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the derivatives of the system output go to zero at the instant that the 
output variable arrives at a steady-state value. 

The purpose of this study is to apply the method presented in ref­
erence 7 for determining the optimum switching criterion to a third­
order system having complex conjugate roots. Furthermore, this paper 
presents a relatively simple analog-computer method for obtaining this 
criterion and the resulting optimum transient responses. 

In order to introduce the methods involved, the switching criterion 
is first determined for a second- order system that is descriptive of an 
ideal missile roll control system. The methods are then applied to a 
third-order system that is descriptive of an ideal missile acceleration 
control system. The application of this method to this system is com­
plicated by the presence of complex conjugate roots. 

Transient responses of a third -order limited-linear system are also 
included in this paper. These transient responses present a basis of 
comparison for the optimum third-order contactor control systems. 
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SYMBOLS 

constants of integration 

constant coefficient in airframe normal-acceleration 
transfer function, radians/sec 

nondimensionalized constant, c/b2 

constant coefficient in airframe normal-acceleration 
transfer function, (radians/sec)2 

nondimensionalized system error 

nondimensionalized system error input 

acceleration due to gravity 

velocity constant of servomotor in normal-acceleration 
control system, deg/sec/volt 

proportionality constant in limited-linear normal­
acceleration control system, vOlts/g unit 
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feedback gain constant in limited-linear normal­
acceleration control system, vOlts/g unit/sec2 

velocity constant of airframe transfer function in 
roll control system, deg/sec/deg 

static gain constant of airframe transfer function 
in normal-acceleration control system, g units/deg 

control-system normal-acceleration output signal, 
g units 

control-system normal-acceleration input signal, 
g units 

Laplace transform variable 

roll-control-system or airframe time constant, sec 

time, sec 

coordinate of w phase space 

locus of switching point s in wn space 

forcing function for mathematical analysis 

actuat i ng signal for servomotor, volts 

control-surface deflection, deg 

control-system actuating signal, g units or deg 

characteri stic roots of normal-acceleration control 
system 

dimensionl ess time 

control-system rOll-angle output Signal, deg 

control-sy stem roll-angle input signal, deg 

3 
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A dot over a quantity denotes the derivative with respect to time t. 

A primed quantity denotes the derivative with respect to dimensionless 
time T. 

The subscript a is employed as a switching index (a = 0,1, 2, and 3). 

The subscript n is employed as a coordinate index (n = 1, 2, and 3). 

DEFINITIONS 

Contactor: A nonlinear element which has an output constant in magni­
tude with the sign of the input and, furthermore, has zero output when 
the input is zero. 

Optimum transient response: A transient response that reaches the steady­
state value in a minimum of time with no overshoot. 

SWitching criterion: The system conditions at which contactor reversal 
must take place to yield optimum transient responses. 

Locus of first switching points: The locus of system coordinates required 
to define the first contactor reversal points in an optimum contactor 
control system. 

Locus of second switching points: The locus of system coordinates 
required to define the second contactor reversal points in an optimum 
third-order contactor control system. 

Zero trajectories: The phase-space trajectories passing through the 
origin. 

SYSTEM DESCRIPTION 

Second-Order System 

A block diagram of the first system considered in this investiga­
tion is given in figure lea). This system is descriptive of a missile 
contactor roll control system. A step input ¢i to the system causes 
an error E to be applied to the contactor element. The sign of this 
error signal actuates the contactor which then applies a step aileron 
deflection 5 to the control surface. A reversal of the sign of the 
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error signal when the error reaches zero causes a corresponding reversal 
of the contactor output. In order to facilitate the analysis, 5 is 
limited to ±lo. The magnitude of the aileron deflection is included in 
the airframe veloCity constant. The performance of this system is char­
acterized by a large initial overshoot and a decaying oscillation. 

