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SUMMARY

A method is presented for the analytical determination of the natural
coupled frequencies and mode shapes of vibrations in the wvertical plane of
tandem helicopters. The coupled mode shapes and frequencies are then used
to calculate the response of the helicopter to applied oscillating forces.
Degrees of freedom included in the analysis are translation, pitching, and
bending of the fuselage; translation, flapping, and bending of the blades;
and. translation of the engine. The method employs the Lagrange dynamical
equations for free vibrations in conjunction with the kinetic and potential
energies of the system in order to obtain the differential equations of
motion for the coupled system which are then written in matrix form. The
elements of the determinent of the matrix equation include the natural
frequencies, mode shapes, and mass distributions of the uncoupled compo-
nents of the helicopter (such as fuselage, blades, and engine) and permit
the inclusion of experimental data of the uncoupled components in the
evaluation of the coupled frequencies of the coupled system.

The results of calculations made for a particular tandem helicopter
show the wvariation of the coupled frequencies with rotor speed and indi-
cate the changes in the coupled frequencies which result from changes
in the structural properties of the individual helicopter components.
Calculated response curves show how the vibrations of the cockpit vary
with the frequency and method of application of oscillating forces applied
at the hubs. Suggestions for further refinement of the analysis to aid
in the determination of the coupled frequencies for more complex and real-
istic systems are also presented.

INTRODUCTION

In many cases the development of the prototype of a particular heli-
coptéer is handicapped because severe structural vibrations are encountered.
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Such vibrations often limit the utilization of production articles because
of fatigue of the component parts of the structure as well as of the opera-
ting personnel. Available information indicates that the high levels of
vibration are attributable primarily to two factors; namely, the high
periodic content of the aerodynamic loading on the rotor blades and the
amplification of the structural deformations due to proximity of resonance.
Accordingly, it appears that the vibration levels may be reduced either by
reducing the levels of the oscillating aerodynamic loads, by the inclusion
of appropriate damping, or by choosing the natural frequencies of the cou-
pled structure so that they are as far as possible from the integral multi-
ples of the rotor speed.

The present paper relates to resonance amplification and, in partic-
ular, to the determination of the natural frequencies, mode shapes, and
response of the coupled helicopter structure as it exists in flight. Con-
ventional methods such as those of references 1 and 2 may be used to pre-
dict the natural frequencies of the various components of helicopters such
as fuselages, blades, and engines. Reference 3, which reports on the ini-
tisl part of the present investigation, presents a method for the predic-
tion of the natural frequencies and mode shapes of the structure which
result when the various components are coupled together. The purpose of
this paper is to elaborate on reference 3 and to present a method for
utilizing the resulting coupled frequencies and mode shapes in computing
the response of the helicopter to applied oscillating loads.

The method is an energy method that involves chosen modes and fre-
guencies of the uncoupled components which may be determined either by
expressing the potential energy of the components in terms of given stiff-
ness and mass distributions or, preferably, from experimental vibration
tests of the components. The method is given in terms of a tandem-
helicopter configuration but other configurations can be treated in an
analogous manner. )

The present paper is concerned primerily with vibrations in the
vertical plane - in particular, with fuselage translation, pitching, and
bending; rotor blade translation, flapping, and bending; and engine trans-
lation. The characteristic frequency determinant is derived, and calcu-
lated values for the natural coupled frequencies and mode shapes for a
particular tandem helicopter are presented. These mode shapes and fre-
guencies are then used to determine the vibration amplitudes of the cock-
pit which occur when oscillating forces are applied at the front and rear
rotor hubs. The results of some trend studies are also presented to show
the effect of variations of the uncoupled frequency of the fuselage and
of the Southwell coefficient of the rotor blades on the coupled frequencies
of the helicopter.
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SYMBOLS

coefficients of front-rotor-blade modal deflections
r
‘;E and x;, respectively, in.

Ry

coeffi?ients of frequency determinant (defined after
eq. (11))

coefficients of fuselage modal deflections 1, ;,
and y,, respectively, in.

coefficients of rear-~rotor-blade modal deflections
T
= and 1z, respectively, in.
R

structural stiffness of helicopter at station o,
lb-in.
structural stiffness of front rotor blades, lb--in.2

structural stiffness of rear rotor blades, 1b-in.2

structural stiffness of fuselage, 1b-in.Z2

applied forcing function (see eq. (12)), 1b

amplitude of applied forcing function
structural damping coefficient

radius of gyration of mass of fuselage about front
rotor hub, in.

spring constant for engine mounts, 1b/in.

