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SUMMARy 

An investigation of the two-dimensional flow along flat plates 
having rounded leading edges has provided additional information on 
shock-induced separation. The results indicate that laminar boundary 
layers can sustain the theoretical pressure rise for normal shocks 
without separating provided that the local Mach numbers are less than 
about 1.4. The permissible pressure rise across shocks without 
boundary-layer separation on rounded-leading-edge airfoils having flat 
sides or convex surfaces was observed to increase with increase in 
angle of attack and proximity of shock to airfoil leading edge. 

INTRODUCTION 

There is much work available concerning the details of an estab
lished separated flow in the presence of compression shocks. (For 
example, refs. 1, 2, 3, and 4.) Other investigators have shown ~he 
detrimental effects of flow separation, not only on steady-state (time
average) flow conditions but also on unsteady force characteristics. 
(See refs. 5, 6, and 7.) A better understanding of factors affecting 
separation is therefore needed in order to evaluate the changes required 
to alleviate the separation, particularly on airfoils at transonic speeds. 

Investigations on airfoils (refs . 8 and 9) and in nozzles (ref. 10) 
have shown that the surface pressure rise through a shock is less than 
the theoretical value. Channel- flow studies (ref. 11) indicated that 
the surface pressure rise across the shock was modified by boundary 
layers so that the theoretical rise was not obtained. Later investi
gators (refs . 12 and 13) supported the experimental results of 
reference 11. 

Some recent measurements of the pressure distributions on two
dimensional flat plates having rounded leading edges showed pressure 
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rises through shocks that corresponded to theoretical normal-shock 
values . Information of this type at transonic speeds is useful in 
estimating the maximum oscillating panel loads on wings, as well as 
providing additional data concerning effects of shock on boundary layer. 
These transonic data have been studied and the results are presented 
herein . 

SYMBOlS 

M free -stream Mach number 

Ml Mach number at static -pressure orifice on model immediately 

p 

upstream of shock 

Mach number at static-pressure orifice on model immediately 
downstream of shock 

local Mach number 

free-stream static pressure 

static pressure at static-pressure orifice on model immedi
ately upstream of shock 

static pressure at s tatic-pressure orifice on model immedi
ately downstream of shock 

local static pressure 

free-stream dynamic pressure 

6p pressure increment across shock wave, P2 - Pl 

x distance along chord 

angle of attack, deg 

APPARATUS AND TESTS 

Tests on flat plates having rounded leading edges were conducted 
in the Langley 4- by 19- inch semi open tunnel operating as a direct 
blowdown tunnel from a supply of dry compressed air . (See fig. 1.) 
The tunne l test section was open along the top and bottom boundaries, 
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and the chambers extending beyond those two boundaries were connected 
by a duct. The test region and the calibration of the flow are as 
described in reference 14. 

3 

Each model had a 4-inch chord and completely spanned the 4-inch 
dimension of the tunnel. The models were mounted in circular end plates 
which maintained the continuity of the tunnel walls. The profiles were 
two-percent-thick flat plates and had rounded leading and trailing edges 
corresponding to various combinations of elliptical shapes with fine-

4 " " ness ratios of 0, 1, , and 10. The models are designated as a-b, 
where "a" is the fineness ratio of the leading edge and "b" is the 
similar notation for the trailing edge. For the present investigation, 
however, the trailing-edge shape has no significant effect and is neg
lected by designating it as "X." 

Data were obtained from schlieren photographs of the flow and pres
sure measurements along the surfaces of the models. The surface pres
sure measurements were obtained by means of 44 static-pressure orifices 
installed in the surfaces of the models and connected to a manometer 
so that the distribution of pressure along the surfaces could be recorded. 
Pictures of the flows were taken over the speed range at 00 angle of 
attack by using a 35-millimeter motion-picture camera and the technique 
described in reference 15. Since each picture had an exposure of 
4 microseconds, individual frames were selected as still photographs. 
The Mach number range of the tests extended from 0.70 to 1.0, and the 

corresponding Reynolds number range was from 1.8 X 106 to 2.1 X 106, 
based on the 4-inch chord of the models. 