The contactor system of figure l(a) was then modified by the inclu­
sion of a computer element controlling the contactor input to cause an 
optimum system respnse. Figure l(b) is a block diagram of the modified 
system. In response to a step input ¢i' this element actuates the con­
tactor which applies a step aileron deflection 5 to the airframe. 
Unlike the system of figure l(a), the sign of 5 is reversed before the 
error reaches zero. In the optimum case, the sign reversal takes place 
at the appropriate time to cause the error and the first time derivative 
of the error to reach zero simultaneously. The return of the control­
surface servo to a neutral position removes the control-surface deflec­
tion, and the system remains at rest. The neutral relay position required 
to keep the system at rest is not shown in the block diagrams; therefore, 
figures l(b) and 2 apply to the systems only when they are not at this 
rest or steady -state position. 

Third-Order System 

A block diagram of the optimum third-order contactor control system 
considered for this study is given in figure 2. The performance of this 
system is similar to that of the optimum second-order system previously 
described with the exception that, because of the order of the system, 
the computer element must actuate the contactor in such a manner that 
the error and its first two time derivatives go to zero simultaneously. 
In order to accomplish this, a minimum of two switchings is required. 
In response to a step input of acceleration, the contactor element of 
the optimum third-order system applies a constant rate of pitch control­
surface deflection to the airframe. In a manner similar to the second­
order system, the contactor output is restricted to ±l by including the 
actual magnitude of this output in the constant Kl. The resulting rate 

of control-surface deflection 5 causes the error to decrease at an 
increasing rate. Then, the contactor output is reversed. The error 
continues to decrease put with a decreasing rate. Once more reversal 
of the contactor output causes the error, the error rate, and error 
acceleration to go to zero simultaneously. Figure 3 illustrates a typi­
cal response of this system to a step input of the controlled variable. 
This figure contains time histo'ries of E, E, €, 4:, and ni. 
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Figure 4 is a block diagram of a limited-linear third-order normal ­
acceleration control system . The forward loop gain K2 and the feedback 

t 
gain K3 of this system were adjusted to minimize ~ IE(t)ldt for a 

5g step input . 

METHOD OF ANALYSIS 

The analys i s is concerned with the determination of the switching 
criterion necessary for the optimum performance of a contactor control 
s ystem. The mathematical analysis is based primarily on that developed 
by Bogner in reference 7. The transfer- function coefficients used for 
the systems discussed are presented in table I. 

Second-Order System 

The equation for the simple contactor roll control system shown in 
figure l(a ) can be written as 

(1) 

Inasmuch as E = ¢i - ¢, if only step inputs of position are considered, 
equation (1) can be written : 

( 2) 

Substituti ng • dE E = E and performing the integration yields 
dE 

where BO is the constant of i ntegration. Equat ion (3) yields the phase 

portrait for the system from which any of the possible system trajectories 
may be obtained . For the system of figure l(a), the sign of 5 reverses 



NAeA TN 3743 7 

as E changes sign. A typical phase-plane plot of the response of the 
system to a step input of position obtained from an analog computer is 
shown in figure 5, and a transient response for this system is presented 
in figure 6. 

Evaluation of the constant of integration BO in equation (3) for 
the phase-plane t rajectories through the origin gives 

Because of the dual value of 5 Cthat is, 5 
is actually two equations: 

o 

o 

o (4) 

tlO), equation (4) 

Inasmuch as there exists only one solution of the equation ~! = fCE,E) 

through each point in the phase plane, equations C5a) and C5b) represent 
the only paths along which the representative point of the system may 
enter or leave the origin . These are called the zero trajectories. 

