than for the case of a closed body. Second, the fluid
speed at the surface rises monotonically from zero at the stagnation
point to the undisturbed-stream value at infinity. Therefore, the criti-
cal value of the stream Mach number is unity, and hence there can be no
transonic influence in the entire subsonic range. Finally, the Janzen-
Rayleigh method being a thoroughly reliable one, the present investiga-
tion should provide useful information with regard to the question of the
accuracy of the small-disturbance method for the calculation of compres-
sible flow past slender bodies in the neighborhood of the stagnation
point.

ANALYSIS

The Janzen-Rayleigh method has often been described in the liter-
ature. In the present paper, therefore, only those equations necessary
for the formulation of the problem are used. The problem to be considered
is the subsonic flow past a paraboloid of revolution fixed in a uniform
stream of velocity U in the negative direction of the axis of symmetry.
The nature of axisymmetrical flow is such that the motion is the same in
every (meridian) plane through the axis of symmetry. The position of a
point in a meridian plane may be fixed by rectangular Cartesian coordi-
nates x,y with the origin at the focus of the parabolic meridian pro-
file. (See fig. 1.) With the radius of curvature at the nose as the
unit of length, the equation of the meridian profile becomes

# - - 1) 0

For steady subsonic axisymmetric flows, the equation satisfied by
the velocity potential ¢ is the equation of continuity

d(p 38\, 3 [p P _
ax<pmyax>+ay<omyay . (@)
where

J';=[_7‘11«1&)2((;2.1)]7—ET (3)
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and

q nondimensional speed of fluid with U as unit of velocity
o) density of fluid moving with speed q

P density of fluid moving with undisturbed speed U

it Mach number of undisturbed stream, gi

= speed of sound in undisturbed stream

. ratio of specific heats at constant pressure and constant

volume

If, now, a series expansion for ¢ in powers of ng is assumed,
then

¢ = Zjo ¢nMoo2n

where the first term ¢o is the velocity potential in incompressible
flew. In this paper, onlty ¢l is calculated so that the form of ¢

to be found is

2
$ =g+ M, (4)
Thus, this expression for ¢ is substituted into equation (2), and equa-
tion (3) is utilized with
3 2 2
‘(@@
ox y

Then, when the coefficients of the zeroeth and first powers of Mm2 are

equated to zero, the following pair of equations is obtained:

3 6_¢o_> a_( ?29) <
8x<? ox 4 dy 0 dy | ¥ (%)

and

¢
B2 563 -23b 23] 25bee -3

where q, 1s the local velocity in incompressible flow.

(6)
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The velocity potential for incempressible flow past the paraboloid
of revolution defined by equation (1) is readily found to be

¢o = -X + % log(x + Jxe + y2) (7

where ¢o is nondimensional with the undisturbed velocity U as unit

of velocity and the radius of curvature at the nose as unit of length.
Equation (7) satisfies equation (5) and the boundary conditions of van-
ishing normal velocity at the surface and of vanishing disturbance veloc-
ity infinitely far from the paraboloid. The expression for the magnitude
of the incompressible fluid velocity is

2 il i X
e " 4o Sl - (8)
e Vx2 + y2 2y2( X2 + y2>

At this point it is convenient to introduce a new set of independent
variables. Ideally, the appropriate coordinate system for the present
problem is a parabolic one which defines mutually orthogonal families of
confocal parabolas in a meridian plane. Thus, the conformal transformation

z=x+1y=(§+in?=¢t° .

gives

I

X

(9)

1l

N
uw
—

¥

The elimination of the variable 1 in equations (9) yields

2
f Wi BE =2
1 Le

Then the surfaces & = Constant = go are confocal paraboloids of revolu-

tion with the focus at the origin and the radius of curvature at the nose
equal to 2§02. With this radius of curvature as unit of length, equa-

tions (9) are nondimensional and the solid boundary is given by go =L

V2

or equation (1). -
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The equations corresponding to equations (5) and (6) are

T
and
) 5628)- 13- 98] ages - 92
where

§2 =q and n2 =B
Also, equations (7) and (8) become, respectively,

= 1
g, =« + B+ 5 log 2a

and

A PR | 1
%o - a+ B y bo(a + B)

Then, equation (11) for the velocity potential ¢1 takes the form,

(12)

§13)

+ =

a_(aa_‘z‘;)ﬁ_(ﬁﬁ):_ b g i 1 1
%\ 3% /T3 3 T

(V] [

The complementary solution of this partial-differential equation is
easily found by assuming a solution in product form:

¢l = A(a)B(B)

Then the homogeneous form of equation (14) becomes

;1( %)J,
A do da,

(¢ + #i° _1603(@ + B) l6afa + B)>

(1k)
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or

do\ da L

4 4 (15)
4(g B T
dB(B ds> ey 2=

7

where A\ 1is an arbitrary real constant. Equations (15) are equivalent
forms of Bessel's differential equation for cylinder functions of order
zero. Therefore,

A = Co(iNa)
and

B = Co(NB)

where CO represents any cylinder function of order zero.