Southwell coefficients for blade first elastic flap-
wise bending mode (defined after eq. (11))

distance between front and rear rotors, in.
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leg distance from front rotor hub to center of gravity
of fuselage, in.

la distance from front rotor hub to engine, in.

L overall length of helicopter, in.

m mass per unit length of helicopter at station g,
1b-sec?/in.2

My mass per unit length of front rotor blade,
1b-sec2/in.

mR mass per unit length of rear rotor blade, lb—sec2/in.2

me mass per unit length of fuselage, lb—secz/in.2

Mp mass of front rotor blade, lb—sec2/in.

Mp mass of rear rotor blade, 1b-sec2/in.

Me mass of engine, lb—seca/in.

Mg mass of fuselage, lb-seca/in.

Mr;1 effective mass of fuselage (defined after eq. (11)),
lb-sece/in.

My effective mass of helicopter in rth mode (see

eq. (17)), 1lb-sec2/in.
Py, 4 number of blades on front and rear rotor, respectively

Pr, Qr real and imaginary parts of response of helicopter
in rth mode (see egs. (23) and (24)), in.

rp radial position of any blade element on front rotor
(see fig. 1), in.

rR radial position of any blade element on rear rotor
(see fig. 1), in.

Rp radius of front rotor, in.

Rp radius of rear rotor, in.
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T, TR

Ty, TR

Y1

Ll

ar,0

gp

longitudinal position of any fuselage element (see
fig. 1), in.

time, sec

centrifugal force on blade at any radial station,
1b; kinetic energy, lb-in.

centrifugal force on front and rear rotor blades,
respectively, 1b

centrifugal force divided by square of rotor speed,
lb-sec

potential energy, lb-in.

deflection of engine, in.

deflection of engine with respect to fuselage, in.
deflection of element of front rotor blade, in.

uncoupled first-bending-mode shape for front rotor
blade

real and imaginary parts of response of helicopter
(see eq. (26)), in.

deflection of element of fuselage, in.
uncoupled first-bending-mode shape for fuselage
deflection of element of rear rotor blade, in.

uncoupled first-bending-mode shape for rear rotor
blade

coefficient of deflection of rth coupled mode of
helicopter (see egs. (13) and (23)), in.

amplitude of a4, in.

distance measured rearward from leading edge of front
rotor disk (see fig. 1), in.

value of ¢ +vhere oscillating force is applied
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¢ deflection of helicopter in response to applied
force F (see egs. (13) and (25)), in.

¢ rth-coupled-mode shape of helicopter

!¢i amplitude of ¢ (see eq. (26)), in.

w natural frequency of coupled modes; frequency of

applied oscillating force, radians/sec

wF,l’ @R,l first natural uncoupled flapwise bending frequency
of front and rear rotor blades, respectively,
radians/sec.

o 1 Tirst natural uncoupled vertical bending frequency
of fuselage, radians/sec

e natural vertical frequency of engine on its mounts,
radians/sec

Wy natural frequency of rth coupled mode of helicopter,
radians/sec

Q rotor speed, radians/sec

The deflection in the first bending mode of the fuselage, measured.
at station s, is denoted by yl(s). For example, yl(o) is the deflec-

tion of the fuselage in first mode bending at the front rotor hub. (See
fig. 1.)

ANATYSTS

Equations for Free Vibrations

General considerations.- The analysis presented in this portion of
the paper deals with the determination of the undamped, natural coupled
frequencies of the vertical vibrations of a tandem helicopter. The fol-
lowing degrees of freedom are considered: vertical translation, longi-
tudinal pitching, and structural bending of the fuselage; vertical transla-
tion, flapping, and flapwise bending of the rotor blades on the front and
rear rotors; and vertical translation of the engine. This analysis does
not treat fuselage side bending and torsion; however, an analysis of the
structure for side bending and torsion can be made in a manner parsllel
to the present analysis. Although the analysis is given in terms of a
tandem helicopter configuration, other configurations may be treated in
an analogous manner.
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The method follows the Lagrange energy-equation approach wherein
the derivation of the equations of motion consists of writing the kinetic
and potential energies of the structure in terms of the displacements w,
X, ¥y, and z. (See fig. 1.) These displacements are in terms of gen-
eralized coordinates and chosen uncoupled modes of the structural com-
ponents (fuselage, rotor blades, and engine). The energy equations are
substituted in Lagrange's dynamical equations for free vibrations to
obtain the equations of motion which yield the coupled frequencies and
mode shapes. )

