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SUMMARY 

A low-speed investigation has been conducted in the Langley two
dimensional low-turbulence tunnel to study a sweptback wing-root air
inlet configuration believed suitable for transonic-speed jet-powered 
airplanes. The test configurations consisted of a basic model with an 
NACA 64-008 wing with quarter - chord sweepback of 450 mounted in the mid
wing position on a fuselage of fineness ratio 6 .7, and an inlet model 
which had a triangular-shaped sweptback inlet installed in the wing root. 
Installation of the wing -root inlet was accomplished with no significant 
effects on the force characteristics of the basic wing. The fuselage 
boundary layer entering the inlet was thin and required no boundary
layer-control device ahead of the inlet. Near unity inlet total 
pressure recovery was obtained to about 86 percent of the maximum lift 
coefficient over a large range of inlet - velocity ratio. Maximum local 
velocities over the external surfaces of the inlet sections were no 
greater than those over the wing at a midspan station for the assumed 
high-speed operating conditions . 

INTRODUCTION 

Inasmuch as efficient performance of a transonic - speed jet-powered 
airplane depends importantly on the attainment of high total -pressure 
recovery in the engine-air - inlet system (reference 1) and on minimum 
adverse effects of the inlet installation on the external aerodynamic 
characteristics of the "basic" airplane, careful consideration must be 
given the inlet design. The difficulties of attaining these design 
criteria are governed to a large extent by the location of the inlet on 
the airplane. Considerable design data exist for fuselage -nose and 
fuselage-side inlets and for inlets in the leading edges of unswept 
wings (for example, references 2 to 11) . However, little information 

lSupersedes t he recently declassified NACA RM L50I 01, "Low-Speed 
Wind-Tunnel Investigation of a Tri angular Sweptback Air Inlet in the Root 
of a 450 Sweptback Wing" by Arvid L. Keith, Jr., and J ack Schiff, 1950. 
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is available for design of air inlets located within the wing root, 
especially for the swept -wing case . 

An investigation is being made of a possible swept wing - root air 
inlet configuration for t r ansonic turbojet -powered airplanes. The pr es 
ent preliminary phase of this investigation was conducted at low speed 
in the Langley two - dimensional low- turbulence tunnel . The basic model, 
which was used as a reference configuration, consisted of an NACA 64 -008 
half - span wi ng wi th quarter -chord sweepback of 450 i n combination wi th 
a half - fus elage of fineness ratio 6 .7 . Installation of a triangular
shaped inlet in the wing root was a c complished by increasing the root 
chord and thickness . Two modifications were made to the original inlet 
model in attempts to extend the range of high- inlet - ram recovery to 
higher lift coefficients. Internal- and external -flow characteristics 
were evaluated from tuft, total- and static -pressure, and force 
measurements. 
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SYMBOLS 

drag coefficient, 

lift coefficient, 

inlet - velocity ratio, 

inlet area 

chord 

total pressure 

total-pressure loss between free stream and measuring station 

static pressure 

static -pressure coefficient, 

volume rate of flow 

dynamic pressure 

p - Po 

~ 

wing area of basic model (4 . 353 sq ft) 

wing section thickness, expr essed in per cent c 
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v velocity 

x distance from leading edge of wing or inlet 

angle of attack of wing-chord line 

5 nominal boundary-layer thickness ( defined as normal distance 

from surface to point where H - Po = 0.95\ 
qo / 

General subscripts: 

ext external 

int internal 

f fuselage (used only as CDf) 

i inlet 

o free stream 

T total 

MODEL CONFIGURATION 

The basic model consi sted of a semispan wing of 450 quarter-chord 
sweep mounted with zero incidence in the midwing position on a half
fuselage of fineness ratio 6 .7 (figs. I and 2(a)). The wing (table I) 
was composed of NACA 64-008 sections in the streamwise direction and had 
an aspect ratio of 4.0, a taper ratio of 0.6, no twist, and no dihedral. 
The fuselage was formed by rotating an NACA 652AOl5 airfoil section 
about its chord line. 

For the present phase of the investigation a long, thin triangle 
was selected arbitrarily as the inlet shape in order to avoid abrupt 
variations in the plan form and in the section thickness ratio of the 
wing and, at the same time, to minimize the amount of fuselage boundary 
layer entering the inlet. (See table II and figs. I and 2.) A high-speed 
design inlet-velocity ratio of 0.6 was selected as the minimum value for 
high-ram pressure recovery, based on previous experience with fuselage
side inlets. The size of the inlet relative to fuselage and wing was 

J 
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chosen to be representative of a typical single-engine jet airplane 
assumed to be flying at an altitude of 35,000 feet at a Mach number 
of 1.0. 