Figure 7 shows zero trajectories obtained from equations (5a) and 
C5b) on an analog computer and by direct numerical substitution. Por­
tions of these zero trajectories will later be used for the optimum sys­
tem of figure lCb), If equation (2) is set up on an analog computer, a 
phase-plane plot of E against E obtained as the representative point 
moves from the origin with 5 +10 will give curve oa of figure 7. Simi­
larly, a solution of the same equation with 5 = _10 yields curve ob. 
The substitution of -t for t i n equation (2) results in the following 
equation: 

dE 
dt 

(6) 



8 NACA TN 3743 

A phase -plane plot of E against E obtained for equation (6) in 
similar manner from an analog computer with 5 = +10 and 5 = _10 

the curves oc and od, respectively, of figure 7. (See ref. 8.) 

a 
yields 

The segments of the zero trajectory od and oc entering the origin 
can be utilized as the contactor switching curve. If the sign of 5 is 
reversed at the instant a system trajectory first intersects a segment 
of the zero trajectory entering the origin (at a point such as (a) in 
fig. 5), the system trajectory will then follow the zero trajectory to 
the origin and execute a deadbeat response. This switching criterion 
will yield an optimum transient response. 

The block diagram of the second-order system, modified by the addi­
tion of a computer element to reverse the sign of 5 when the represent­
ative point first intersects the switching curve, is presented in fig­
ure l(b). This computer element senses the region of figure 7 in which 
the representative point of the system trajectory lies, and produces the 
proper contactor output. Whenever the representative point crosses the 
segment of the zero trajectory leading to the origin, the contactor out­
put reverses. Finally , at the instant this point enters the origin, the 
contactor output goes to zero. Figure 7 also illustrates typical phase­
plane responses of this system to step inputs of pOSition, and figure 8, 
a number of transient responses obtained on an analog computer. 

Third-Order System 

In the second-order contactor system, the switching criterion causes 
E and E to go to zero simultaneously. For an optimum third-order sys­
tem, it can be shown that E, E, and E mqst go to zero simult aneously. 
It is shown in reference 7 that two switchings are required to do this. 
In a third-order system the second or final switching curve in phase space 
leads to the origin and, hence, is still called the zero trajectory. In 
general, the locus of first switching points in a third-order system con­
sists of a surface containing the zero t rajectory . If, however, the 
inputs to the system are restricted to steps of the controlled variable, 
the locus of first switching points becomes a line lying in this surface. 

In the following analysis the equat ion for the third-order system 
is presented. With the inputs restricted to steps of the controlled 
variable, a pair of simultaneous equations for t he locus of firs t switching 
points is obtained. The zero traject ory is also developed from the equa­
t ion for t he sy stem. An analog-comput er method for obtaining t his 
switching criterion is introduced and used to check the analytically 
derived criterion. Transient responses are then obtained from the con­
t actor system using t his swi t ching criterion. 
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Analytical method.- A block diagram of the third-order contactor 
acceleration control system studied is given in figure 2. The differen­
tial equation of the basic system in terms of the error variable can be 
written as follows: 

In the appendix, where a complete derivation of the switching criterion 
is presented, equation (7a) is nondimensionalized and written as 

(7b) 

Equation (7b) is in general form inasmuch as time and amplitude scales 
may be adjusted for any desired undamped natural frequency and system 
velocity constant. The results obtained can be applied to any similar 
system with the same damping ratio (0.14). 

In the following analysis, after two transformations of variables, 
the switching criterion is determined in terms of wl' w2' and w3. 

These transformations were used to facilitate the analysis . The varia­
bles wl' w2' and w3 are defined by the following three equations: 

(8) 

where the characteristic roots of the system are represented by A. 

In determining the loci of switching points, the variables wna 
are introduced. The locus of first switching points will be written 
in terms of wll J w21' and w31 and the zero trajectory, or locus of 
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s econd switching pOints, in terms of w12' w22' and w32 with both 

loci l yi ng in the wl, w2, and w3 phase space. It is shown in the 
appendix that t he locus of first switching points can be represented by 
the following two equations: 

and 

1 ± 1 -

(10) 

Figure 9 contains a plot in the w3w2 plane of values of w21 and 

w3l which satisfy equation (9). Inasmuch as equations (9) and (10) are 

simultaneous equations, the values of w2l and w3l which satisfy equa­

t ion (9) were substituted point by point into equation (10) , and the 
resulting equation solved for wll' The values of wll thus obtained 
are shown plotted against w21 and w31 in figures 10 and 11. This 
numerica l evaluat ion was done with a digital computer. Figure 12 is a 
sketch of the locus of first switching points i n the upper half of the 
w phase space . 