Energy equations.- The kinetic energy T and the potential energy V
are, respectively,

1 2 2 R 2 R 2
a: P R
'I‘=-];f mf(_l> ds+}-Me(9-‘f) +2 f mF(g_x_) drp + = f mR(iZ-) drg
2 Jo dt 2 °\q 2 Jg a 2 Jg dat
(1)
and
2
1 2
a°x
v=32“-f (EJ:)I«—Z-X ds+—Ke[ -y(le)] r 2 f (EI)F——-é- arp +
0 ds 0] 7
g [R (EI) a2 drp + RFT =) arp + 2 RRT dz 2dr
2 R 2] "R 3 Flar F*3 Rlar R
0 X 0 F R

(2)

Special attention is called to the fact that the energies of the front
rotor with p-blades may be different from those of the rear rotor with
g-blades. For this reason, in the derivation of the energies, the deflec-
tions of the front and rear rotor blades are denoted independently by x
and 2z, respectively. It is assumed in the present analysis that all the
blades on a given rotor behave in a similar manner; however, equations (1)
and (2) are readily extended to treat each blade as an independent degree
of freedom.

Choice of modes.- The next step toward obtaining the differential
equations of motion is to express the deflections w, x, y, and 2z in
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terms of chosen mode shapes. The choice of the translation mode, the
pitching mode, and one bending mode for the fuselage; the flapping mode
and one flapwise bending mode for the blades on each rotor; and one
translation mode for the engine leads to the following equations for the
deflections:

For engine translation:

- 1
W= bo + bo —Ze_ + blyl(le) + wp (3)

For front-rotor-blade translation, flapping, and bending:

I
F
X = bo + blyl(O) + a5 R—F- + a1xq ()4-)

For fuselage translation, pitching, and bending:
)
¥y = bo + by { + biyl (5)
For rear-rotor-blade translation, flapping, and bending:

- r
z = bg + bg + b1y1(1) + co EB + Ccq2q (6)
R

where the coefficients ag, ajp, by, 50, by, c¢g, ¢1, and wp are
unknown functions of time, and xy, ¥y;, and 2z are the chosen spatial

functions or mode shapes. If higher modes are desired, it is only nec-
essary to add appropriate terms to equations (3) to (6).

Substitution of equations (3) to (6) into equations (1) and (2) leads
to the following equations for the kinetic and potential energies,
respectively:
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R
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e}

1 . LI PN . . 2
ds + -2- Mg bo + bo —i— + blyl(le) + Wp +
1| drF +

. . . r
bo + blyl(O) + 39 EE + élx:l
F

2
1] drp (7)

F 2

2
+ alxl'> d.I'F +

(8)

where the dots denote derivatives with respect to time and the primes
denote derivatives with respect to space or length.

After the energies have been calculated, the next step is to apply
Lagrange's equation for free vibration to obtain the differential equa-
tions of motion; that is,

4afor \ _or
at\oag dag dag

dt Bal

d/or \ _oT . ov
aal Bal

(9)
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In the application of Lagrange's equation (egs. (9)), great simpli-
fication is obtained if the chosen modes are the natural modes of the
uncoupled components; the rest of this paper is based on this choice.
Equations (7) and (8) are then substituted into equations (9) to obtain
the differential equations for free vibration. The characteristic equa-
tions for free vibrations are found by considering harmonic motion, that

is,

Lad

ag = ag sin wt
a] = 3 sin wt (10)

where the amplitudes of ag, &1, - . . are denoted by B, Bl - - e -

The result of substituting equations (7) and (8) into equations (9) and
meking use of equations (10) leads to the characteristic equations which

are given in matrix form as follows:

2 ! s
Mp + MeM"‘ e E 4+ dip + %) Bo Meyy(2e) + A B Me o
My + MR e l‘;_é Py, (0) +
Mgy (2)
“le M, k? e
Mot ai+ f®+ o By te =% yy(te) + 0 B - 3
1e, b ?
2K o PRy (2)
i
1
2
IS 0 co[l - (g)] 0 705 0 0 o %
2
B B o DOE. - (%)] ¥ (0B 0 0 0 (A
2)
1
By (0) £ Me Eya(le) ¢ vy(0)ho SO [l - (%;;)‘tmfl + yloay 7 (1B wan(te) | {8 =0 (1)
Ml * ey, ) '
Meyy(le) My 2(2e) +
By, 2(0) +
aMy,2(2)
2
I 0 0 o ¥,(0)4 cf1 - (i.?;')—:L) - 0 0 %
ol
2
By By ° o v (1B ° D1 - (%’—1) - 0 %
2
reafd)
[ . e 2
Mo Me T [+} [} Meyl(le) [\ c Mell - (E) Ve
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where #
R R
p F q R
AO = m dr B — f mprn dr
Rp Jo FxF F Bo RR o p'R 4R
R Ry
Ry RRr
_ D _ 4 2
Co=—3 mpTEPaTy Do = — f mRrR drR
Rp~ Y O Rg® YO
Ry 2 R 2
Ci=0p mpXy “dry Dy=gqg npzy drR
0 0
Ry R
_ b = 12 _ g R - e
Ky 1 = oy j; Tp(x; ') “dry Kg,1 = m Jo Tg(z1')“drg
1
- 2 o Ke
Me,1= /; meyy ds =

In the abbreviated notation used in the appendix, equation (11) can be

written as
[H] {n} =0 (112)

Coupled Frequencies and Mode Shapes

The values of , the natural fréquencies of the coupled modes of
the helicopter, are determined by setting the determinant of equation (11)
equal to zero. The coupled mode shapes are determined by substitution

of the modal coefficients Sb, 50, and so forth, obtained from equa-
tion (11), into equations (3) to (6).
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Inspection of equation (11) reweals that, although there are eight
degrees of freedom, the frequency term w appears in only six of the
diagonal terms when @ ¥ 0 and in only four of the diagonal terms when
Q = 0. Thus, the amount of work involved in the solution of the deter-
minant can be reduced by changing the order of the matrix from eight to
six when Q % O and from eight to four when Q = 0. The steps involved
in this transformation as well as the final matrices obtained for Q = 30
radians per second and § = O for the basic configuration are given in
the appendix. The appendix also contains some pertinent remarks regarding
methods for obtaining the modal coefficients.

Equations for Response of Helicopter to Applied Loads

Once the natural frequencies and shapes of the coupled modes are
obtained, the next objective is to determine the response of the heli-
copter to applied aerodynamic loads. The calculation of the response
necessitates a consideration of the damping of the structure. In the
analysis that follows, a method is presented which permits the coupled
mode shapes and frequencies determined by the methods presented in pre-
vious sections of this paper to be utilized, with the inclusion of struc-
tural damping, in the determination of the response of the helicopter to
arbitrary forces.

If ¢(c,t) be designated as the deflection of the helicopter at
station o at time t (fig. 1), the differential equation of motion
for an element of the helicopter at station o 1is

2 2 .
(1 + igh)zzé(EI gﬁ) + mf = F(o,t) (12)

where F 1is the applied force, gh is the conventional structural

damping coefficient, and simple harmonic motion is implied. If it is
assumed that the total deflection can be expresséd as a superposition of
the natural coupled modes of the structure, then

Ir=n
#(0,t) = 2 ap(t)Py(0) (13)
r:l

where @.(o) is the rth-coupled-mode shape and a.(t) is the time-

dependent coefficient of the rth mode. Substitution of equation (13)
into equation (12) yields
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il il 2 [or
(1 * 1gh>u1(t)a“2(%1 — > + (1 + igh>a2(t)S;§~EI vy R (1 + igh)an(t)§;§ EI 2 -

-, (t)mgy - ap(t)mgy - . . . - an (t)ndy, + F(o,t) (1)

Since the natural modes of vibration are defined by

2 3¢
é‘é‘ EI '2r = ay°ngy (15)
o¢ oc
equation (14) can be written as
(1 + igh)ai(t)a12m¢l + (1 + igh)ae(t)u22m¢2 .-+ (1 + ighban(t)ah2m¢n =
-Gy (t)why - G(t)mfy - . . . - & (t)mfy, + F(a,t) (16)

Upon multiplication of equation (16) by ¢r’ integrating over the length,
and observing the conditions of orthogonality for natural modes, namely,

-~

L
/; s ds=0 (v 4s)
y (17)
L
fo ¥, s do = My (r = s)
equation (16) becomes
L _
(l + igh)“fr(DrQMr = -apMp + f F(o,t)@y do (18)
Ov