In order to permit installation of the i nlet, the quarter-chord 
wing sweep inboard of wing station 13.387 was increased to 550

, the 
wing chord was increased from the original value at wing station 1 3 . 387 
to twice the original value at wing station 5.387 (where the leading 
edge of the basic wing intersected the fuselage), and the wing-section
thickness ratio was increased linearly between these two stations from 
8 percent to 13 percent. (See table I.) The leading edge of the new 
inboard section of the wing was cut off along the line corresponding to 
the leading edge of the wing outboard of sta.tion 13.387, resulting in an 
increase in thickness ratio at station 5.387 to 16.4 percent. The inlet 
was then faired in around the selected triangular inlet shape from this 
new leading edge. 

Typical reference lines through the centers of the upper- a nd lower
inlet-lip radii used in fairing the inlet lips are shown in ta.ble II. 
As indicated by these lines, the triangular inlet was made asymmetrical 
by locating the center of its base below the chord line in order to 
provide a thick upper lip such as is desirable from the viewpoint of 
obtaining a high maximum lift coefficient. Lower-lip stagger, defined 
as indicated in table II, also was incorporated in each inlet configura
tion in order to improve the internal-flow characteristics at high angles 
of attack. 

Significant dimensions and features o~ the three inlet configura
tions investigated are compared in table II and figure 3. In the case 
of the original inlet, the triangle formed by the reference lines 
through the centers of the upper - and lower-lip radii had a width to 
maximum-height ratio of 3 .0; the lower - lip stagger was 200

. Both the 
external- and internal-lip surfaces incorporated the NACA l-series non
dimensional ordinates which were developed in reference 2. To form the 
external shape, these ordinates were applied from the inlet reference 
line rearward to the maximum-thickness station of the wing section; for 
the internal shapes, the ordinates were applied from the reference line 
rearward to a point 0 .5 inch back of the inlet lip. The outboard corner 
of the inlet was faired out by a 0.163-inch radius between the inner 
surfaces; this corner radius caused a flat in the leading edge of the 
wing outboard of the inlet which was faired out by a forward protrusion 
of the wing leading edge (fig. 4). 

The inlet a s fir st modified was exactly the same as the original 
inlet except that the lower lip was cut back to increase the lip stagger 
to 300

, and thi n fairings were added to the inner and outer surfaces of 
this lip to increase its thickness (table II and fig. 3). On the bottom 
surface of the wing, the thickening was accomplished by the introduction 
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of a flat section which extended from the maximum- thickness location to 
0.71 inch ahead of maximum thickness at wing station 5.387 and 2 . 72 inches 
ahead of the maximum thickness at wing station 11 . 387. The NACA l-series 
ordinates were then applied from the lip reference line to the start of 
this flat section rather than to the maximum-thickness station. 

In the final inlet, the lip stagger was further increased in the 
outboard part of the inlet, the upper - lip reference line was drooped, 
and the inner-lip fairings of both the upper and lower lips were 
thickened (table II and fig . 3) . At the same time greater lip thick
nesses in the vicinity of the nose were obtained by the substitution of 
elliptical ordinates for the NACA l - series ordinates used previously. 
The drooped top lip and the thicker inner - lip fairings reduced the mini
mum inlet-flow area approximately 12 percent. As shown in figure 4, the 
increase in lip stagger in the outboard part of the inlet eliminated the 
necessity for the protruded nose fairing used in the previous 
configurations. 

Dimensions of the external - and internal-lip shapes of the final 
configuration are presented in table III. Dimensions of the internal 
fairing of the upper surface of the duct necessitated by drooping the 
upper lip of the final configuration are given in table IV, and dimen
sions of wing-inlet junction station 13 are given in table V. 

METHODS AND TESTS 

Each of the several test configurations was mounted on a three
component tunnel balance system with the support point at fuselage sta-

1 
tion 29 (fig. 1). A 2- by 4-inch duralumin bar 40 inches long attached 

the wing tip to the balance. The clearance between the model and. each 
tunnel wall was 1/4 inch. Internal flow wa.s induced and controlled by a. 
variable-speed centrifugal blower and the flow quantity was measured by 
a calibrated orifice meter. The internal flow was discharged from the 
model in a direction normal to the tunnel walls and was then ducted 
through a frictionless seal to the blower . 