It is further shown in the appendix that the locus of second 
switchi ng points or zero t r a jectory can be expressed by the following 
pair of s imultaneous equations: 
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(12) 

The wlw3 projection of the locus of second switching points is plotted 

i n figure 13. Because the inputs are restricted to steps of the con­
trolled variable, only the initial portion of this trajectory on either 
side of the origin is used. 

Analog-computer method.- The two loci of switching points can be 
obtained by an analog-computer method. The determination of the switching 
criterion by this method involves the use of the original equation for 
the system (eq. (7b)) on an analog computer. Inasmuch as this equation 
is used, the criterion can be obtained in terms of the original system 
variables . However, for the presentation given here, the transformations 
of equations (8) were incorporated with equation (7b) in the analog­
computer setup. This permitted the use of the analog-computer method 
to check the analytical results. 

Transformed system coordinates: The actual det~rmination of the 
switching criterion by an analog-computer method is accomplished in 
three steps. First, the zero trajectory or iocus of second switching 
points is obtained. Second, the w3w2 projection of the locus of the 
first switching points is determined. Finally, after the complete space 
trajectory of the locus of second switching points and the w3w2 pro-

jection of the locus of first switching points are determined, the 
remaining wl coordinates of the locus of first switching points are 
obtained. In detail, this procedure is as follows: 

(1) A solution is obtained in negative time from the origin of the 
w phase space with t6. The resulting space curve is the path along 
which all trajectories entering the origin must travel. As in the second­
order system, this space curve is called the zero trajectory. 

(2) For step i nputs (wl'O,O) to the system in positive time, all 
init i al trajectories have the same w3w2 projection. Any subsequent 

switching from such i nitial trajectories must also have this projection. 
Hence, the w3w2 projection of the locus of first switching points is 

determined by operating the system in positive time with t6 from the 
origin or any point on the wl axis and recording the w3w2 projection 

of the resulting trajectory . 
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(3) The zero trajectory and the w3w2 

first switching points have been determined. 
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projection of the locus of 

The wI values of the 
locus of second switching points remain to be found. Figure 14 shows 
the w3w2 projection of these two loci. If the system leaves the ori-
gin (point 0 of fig. 14) in negative time along the zero trajectory and 
6 is switched at some point b between the origin and point a of curve oa, 
the value of WI recorded at the intersection of the resulting trajectory 

and the w3w2 projection of the locus of first switching points (points c, 

d, e, and f of fig. 14) is the remaining coordinate of this space curve. 
If the sign of 6 is again reversed at this intersection, the tra jectory 
will follow the locus of first switching points to the origin. By varying 
the point on the zero trajectory where the system is first swit ched in 
negative time, the space curve of the locus of first switching points can 
be defined. 

Values of the zero trajectory obtained by the method discussed are 
plotted in figure 13 along with solutions of the analytical expression. 
Projections of the locus of first switching points obtained with this 
method are shown with digital-computer solutions of the analytical 
expressions in figures 9, 10, and 11. It was found, during the analog­
computer determination of the locus of first switching points, that the 
WI values associated with this space curve must be determined with care. 
Because of the switchings involved, it is possible to introduce consider­
able error at this point. 

The phase-space operation of the system in response to a step input 
of the controlled variable is shown in figures 15 and 16 . The phase­
space trajectory begins with the initial value of error at point a. It 
travels along curve ab of these two figures until it intersects the locus 
of first switching points at b. At this point, the sign of ~ is 

reversed. This reversal changes the direction of the trajectory, which 
now travels along curve bc until the zero trajectory is reached at 
point c. Here the sign of Dr is again reversed and the system travels 

along the zero trajectory to the origin at point d. 

Original-system coordinates: The analog method can be summarized 
in terms of its use to determine the switching criterion in terms of an 
original system error variable. The equation for the system is set up 
on the computer and a solution for E(T) is obtained in negative time. 

