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SUMMARY

Local rates of heat transfer were obtained from a cone cylinder and
a parabolic-nosed cylinder at a Mach number of 3.12. Data were obtained
for Reynolds numbers up to 12X106 based on body length for heated and
cooled surfaces.

The laminar-heat-transfer coefficients obtained from the conical
portion of the cone cylinder agree closely with theory at all tempera-
ture levels when corrected for the axial temperature distribution. Ex-
perimentally and analytically, there seems to be no significant effect
of temperature level on the heat-transfer coefficient. The laminar data
obtained from the parabolic-cylinder model agree closely with theory
when the axial pressure distribution is considered and the data are cor-
rected for the axial temperature distribution.

INTRODUCTION

The aerodynamic heating problem is being investigated at the NACA
Lewis laboratory in order to supply the designer of high-speed aircraft
and missiles with quantitative heat-transfer and boundary-layer-
transition data. These two phases of the aerodynamic heating problem,
the value of heat-transfer coefficients and the location of the boundary-
layer transition, are, of course, interrelated. The order of magnitude
of the heat-transfer rate depends on whether the boundary layer is lami-
nar or turbulent; whereas, the location of transition is influenced by
the amount of heat transferred.

Studies of the laminar and turbulent heat-transfer rates on bodies
of revolution are presented in references 1 to 3. In reference 1, which
is a summary paper of five investigations, laminar-heat-transfer coeffi-
cients are reported for a heated cone and a parabolic-arc body, and for
a cooled cone at Mach numbers between 1.5 and 2.2. The experimental
data agree closely with the theories of Crocco (ref. 4) and Chapman and
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Rubesin (ref. 5). FEber (ref. 2) obtained heat-transfer rates for a cone
cylinder at local Mach numbers ranging from 0.88 to 4.65. Again, the
experimental data are well represented by the isothermal theory of
Crocco. The data presented in references 1 and 2 were obtained at tem-
peratures near the equilibrium temperature. Heat-transfer measurements
made by DeCoursin, Bradfield, and Sheppard (ref. 3) on various cones and
parabolic-arc configurations at ratios of wall-to-local-free-stream tem-
perature ranging from 2.0 to 4.8 are the only current wind-tunnel meas-
urements available for a range of surface-temperature levels. The lami-
nar data obtained on all models agree closely with the theory of Chapman
and Rubesin (ref. 5). However, the turbulent data obtained from the
cones did not agree closely with the theory of Van Driest (ref. 8).

Previously, the effects of surface temperature on transition have
been evaluated only at relatively low Mach numbers. Reference 7 reports
the effects of surface temperature and pressure gradient on transition
under the condition of large heat transfer. The models considered were
a 9.5%-apex-angle cone cylinder and a parabolic-nosed cylinder, each
with a nose fineness ratio of 6.

In this investigation, heat-transfer coefficients for the same two
models at zero angle of attack are reported for wall-to-free-stream
static-temperature ratios ranging from 1.0 to 4.4.

APPARATUS AND PROCEDURE

The investigation was conducted in the Lewis 1- by 1l-foot super-
sonic wind tunnel, which operates at a Mach number of 3.12. Tests were
made at various Reynolds numbers ranging from 2x106 to 12%106 based on
model length. The tunnel stagnation dew point was about -35° F at all
times. Further details concerning this facility may be found in
reference 7.

The dimensions and thermocouple locations of the models used to
obtain the heat-transfer data are shown in figure 1. Both models were
constructed from a nickel alloy with a wall thickness of approximately
1/16 inch. The cone cylinder was made of monel, whereas the parabolic-
nosed cylinder was fabricated from "K" monel. The maximum surface rough-
ness on each was less than 16 microinches. Each model was instrumented
with calibrated copper-constantan thermocouples of 30-gage wire. A typ-
ical tunnel installation is shown in figure 2. The theoretical wall-
pressure distributions for the two models are presented in figure 3.
These distributions were calculated using the second-order theory pre-
sented in reference 8.

Heat-transfer data were obtained by utilizing the transient tech-
nique described in detail in reference 7. Transient temperature
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distributions were obtained from data recorded on multiple-channel os-
cillographs. Data obtained prior to 30 seconds were not reduced. A
typical temperature history for the cooled cone is presented in figure
4. This distribution is, incidentally, similar to that obtained on a
heat-capacity cooled vehicle.