Inlet total-pressure recoveries were determined from measurements 
of shielded total-pressure tubes distributed spanwise along the inlet 
center line and in vertical planes at semispan stations 6.5 and 10. The 
shielded tubes had a O.050 - inch- outside - diameter total -pressure tube 
located directly in the center of a 1/8~inch-outside -diameter shield that 
was flared at the forward end. The rearward distance of these tube rakes 

from the lower lip varied linearly from 3t inches at the most inboard 

measuring station to 1 inch at the outboard station. Surface -pressure 
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measurements at wing stations 6.5 and 10 were obtained on the upper and 
lower lips by flush orifices which extended from well inside the lip to 
about 60 percent of the chord on the external surface. Other rows of 
surface-pressure orifices were provided at station 13, the transition 
section between the ducted -root section and the basic wing, and on the 
fuselage side near the wing-fuselage juncture. Fuselage orifices were 
also provided on the basic model. 

Boundary-layer surveys were made along the fuselage surface and 
just inside the inlet using a rake of 0.040-inch-outside-diameter total
and static-pressure tubes. The total tubes in this rake were flattened 
on the ends to a 0 .004-inch opening. These surveys were made with the 
fuselage nose aerodynamically smooth and with transition fixed at the 
nose by a 3-inch-wide band of roughness (0.008- to 0.012-inch-diameter 
carborundum grains). 

Flow directions on the fuselage, in and around the inlet, and on 
the wing were observed by a tuft on a wand. All model pressure measure
ments were recorded by photographing a multitube manometer. The dif
ferential orifice meter pressures were read visually from a multitube 
manometer. 

Although the force data are not correct quantitatively because of 
the type of model mount and the unknown tunnel-wall effects for this 
type of mount, the effects of addition of the wing-root inlet on the 
lift and external-drag characteristics can be determined by comparison 
of the inlet model and the basic model. In order to obtain comparative 
external drags, however, the drag equivalent of the internal flow of 
the inlet model must be removed from the measured drags. This operation 
was accomplished by use of the relations 

where 2(Ai/S)(Vi/Vo), v~lid for incompressible flow, is the drag equiv
alent of the loss in momentum of the internal flow caused by bringing 
the internal flow to rest in the stream direction before discharging it 
from the model (fig. 1). The term CDf is the drag coefficient cor
responding to the total-pressure losses of the entering flow as deter
mined from boundary-layer measurements just inside the entrance. 

Pressure surveys and force measurements of each configuration were 
conducted for a range of inlet-velocity ratios, 0 to 1.5, and for a 
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range of angles of attack, _100 to 300 . All tests were conducted at a 
tunnel airspeed of 100 miles per hour which corresponds to a Mach number 

of 0.13 and a Reynolds number of 1.4 X 106 based on the wing mean aero
dynamic chord. 

RESULTS AND DISCUSSION 

Results obtained with the original and modified inlets are first 
discussed briefly to indicate the considerations which motivated the 
inlet modifications and to show the extent to which these modifications 
affected the aerodynamic characteristics of the model. The final inlet 
model is then discussed in detail and compared with the basic unducted 
model. 

Original and Modified Inlets 

Total-pressure distributions at the center line and two vertical 
measuring stations of the original inlet are presented in figure 5; 
points where double symbols are used show that the total-pressure coef
ficient is constant between these two values of inlet-velocity ratio. 
At ~ = 00 (figs. 5(a), 5(b), and 5(c)), a total-pressure coefficient 
of nearly unity was obtained for the greater part of the inlet for inlet
velocity ratios of 0.59 and above. Tuft studies of the flow in and 
around the inlet showed that the large apparent losses in total pressure 
in the outboard section at inlet-velocity ratios less than 0.59 
(fig. 5(a)) were caused by misalinement of the measuring tubes with the 
flow due to spanwise outflow from this region. Localized losses in the 
outboard corner at the highest flow rate and in the inboard corner for 
all flow rates were caused by separation from the outboard-corner radius 
and intake of the fuselage boundary layer, respectively. A detailed 
discussion of the fuselage boundary layer will be presented later in the 
section entitled "Final Inlet." 

