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the derivatives of the system output go to zero at the instant that the
output variable arrives at a steady=-state value.

The purpose of this study is to apply the method presented in ref-
erence 7 for determining the optimum switching criterion to a third-
order system having complex conjugate roots. Furthermore, this paper
presents a relatively simple analog-computer method for obtaining this
criterion and the resulting optimum transient responses.

In order to introduce the methods involved, the switching criterion
is first determined for a second-order system that is descriptive of an
ideal missile roll control system. The methods are then applied to a
third-order system that is descriptive of an ideal missile acceleration
control system. The application of this method to this system is com-
plicated by the presence of complex conjugate roots.

Transient responses of a third-order limited-linear system are also

included in this paper. These transient responses present a basis of
comparison for the optimum third-order contactor control systems.

SYMBOLS

BO:Bl:Bz:Bj)BM constants of integration

b constant coefficient in airframe normal-acceleration
transfer function, radians/sec

C nondimensionalized constant, c/b?

c constant coefficient in airframe normal-acceleration
transfer function, (radians/sec)?

E nondimensionalized system error

By nondimensionalized system error input

g acceleration due to gravity

P

Ky velocity constant of servomotor in normal-acceleration

control system, deg/sec/volt

Ko proportionality constant in limited-linear normal-
acceleration control system, volts/g unit
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s

feedback gain constant in limited-linear normal-
acceleration control system, volts/g unit/sec?

velocity constant of airframe transfer function in
roll control system, deg/sec/deg

static gain constant of airframe transfer function
in normal-acceleration control system, g units/deg

control-system normal-acceleration output signal,
g units

control-system normal-acceleration input signal,
g units

Laplace transform variable
roll-control-system or airframe time constant, sec
time, sec

coordinate of w phase space
locus of switching points in wp space
forcing function for mathematical analysis

actuating signal for servomotor, volts

control-surface deflection, deg
control-system actuating signal, g units or deg

characteristic roots of normal-ascceleration control
system

dimensionless time

control-system roll-angle output signal, deg

control-system roll-angle input signal, deg
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A dot over a quantity denotes the derivative with respect to time t.

A primed quantity denotes the derivative with respect to dimensionless
time T.

The subscript a is employed as a switching index (a = 0, 1, 2, and 3).

The subscript n 1s employed as a coordinate index (n=1, 2, and 3).

DEFINITIONS

Contactor: A nonlinear element which has an output constant in magni-
tude with the sign of the input and, furthermore, has zero output when
the input is zero.

Optimum transient response: A transient response that reaches the steady-
state value in a minimum of time with no overshoot.

Switching criterion: The system conditions at which contactor reversal
must take place to yield optimum transient responses.

Locus of first switching points: The locus of system coordinates required
to define the first contactor reversal points in an optimum contactor
control system.

Locus of second switching points: The locus of system coordinates
required to define the second contactor reversal points in an optimum
third-order contactor control system.

Zero trajectories: The phase-space trajectories passing through the
origin.

SYSTEM DESCRIPTION

Second-Order System

A block diagram of the first system considered in this investiga-
tion is given in figure 1(a). This system is descriptive of a missile
contactor roll control system. A step input ¢i to the system causes
an error € to be applied to the contactor element. The sign of this
error signal actuates the contactor which then applies a step aileron
deflection & +to the control surface. A reversal of the sign of the
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error signal when the error reaches zero causes a corresponding reversal
of the contactor output. In order to facilitate the analysis, & is
limited to t1°. The magnitude of the aileron deflection is included in
the airframe velocity constant. The performance of this system is char-
acterized by a large initial overshoot and a decaying oscillation.