The trajectory E(-T) = f~(-T)' E(-T), 6J obtained in this manner is 

the system locus of second switching points or zero trajectory. The 
equation of the system is then set up in positive time and the projec­
tion of the trajectory in the E(t)E(t) plane is recorded. This pro­
jection coincides with that of the locus of the first switching points 

I 

~ 



NACA TN 3743 13 

in this plane. The remaining coordinate €(t) is obtained by plotting 
the system trajectory on the €(t)€(t) plane as the system leaves the 
origin in negative time and then reversing the sign of 6 until the 
trajectory intercepts the previously mentioned projection plotted in pos­
itive time. The value of €(t) at this intercept is the remaining 
required coordinate of the locus of first switching points. The proce­
dure is repeated until sufficient points on this locus are established. 

DISCUSSION OF THIRD-ORDER TRANSIENT RESPONSES 

Transient responses obtained from the optimum contactor normal­
acceleration control system for several step-input amplitudes are shown 
in figure 17. These responses are evaluated by comparison with those of 
an equivalent limited-linear system. The linear system utilized for this 
purpose is shown in the block diagram of figure 2. The maximum rate of 
control-surface deflection of the linear system was limited to that of the 
relay system. In addition, the forward loop gain K2 and the feedback 

gain K3 of the linear system were adjusted to minimize ~t le(tll dt 

for a step input of 5g. A series of transient responses obtained from 
this system for several step-input amplitudes are shown in figure 18. 
A comparison of figures 17 and 18 shows that in the optimum system over­
shoot is eliminated. In addition, this comparison also shows that there 
is a considerable superiority in rise time of the optimum system for 
input amplitudes below tho~e at which the linear-system gains are adjusted. 
For larger input amplitudes, this superiority is less because the limited­
linear system operates at its velocity sat~ation limit for a large per­
centage of the transient time. For the optimum case, the control surface, 
in response to a positive unit step input ni, initially travels at a pos­
itive constant rate and then at the appropriate time travels at a negative 
rate. At the second switching pOint, the control surface travels at the 
positive constant rate again until the output n arrives at the steady­
state value. This control-surface response is typical of the optimum 
contactor control system and is proportional to the integral of ~(t) 
of figure 3. 

CONCLUDING REMARKS 

This paper presents a switching criterion that yields an optimum 
transient response to step inputs of the controlled variable for a third­
order contactor system with complex roots. This optimum response has no 
overshoot and arrives at a steady-state value in a minimum of time in 
response to a step input of the controlled variable. 
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Two methods of obtaining this switching criterion, a direct mathe ­
matical method and the analog- computer method, are presented. In the 
direct mathematical method, two transformations of variables were applied 
to the original nondi mensionalized equation of the system to determine 
the equations of the two loci of switching points in the phase space. 
'rhe equations of these loci are in general form inasmuch as the time 
scale of the transient outputs as well as the amplitude scale may be 
adjusted for any desired undamped natural frequency and system velocity 
constant for the given value of damping ratio. A digital computer was 
utilized to obtain the actual coordinates of the switching loci after 
the equations of these loci were established. 

The analog- computer method, although lacking the accuracy of the 
mathematical method, offers a relatively simple means of obtaining the 
two loci of switching points. In addition,. these loci can be determined 
in terms of the original system error variable with no transformations. 

The transient responses of the optimum system were compared with 
those of the equivalent limited-linear system. The optimum contactor 
a cceleration control system is superior with respect to the time required 
to reach steady- state values; however, for large step inputs of the con­
trolled variable, this time advantage is less because the limited-linear 
system operates at the velocity saturation limit for a large percentage 
of the transient time. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., May 10, 1956 . 
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APPENDIX 

DERIVATION OF THIRD- ORDER SWITCHING CRITERION 

Symbols 

0 1 

J matrix 0 0 

0 -C 

A 

0 

matrix 0 

6. 