Small increases in angle of atta.ck caused insignificant changes in 
the inlet total-pressure distributions. As the angle was increased to 60

, 

however, formation of bubbles of separation at the inner surface of the 
lower lip in the outboard section of the inlet occurred at a Vi/Va just 
greater than 1.0, as indicated from tufts and from measurements obtained 
by a reference total-pressure tube near the surface. With further 
increases in angle of attack to 100, the flow in the outer third of the 
inlet was completely separated for most of the inlet-flow conditions; 
this separation caused large losses in total pressure (figs. 5(d) 
and 5(f)). 
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Incorporation of additional stagger and inner-lip thickness of the 
lower lip in the case of the modified inlet (table II) reduced the 
angularity of flow and tota.l-pre s sure losses in the outboard sect i on 
considerably at ~ = 00 (fig. 5(a)) and reduced the extent of the 
separated region for the high angle-of-atta.ck condition (figs. 5(d) 
and 5(f)). However, the total-pressure recovery still was unsatisfac
tory. For the final configuration, therefore, the lower-lip stagger 
and inner-lip thickness were further increased in the outboard region 
of the inlet, table II. 

Surface pressure distributions measured on the external lips of the 
original inlet (fig. 6) and the modified inlet were similar in nature to 
those measured on the NACA l-series cowlings of references 2 to 6; the 
curves for several test inlet-velocity ratios have been omitted for 
clarity in the figure. The ranges of inlet-velocity ratio and angle of 
attack for peak-free operation on these inlet lips, however, were much 
smaller than desired for an inlet of this type (fig. 7). Because of 
this consideration the upper lip of the final inlet was drooped in the 
outboard section of the inlet, and the internal and external lips were 
made blunter by replacing the NACA l-series ordinates with elliptical 
ordinates (tables II and III). 

Final Inlet 

Aerodynamic forces.- Compar i sons between the lift and external
drag characteristics of the basic-wing model and the final inlet model 
are presented in figures 8 and 9 for several inlet-velocity ratios. 
Installation of the ducted-root section did not cause any significant 
changes in the angle of zero lift or the lift-curve slope (fig. 8(a)) 
even for the zero-inlet-velocity-ratio case. Because of the thickened 
root, however, the minimum drag at low inlet-velocity ratios was some
what higher than for the basic wi ng (figs. 8(b) and 9). Increases in 
the inlet-velocity ratio effected reductions in drag such that at a 
value of 0:8 and above minimum externa.l-drag coeff icients comparable to 
the bas ic wing were obtained. 

In the region of near maximum lift of the wing, lift coefficients 
for the inlet model were slightly higher than those for the basic model, 
probably in part due to the additional l i ft of the fillet. Inasmuch as 
the lift coefficients of the inlet model in this region decrease regu
larly with increases in inlet-velocity ratio, it appears that a part of 
the increase in lift may also have been caused by a vortex type of flow 
(such as described in reference 12) originating from the outboard corner 
of the inlet; the strength of these vortices would be expected to 
decrease with increases in inlet-velocity ratio. The effect of increases 
in the inlet-velocity ratio on the external-drag coefficients for this 
range of lift coefficient was much more pronounced than for the 

I 
~.-~ 
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low-lift-coefficient range (fig. 9). The favorable effect of increases 
in inlet-velocity ratio on the drag coefficients at high lift is prob
ably due to a dec~ease in the boundary-layer growth and flow separation 
because of the decrease in the adverse pressure gradient near the 
leading edge of the wing'. 

9 

Flow over fuselage nose.- Static-pressure distributions over the 
fuselage nose in the plane of the wing chord are presented in figure 10. 
At an angle of attack of 00

, the maximum local velocity remained sub
stream up to an inlet-velocity ratio of about 0.6. Thus, as in the case 
of the transonic inlets discussed in references 5 and 6, adverse-shock-
boundary-layer interaction effects on the entering flow will probably be 
avoided up to some small supersonic Mach number; an inlet total-pressure 
recovery of 0.96 (He - Po) was obtained at the highest test Mach number 
of 1.19 for the fuselage-side inlet discussed in reference 6. With an 
increase in angle of attack to 100

, negative pressure coefficients 
occurred ahead of the inlet; this condition, however, represents a 
much lower flight speed attitude, so that no large adverse compress
ibility effects would be expected. 