The contactor system of figure 1(a) was then modified by the inclu-
sion of a computer element controlling the contactor input to cause an
optimum system respnse. Figure 1(b) is a block diagram of the modified
system. In response to a step input ¢i, this element actuates the con-
tactor which applies a step aileron deflection & to the airframe.
Unlike the system of figure 1(a), the sign of © 1s reversed before the
error reaches zero. In the optimum case, the sign reversal takes place
at the appropriate time to cause the error and the first time derivative
of the error to reach zero simultaneously. The return of the control-
surface servo to a neutral position removes the control-surface deflec-
tion, and the system remains at rest. The neutral relay position required
to keep the system at rest is not shown in the block diagrams; therefore,
figures 1(b) and 2 apply to the systems only when they are not at this
rest or steady-state position.

Third-Order System

A block diagram of the optimum third-order contactor control system
considered for this study is given in figure 2. The performance of this
system is similar to that of the optimum second-order system previously
described with the exception that, because of the order of the system,
the computer element must actuate the contactor in such a manner that
the error and its first two time derivatives go to zero simultaneously.
In order to accomplish this, a minimum of two switchings is required.

In response to a step input of acceleration, the contactor element of
the optimum third-order system applies a constant rate of pitch control-
surface deflection to the airframe. In a manner similar to the second-
order system, the contactor output is restricted to *¥1 by including the
actual magnitude of this output in the constant Ki. The resulting rate

of control-surface deflection 8 causes the error to decrease at an
increasing rate. Then, the contactor output is reversed. The error
continues to decrease but with a decreasing rate. Once more reversal
of the contactor output causes the error, the error rate, and error
acceleration to go to zero simultaneously. Figure 3 illustrates a typi-
cal response of this system to a step input of the controlled variable.
This figure contains time histories of €, &, €, OAp, and nj.
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Figure 4 is a block diagram of a limited-linear third-order normal-
acceleration control system. The forward loop gain Ko and the feedback

t
gain K3 of this system were adjusted to minimize J[‘ |e(t)|dt for a
0

5g step input.
METHOD OF ANALYSIS

The analysis is concerned with the determination of the switching
criterion necessary for the optimum performance of a contactor control
system. The mathematical analysis is based primarily on that developed
by Bogner in reference 7. The transfer-function coefficients used for
the systems discussed are presented in table T.

Second-Order System

The equation for the simple contactor roll control system shown in
figure 1(a) can be written as

2
738, 38 _ g8 il
at2 Tag T H ()

Inasmuch as € = ¢i - ¢, if only step inputs of position are considered,
equation (1) can be written:

d%e de
T — + — = -K);® 2
T 2
dits
Substituting € = & %E and performing the integration yields
% €+ ¢ -K;,;3 loge(é it Kﬁb) = Bp (3)

where By is the constant of integration. Equation (3) yields the phase

portrait for the system from which any of the possible system trajectories
may be obtained. For the system of figure 1(a), the sign of & reverses
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as € changes sign. A typical phase-plane plot of the response of the
system to a step input of position obtained from an analog computer is
shown in figure 5, and a transient response for this system is presented
in figure 6.

Evaluation of the constant of integration Bp in equation (3) for
the phase-plane trajectories through the origin gives

HI=

e+ & - Kb lOge<$+l> =0 (%)

Because of the dual value of & (that is, & = %1°), equation (k)
is actually two equations:

%“-e+é-Kuloge<l+K€—h)=O (5a)
1L . (5
T€+€+K410ge<—}{_l+'>=o (5b)

Inasmuch as there exists only one solution of the equation %g = f(é,e)

through each point in the phase plane, equations (5a) and (5b) represent
the only paths along which the representative point of the system may
enter or leave the origin. These are called the zero trajectories.

Figure T shows zero trajectories obtained from equations (5a) and
(5b) on an analog computer and by direct numerical substitution. Por-
tions of these zero trajectories will later be used for the optimum sys-
tem of figure 1(b), If equation (2) is set up on an analog computer, a
phase-plane plot of & against ¢ obtained as the representative point
moves from the origin with & = +1° will give curve oa of figure 7. Simi-
larly, a solution of the same equation with & = -1° yields curve ob.
The substitution of -t for + in equation (2) results in the following
equation:

dee de
MEEEC e 6
ate dt 48 ( )
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A phase-plane plot of ¢ against e obtained for equation (6) in a
similar manner from an analog computer with ©d = +1° and & = -1° yields
the curves oc and od, respectively, of figure 7. (See ref. 8.)