DATA REDUCTION
The general equation describing the transient heat-transfer process

for a cone having a thin wall is, with the local heat-transfer rate gq
per unit area,

9total = Y9convection & 9conduction = 9radiation - 9conduction to

in skin inside of model
or, more explicitly,
ST d2T 3T
W W 1 W
Prep, bt ST = [h(’_[’ad o TW)] + [ kT 2 i 4

(1)
9radiation ¥ 9conduction to
inside of model

(All symbols are defined in appendix A.)

The magnitudes of the radiation and conduction terms in equation
(1) were investigated in appendix B using experimental data. In all
cases, the radiation and conduction terms were less than 2 percent of
the total heat transferred and were therefore disregarded. When these
terms are eliminated from equation (1), the expression for the local
heat-transfer coefficient h becomes

ar
W
(4 ) Tl
_"o%p,b” TR (2)
Tad E Tw

When the experimental values of h were determined, the corresponding
values of free-stream Stanton number were computed from

The time rates of change of temperature were found from faired
curves by using either a five-point numerical differentiation or an
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optical differentiator. The optical differentiator was similar to that -
described in reference 9 plus the added provision for attaching it to a
drafting machine thus permitting a direct reading of the tangent angle.
Slopes obtained by both methods were found to have a maximum deviation
of +3 percent from the slope of an analytical curve. For most of the
data presented herein, the optical differentiator was used.

The adiabatic wall temperature T4 needed to evaluate the heat-

transfer coefficient is usually obtained with the model at the zero heat-
transfer condition. However, because of the effect of heat transfer,

the location of transition varied considerably from that obtained at
adiabatic wall conditions (see ref. 7). For this reason, the recovery
temperature was taken as

988¢%

TB,d = Tl + T](T' - Tl)

where the temperature recovery factor 17 = 4/Pr for laminar flow and

n = 2/?? for turbulent flow, with the Prandtl number Pr evaluated
at adiabatic wall temperature. In the cases that could be checked, the
experimental recovery temperatures agreed closely with those calculated
using the theoretical recovery factor.

A knowledge of the variation of specific heat with temperature of
the model material is required to apply equation (2) over a large tem-
perature range. The specific heat of monel has been established over
the temperature range of this investigation (refs. 10 and 11); however,
the specific heat of "K" monel is unknown. Since the composition of
"K" monel and monel are very nearly the same (table I), it was antici-
pated that the respective specific heats would be approximately equal.
To verify this assumption, the theoretical specific heats for monel and
"K" monel were evaluated using Kopp's rule (ref. 12) and compared with
the experimental values for monel. Figure 5 shows the result of this
comparison. The theoretical specific heats obtained for both alloys
agree closely with the experimental values for monel between 150° and
5000 R. As a result, the experimental specific heats for monel were
used to reduce the data. The disagreement that exists between theory
and experiment at the high temperatures is due to the inadequacy of the
theory in this temperature range.

The accuracy of the experimental data was determined from the esti-
mated uncertainties of the individual measurements entering into the de-
termination of the final results. (Appendix B explains the radiation and
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conduction errors.) The estimated uncertainties of the basic measure-
ments are given in the following table:

ISR GElcEme Es ST MDETCERID "eiel sl o hel e o kool SR G e S e e
B M 0L, PETeEnt v v 5. s w e o enaie e el T A T e E5

Specific heat of model wall material, p,b> Percenil iR C BT Th s e Sy £S5

Model wall temperature, T, ©R:
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G 2P e S S UTRe ,  PY s iDERCENTE . vt a, v te. ob sl shis et el el o Tl elh o ar ot s o 0N S
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Since the model wall thickness enters directly into the heat-transfer
calculation (see eq. (2)), the models were cut apart and the wall thick-
ness at the thermocouple locations measured accurately. This accounts
for the very small uncertainty in the wall thickness. The relative er-
ror of any parameter was determined from the uncertainies of its com-
ponents. A maximum relative error of +16 percent was found for the
Stanton number. In most instances, however, the data are so consistent
and vary so smoothly that the relative error is believed to be less than
this value.

At very low model temperatures (120° to 250° R), two condensation
films appeared on the model surface and subsequently evaporated as the
model temperature increased. An observer watching this phenomenon would
first see one film form and evaporate, and then the same process re-
peated for the second film. Thus, the measured temperatures were sub-
ject to error since the model was not receiving all the heat being trans-
ferred. In an attempt to ascertain the order of magnitude of the con-
densation error, several calculations were made and are presented in
appendix C. The calculations indicate that the condensation phenomenon
did not have an appreciable effect on the determination of heat-transfer

coefficients.

THEORETICAL CONSIDERATIONS

In this section, a brief summary of the presently available laminar
and turbulent theories which the designer has at his disposal is
provided.