The large pressure rise in the immediate vicinity of the inlet, at 
the lower inlet-velocity ratios, had important effects on the fuselage 
boundary layer. Total-pressure distributions within natural and arti
ficially thickened fuselage boundary layers are presented in figure 11 
for a position just inside the inlet. Nearly linear increases in 
boundary-layer thickness occurred with decreases in the inlet-velocity 
ratio from 1.5 to 0.40; with further decreases, the thickness increased 
more rapidly and the boundary layer soon separated. Upon fixing transi
tion at the fuselage nose, considerable increases in thickness occurred 
at the lower flow rates; the inlet-velocity ratio required to a.void 
separation, however, was increased only slightly. An increase in angle 
of attack to 100 caused some distortion in the boundary sublayer for 
both the natural- and fixed-transition cases, due probably to crosswise 
flow within the layer. The total thickness, however, was not materially 
affected by increases in angle of attack, nor was the separation-free 
inlet-velocity ratio increased significantly. Thus, boundary-layer 
control ahead of the entrance does not appear to be required for this 
type of inlet at speeds below which shock-boundary-layer interaction 
effects may become important. 

Growth of the fuselage boundary layer is summarized in figure 12. 
The effect of fixing transition at the nose was to increase the boundary
layer thickness everywhere rearward of this point. The fact that the 
curves for the two boundary layers are essentially parallel downstream 
of station 19 for each of the three inlet-velocity ratios shown again 
indicates that the minimum inlet-velocity ratio necessary to avoid sep
arated flow entering the inlet is relatively insensitive to the point 
at which transition occurs ahead of the inlet. 

---~ 
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Flow in inlet.- Static-pressure distributions around the nose sec
tions of the inlet are presented in figure 13. With increases in inlet
velocity ratio, the effective angles of attack of the inner surfaces of 
the inlet lips increased, as shown by the outward displacement of the 
positive-pressure region at the nose, and large negative-pressure peaks 
occurred on these surfaces. Inasmuch as the outboard inner-lip fairings 
were relatively thin, the effect of increasing inlet-velocity ratio on 
the maximum velocities over these surfaces, indicated by the minimum 
surface pressure coefficients (fig. 14), was much more pronounced than 
for the inboard sections. 

Total-pressure distributions at the center line and the two vertical 
stations of the inlet are presented in figure 15 for lift coefficients 
ranging from -0.39 to 1.01 and inlet-velocity ratios ranging from 0 
to 1.5; points where double symbols are used show that the total
pressure coefficient is constant between these two values of inlet
velocity ratio. At ~ = _50 (CL ~ -0.39) the flow separated from the 
inner surface of the upper lip in the outboard section of the inlet in 
the higher range of inlet-velocity ratio and caused large losses in 
inlet total pressure (fig. 15(a)). When the angle of attack was 
increased to _30 (CL ~ -0.22), however, visual tuft and manometer obser
Yations showed that separation from the upper lip did not occur at 
inlet-velocity ratios greater than 0.40, and a total-pressure coefficient 
of nearly unity was obtained over most of the inlet. The total-pressure 
recovery in the outboard corner of the inlet was reduced substantially 
at inlet-velocity ratios below 0.40 by a spanwise outflow along the face 
of the inlet. The flow phenomena and pressur~ recovery at an angle of 
attack of 00 (CL ~ 0.06) (fig. 15(b)) were essentially the same as that 
for ~ = -30 . 

Small increases in angle of attack above 00 caused no significant 
effects on the inlet total-pressure recovery (fig. 15(c)). With further 
increases in angle to 100 (CL ~0.83) small localized losses began to 
occur near the lower inner-lip surfaces (fig. 15(d)). At ~ = 12° 
(CL ~0.92), these losses in the outboard part of the inlet increased 
rapidly at any inlet-velocity ratio greater than 1.2 (fig. 15(e)), 
indicating the formation of bubbles of separation. These losses again 
were localized and did not cause appreciable changes in the distribu
tions. At an angle of attack of 150 (CL ~ 1.01), extensive separation 
occurred from the inner surface of the lower lip in the outboard section 
of the inlet (fig. 15(f)) and caused important losses in inlet total
pressure recovery at this point. The separation bubble had also pro
gressed toward the inboard section, but here the losses were confined 
to a region very near the surface. 