P transformation matrix 

p-l inverse matrix P 

coordinates in space (n = 1, 2, and 3) 

uJ matrix u2 

vn principal coordinates of system (n 1, 2, and 3) 

v] matrix v2 
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Third- Order Switching Criterion 

The basic form of the equation for the third-order system of fig­
ure 2 is 

When 

that ni = 

....£. := K1K5c 

~ S(S2 + bS + c) 

E = ni - n and inputs are restricted to steps of ni 
lli := ni = 0, equation (Al) can be written as follows: 

(Al) 

so 

(A2) 

This equation can be simplified with the following substitutions: 

6= -~ 

T = bt 

E(T) 
b3 

dt) --
K1K5c 

C c 
= -

b2 

This simplification results in 

Let 

(A4) 
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From equations (A3) and (A4) the following equations can be written: 

dU2 
dT = u3 

dU3 
- = -Cu2 - u3 + 6. dT 

In matrix notation~ equations (A5) become 

u1 0 1 0 u1 0 

d u2 0 0 1 u2 + 0 
dT 

u3 0 -C -1 u3 6. 

or 

d~ uJ A uJ + GJ 

The roots of the characteristic equation are 

"1 = 0 

"2 = 
-1 + ~l - 4c 

2 

"3 
-1 - ~1 - 4c 

2 

When j~ ~l - 4c ~ these roots can be written as follows: 

"1 = 0 

- 1 - jl3 

2 

(A6) 

(A8) 
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Int r oduci ng a new coordi nate space v] with the transformation 

matrix P so that 

uJ = P v] (A9) 

permits writ i ng the system equation (A7) in terms of the new coordinates 
as follows : 

(Ala) 

When the princi pal- coordinate transformation is applied, the 
matrix P is determined so that the resulting p- 1AP matrix is of the 
diagonal form . This selection results i n (see ref. 7) 

1 1 1 

P a "2 "3 (All) 

a "22 "3
2 

From equation (All) ) where - ("2 + "3) 1, 

1 1 _ 1_ 

"3"2 "3"2 

p- l a "3 -1 (A12) 
~ ("3 - "2 ) "2("3 - "2) 

a -"2 1 

"3 ("3 - "2) "3("3 - "2) 

After substitution of the values of equations (All) and (A12) for 
the transformation matrix and its inverse, the matrix p- lAP can be 
evaluated as 
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a a a 

p-1AP = a :\2 a (Al3 ) 

The substi t ution of equations (A12) and (A13) i nto equation (Ala) gives 

1 a 

d a :\2 a a A3 - 1 a v2 = v2 + dT 
A2(""3 - A2 ) A2 (A3 - A2 ) 

~ a :\3 a 
- :\2 1 

t::. v3 v3 
A3 (A3 - :\2 ) A3(A3 - A2 ) L 

which is equivalent to 

dVl t::. 
-=--
dT A3A2 

(Al4) 

dV2 
A2v2 - t::. -= 

dT A2 (A3 - A2) 
(A15) 

dV3 
:\3v3 + t::. -= 

dt 
A3 (A3 - A2) 

(Al6) 

Eliminating dT between equations (A14) and (Al5) and be t ween equa ­
tions (A14) and (Al6) and integrating results in the following equations : 

, 

~_J 
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(Al8) 

Equations (A17) and (A18) can be solved to yield a zero trajectory 
in terms of vI' v2' and v) and a locus of first switching points in 

terms of these same variables. These variables are, however, complex. 
In order to reduce these equations to real variables, it is first noted 
that equation (A9) when solved for v] yields 

v] = p-l uJ (A19) 

The substitution of equation (A12) into equation (A19) leads to the 
following set of equations: 

(A20) 

The substitution of equations (A8) into equations (A20) gives 

2 
j 

(1 - f32) 2 j 2 u u2 + u2 - u) + (A21) 
f32 + 1 f3(f32 + 1) f32 + 1 f3 (f32 + 1) ) 