DISCUSSION 

Flat Plates 

The variation of static pressures along the surfaces of flat plates 
at 00 angle of attack from the present tests, presented in figure 2, 
indicates that the changes in pressure in the vicinity of compression 
shocks (flagged symbols) are very large. The data in figure 2 show that 
the trailing-edge shape has no effect on the flows involved in this 
discussion and is designated hereafter as "X." 

Schlieren photographs of the flow past these models were obtained 
and are presented in figure 3 for "a_X" airfoils. The photographs and 
a study of the motion pictures of the flow past each of the two surfaces 
of the models (a = 00

) showed for the range of Mach numbers in figures 2 
and 3 (0.851 to 0.975) that the flow, in general, was unseparated at the 
shock. However, random occurrences of flow separation under the shock 
were observed; therefore it is indicated that the flow was verging on 
the condition for separation. (See, for example, the flow past the 
upper surface of the 4-x airfoil at a Mach number of 0.858 in fig. 3.) 
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As the free-stream Mach number was increased beyond the values in fig

ures 2 and 3 and approached 1.0, the shock moved rearward and approached 

the trailing edge. The pressure rise across shock became obscured at 

these high Mach numbers through a thickening of the boundary layer or 

flow separation. The flows presented in figures 2 and 3 represent the 

approximate limiting conditions for unseparated flow. 

The flow in the schlieren photographs of figure 3 appeared to be 

laminar ahead of the shock and generally became turbulent downstream of 

the shock. The flow could be expected to be laminar ahead of the shock 

because of the low Reynolds number of the flow in this region. Further

more, previous experience in this tunnel, during investigations on two

dimensional airfoils, with and without forced transition or roughness 

strips, provided additional evidence of this observation. 

The maximum pressure rise across the shocks without boundary-layer 

separation, obtained from the flagged symbols in figure 2, is presented 

in figure 4 as a function of the shock location. The curves in fig-

ure 4 are envelope curves of the maximum values for each of the three 

flat plates. The data show that the pressure rise decreases as the 

shock moves rearward along the airfoil surface. The rearward movement 

of the shock is accompanied with a growth in the boundary-layer thick

ness and a decrease in the Mach number upstream of the shock. The 

decrease in Mach number upstream of the shock is accompanied with a 

decrease in the theoretical pressure rise, and the shock adjusts its 

position along the flat plates so that the flow is verging on separation 

for the data presented. 

The decrease in pressure rise associated with rearward movement of 

the shock is similar to the effect of increasing Reynolds number on the 

pressure rise for separation of a laminar boundary layer observed in the 

case of supersonic flow. These data also show that an increase in 

leading-edge bluntness is accompanied with an increase in permissible 

pressure recovery across shock at any given chordwise location. 