Average inlet total-pressure coefficients could not be determined 
accurately for the various test conditions because of the necessarily 
limited pressure-tube instrumentation in the outboard portion of the 
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inlet. Inasmuch as this parameter is important in determining the 
inlet performance, average inlet total-pressure recoveries were deter
mined by extrapolating the data obtained to this portion of the inlet. 
The ranges of inlet-velocity ratio and lift coefficient for which the 
inlet total-pressure recovery was 0.90~ or greater are presented in 
figure 16. For the range of inlet -velocity ratio from 0.4 to the maxi
mum test value of 1.5, low inlet losses were maintained to approxi
mately 86 percent of the maximum CL . (See fig. 8.) The assumed high
speed design inlet-velocity ratio of 0.6 for the present configuration 
is shown to be conservative; in the low-lift-coefficient ra.nge, inlet
velocity ratios as low as 0.3 could have been selected without incurring 
important inlet total -pressure losses. Lower values of Vi/Vo for the 
high-speed attitude would decrease the internal ducting losses and would 
result in correspondingly lower inlet-velocity ratios throughout the 
speed range. It is noted that the effect of inlet-velocity ratio on the 
external drag must also be considered in selecting a lower design inlet
velocity ratio. (See fig. 9.) 

Flow over external surfaces.- Static-pressure distributions over 
the inlet-lip sections and the inlet-wing transition section are pre
sented in figure 17; the curves of several test inlet-velocity ratios 
have been omitted for clarity in the figure. Excepting the upper sur
face of station 6.5, the thickest section, each of the several stations 
had sharp negative-pressure peaks on the nose at low inlet-velocity 
ratios. With sufficient increases in Vi/Vo to remove these localized 
pressure peaks, essentially uniform pressure distributions were obtained 
at the lower angles of attack. Inasmuch as the lower-lip sections were 
somewhat thinner than the upper sections, greater values of Vi/Vo were 
required to obtain uniform distributions over these surfaces. Increases 
in the angle of attack from 00 to 40 (CL ~ 0.40) caused much sharper 
nose peaks over the upper sections and required greater values of Vi/Vo 
to remove these peaks; the maximum test Vi/Vo was not sufficient to 
remove the nose peaks at the transition section at this angle-of-attack 
condition. With further increases in angle of attack to 60 (CL ~ 0 . 58), 
the maximum test Vi/Vo was not sufficient to remove the nose peaks for 
any of the upper-surface sections . Distributions over the upper surface 
of the wing at the midspan station (fig. 18) showed similar angle-of
attack effects. At ~ = 00

, the distribution was essentially uniform 
up to the maximum-thickness station. Increases in angle of attack 
produced sharp negative nose pressure peaks which increased in magnitude 
with further increases in angle. 

Minimum surface pressure coefficients for the several measuring 
stations over the inlet, indicative of the maximum local velocities over 
the external surfaces, are presented in figure 19 as a function of inlet 
velocity ratio. Included also, for comparison, are the minimum pressures 
over the upper surface of the wing at the midspan station; these pres
sures are denoted by points at zero-inlet-velocity r atio. Above an 
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inlet-velocity ratio of 0.80 the minimum pressures over the root inlet 
and the inlet-wing transition section were no greater than those for 
the midspan wing station over the lift-coefficient range of 0 to 
approximately 0 .40. An approximate method for converting low-speed 
values to equivalent values of the high-speed inlet-velocity ratio, 
presented in reference 3, indicates that peak-free operation will be 
obtained to an inlet-velocity ratio of 0.60 at a Mach number of 1.0, 
the values selected for high-speed operation in the present case. 
Experimental data obtained recently (references 4 to 6) indicate that 
peak-free operation may be maintained to even lower values of inlet
velocity ratio. Exact evaluation of the effect of installation of the 
wing-root inlet on the external-drag characteristics of the wing, how
ever, can be determined only by tests at high speeds. 

Wing-fuselage juncture effects.- Pressure distributions along the 
fuselage in planes equidistant above the upper surface of the wing of 
the basic model and of the inlet model are presented in figure 20. The 
pressure distributions and values of the minimum pressures for each con
figuration were approximately the same. It is believed, therefore, 
that installation of the present wing-root inlet should cause no severe 
adverse interference effects at high speed. 

SUMMARY OF RESULTS 

A low- speed investigation has been conducted in the Langley two
dimensional low-turbulence tunnel to study a sweptback wing-root air
inlet configuration believed suitable for transonic jet-powered air
planes. The more important conclusions of the investigation of the 
basic model and the final inlet model are summarized as follows: 

1. Installation of the ducted-root section had no significant 
effects on the external dra.g, angle of zero lift, lift-curve slope, or 
maximum lift of the basic model. 

2 . The fuselage boundary layer entering the inlet remained thin 
and did not separate even for inlet-velocity ratios considerably below 
the assumed high-speed design value; therefore, no boundary- layer
control device was required ahead of the inlet. 