The segments of the zero trajectory od and oc entering the origin
can be utilized as the contactor switching curve. If the sign of & is
reversed at the instant a system trajectory first intersects a segment
of the zero trajectory entering the origin (at a point such as (a) in
fig. 5), the system trajectory will then follow the zero trajectory to
the origin and execute a deadbeat response. This switching criterion
will yield an optimum transient response.

The block diagram of the second-order system, modified by the addi-
tion of a computer element to reverse the sign of & when the represent-
ative point first intersects the switching curve, is presented in fig-
ure 1(b). This computer element senses the region of figure T in which
the representative point of the system trajectory lies, and produces the
proper contactor output. Whenever the representative point crosses the
segment of the zero trajectory leading to the origin, the contactor out-
put reverses. Finally, at the instant this point enters the origin, the
contactor output goes to zero. Figure 7 also illustrates typical phase-
plane responses of this system to step inputs of position, and figure 8,
a number of transient responses obtained on an analog computer.

Third-Order System

In the second-order contactor system, the switching criterion causes
cand ¢ to go to zero simultaneously. For an optimum third-order sys-
tem, it can be shown that e, %, and € must go to zero simultaneously.
It is shown in reference 7 that two switchings are required to do this.

In a third-order system the second or final switching curve in phase space
leads to the origin and, hence, is still called the zero trajectory. In
general, the locus of first switching points in a third-order system con-
sists of a surface containing the zero trajectory. If, however, the
inputs to the system are restricted to steps of the controlled variable,
the locus of first switching points becomes a line lying in this surface.

In the following analysis the equation for the third-order system
is presented. With the inpu}s restricted to steps of the controlled
variable, a pair of simultaneous equations for the locus of first switching
points is obtained. The zero trajectory is also developed from the equa-
tion for the system. An analog-computer method for obtaining this
switching criterion is introduced and used to check the analytically
derived criterion. Transient responses are then obtained from the con-
tactor system using this switching criterion.
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Analytical method.- A block diagram of the third-order contactor
acceleration control system studied is given in figure 2. The differen-
tial equation of the basic system in terms of the error variable can be

written as follows:

() + be(t) + cé(t) = KiKse A, (Ta)

In the appendix, where a complete derivation of the switching criterion
is presented, equation (7a) is nondimensionalized and written as

E"(t) + E"(7) + CE'(7) = A (7o)

Equation (7b) is in general form inasmuch as time and amplitude scales
may be adjusted for any desired undamped natural frequency and system
velocity constant. The results obtained can be applied to any similar
system with the same damping ratio (0.1L).

In the following analysis, after two transformations of variables,
the switching criterion is determined in terms of wy, wp, and LET

These transformations were used to facilitate the analysis. The varia-
bles wy, Wp, and Wz are defined by the following three equations:

wy(t) = E(7) + K;i3 E'(t) + K;X3 E" (1)
= - ._l_ ! R .

wa(T) . € s (1) | @
L R 7\52 5 }\22 1 a5 "

w5(T) i )\2?\5(7\5 - 7\2) Eflerea 7\27\5(?\3 - 7\2) e ]

where the characteristic roots of the system are represented by A.

In determining the loci of switching points, the variables wp,

are introduced. The locus of first switching points will be written
in terms of wy3, Woj, and w21 and the zero trajectory, or locus of




10 NACA TN 3743

second switching points, in terms of wyp, Wop, and W30 with both

loci lying in the wy, wp, and W3 phase space. It is shown in the

appendix that the locus of first switching points can be represented by
the following two equations:

15205 - %) 2205 - ) o
. 2 Ay (W21 ) jw51) ol 2 A (w21 * JW51> (9)
and
A2 (A5 - o) AoPhs 20 B
1 E\[1 - > A exp \wy] A wo1 + Jwzy + XEQ(AB g xe) =
Ao /N3
2 2
1 +14{/1 + AB (QBA; i ) exp (wqq %2%2 > Wop - ijl - > el )
3 (x3 - Mo