Laminar Heat Transfer

Eckert (ref. 13) indicates that constant Prandtl number solutions
(e.g., Chapman and Rubesin, ref. 5) agree well with the solutions allow-
ing variation of the Prandtl number through the boundary layer (refs. 4
and 14 to 16) when the fluid properties are evaluated at a reference




6 NACA TN 3776

temperature. As a result, the isothermal theory of Chapman and Rubesin,
based on Eckert's reference temperature and converted by Mangler's trans-
formation (ref. 17), has been chosen as a basis for comparison with the
experimental data for the cone-cylinder model. With the exception of
the Chapman and Rubesin theory, all the aforementioned theories are lim-
ited to the flow over isothermal surfaces. However, all of them may be
used if the effects of an axial temperature distribution are accounted
for by the solution of either Chapman and Rubesin or Lighthill (ref. 18).

The importance of a variable surface temperature is illustrated
by considering a wall-temperature distribution that varies linearly with
distance from the leading edge and assuming that the leading edge is at
the adiabatic wall temperature. Theoretically, the heat-transfer coef-
ficient is about 65 percent larger than that obtained for a constant
wall temperature under the same conditions. If the wall temperature
varies as the square of the distance from the leading edge, the differ-
ence is 100 percent. It is interesting to note that the changes in heat-
transfer coefficient due to such a temperature gradient depend only on
the form of the gradient, and not on its magnitude. The effect on heat-
transfer rate, on the other hand, depends strongly on the magnitude of
the temperature gradient. Thus, the temperature variation along the
surface of a vehicle must be considered for an accurate interpretation
of heat-transfer data obtained from a nonisothermal surface when the
boundary layer is laminar.

The most convenient method of accounting for a temperature distri-
bution in a three-dimensional laminar flow is to transform it to the
equivalent two-dimensional distribution by Mangler's transformation (ref.
17) and apply Lighthill's theory, which states

n T(0) - Tyq £1/4 xE &
= xS b G €9 I 3/4 5/4 1/3
, (= £°7)

(3)

where T(O) is the leading-edge temperature, &€ is a dummy variable rep-
resenting distance measured in the x-direction, and h 1is the isother-
mal heat-transfer coefficient. For any sharp-nosed body of revolution,
the leading edge will rapidly approach the adiabatic wall temperature
because the rate of heat transfer near the leading edge is very large.
Thus, the first term on the right side of equation (3) becomes zero when
X 1is not zero. A sample axial temperature distribution on the cone is
presented in figure 6. Also included in figure 6 is the equivalent flat-
plate temperature distribution used in applying the Lighthill modifica-
tion. The figure illustrates how the experimental data were faired to
the adiabatic wall temperature for computation of temperature gradient
effects.

988¢




NACA TN 3776 7

Chapman and Rubesin (ref. 5), in their solution of the boundary-
layer equations, considered a surface temperature distribution that is
expressible as a polynomial in the distance from the leading edge. How-
ever, the Lighthill method is considerably simpler to apply than that of
Chapman and Rubesin because the surface temperature distribution need
not be expressed as a polynomial, but may be approximated by linear seg-
ments. Thus, for each segment, the derivative of temperature in the in-
tegrand of equation (3) is a constant and the integral may be evaluated.
Although Lighthill's theory is for incompressible flow, a comparison of
the two theories for a temperature distribution of the type
4 e R ax™ shows agreement within 3 percent for values of n up to

10. The practical application of Lighthill's theory is discussed in de-
ta il in - reference 19.

The analysis of Cohen and Reshotko (ref. 20) was used for compari-
son with the experimental data obtained on both the cylindrical section
of the cone-cylinder and the parabolic-nosed-cylinder models. Although
this theory is derived for a constant wall temperature, it does permit
arbitrarily large pressure gradients and heat transfer. However, as was
discussed previously, the heat transfer to a body is sensitive to sur-
face temperature gradients so that the theory of reference 20 is not ex-
pected to correlate closely with the uncorrected experimental data. It
might be anticipated, however, that the effect of the temperature gradi-
ent could be approximately accounted for by transforming the temperature
distribution to the equivalent two-dimensional distribution and then us-
ing Lighthill's theory.

Turbulent Heat Transfer

Many assumptions are incorporated in the existing theoretical anal-
yses of the turbulent boundary layer. Furthermore, mixed laminar and
turbulent flows have not been considered, necessitating an arbitrary
choice of the origin of the turbulent boundary layer. Also, none of the
current compressible theories account for a temperature distribution
downstream of the transition region. In view of the foregoing, the ex-
perimental turbulent-heat-transfer coefficients are not expected to agree
well with existing turbulent-boundary-layer theory.