2 - j 
(1 _ §2} 2 

j 
2 

u2 u2 - u) -
f3(f32 + 1) u) f32 + 1 f3(f32 + 1) f32 + 1 
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Inasmuch as v2 and v3 are complex conjugates and vI is a real 

variable, the following change of variables will yield equations in terms 
of real variables: 

(A22) 

Substituting equations (A22) into equations (A21) yields 

(A23) 

or, in terms of A, 

• 

1 1 w2 = - u u 
A2A3 2 - A2A3 3 (A24) 
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Substituting equations (A22) i nto equations (A17) and (A18 ) y ields 

(A25) 

(A26 ) 

These two equations can be rewritten as follows: 

(A28 ) 

A typical response of the system considered to a step input of the 
controlled variable will begin at E( T) = Ei, E ' (T) = 0, and E" (T) = ° 
and termi!1ate at E(T) = 0, E' (T) = 0, and E"(T) = ° in the E(T) 
phase plane . The initial point of this response will be called 0, the 
first switching point 1, the second switching point 2, and the terminal 
point or origin 3 . By using the transformations of equations (A24) and 
the notation that wn at a point a along a trajectory becomes wna ' 
this response can be shown to begin at wl = Ei = wlO, w2 = 0, w3 = ° 
and terminate at wl = 0, w2 = 0, and w3 = ° in the w phase space. 

This response is shown schemat ically in the following diagram: 
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Point 1, on locus of first switching points 

Point 0 

wI ~ 

w2 

Point 2, on zero trajectory 

~ == - 1'>1 ~ 
Second trajectory 

WI = wI2 
w2 == w22 
w3 == w32 

Pictorial diagram of typical wn phase-space trajectory 

o 
o 
o 

23 

The first trajectory of this diagram is described by equations (A27) 
and (A28) with 1'>1 substituted for 1'>. The constants B3 and B4 have 

the same respective values at any point on this trajectory. If B3 is 

evaluated from equation (A27) at point 0 and equated to B3 evaluated at 

point 1 on this trajectory, the following equation can be written: 

21'>1 

The application of this procedure to the three traject ories for both 
B3 and B4 results in the following six equations i n terms of the ini-

tial and terminal points and the two switching points: 
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From initial trajectory, 

(A29) 

2b.l 

(A30) 

from second trajectory, 

(A3l) 

(A32) 

and from zero trajectory, 

2b.l 
W22 + jW32 - A22(A3 - A2) = 

exp(W12 A2:~3) 
2b.l (A33) 
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(A34) 

The elimination of w12' w22' and w32 from equations (A29) to 

(A34) yields the following two simultaneous equations in terms of wll' 

w2l' and w3l: 

(A35) 

and 

1 ± 1-

(A36) 

Inasmuch as wll' w2l, and W3l represent the first switching point, 

these two equations express the locus of first switching points . 

Equations (A33) and (A34) can be manipulated to yield the wlw2 

and the w2w3 projections of the zero trajectory as follows: 

(A37) 
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and 

(A38) 
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TABLE 1.- TRANSFER-FUNCTION COEFFICIENTS 

b , radians/sec •• 
c, (radians/sec)2 
Kl , deg/sec/volt . 

K2 , volts / g unit . • • • • . . • -.- . 
K3 ' vOlt s/g unit /sec2 

K4 , deg/sec/deg 

K5, g units/deg 

T, sec . . • . . . 

NACA TN 3743 

6.65 
518 

14.0 

0·317 
0.47 

1,000 

903 

0.1 
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S 

(b) Optimum contactor roll control system. 

Figure 1.- Block diagrams of the contactor and the optimum contactor 
second- order roll control systems . 
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Figure 3.- Typical response of the third-order contactor acceleration 
control system to a step command signal . 
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Figure 4.- Block diagram of the limited-linear normal-acceleration control 
system . 
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Figure 5. - A phase-plane plot of the contactor roll control system in 
response to a 50 step input. The zero trajectory for this system is 
superimposed on the plane. 
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