(10)

Figure 9 contains a plot in the wzwp plane of values of wp) and
w31 Wwhich satisfy equation (9). Inasmuch as equations (9) and (10) are
simultaneous equations, the values of wpy and Wz which satisfy equa-
tion (9) were substituted point by point into equation (lO), and the
resulting equation solved for wy;. The values of wy; thus obtained
are shown plotted against wpy and W3] in figures 10 and 11. This

numerical evaluation was done with a digital computer. Figure 12 is a
sketch of the locus of first switching points in the upper half of the
w phase space.

It is further shown in the appendix that the locus of second
switching points or zero trajectory can be expressed by the following
pair of simultaneous equations:

Bzl 2
2 . A2AZE N3 - Ao 2 A
<A2 + ng) - J 2 (15 -) W3p = Az~ exp szzz wio| +
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2
N oA
2 Wio| - ng exp

P2 -
2 2\  MPAz2(Ns - A
(s - %) - = ) v - As® exp

(12)

The W1Wz projection of the locus of second switching points is plotted

in figure 13. Because the inputs are restricted to steps of the con-
trolled variable, only the initial portion of this trajectory on either
side of the origin is used.

Analog-computer method.- The two loci of switching points can be
obtained by an analog-computer method. The determination of the switching
criterion by this method involves the use of the original equation for
the system (eq. (7b)) on an analog computer. Inasmuch as this equation
is used, the criterion can be obtained in terms of the original system
variables. However, for the presentation given here, the transformations
of equations (8) were incorporated with equation (7b) in the analog-
computer setup. This permitted the use of the analog-computer method
to check the analytical results.

Transformed system coordinates: The actual determination of the
switching criterion by an analog-computer method is accomplished in
three steps. First, the zero trajectory or locus of second switching
points is obtained. Second, the WZWD projection of the locus of the
first switching points is determined. Finally, after the complete space
trajectory of the locus of second switching points and the WzWp pro-

jection of the locus of first switching points are determined, the
remaining wj coordinates of the locus of first switching points are
obtained. In detail, this procedure is as follows:

(1) A solution is obtained in negative time from the origin of the
w phase space with *A. The resulting space curve is the path along
which all trajectories entering the origin must travel. As in the second-
order system, this space curve is called the zero trajectory.

(2) For step inputs (Wl,0,0) to the system in positive time, all
initial trajectories have the same WzWo projection. Any subsequent

switching from such initial trajectories must also have this projection.
Hence, the W3Wo projection of the locus of first switching points is

determined by operating the system in positive time with +A from the
origin or any point on the wj; axis and recording the WZWo projection

of the resulting trajectory.
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(3) The zero trajectory and the W2Wo projection of the locus of

first switching points have been determined. The w; values of the

locus of second switching points remain to be found. Figure 14 shows
the wzwp projection of these two loci. If the system leaves the ori-

gin (point o of fig. 14) in negative time along the zero trajectory and
A is switched at some point b between the origin and point a of curve oa,
the value of Wy recorded at the intersection of the resulting trajectory

and the WzW) projection of the locus of first switching points (points c,

d, e, and f of fig. 14) is the remaining coordinate of this space curve.
If the sign of A 1is again reversed at this intersection, the trajectory
will follow the locus of first switching points to the origin. By varying
the point on the zero trajectory where the system is first switched in
negative time, the space curve of the locus of first switching points can
be defined.

Values of the zero trajectory obtained by the method discussed are
plotted in figure 13 along with solutions of the analytical expression.
Projections of the locus of first switching points obtained with this
method are shown with digital-computer solutions of the analytical
expressions in figures 9, 10, and 11. It was found, during the analog-
computer determination of the locus of first switching points, that the
wy values associated with this space curve must be determined with care.
Because of the switchings involved, it is possible to introduce consider-
able error at this point.