Since an increase in leading-edge radius and an increase in angle of 

attack produce increases in the maximum induced velocity, it was of inter

est to examine data. at a higher angle of attack to see whether these 

effects of leading-edge radius or bluntness would be produced also by 

increasing the angle of attack. Pressure-distribution data at 20 and 40 

angles of attack were examined. Data for unseparated flow, similar to 

t hose in figure 4, were obtained from the pressure distributions at 20 , 

and a comparison of the d~ta at an angle of attack of 00 and 20 is pre

sented in figure 5. The results indicate that at low angles of attack 

an increase in angle of attack is accompanied with an increase in the 

obtainable pressure recovery. The results , furthermore, indicate a max

imum pressure ratio that can be sustained by the boundary layer before 

separation, inasmuch as both the mos t blunt and the medium blunt nose 

(l- X and 4-x) have the same values of pressure rise at an angle of attack 

of 20 . 
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The maximum pressure rise that the boundary layer can sustain across 
the shock without separation of the flow was obtained from figure 2 at 
an angle of attack of 00 and from similar data at an angle of attack 
of 20. These data are plotted in figure 6 as a function of the Mach 
number in front of shock and are compared with the theoretical pressure 
recovery for normal shocks. Although Mach numbers greater than 1.35 
ahead of the shock were observed in the tests, a Mach number of about 
1.35 appears to be the limit for the occurrence of uns~parated flow 
and, consequently, is the upper limit for agreement between theoretical 
and experimental pressure recoveries across the shock for these tests. 
Similar agreement between theory and experiment has been shown by some 
early investigators (ref. 8) to occur only in the flow field above the 
test model. Those flow-field results were measured at orifices in a 
static-pressure probe on which a laminar boundary layer would be 
expected to exist. Those measurements therefore can be considered to 
substantiate the data in figure 5. 

The pressure rises across shocks presented in figures 2 to 6 are 
for transonic flows past flat plates without utilizing artificial means 
of producing separation. In reference 4 and others, a purely super
sonic flow is forced to separate, and the pressure rises are measured 
between various selected positions within the separated flow. (See 
ref. 16.) The supersonic pressure recoveries in established separated 
flows are not comparable with the transonic shock-pressure recoveries 
for unseparated flows presented herein. In other words, the measured 
pressure rise across shocks in a separated flow is less than the rise 
before separation occurs, as indicated by references 1 and 16 and by 
an analysis of transonic airfoil data in reference 14. 

Airfoils 

The results for the flat plates have shown that, as a shock moves 
rearward, the maximum pressure ratio for shoc~ without separation 
decreases. On convex airfoils, however, the surface curvature is con
ducive to continuous increases in Mach number as the shock moves rear
ward. A rearward moving shock is accompanied with increases in shock 
strength and boundary-layer thickness and in the tendency of the flow 
to separate. As the free - stream Mach number is increased towards 1.0 
and the shock moves rearward along the convex surface of an airfoil at 
a fixed attitude, transition from unseparated to separated flow might 
be expected to occur at one point in the speed range. Hence, data for 
the condition of imminent separation are very difficult to isolate from 
existing airfoil data because of the discrete Mach number intervals 
between test points . 

A typical variation in the flow past an airfoil from existing data 
is shown in figures 7 and 8 (from investigation reported in ref. 9). 
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The data shown in figure 7 bracket , but do not isolate, the actual con
ditions of flow separation on the model surface. The data show the 
variation in local Mach number (based on local static pressure and free
s t ream total pressure) along the chord as affected by changes in the 
free - stream Mach number . At a free - stream Mach number between 0.680 and 
0.707, a measured Mach number immediately upstream of the shock Ml 

between 1 . 1 and 1. 18 is observed and is followed by a very rapid pres
sure rise that reduces the local measured Mach number downstream of 
shock ~ to values less than sonic velocity on the upper surface. The 

decrease roughly approximates that for a normal shock. 

As the free - stream Mach number M is increased, the local Mach 

number M1 also increases and laminar separation occurs. The laminar 
separation is indicated by the region of near-zero pressure gradient 
ahead of the shock, and the chordwise extent of the separation increases 
with rearward movement of the shock. (See also fig . 8.) The rearward 
shock movement is also accompanied with the continuous smoothing out of 
the abruptness of the transition from a steep pressure gradient to a 
more normal gradient along the airfoil surface at the rear of the dis
continuity . When the shock is moved well back on the airfoil, a smoothing 
of this pressure transition region also occurs ahead of the shock and 
is probably associated with a change from laminar separation to turbu
lent separat ion of large magnitude . (See fig. 8.) The flow on the 
lower surface is very similar . (See figs. 7(b) and 8.) 

A large amount of data from investigations reported in references 9 
and 14 were examined and points were chosen to correspond to the flows 
represented in figure 7 at Mach numbers between 0 . 680 and 0.707 for the 
upper surface and around 0.767 on the lower surface. The pressure rises 
obtained, expressed in terms of the pressure upstream of the shock, are 
presented in figure 9 as a function of the position of the shock x 
for a variety of airfoils and are compared with the measured pressure 
rises across the shocks without separation on the flat plates at an angle 
of attack of 20 . The data for the NACA 64A009 airfoil provided infor
mation at various angles of attack and showed that the pressure rise 
without flow separation increases with increase in the angle of attack. 
This result is in good agreement with the data on the flat plates. The 
increased slope of the data for the NACA 64A009 airfoil, however, is a 
result of the cumulative effects of increasing angle of attack and 
decreasing distance from the leading edge to position of shock. 