Transient Effects

Although the preceding discussion is strictly applicable to steady-
state flow, it is possible to compare the experimental data with the the-
ories discussed if certain reservations are made. The restriction im-
posed is that the time rate of change of temperature appearing in the
energy equation must be small compared with the terms retained; then the
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boundary-layer flow at any time is well described by the steady-state
solutions. An order of magnitude analysis of the contribution of the
time rate of change of temperature indicates that, for the data pre-
sented herein, it is quite small.

RESULTS AND DISCUSSION

Experimentally determined Stanton numbers for the cone-cylinder
model at average wall-to-free-stream temperature ratios of 1.0 and 4.0
are presented in figures 7(a) and (b). Those obtained for the parabolic-
nosed cylinder at an average wall-to-free-stream temperature ratio of
1.0 are shown in figure 7(c). Also included in figure 7 for comparison
purposes are the laminar isothermal theory of Chapman and Rubesin (ref.
5) based on Eckert's (ref. 13) reference temperature, and the turbulent
isothermal theory of Van Driest (ref. 6). The experimental data pre-
sented in figure 7 have not been corrected for the axial temperature
distribution. The axial temperature distributions associated with
these data are presented in table ITI.

Effect of Total Temperature

Experimental Stanton numbers were obtained for the conical section
of the cone-cylinder model at total temperatures 523° and 630° R. These
data corrected for the axial temperature distribution are presented in
figure 8 and, as can be noted, the effect of changing the total tempera-
ture by this amount is negligible. Theoretically, no effect would be
expected for an average wall-to-free-stream temperature ratio of 1.0.

If the average temperature ratio is something other than 1.0, a small ef-
fect would be anticipated (approx. 1.5 percent for TW/TO = 2).

Effect of Axial Temperature Distribution and Temperature Level

Representative laminar data for the cone-cylinder model at average
wall-to-free-stream temperature ratios ranging from 1.0 to 4.4 are shown
in figure 9 corrected for the axial temperature distribution according
to equation (3). The first three or four data points at each Reynolds
number per foot (see fig. 7) are moved downward by the temperature gra-
dient correction. It should be noted here that what appeared to be an
effect of Reynolds number per foot in the uncorrected data of figure 7(a)
was actually the result of an axial temperature distribution. This com-
parison emphasizes the importance of accounting for the axial tempera-
ture distribution in calculating laminar-heat-transfer coefficients. As
illustrated in figure 9, the corrected cone data agree closely with the
theory at all temperature levels. However, if the fluid properties had
not been evaluated at the reference temperature of reference 16, the ex-
perimental data for a temperature ratio of 4.0 would have been
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approximately 20 percent higher than theory. Thus, when the reference
temperature concept is used, it appears that both analytically and ex-
perimentally there is very little effect of surface temperature level on
Stanton number.

Also included in figure 10 is a typical set of data (Re/ft =
4.5x106) obtained on the cylindrical section of the model. The data ex-
tend from a Reynolds number of 3.9x10° to 5.8x106. Note that the heat-
transfer coefficients on the cylinder are lower than the cone values and
approach the flat-plate values. This trend is to be expected and is pre
dicted closely by the theory of reference 20, which is included in fig-
ure 9. The discontinuity existing in the heat-transfer rate is the re-
sult of the discontinuity in the pressure distribution.

An empirical method of predicting the isothermal cylindrical heat-
transfer coefficients may be derived by calculating the heat-transfer
coefficient just downstream of the cone-cylinder shoulder using the the-
ory of reference 20 and by finding an equivalent two-dimensional heat-
transfer coefficient. The free-stream cylindrical heat-transfer coef-
ficient following the shoulder is given by

Nu
(i?.z) A\ Ve (2)
Stc Nu

Equation (4) reduces to

4 (pyuy)
Pyu
StCy " MCy tl,Cy Wl cy - C (5)
Bt

when the cylindrical pressure gradient is neglected and the ratio of
specific heats is 1.4. For a given Mach number and cone angle, the
Stanton number ratio in equation (5) is a constant. The quantities
in equation (5) with the subscript cy are evaluated immediately
downstream of the cone-cylinder Juncture, whereas those with the sub-
script c¢ are evaluated just upstream cof the Juncture. All terms
appearing in equation (5), except the exponent B, may be evaluated
from the pressure distribution. The exponent B may be found from
figure 4 of reference 20.
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The length of run (see following sketch) required to yield a two-

dimensional heat-transfer coefficient equal to the cylindrical coeffi-
cient defined in equation (5) is