The phase-space operation of the system in response to a step input
of the controlled varisble is shown in figures 15 and 16. The phase-
space trajectory begins with the initial value of error at point a. It
travels along curve ab of these two figures until it intersects the locus
of first switching points at b. At this point, the sign of A, is

reversed. This reversal changes the direction of the trajectory, which
now travels along curve bc until the zero trajectory is reached at
point c¢. Here the sign of A, is again reversed and the system travels

along the zero trajectory to the origin at point d.

Original-system coordinates: The analog method can be summarized
in terms of its use to determine the switching criterion in terms of an
original system error variable. The equation for the system is set up
on the computer and a solution for e(t) is obtained in negative time.

The trajectory e(-T1) = f[é(-T), e(-T1), 4] obtained in this manner is

the system locus of second switching points or zero trajectory. The

equation of the system is then set up in positive time and the projec-
tion of the trajectory in the ¢&(t)€(t) plane is recorded. This pro-
jection coincides with that of the locus of the first switching points
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in this plane. The remaining coordinate e(t) is obtained by plotting
the system trajectory on the €(t)€(t) plane as the system leaves the
origin in negative time and then reversing the sign of A wuntil the
trajectory intercepts the previously mentioned projection plotted in pos-
itive time. The value of e(t) at this intercept is the remaining
required coordinate of the locus of first switching points. The proce-
dure is repeated until sufficient points on this locus are established.

DISCUSSION OF THIRD-ORDER TRANSIENT RESPONSES

Transient responses obtained from the optimum contactor normal-
acceleration control system for several step-input amplitudes are shown
in figure 17. These responses are evaluated by comparison with those of
an equivalent limited-linear system. The linear system utilized for this
purpose is shown in the block diagram of figure 2. The maximum rate of
control-surface deflection of the linear system was limited to that of the
relay system. In addition, the forward loop gain Ko and the feedback

t
gain K5 of the linear system were adjusted to minimize JF le(t)ldt
0

for a step input of 5g. A series of transient responses obtained from
this system for several step-input amplitudes are shown in figure 18.

A comparison of figures 17 and 18 shows that in the optimum system over-
shoot is eliminated. In addition, this comparison also shows that there
is a considerable superiority in rise time of the optimum system for

input amplitudes below those at which the linear-system gains are adjusted.
For larger input amplitudes, this superiority is less because the limited-
linear system operates at its velocity saturation limit for a large per-
centage of the transient time. For the optimum case, the control surface,
in response to a positive unit step input n4, initially travels at a pos-
itive constant rate and then at the appropriate time travels at a negative
rate. At the second switching point, the control surface travels at the
positive constant rate again until the output n arrives at the steady-~
state value. This control-surface response is typical of the optimum
contactor control system and is proportional to the integral of Ar(t)

of figure 3.
CONCLUDING REMARKS

This paper presents a switching criterion that yields an optimum
transient response to step inputs of the controlled variable for a third-
order contactor system with complex roots. This optimum response has no
overshoot and arrives at a steady-state value in a minimum of time in
response to a step input of the controlled variable.
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Two methods of obtaining this switching criterion, a direct mathe-
matical method and the analog-computer method, are presented. In the
direct mathematical method, two transformations of variasbles were applied
to the original nondimensionalized equation of the system to determine
the equations of the two loci of switching points in the phase space.
The equations of these loci are in general form inasmuch as the time
scale of the transient outputs as well as the amplitude scale may be
adjusted for any desired undamped natural frequency and system velocity
constant for the given value of damping ratio. A digital computer was
utilized to obtain the actual coordinates of the switching loci after
the equations of these loci were established.

The analog-computer method, although lacking the accuracy of the
mathematical method, offers a relatively simple means of obtaining the
two loci of switching points. In addition, these loci can be determined
in terms of the original system error variable with no transformations.