The nature of the present problem is such that the cylinder function
involving the variable o shall behave well for a—~ but not neces-

sarily for a-—0 since a = % at the solid boundary and never takes
on values less than that. On the other hand, the cylinder function

involving P must be of such type that it behaves well for the entire
range 0 2 B 2 ». Clearly then,

A = K, (M)
and
B = J,(WB)
where K is the modified Bessel function of the second kind and zero

(o)
order and JO is the Bessel function of the first kind and zero order.

The graph of K, resembles a rectangular hyperbola in the first quadrant
and that of Jg, a damped cosine wave. The general complementary solu-
tion ¢lc of equation (14) can then be written as

¢lc e zi; cnKo(an;)Jo(anB) (16)

where the values of c, are arbitrary constants to be determined by

n
means of the boundary condition that the fluid-velocity component normal
to the surface of the paraboloid shall vanish.
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A suitable particular integral of equation (14) is now sought.
Unfortunately, the right-hand side of that equation cannot be separated into
a sum of products of functions of o alone and of f alone; hence, the
task of finding a particular integral directly from equation (1L4) is prac-
tically futile. However, by temporary use of polar coordinates as inde-
pendent variables the desired separation of variables can be achieved.

Thus,

X r coshe

(17)

y 15 fealial fY)

where the radius vector r 1is nondimensional with the radius of curvature
at the nose of the paraboloid as unit of length and where the angle 6 is
measured positive counterclockwise. (See fig. 1.)

The polar equation of the parabolic meridian profile is

SRR S (18)
1l + cos ©

and the expressions for the incompressible velocity potential and fluid
speed given by equations (7) and (8), respectively, are

¢o = -r cos 0 + % log r(1 + cos 6)
(19)

q 2 =1 - L + S
e ¥ 2r2(1 + cos 0)

Thus, at the upper surface of the paraboloid of revolution, the expression
for the incompressible fluid speed is simply

It is interesting to note the curious fact that this expression for the
velocity at the surface of a paraboloid of revolution is precisely the
same as that for the velocity at the surface of a two-dimensional para-
bolic cylinder. The explanation lies in Munk's rule which states that

the surface velocity on any ellipsoid immersed in a uniform flow along

a principal axis is the projection of the maximum velocity (in the pres-
ent case, unity) on the tangent plane to the surface. (See ref. 2.) This
is obviously the same for both a parabolic cylinder and a paraboloid of
revolution in view of the fact that Munk's rule includes the two-

dimensional case.
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When equations (17) and (19) are utilized, differential equation (6)
for the velocity potential @, takes the following form:

5_23525_1)_5_ e G e N N 2
Eﬁ'é‘ =/ BpI}l g )Bp 2k B 8r2|1l + p p T e

where n = cos 6.

Note that the desired separation of variables has been achieved on
the right-hand side of equation (20). The task of finding a particular
integral then becomes a routine problem. The following particular inte-
gral ¢lp of equation (20) has been constructed with the point in mind

that it be well behaved everywhere at the surface of the boundary and in
the field of flow:

ik
1+

g. = 1 po- L log r(l + p)5 + 2|1 - 10g 2 -
lp H 8r 81‘2

=l

w 1og®(L + p) + (1 + % L log 2)1og(1 o i =

dp (21)

fﬂ log(l + p) - log 2
V)
0 1-u

oI

This particular integral may be expressed in terms of parabolic coordi-
nates by means of the following equations of transformation:

a + B

The general solution for the velocity potential ¢l then becomes

O 200 - e 8o 1 E_ g
¢1 - L oq + B 8 a+ B log (a - B)2 i 8(a . 3)2{? Joe, & 2a,

l1a-=-8 2 2a, e =B 2a,
= al + (1 + = log 2] 1o -
h o+ B e o+ B < 2a+ B S > = a+ P

o Log(1 + w) =
la-pB [orp 1081+ -log2 | CK(\,—> < )
dbseh it 1D A Na Tt N, B
2o+ BJog e B £ “no\'n o(Ma VB