3. Near unity inlet total-pressure recovery was obtained to about 
86 percent of the maximum lift coefficient for a large range of inlet
velocity ratio. 
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4. Minimum pressures over the external surfaces of the inlet, 
indicative of the local maximum velocities, were no greater than those 
at the midspan wing station for the assumed high-speed operating 
conditions. 

Langley Aeronautical Laboratory, . 
National Advisory Committee for Aeronautics, 

Langley Field, Va., August 25, 1950. 
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I 
TABLE I - DIMENSIONS OF BASIC AND DUCTED WINGS 

Basic wing Ducted wing 
Wing Total c t station c t 

(in. ) (percent c) c/4 sweep ( in. ) (percent c) c/4 sweep 
(a) 

0 22.347 8 45 0 

c 5.387 21.000 8 450 42.000 13 55° 

6.500 20.722 8 45° 38.160 12.3 55° 

8.250 20.2g, g 45° 32.076 1102 55° 

10.000 19.847 8 45° 26.060 10.04 55° 

12.000 19.347 8 450 20.4314- 8.80 55° 

d12.358 19.258 8 45° 19.938 8." 55° 

13.000 19.097 8 45° 19.323 g.10 55° 

13.137 19.063 8 14-5° 19.205 8 55° 

13.387 19.000 8 !t-5° 19.000 8 450 

18.000 17.847 8 45° 17.8q.7 8 450 

36.000 13.3!t-7 8 45° 13.347 g 45° 
~~--

(a) Chord before installation of inlet. 
(b) Leading edge of ducted wing coincident with leading edge of basic wing. 
(c) Juncture of fuselage with leading edge at fuselage station 20.00. 
Cd) Outboard corner of inlet. 

Inlet c 
( in. ) 
(b) 

33.325 

30.g14-9 

26.928 

23. 062 

19.572 

19·320 

19.102 

19.063 

19.000 

17.847 

13.314-7 

~ 

--L _________________ ~ 

f-' 
CJ\ 

~ n 
:t> 

~ 
\.>J 
\.>J 
CJ\ 

\.>J 



TABLE II - COMPARISON OF THE SEVERAL INLET CONFIGURATIONS 

sta. 6.5 
Sta.l0 

Sta.12 
I 

Reference linee through centers 
of nose radii 

Or1g1nal 

!ltation 
Dimensional qU~ 6.5 10 12 

Lip stagger, degrees 20 20 20 

Distance from upper reference .709 
line to chord line, 1nches 

.365 1.67 

Distance from lower reference 1. 732 .ggg .406 
line t o chord line, inches 

Upper inner lip thi"ckness .096 .055 .035 
measured from r efer ence 
line, inohes 

Lower inner lip thickness .192 .110 .070 
measured from ref erence 
line, inches 

Inlets 

Modified 

6.5 10 

30 30 

.709 ·365 

1·732 .ggg 

. 096 .055 

.21j.Q .155 

Lip ordinates, non-dimensional NACA l-ser1es 

M1nimum inlet area, sq in. 10·711- I 10.29 

Chord line 

12 6·5 

30 30 

.167 ·709 

.11-06 1·732 

.035 .150 

~105 ·300 

---------~------~~~~--------~ 

Final 

10 12 

11-1.23 62.26 

.251 -.011 

.ggg .406 

.15"0 .100 

.260 .177 

Ellipt1cal 

9.1j.Q 

~ 

~ 

~ 
~ 

f-3 
~ 

'->J 
'->J 
0\ 

'->J 

I-' 
-.J 



W1ng 
station 

5.3~7 

6.500 

~.250 

10.000 

12.000 

TABLE III- DlKEKSIOIiS OF FINAL WING-ROOT IUI;ET CONFIGURATION 

12°"' l r
' 13 .06~ 

Reference line 
through nose rad1us 

(All d1mens1ons 1n 1nches ] 

I ~~~~'~i-----
Iu 

-1-
It 

I • x~ Xf 

External surfaces (bl Internal surfaces (b) 

, 

hu Xu Yu Xs h~ X~ X;c Y~ XU1 YU1 X~l I~l 

O.~54 7.2~5 2.730 1.542 2.000 5·743 0 2.730 0.500 0.704 0·750 1.6~7 

.709 7.190 2·347 1.409 1.732 5·7~1 0 2.347 .500 .559 ·750 1.432 

.~o 7.041 1.~03 1.200 1.310 4.966 ' ·~75 1.~03 .500 .330 .750 1.030 : 

.251 6.905 1.30~ .991 .ggg 4.164 1·750 1·30g .500 .101 ·750 .62t! I 

-.011 6.910 .~99 .751 .406 3·409 2.750 .~99 .250 -.111 ~~ .229 i 
'--- I 

(al Rearward sect10n of upper 1nner lip faired from Xul ' ( See Table IV.l 

(bl External and 1nternal noae shapes determined from ellipt1cal ord1nates. 