X1
3c2

Xq =
The equivalent two-dimensional heat-transfer coefficient now becomes

St

= = (6)
el
DENflpst e

where, for convenience, the length of run is defined in terms of x and
xq rather than x5 + ¥ (see preceding sketch). Observation of figure

Stey

10 shows that equation (6) predicts the same trend and about the same
magnitude of the heat-transfer coefficients on the cylinder as reference
20. The use of equation (6) beyond the shoulder saves a considerable
amount of time as compared with reference 20 with little sacrifice in
accuracy.

Effect of Axial Pressure Distribution

A typical set of uncorrected data obtained from the parabolic-nosed
cylinder is presented in figure 10, with the isothermal theory of refer-
ence 20. As expected, the theory does not predict the absolute value of
the heat-transfer coefficient when the effect of temperature gradient is
neglected. In fact, near the tip the experimental values are as much as
25 percent higher than the theoretical values. However, the effect of
the temperature gradient may be accounted for approximately by assuming
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the pressure and temperature effects to be independent. Consequently,

it can be stated that
(2) = (E) (7)
h h
it

b

where the ratio of the heat-transfer coefficients for the flat plate has
been determined using the parabolic-cylinder-model temperature distri-
bution converted to the equivalent two-dimensional values by the Mangler
transformation (ref. 17). By accounting for the axial temperature dis-
tribution, the theory and experiment (fig. 10) now agree closely.

The local heat-transfer coefficients for the parabolic-nosed cylin-
der may also be calculated within 10 percent by considering the Mangler
transformation and neglecting the axial pressure distribution (fig. 10).
As a result, the ratio of the heat-transfer coefficient to the flat-
plate coefficient becomes

Sto 5 rlx ’Pwul (8)
Ste, PEn
b X =0
r2 dx
0

This was done previously for the cone-cylinder model with very little
loss in accuracy. If the parabolic nosed section only is of interest,
equation (5) will also predict the heat-transfer coefficients to within
10 percent. However, the use of equation (5) on the cylindrical section
will give heat-transfer coefficients 10 to 21 percent higher than those
predicted by the exact theory.

SUMMARY OF RESULTS

The following results were obtained from an investigation of the
convective heat-transfer properties of two bodies of revolution at a
Mach number of 3.12 and for Reynolds numbers to 12x106 based on model
length:

1. Experimental laminar-heat-transfer coefficients obtained on the
cone agreed closely with the theory of Chapman and Rubesin at all tem-
perature levels when the fluid properties were based on Eckert's refer-
ence temperature. Also, experimentally and theoretically there was no
significant effect of surface temperature level on the heat-transfer
coefficient.
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2. Laminar-heat-transfer coefficients obtained from the cylindrical
section of the cone-cylinder agreed closely with the theory of Cohen and
Reshotko, which considers the pressure distribution. An empirical
method of predicting the cylindrical heat-transfer coefficients was de-
rived neglecting the cylindrical pressure gradient. The method saves a
considerable amount of time with little sacrifice in accuracy.

3. The laminar data obtained from the parabolic-cylinder model
agreed closely with the theory of Cohen and Reshotko when the data were
corrected for the axial temperature distribution. The local heat-
transfer coefficients for this model may also be predicted to within 10
percent by neglecting the axial pressure distribution and considering
solely the Mangler transformation.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 5, 1956
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APPENDIX A

SYMBOLS
The following symbols are used in this report:

A model surface area, 0.48 sq ft

| a constant
) C constant
Cp pressure coefficient
cp specific heat at constant pressure, Btu/(1b)(°R)

h local heat-transfer coefficient, Btu/(sec)(sq ft)(°R)

h local heat-transfer coefficient for constant surface temperature
k thermal conductivity
H M Mach number

Nu Nusselt number

124 total pressure

P Prandtl number

P local static pressure

Q total heat-transfer rate

q local heat-transfer rate per unit area
Re Reynolds number, Req = pouox/po

T body radius

St dimensionless heat-transfer coefficient, Stanton number,

Stg = e TTEG
pOcp,auO
T temperature

i total temperature, ©R
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t time, sec

u velocity %
X distance along model surface

X axial distance, in.