(23)
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where the arbitrary constants c, are determined by means of the bound-

ary condition that the normal component of the fluid velocity at the sur-
face of the paraboloid shall vanish. In addition, there is the require-
ment that the disturbance velocity shall vanish at infinity for points

not near the paraboloid. Now, ¢O, being the solution for incompressible

flow, satisfies these boundary conditions, and hence ¢l must also sepa-

rately satisfy them. An examination of equation (23) shows that the dis-
turbance velocity vanishes at infinity. The normal boundary condition

0
(—gl = O then yields the following equation for the determination of

ook

the arbitrary constants:

o0

Lt ads S A0 L
nz_:_l dnJo(%nﬂ’;) = O, 26)5 2(1 2;3)[1 + log(l + 2[3)] +

(1 + 2B)log 2} + —l—’ﬁ-[- % log?2 +
(1 + 23)LF

% 10g2(1 + 2B) + I(Bﬂ

= F(p) k2h)

where, for convenience of expression
2 J

A A
d =—=K —n)c
S 1(\15 B

and
1-28
I+2B log(l + p) - log 2
1(B) =f dp
0 1l-upu

Now, the range of the variable B along the upper surface of the solid
boundary extends from O to «, Therefore, the determination of the
complementary function ¢lc must proceed along lines corresponding to

the passage from a Fourier series to a Fourier integral. Thus, multi-
plying both sides of equation (24) by /BJO(MJE)d)/E and integrating from
O to an arbitrary upper limit b give




10

b
4y = =2 [ R WBI, (B B
[le(b%n)] o

where Ny, Ao, . . . are different values of A for which Jo(bM) = O.

NACA TN 5700

In equation (25), use has been made of the well-known orthogonality

condition

b
Sy #ool)oc(raif)ee

Il

0 (A\p # M)

Rl O =

(25)

The quantity w, 1is now defined as bxn/b, and the upper limit b

is taken to be very large. The difference between two consecutive values
of Jge

of w, may then be obtained by considering large zeros
Thus, the approximating formula for the nth zero is

Hence, the distance between consecutive zeros approaches
difference between two consecutive values of w, becomes

dw = L
S RAE
or
Ly
P
Now, for large values of DAp,
sin(bhg - %)
) =
5 by
or with the aid of equation (26),
n
-(=-1
J1(bAn) = Sl
Z oA
e

(oAn)

7

and the

(26)
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It follows then from equation (25) that

b
i w&»fo F(B)VBIo(wVB)avR

Introducing this exmression for d, into equation (16) for the comple-
mentary function ¢lc’ replacing the summation by integration, and letting

the upper limits go to infinity lead to the following expression:

wﬁJ(wW) i
o \/‘/‘ j; F(t2)J (wt)t dt (27)

()

Inserting this expression for the complementary function into equation (23)
then yields the exact form for the second term in the Janzen-Rayleigh
method for the calculation of subsonic flow past a paraboloid or revolu-
tion. Equation (27) can be verified by means of the boundary condition

) oo

=.l.
2

and the recurrence relation

[aigg@]a:% --£4(%)

Thus the well-known Fourier-Bessel integral (ref. 3) is obtained:

= 3 o 3l 3 - w
F(B) _j; do /; F(t2)J (wt)d (oB)t dt

NUMERICAL CONSIDERATIONS

Attempts to evaluate the right-hand side of equation (27), or even
to reduce it to a single infinite integral, have thus far proved fruit-
less. It appears certain that, in order to obtain numerical results,
equation (27) for @, or fis derivabives ¥ith regard to o« and B

must be calculated directly. This calculation is not done in the present
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paper. Rather, in preparation for such numerical computations it is
necessary to evaluate the integral appearing in the expression (eq. (24))
for F(B); thus,