The transient responses of the optimum system were compared with
those of the equivalent limited-linear system. The optimum contactor
acceleration control system is superior with respect to the time required
to reach steady-state values; however, for large step inputs of the con-
trolled variable, this time advantage is less because the limited-linear
system operates at the velocity saturation limit for a large percentage
of the transient time.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., May 10, 1956.
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APPENDTX
DERIVATION OF THIRD-ORDER SWITCHING CRITERION
Symbols
o 1 10
A matrix |[O (0] 1
0 1 =C «1
[0
G] matrix [0
A
iR transformation matrix
p-l inverse matrix P
a2
uy coordinates in space =—— (n = 1 2, and 5)
ar™
~u11
u] matrix |u,
bt
W principal coordinates of system (n = 1, 2, and 3)
[v1 |
v] matrix |vo
=
iEl

B = —jdl - L4¢

15
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Third-Order Switching Criterion

The basic form of the equation for the third-order system of fig-
ure 2 is

Ar~S(82+bs+c)

When € = n; - n and inputs are restricted to steps of ny 8O
that fy = fy = Hj = O, equation (A1) can be written as follows:

E(t) + be(t) + cé(t) = -KyKse An (A2)

This equation can be simplified with the following substitutions:

A

Is

-1
Il
(op
ct

This simplification results in
E"(7) + E"(7) + CE'(7) = A (A3)

Let

|

=
—~
1
~—

ul—

u, = E'(T1) (AL)

i
=

—~
-1
S—"

L)




NACA TN 3743

or

When

From equations (A3) and (A4) the following equations can be written:

dul
A
du2
dr
du5
dr

3

o)

*3

—Cu2 - u5 + A

In matrix notation, equations (A5) become

w| o
d
a — e
art v2

Lu5._‘ LC)

1.0l Tl el

-C -1 uz A

== ] =

g% ﬁ] =N uﬂ + G]

The roots of the characteristic equation are

JB = dl - 4C, these roots

0
N T
2
Il =
2

can be written as follows:

0 )

=g B
2

Il
—

-1 - 3B

17

(A5)

(A6)

(A7)

(A8)
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Introducing a new coordinate space v] with the transformation

matrix P so that

u] = P v] (A9)

permits writing the system equation (A7) in terms of the new coordinates
as follows:

é% v] = P~1aP v] + P-1 g (A10)

When the principal-coordinate transformation is applied, the
matrix P 1is determined so that the resulting P-IAP matrix is of the
diagonal form. This selection results in (see ref. 7T)

1 1 1]
P=0 N N (A11)
° 2 N3P

From equation (All), where -(%2 + KB) =1,

r_l _.];__ .__l_- —1
N3N 7\57\2
Bl =g 25 =1 (A12)
MCEEIRRACEED)

-2 1
)\5 (?\3 - 7\2) ?\5(7\5 - )\Q)J

After substitution of the values of equations (A11) and (A12) for
the transformation matrix and its inverse, the matrix P-1AP can be

evaluated as
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0O O 0
O N O
(0) (0] 7\5

19

(a13)

The substitution of equations (Al12) and (A13) into equation (A10) gives

& 0 [ —

Vi 0O O 0
d
T —_— V2 = 0 )\2 0

v 0O O A
iR ]

which is equivalent to

dV2
ar

dv5
dt

= 2%

Vi

Vo

= NoV2

r:]_ .L. ..._l_ i
A3ha Asha
0 "5 s
(M5 - xé> NCEED)
-2 1

0]

Azv3

L? A5 (N5 - xe) x5(x5 - xg)_

A

Ao

W
xg(x3 - xg)

PR e
2 (s - o)

(A1k)

(A15)

(A16)

Eliminating dt between equations (Al4k) and (Al5) and between equa-
tions (Al4) and (A16) and integrating results in the following equations:

Vl =
3 ?\227\5

A
log, [AoVs = —————1| + By
l: Ao (?\5 - ?\2)

(A17)
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A A
V] = log, |A\zvz + ——=——| + Bp (A18)
hohs e[:5 ; (s - kei}