The pressure rises for the convex airfoils are presented as a 
function of the local Mach number immediately upstream of the shock Ml 
in figure 10 . The agreement of the data with the theoretical normal
shock values is similar to that observed for the flat plates in figure 6. 
The general agreement in the existence of a maximum local Mach number 
of slightly below 1.4 for unseparated flow, not only from the present 
investigation concerning laminar boundary layers but al~o from previous 
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investigations (for example, ref. 17 and discussion of Fage and Sargent's 
work in ref. 1) for turbul ent flow, indicates that at transonic speeds 
the maximum pressure rise without flow separation may not be too strongly 
influenced by the type of boundary layer on the surface. 

CONCLUDING REMARKS 

An "investigation at transonic speeds of the flow along flat plates 
having rounded leading edges has provided additional information on 
shock-induced separation. The maximum observed pressure rise across 
shocks for laminar boundary layers without separating on rounded-leading
edge airfoils having flat sides or convex surfaces increases with increase 
in angle of attack and proximity of shock to airfoil leading edge. 

The general agreement in the existence of a maximum local Mach 
number of somewhat below 1.4 for the occurrence of unseparated flow, not 
only from the present investigation involving laminar boundary layers 
but also from investigations for turbulent flow, indicates that at 
transonic speeds the maximum pressure rise obtainable without separation 
may not be too strongly influenced by the type of the boundary layer 
on the surface. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., July 23, 1956. 
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Diffuser 

Compressed- air line 

/' 
Induction jet /' 

Transition cone 
Variable area throat 

Exit cone 
End - plate assembly 

- AirfOil model 

Pressure- / 
equalizing duct -

Nozzle block 

Settling chamber ~ Entrance cone 

Air-supply manifold 

Figure 1 . - Langley 4- by 19 - inch semiopen blowdown tunnel. 
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THE I-X PROFI LE , M.,,0 . 85 1 

THE I - X PROFILE, M "0.874 

THE I-X PROFILE, M" 0 .927 

L-93585 
Figure 3.- Flow past the 2-per cent - thick flat plates . 
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THE I-X PROFILE , M = 0 .955 

THE 4-X PROFILE , M = 0.858 

THE 4-X PROFILE, M = 0 .943 

Figure 3 .- Continued . 
L- 93586 
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THE 10-X PROFILE, M = 0.887 

THE 10-X PROFILE, M = 0.942 

THE 10-X PROFIL E, M = 0.975 

L-93587 
Figure 3.- Concluded . 
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(a ) Upper surface. 

Figure 7·- Local Mach number distr ibutions of an NACA 23015 airfoil at 
an angl e of attack of 0°. 
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(b) Lower surface . 

Figure 7.- Concluded . 
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Figure 8 .- Flow past the NACA 23015 airfoil; ~ 0° . 
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Figure 9 .- Pressure recoveries on various NACA airfoils without separation. 



NACA TN 3820 

9 

II Ll 
8 

7 
/ 
~ ".,."-<h,o' theory 

6 

/~ 
.S ~ 

! 
'V 

0 

)t V III 
Cl 0 Q 

Cl 
Q) 

0 
. 3 

.4 

~ C' 

~J 
6. 

D 

'1w D 

\-J. . 
Lj 

. 2 

.1 

o 
1. 0 1.1 

Q 

Q 

1.2 1. 3 

27 

Airfoils 

6. 6hAOO4 
V 64AOO6 
LI 64AOO9 
D 6SAOO9 
o 64A206 o 64AS06 
o 23015 

1.4 1.S 1. 6 

Figure 10 . - A comparison of theor et ical and experimental pressure recoverie s 
across normal shocks on NACA a irfoils without separation. 
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