€ emissivity parameter o
1) temperature recovery factor §
V! viscosity

3 dummy variable in x-direction (eq. (3))

o) density

o  Boltzmann's constant, 0.173x10-8 Btu/(hr)(sq ft)(°R)*

T wall thickness

Subscripts:

a air :
ad adiabatic wall -
b model material

c cone

CY cylinder
fp flat plate
P parabolic
s shoulder

T tunnel wall

W model wall
X axial direction
0] free stream ahead of shock wave

1 edge of boundary layer
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Superscripts:
B exponent

n number

15
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APPENDIX B

RADIATION AND CONDUCTION EFFECTS

The determination of local heat-transfer coefficients from equation
(2) assumes (1) no heat radiated from the tunnel walls to the model, (2)
no axial conduction of heat, (3) zero heat transfer to the air inside
the model, and (4) zero temperature gradient across the skin. A discus-
sion of the validity of these assumptions is presented herein.

The heat transferred by radiation from the model to the tunnel
walls was computed from the relation

Q = ooy A(T] - T%) (B1)

If the radiating bodies are in the form of two coaxial cylinders the sur-
faces of which radiate diffusely, the expression for ep ., becomes
J

i
Spow = (B2)

1 (r &
€y 6T Am

where Ap 1is the tunnel radiating area. Since the wind tunnel walls

are fabricated from stainless steel and the models were made from monel,
the values for the respective emissivities are taken to be 0.4 and 0.09.
This results in &p . equal to 0.089.

2

The condition under which the largest amount of heat is radiated
exists for a hot model at the lowest Reynolds number per foot. Using
7729 R for Ty and a turbulent recovery temperature of 493° F at the
tunnel wall results in a total heat-transfer rate Q equal to 0.006
Btu per second. Comparing this value with the average rate of heat
transfer by convection (Q = 0.294 Btu/sec) shows that the former is ap-
proximately 2.0 percent of the latter. However, for all other test con-
ditions, the error was less than 1.5 percent and was neglected.

The assumption of zero axial heat transfer was investigated by con-
sidering the most severe axial temperature distribution available at any
of the temperature ratios reported. Under these conditions, the axial
heat-conduction terms in equation (1) were evaluated. A comparison of
the heat-transfer rates due to conduction and to convection indicated
the former to be less than +2 percent of the latter. As a consequence,
the axial conduction terms in equation (1) were neglected in the compu-
tations of heat transfer.

988¢%
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The third source of error considered was the heat transferred from
the model to the inside air by conduction. Temperature-time histories
at various points within a model were recorded during a test run. From
this an average heat-transfer coefficient can be computed if the total
heat input over a finite time interval is known. The results of such a
calculation indicate that the heat loss to the inside of the model is
always less than 1/2 percent.

As mentioned in the report, the convective heat-transfer coeffi-
cient was computed from equation (2) which assumes a very thin model
skin. This means zero temperature gradient in the direction normal to
the flow. While the test models did not meet this specification rigor-
ously, it can be shown that the discrepancy in the heat-transfer calcula-
tion is unimportant. Consider the section abcd of the model wall shown
in the following sketch:

=—® I
b

%

(S d

As has been discussed previously, the heat transferred across the
boundaries ac and bd is negligible. Knowing this fact, the temperature
profile across the skin may be calculated. Heat was considered to flow
into the area in such a manner that the boundary ab experienced an ex-
ponential temperature rise. The actual temperature-time history used
was that of a typical model thermocouple. The analysis indicated that
the temperature was constant in the y-direction to within 1 percent of
the measured value. Consequently, the error incurred by the use of the
thin-shell concept for the heat-transfer computations is trivial.
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APPENDIX C

FEFFECT OF CONDENSATION ON HEAT TRANSFER

Since the physical characteristics of the condensation film are not
known, the absolute error due to condensation can not be estabilished.
Its order of magnitude may, however, be estimated.

First, the actual mechanism of condensation with the subsequent
evaporation is considered in relation to the model temperature. A com-
ponent of the air stream, upon condensing at a given axial station, will
release heat, thus causing the temperature to increase locally. The con-
densate will remain on the body and be heated as the body temperature
continues to rise. Subsequently, the film will reach its boiling point,
acquire its heat of vaporization, and evaporate. Thus, if the quanti-
ties of heat considered previously are significant, it is anticipated
that the model temperature would be influenced. At any rate, a notice-
able difference in the time rate of change of temperature should be ob-
served. A temperature history of the following type would be expected
at any given thermocouple location:

Evaporation occurs

Temperature,
R

Condensation occurs

Time, t, sec

A careful examination of the oscillograph traces does not reveal this
type of temperature distribution.