1-2B
1(p) =fl+25 Rl p) o R, (0<B g
0 1-u
Then, the following expansions are considered:
00 n n
log(l + p) =-»  (-1) = (<1< @2 1)
n=1

and

[e9) _ln
log 2 =-§Z: ()
n=1 -

It follows that

Yoell Aap e e o, e (1) B 1
= n
T Z w2

Hence

o) =t

96 RO B Witie = T o
n=1 c =1 m

=

Note that the convergence has been improved by the act of integration to
include p = -1. Thus,

o) (_l)l’l
lim I(B) = =~ Sy
B—0 n=1
or
p—>1
where
]
S. = =
14
m=1 .
Now
n 1}
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and
(o0]
> L.
n=1 n2 12
ihenefore,
2
lim I(p) = % Iogt AN L ~ - 0.5822k (29)

B—0
For B—w or u-—s-1, equation (28) gives
0

BRI
lim I(B) = (‘rll) g::lL-Ilnlm

B—> =it

or after rearrangement of terms on the right-hand side

=) (_l)n 0 g

i 1 =- Y TR LT
- S

=~ lim I(B) + 3 B

B—>0 n=1 2n(2n + 1)

The series on the right-hand side can be rendered more rapidly convergent
by repeated application of Kummer's transformation (ref. k); thus,

) 2 19 9 < ;)
Iim I(p) =5 - L 102 + 22 + 2 3
B—>00 12 e 60 45733 (n+ 1)(en + 3)(2n + 5)
165) = Sn

£ a=1 n(2n + 1)(2n + 3)(2n + 5)

~ 1.060

Finally, for 0< B<w or p°<1,

-0 L1 5>

00 N A
n=1I ri=aL

© n+1 n (_1)m
m

J.ogzlog(l--u)--zLl Z

=1 0+ 1 m=1

00 2n+1
L

log 2 log(l - p) - 5 log(1l + p)log(l - p) + Z h ton
=i
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where
1 1 i 1
t2n=l——2—+3—ﬂ-+.-.——2-r—l—- 2n"sn
Thus,
o) il
u‘B tgn /1_2B>2H+
=1 Tt . 0<B<w
I(p) =5 log — 2p °8 2(1 + 2p) + g;; 2n + 1\1 + 2B o
(30)

With the aid of equations (29) and (30) the function F(B) can be com-
puted for all finite values of B. For O0< B < =, the expression for
F(B) in equation (24) becomes

F(B) = —=2—— 43(1 - 2p) [-1 + log(1 + 28)] + (1 + 2B)log 2} +
&+ 28)° |°

[ee) 2n+1
il ‘o (1o 28
(1 + 2B) AN

Table I lists values of F(B) and I(B) for the range 0 Z B Z 9, .
and figures 2 and 3 show the graphs of each. For the later purpose of
calculating the velocity distribution in the neighborhood of the stag-

nation point and also along the axis of symmetry of the flow, general
expressions are presented in the following section.

CALCUIATION OF FLUID VELOCITY AT THE SOLID BOUNDARY

AND AIONG THE AXIS OF SYMMETRY OF FLOW

The fluid velocity at a point on the body is given by

where dsn is the element of arc in the direction in which 1n increases
and

g° - dz 42
d¢ a¢

Then, in terms of the variable B = 12,
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_[ 2 (¢
B TNTT 213<55>a=% en

With the aid of equations (12) and (23), equation (31) yields the fol-
lowing expression for the fluid speed along the solid boundary for the
RARTEMN Q=R e

ol cdiset
q =q. [l +M +——|log —— log ——— + o1 ()| -
B <~ 5 EB)M'[ 1+ 2B 200 't 28) ]
1-28 log(l+28) (I-2B)(1 + 4p) i 2 3
= T og 4 2_
(1 + 2p) 4p 2(1 + 28) 1+ 28 2(1+ 28)
: of
6-5 log § 2 = r log 2 + alc (32)
2(1 + 2B) (1 + 2B) ¥ i
2
where B ™ o is the magnitude of the fluid velocity at the sur-

1+ 28
face in incompressible flow and ¢lc is given by equation LoT )

The fluid velocity along the axis of symmetry of the flow is given
by

Then with the aid of equations (12) and (23),

2
M 2 og

= 2 1 T 2 e
qXMoo_qxol+ml—lOg8x+§<l+T§)+8x<8a)B=o

(33)

where 9., = -1 + g; is the velocity of the fluid along the axis of

%
symmetry in incompressible flow. Equations (32) and (33) have the form
of correction factors by which qg and q,, are multiplied in order

to take into account the effect of compressibility. It may be desirable
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to utilize the arc length sp of the parabolic meridian profile as the
reference variable rather than B. The arc length Sg» with the radius

of curvature at the nose as unit of length, is given by

sg = %[st(l + 28), + 1og<\/§§ A AT 2;3)] (34a)

or
) Ao 5]
sin = 1+ sin =
ak W R L el
8" T3 cos® '3 log cos & (34b)
2

}
For purposes of comparison, consider the two-dimensional case of uniform
subsonic flow past a parabolic cylinder. The following formulas, corre-
sponding to equations (52) and (55), are easily obtained from reference 5:

A = o 1- % Mm2 cos? %{% + cos %<?—99§§§ - 4 cos % log 2 cos %ﬂ

sin 3
(35)
and

R B log%x (36
= 1L = =0 — - 5
LM, = Yxo 27 |\Vax  bx(Vx - V2) hx(Vx - V2)° )

where g = sin 9 and = =1 + —l—.

50 2 qxo Vox

CONCLUDING REMARKS

In conclusion, the present paper provides an additional example to
the sparse literature on subsonic axisymmetrical flow. The attempt has
been made to choose as solid boundary a shape which does not require
involved and cumbersome analysis but, at the same time, which is of
interest to both theoretical and applied aerodynamicists. Attention is
particularly directed to the double infinite integral of equation (27).
Such integrals, involving Bessel functions under the integral signs, are
not only of great interest to the pure mathematician but are also of
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extreme importance in many branches of mathematical physics. The addi-
tion of another one to the large number of such integrals which have
already been evaluated can generally be counted upon to aid in the solu-
tion of many problems in varied fields.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 14, 1956.

REFERENCES

1. Longhorn, A. L.: Subsonic Compressible Flow Past Bluff Bodies. Aero.
Quarterly, vol. V, pt. 2, July 1954, pp. 1kk-162.

2. Munk, Max M.: Fluid Mechanics, Pt. II. Ellipsoid With Three Unequal
Axes. Vol. 1 of Aerodynamic Theory, div. C, ch. VIII, sec. 4,
W. F. Durand, ed., Julius Springer (Berlin), 1934, p. 298.

3. Watson, G. N.: A Treatise on the Theory of Bessel Functions. Second
ed., The Macmillan Co., 1944, p. 453.

4. Adams, Edwin P., and Hippisley, R. L.: Smithsonian Mathematical
Formulae and Tables of Elliptic Functions. Second reprint, Smith-
sonian Misc. Coll., vol. T4, no. 1, 1947, p. 11h4.

5. Kaplan, Carl: On the Small-Disturbance Iteration Method for the Flow
of a Compressible Fluid With Application to a Parabolic Cylinder.
NACA TN 3318, 1955.




NACA TN 35700

TABLE T

TABUTATED VALUES OF THE FUNCTIONS I(B) AND F(B)

B 1(B) F(B) B 1(B) F(B)
0.58224 -1.62932 0.875 0.20199 0.07033
.02083 -, 5180 -1.1893%2 1.000 «25105 .O4879
04167 ~« 5058 -.85851 1.200 251729 02452
.06250 -.46788 - 59387 1.400 o ) .00895
.08333 - 143393 -.39490 1.600 L1845 -, 00105
i ) i ~%H01.T6 ~-: 24175 1.700 43900 - 00461
.12500 - . 36666 -.12398 1.800 45812 -.Q0T46
.14583 ~. 54200 -.03368 1.900 L7591 - . 00974
16667 -«31459 L0352k 2.000 L9255 -+01155
.18750 -.28825 .08742 2.500 .56184 -.01612
.20833 -+ 26509 12650 3,000 61442 -.0169%
«22917 - 23905 15527 3.500 .65589 -.01633
.25000 - 21602 17595 4,000 68955 -.01525
51250 -.15249 .20490 5.000 . 74108 -.01285
.37500 -.09606 .20510 6.000 . 77160 - 01074
L3750 -.04555 .19195 7.000 .8080k4 -.0090k
.50000 0 17329 8.000 .83123 =0T
<56250 04132 .153%09 9.000 .85016 - . 00664
.62500 07901 13333 o 1.06000 0
. 75000 L1555 .09829
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Figure 1.- Profile of paraboloid of revolution in meridian Xy-plane.

00L¢ NI VOYN

6T



20 NACA TN 37700

- 1.8

-1.l

=172

F(p) -8

0 L .8 1.2 1.6 2.0 2. 2.8 3.2 3.6 k.o
B

Figure 2.- The boundary function F(B) plotted against B.
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