Equations (A17) and (A18) can be solved to yield a zero trajectory
in terms of vy, vVp, and V3 and a locus of first switching points in

terms of these same variables. These variables are, however, complex.
In order to reduce these equations to real variables, it is first noted
that equation (A9) when solved for v] yields

Y] = p-l QJ (A19)

The substitution of equation (A12) into equation (A19) leads to the
following set of equations:

Vl = 'l.ll r )\2}\5 u2 S 5 -}\;‘—7\5 UB 1
) S S

i (X5 - R2) i (s - %) 2 .
_ A2 1

V3 " 7\5<7\5 - 7\2) HE ?\5(?\5 - 7\2) "3

The substitution of equations (A8) into equations (A20) gives

N\

v uy + t un + a u
al, & Ghl 2
B2 + 1 21 °
2 . (1 - 82) 2 ; 2
Vo= = — U+ J —t s - —=—— uz + ] —=——u
T i AT
2 ) 2 . 2
S - up - uz - j —————u
BT TR 2 BB ° B+l 0 T BEE+1)

B
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Inasmuch as vp and vz are complex conjugates and vy 1is a real

variable, the following change of variables will yield equations in terms
of real variables:

| W= Vg 1
Wp = Vo + V3
(A22)
)
| Substituting equations (A22) into equations (A21) yields
‘ W]l = ul + J+ u2 + )+ U.B ]
B2 + 1 B2 4+ 1
W2 = - )+ u2 - )-l- u3 $ (A2 )
BS + 1 B2 + 1 ?
-
B(B2 + 1) B(B2 + 1)
or, in terms of A,
1 1 )
Wq = + — +
1= 7o 27 Ay 3
i 1
Wo = - Un, = u L
Aoz A2z 3 (A24)
)\32 -+ ?\22 . i
W3 = -J U.2 e
)\2)\5 (}\3 - ?\2 ) )\2)\5 ()\3 - )\2)

- /
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Substituting equations (A22) into equations (Al7) and (A18) yields

A
A 2
Wy = log. |—=(wo + Jwz) - + By (A25)
w = =L log, igz(wg R [ S— % (a26)
Nohs (% - 22)
These two equations can be rewritten as follows:
2A
wo + ij - 5
N CEED < xgz)\)
= = exp|-By = 2]=8 (A27)
( 7\22?\5> A2 A 2
exp\wy —x
2A
N2 (g - N Nohz2
323 2)=£e>cp<-132 25>=Bu (a28)
( }\2)\52> 7\3 A
exXp |\ W1 A

A typical response of the system considered to a step input of the
controlled variable will begin at E(1) = Ej, E'(r) = 0, and E"(t) = O
and terminate at E(t) = 0, E'(t) = 0, and E"(7) = O in the El7)
phase plane. The initial point of this response will be called O, the
first switching point 1, the second switching point 2, and the terminal
point or origin 3. By using the transformations of equations (A24) and
the notation that wp at a point a along a trajectory becomes Wpg,
this response can be shown to begin at wy = Ej = w10, VWp = 0, w3z = 0
and terminate at wj = 0, wp =0, and wz =0 in the w phase space.

This response is shown schematically in the following diagram:
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Point 1, on locus of first switching points A

Point 2, on zero trajectory
A2= _Al \/\

Second trajectory
Gt Sl 5 |

Wl =
Wno = W
2 M Wp = Wy
e o,
W3 = Wsp
Point O w =0
Wy wo =0
W5 =80

Point 3
(Origin)

Pictorial diagram of typical W, Dphase-space trajectory

The first trajectory of this diagram is described by equations (A27)
and (A28) with /A; substituted for A. The constants Bz and Bj have

the same respective values at any point on this trajectory. If B3 is
evaluated from equation (A27) at point O and equated to B3 evaluated at
point 1 on this trajectory, the following equation can be written:

3 2N 2N
Wop + W5l = =
2 - ) a2(hs - )
A5 A2z
exP(%ll 5 exP(%lO AL

The application of this procedure to the three trajectories for both
B5 and By, results in the following six equations in terms of the ini-

tial and terminal points and the two switching points:
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From initial trajectory,

Wo1 + JW — il
21 D= -
A2 (7\5 - 7\2) s A2 (7\5 - 7\2)
2 B ; 2
oo ) g 227)
AL AL
b =1
ng - JW il 7
5 ?\52(7\5 - ?\2) B ?\52(7\5 - 7\2)
Aohs2 Aohs
from second trajectory,
2N 2N
W0 + JWBl + 5 Woo ot JW32 = 5
Ao (7\3 - 7\2) - No (7\5 - 7\2>
%22x5 %22x3
exp \-Wy N} exp |-w; ™
p ! : !
Mol = JWzl s Wop = JHzp =
N2 (s - Ro) 205 - %)
2 2
Moz ) Moz
exp \-Wq, 5 exp \-Wy o A
and from zero trajectory,
: !
woD + Jw o =
g Ao® (7‘5 - 7‘2> _ 20

A2 M2 (N5 - )
exp Wl2 Al

(A29)

(A%0)

(A31)

(A32)

(A33)
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2
Wop - Jw +
32 7s2(s - A2 ) ) o e
2
Aohs M2 (A5 - %)
exp W12 A&

The elimination of Wyp, Wpp, a8nd Wzp from equations (A29) to
(A34) yields the following two simultaneous equations in terms of wjj,
wop, and w51:

A (A - A) A= (hs - no) ks
e e ) - e va i )
and

M2 (As = N 2N 2N
7\2/7\3
M2(0 - No) < x2x32> on
.t - -
s | e A2 (s - A)

(A36)

Inasmuch as Wwyy, W21, and w31 represent the first switching point,
these two equations express the locus of first switching points.

Equations (A33) and (A34) can be manipulated to yield the wjwp
and the WoW3z projections of the zero trajectory as follows:

22 )
XQ K x = %2 12 k
o) - ) ).

2 Aoz
Ao“ exp o V1o (A37)
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TABLE I.- TRANSFER-FUNCTION COEFFICIENTS

b, radians/sec . . + .+ .

c, (radians/sec)?

K1, deg/sec/volt . . . .

Ko, volts/g unit . . . .
Kz, volts/g unit/sec?

Kl » deg/sec/deg
K5, g units/deg

T, sec . . .

NACA TN 3743

i . 6.65
e 518

o s o 14,0

. 0.317
e w we . JOAT
1,000

903

. s 0.1
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(a) Contactor roll control system.
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(b) Optimum contactor roll control system.

| Figure 1.- Block diagrams of the contactor and the optimum contactor
| second-order roll control systems.
\
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Figure 2.- Block diagram of the optimum third-order contactor normal-

acceleration control system.
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Figure 3.- Typical response of the third-order
control system to a step command

contactor acceleration
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Figure 4.- Block diagram of the limited-linear normal-acceleration control
system.
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Figure 5.- A phase-plane plot of the contactor roll control system in
response to a 5° step input. The zero trajectory for this system is
superimposed on the plane.
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Figure 6.- Transient response of the contactor roll control system to a
5° step input.
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Figure T.- Plot of the zero trajectories of the contactor roll control
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Figure 8.- Transient responses of the optimum contactor roll control system
for step roll-angle inputs.
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Figure 10.- Initial switching curve in the wywp plane for the optimum
contactor normal-acceleration control system.
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Figure 12.- Locus of first switching points in the upper half of the
w phase space of the contactor normal-acceleration control system.
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Figure 13.- Zero trajectory for the optimum contactor normal-acceleration

control system.
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Figure 14.- A phase-plane plot illustrating the method of determining
points on the first switching locus with an analog computer for the
optimum contactor normal-acceleration control system.
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contactor normal-acceleration control system.
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Figure 16.- A typical trajectory in the WéWi plane for the optimum
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Figure 18.- Normal-acceleration transient responses of the limited-linear
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