Any appreciable effect of a condensation film should also be ob-
served in a plot of heat-transfer coefficient against Reynolds number
for various times or temperature ratios. These plots have been made for
the cone-cylinder model at wall-to-free-stream temperature ratios rang-
ing from 1.0 to 4.0 (fig. 10). The data presented for temperature ra-
tios from approximately 1.0 to 1.7 were obtained with and without conden-
sation; whereas, data for the higher temperature ratios were obtained
without condensation. Since the heat-transfer coefficient is directly
dependent on the time rate of change of temperature, a comparison of
these data should show different variations with time. However, observa-
tion of figure 10 indicates no systematic variation of the heat-transfer
coefficient with time for either the hot or cold model.
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Although neither of the two arguments presented concerning the con-

densation phenomenon are decisive, they are physically reasonable. Con-
sequently, since the two effects discussed previously were not observed
in the experimental data, it was concluded that the determination of
local heat-transfer coefficients was not significantly influenced by the
condensation phenomenon.
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TABLE I. - COMPOSITION OF NICKEL ALLOYS

Material Composition,
percent
Monel "K" monel
Nickel 65.98 64.35
Copper 29575 29.58
Iron 1.40 1.00
Manganese .90 .60
Aluminum .40 3.40
Carbon .15 .13
Silicon .10 <05
Sulfur .01 .008

21




NACA TN 3776

TABLE II. - AXIAL TEMPERATURE DISTRIBUTIONS (Figs. 7 and 8)

(a) Cone-cylinder model.

Axial Cold
distance, <
v Axial temperature, T,, °R
J
in. Total temperature, T', CR
524 515 I 631 441 630 523
Reynolds number per foot, Re
8x106 | 4.5%106 | 2.25%x106 | 1.25%106 | 1.25%106
2 338.5 | 296.3 329.0 290.5 245.9
3 298.3 | 263.0 291.0 256.5 220.7
4 276.8 | 242.0 266.5 234.5 205.0
5 263.4 | 229.3 249.5 219.5 196.1
6 255.2 | 213.0 239.0 208.5 189.2
7 251.0 | 215.8 231.5 203.0 184.8
8 252.4 | 217.1 233.5 217.0 187.3
9 252.5 | 217.0 232.0 214.5 185.9
10 258.9 | 214.9 228.5 213.0 182.8
10.62 254.0 | 214.4 223.5 210.0 178.9
11.5 251.5 | 202.5 218.5 206.0 175.9
12.5 260.6 | 199.9 215.0 202.5 168.5
13.62 279.5 | 206.0 215.0 15,0 || e
AT |leceos || comoe 205.0 218.0 169.2
16 RIS | o || aemee || diees || ceoee
Axial Hot
distance, : o
- Axial temperature, Tx, R
>
in. Total temperature, T', °R
522 532 532 532 532
Reynolds number per foot, Re
8x106 | 6.75%x106| 4.5%x106 | 2.25%108 |1.25%108
2 597,80 [ ===== 690.9 723.0 743.8
3 589.0 | 626.4 709.0 748.3 764.5
4 591.5 | 610.0 684.9 758.3 772.0
5 610.3 | 624.0 660.4 760.0 773.4
6 Aol || e 661.9 752.8 773.9
7 617.5 | 628.4 663.9 734.0 769.9
8 620.3 | 628.0 664.8 717.3 766.1
9 624.0 | 633.0 666.3 713.0 766.0
10 623.8 | 633.1 667.5 710.0 755.7
10.62 638.9 | 645.0 678.5 707.5 752.0
11.5 645.8 | 653.9 687.3 728.0 751.9
13.62 637.9 | 643.0 678.2 718.8 740.2
14.75 641.2 | 647.0 678.9 716.0 726.7
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TABLE II. - Concluded.

23

AXTAL TEMPERATURE DISTRIBUTIONS (Figs. 7 and 8)

(b) Parabolic-nosed-cylinder model.