(cl Flat on l ower surface. 

~ 

__ -L..--_~~ 

f-' 
CD 

~ 
() 
;t> 

~ 
\>J 
\>J 
0\ 
\>J 
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TABLE IV- ORDINATES FOR FAIRED UPPER INNER LIP SURFACE 
OF FINAL INLET CONFIGURATION 

/" 
/" 

/ 

'" ,/ 

[ All dimenSions in inches ] 

/' 
.--.- --

...---

--

_ _ 

t,,/(Refer_ence 
See Table III 

\ r----------

line 

' ...... - -~~ara11e1 
to chord 

'----- Chord line 

Station 6.5 Station 8.25 Station 10 Station 12 

XU2 YU2 XU2 YU2 XU2 YU2 XU2 YU2 

° ° ° ° 
·5°0 0.559 ·5°0 0·33° .5°0 0.101 .25° -0.110 
.7°° .5~9 .7°0 .3~0 .7°° .112 .3°0 -.1°9 
.9°0 .5 1 .9°0 .3 0 .9°0 .138 ·5°0 -.°92 

1.100 .566 1.100 .356 1.100 .178 .7°° -.066 
1.300 .57° 1.3°0 .~5 1.300 .222 .9°0 -.025 
1.500 .578 1.5°0 • 1 1·5°0 .270 1.000 -.001 
1·7°° •58l 1·7°0 .430 1.600 .284 1.100 .025 
1.900 .~9 1.9°0 .~5 1.7°° .30g 1·3°0 .°75 
2.100 • 05 2.000 • 2 1·75° ·310 1.5°0 .110 
2.3°0 .611 1.7°° .1~0 
2.5°0 .613 1.900 .1 4 

2.000 .145 
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TABLE V - ORDINATES OF WING-IIILE'!' JUNC'!'URE (S'!'ATION 13) FOR FINAL INLE'f CORFIGURATIOH 

J-----X----I 

N~CA 6~00g.1 section 
e = 19.102 i nches 

fair to 64-00g.1 section at X/c = O .~ 

x Yu Yt 

0 0 0 
.1~ .II-l. :ll .2 .58 
.52 .SO .68 

1.011- 1.l.l. .99 
1.55 1.~2 1.22 
2.59 1. 8 1.63 
3.89 2.04 2·05 
b·5O 2.~ 2.73 

1 .00 3· 3.05 
15.00 3.52 3.52 
20.00 ~.86 ~.86 
25.00 .~ .06 
30•00 

4'n 
4.17 

~.oo 11-.1 4. 1~ 
• 00 11-• 11-.0 

All yaluel giyen in percent of 
airfoil ohcrd 

- ---- --~- ---------
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"- - ---., 
f "-

1 

Fuselage sta. 0 
I 

20 
I I 
, I 

2932 

Model support pOint 

\ 
\ 

-----~ 

36 inches 

,., / 12·35g 
-----L.... - - _____ 5. 3 g7 

I 
I I 

Inlet duct to orifice 76 gO 
meter and blower ~ 

Figure 1.- General arrangement of inlet model in tunnel, bottom view. 
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(b) Final inlet model, plan view. 

Figure 2.- Continued. 
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NACA 

(c) Final inlet model, front view. 

Figure 2.- Continued. 
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(d) Final inlet model, side view. 

Figure 2.- Continued. 
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(e) Final inlet model, 3/4 front view from lower side. 

Figure 2.- Concluded. 
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Sta. 12.86 
I 
I 

Station 10 

Or1ginal Inlet 
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Final Inlet (See !able III) -----
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Figure 3.- Comparison of the three inlet nose shapes. 
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~-------------------------, 

Sta. 13 

nose for final inlet 

Initial nose 

raired nose for original and modified inlets 

Figure 4.- Comparison of nose shapes at station 13 for the three inlets. 
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Figure 5.- Continued. 
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Figure 19.- Minimum external surface-pressure coefficients of the final 
inlet model of the several measuring stations. 
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Figure 20.- Effect of increase in wing-root thickness on the fuselage 
pressure distribution at the wing-fuselage juncture of the final 
inlet model. 
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