Axial Axial temperature, Ty, °R
distance,
X, Stagnation temperature, T', °R
in. 522 522 630 630 630 520
Reynolds number per foot, Re
8x106 [4.5%x106 | 4.5x108 | 2.25%106 | 1.25%10° | 1.25x106
AL 392.5 956, 9 442.6 294,17 194.8 2918
1058 598, 1 52128 359853 550, 8 3528.6 26145
2 340.2 303.6 374.0 328.6 2975 246.7
S 307.6 58 ) S35l 1 29155 266.8 220.8
4 296.5 261.4 SISO 274.4 249.8 VA
S 282.6 246.5 294.6 259.0 PO ik 200.4
6 2756 2ol o4 285.9 248.7 R S 195, 2
K 72655 228.5 e (o L 238:6 21645 186.0
8 2ol ol 220.6 2605 S 233.5 | ====- 180.6
9 256.8 21455 7550 2ol o6 206.0 6D
10 250.8 206.8 2435, 1 215 7 2019 11Z.4
]S 2D2.6 203.0 2562 2 20156 169.2
125 P6ila5 204.2 2507 206l | m—e== 172.8
g e e 2085 || 235.3 . F wals P Raast




lll
0 OZOE_,1 i
-
0.010" 9.5°
Thermocouple ’ 10.5% 7.5"
wire
X
Typical thermocouple installation
Thermocouple locations at axial distance, x, in.

4.0

5.0

6.0[7.0/8.0/9.0/10.0(10.62|11.50 12.50|13.62‘l4.75|16.00

(a) Cone-cylinder model.
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Contoured 10.5" [4

 section - [
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21 " \21

oL

Thermocouple locations at axial distance, x, in.
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Figure 1. - Details of models and thermocouple locations.

(b) Parabolic-nosed-cylinder model.
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- ¢+ CU-4

a Inlet for ligquid
nitrogen or hot air

(a) Shoe along tunnel wall.

Figure 2., - Tunnel installation.
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(b) Shoes in place.

Figure 2. - Tunnel installation.
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Pressure coefficient, Cp

il
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0]
1/
/

.02 -

(a) Cone-cylinder model.
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o8 il

N\
0 \
N\ L
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0 4 8 1L 16 20
Axial distance, x, in.
(b) Parabolic-nosed-cylinder model.
Figure 3. - Surface-pressure distribution for

two bodies of revolution at zero angle of
attack.
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Model wall temperature, Tw’ R
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Filgure 4. - Typical temperature history for
per foot, 8x106; axial distance, 4 inches.
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Specific heat, c Btu/(1b) (°R)
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3886
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Theoretical calculations for monel

10 and 11)

and "K" monel
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Figure 5. - Variation of specific heat with temperature.
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Model wall temperature, T , ORr

500
Y- Adisbatic wall temperature
460
s20 Y
2= ti:\\\\\\\\\
\ ~\\\\\> ///— Equivalent flat-plate temperature distribution
33 4
| —
340 G e
\
\\
\
300
Cone temperature distribution
. / y
260 ‘\\1
>~\__<>____J
220
(o] 2 4 6 8 10 12 14

Axial distance, x, in.

Figure 6. - Typical axial temperature distributions. Total temperature, 524° R; Reynolds
number per foot, 8x106.
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Free-stream Stanton number, Sto

3886
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H 1525 630
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2p - : Solid symbols indicate
H data ebtained from
it cylinder
e 1 T
- 1 T
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g Cone (refs. 5 and 13) i
1110 :
HH I Flat plate (refs. 5 and 13) 0
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Free-stream Reynolds number, Reg

(a) cola cone-cylinder model; initial temperature, 120° k; wall-to-free-stream temperature ratio, 1.0.

Figure 7. - Local laminar-heat-transfer coefficients at Mach number of 3.12.
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Free-stream Stanton number, Sty
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(c¢) Cold parabolic-nosed-cylinder model; initial temperature, 120° R; wall-to-free-stream temperature
ratio, 1.0,
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Figure 7. ~ Concluded. Local laminar-heat-transfer coefficients at Mach number of 3.12.




Free-stream Stanton number, Sto
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= per foot, P,
=2 Rey/ft o
2
A 1.25%x10° 630
vV 1.25 523
. I :‘ v
4
4N
N
1 HH .
B ’ T
SSESS ; i
2 (EEECED |
SEREE /
b Foi| T = ¥
=
i .
.6 =
. jé Cone (refs. 5 and 13 ) HH
.1 2 .3 4 .6 .8 1 2 3x106
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Figure 8. - Effect of tunnel total temperature on local laminar-heat-transfer coefficients
on cone-cylinder model. Initial temperature, 120° R; wall-to-free-stream temperature
ratio, 1.0.
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Free-stream Stanton number, Stg

9LLE NI VOVN

Initial Time, Reynolds Wall-to-
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Figure 9. - Effect of temperature ratio on local laminar-heat~transfer coefficients on cone-cylind d
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Figure 10. - Local laminar-heat-transfer coefficients on parabolic-nosed cylinder model. Initial tem-
perature, 120° R; total temperature, 522° R; Reynolds number per foot, 8x106.
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