In general, F will be a distributed force and, if necessary, the
integral term of equation (18) can be evaluated. For purposes of illustra-
tion, however, it is assumed that F 1is a concentrated force and the rest
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of the analysis is based on that assumption. The integral term of equa-
tion (18) is

L
/; F(o,t)@y do = F@,.(op) (19)

where F 1is the force applied and ¢r(UA) is the deflection of the rth
mode at the point of application of the force. Therefore,

(1 + igh)aT“%EMr + dpMy = Ffr(op) (20)

If o and F are expressed as the real parts of ec:r.’oei‘”t and Foei“m,

respectively, then

(l + igh)ar,oa&-QMr - we%,oMr = Fofr (o) (21)

The amplitude of a, 1is

Fb¢r(qA)
2
or My
Ap,0 = (22)
W \° & i
- | — ig
(wr) B
and, by definition, the coefficient of the motion in the rth mode is
given by the real part of the following expression:
Fo¢r(gA_)
®p .
o = e el = (, - 1qp)e’®® (23)

2
1- (ﬁ%) + igp
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where

/ (24)

IR

Substitution of equation (23) into equation (13) yields the total
response

Ir=n

#(o,t) = | > (Pr - iQr)¢r elat (25)

r=1

the amplitude of which is

r=n 2 fren 2
|¢l = <§ Pr¢r> + (Zl Qr¢r) = \/ X2 + Y2 (26)

Then l¢| is the amplitude of vibration at any station o 1in response
to a harmonic force, applied at o = o0p, which has an amplitude Fy and

a frequency . - It should be noted in the application of equation (26) -
that @y, @p, + . - Pn are the values of the coupled modes at station o.

In the event that it is desired that the response at any station be
calculated for loads applied at several different stations, then some
reduction of the work required may be obtained by suitably modifying the
coefficients Ppr and Qp. Assume, for example, that (Pr)I and (Qr)I

are the in-phase and ouﬁ—of-phase components of the response in the rth
mode to an oscillating load applied at the front hub and designated by
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subscript I. From equation (26), the response in the rth mode at the
same station to a load of the same magnitude applied in the same direc-
tion at the rear hub, and designated by subscript II, is given by the
components :

~

(PT)II = (Pr)1¢r(0A)II/¢r(GA)I

> (27)
(Qr)II = (Qr)1¢r(UA)II/¢r(UA)I

o

The in-phase and out-of-phase components of the response due to all the
modes is then given by

>
X1t = P
11 r=l( r)II¢r

% (28)

I'=n

I = > (Qr)II¢r
r=1

The response due to any combination of forces applied at either or both
hubs in the same or opposite directions is then obtained by adding Xy,

X315, Y1, and Yyy in the proper sense and proportions.

DISCUSSION OF RESULTS

Calculation of Coupled Frequencies and Mode Shapes

Scope of the calculations.- The analysis derived in this paper was
used to calculate the natural coupled frequencies of a tandem helicopter
having the structural parameters given in table I. The resulting modal
coefficients are given in table II and the natural frequencies and mode
shapes are given in figures 2 and 3. Some additional calculations were
made to evaluate the effects of the natural frequency of the uncoupled
fuselage system and the Southwell coefficient of the blades on the natural
frequencies of the coupled system. These results are shown in figures k4
and 5. Calculations were also made for a three-degree-of-freedom system
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(vending of the fuselage and bending of the blades on the front and rear
rotors) and the resulting frequencies are compared with appropriate fre-
quencies for the eight-degree-of-freedom system in figure 6 to obtain
some idea of the relative contributions of the variocus degrees of freedom
to the overall problem.

Frequencies and mode shapes for the basic configuration.- The basic
configuration is designated by the parameters given in table I which
correspond closely to those of an existing tandem helicopter. The natural
frequencies and mode shapes of the coupled system were calculated for
this configuration for three rotor speeds: namely, O, 20, and 30 radians
per second. The natural frequencies are plotted in figure 2 as a func-
tion of rotor speed, and the modal coefficients are tabulated in table IT
for each of the six natural frequencies and for each of the three rotor
speeds. A rotor speed of 30 radians per second corresponds very closely
to the normal operating - rotor speed for the chosen helicopter. The
modal coefficients presented in table II for this speed were used in egua-
tions (3) to (6) to obtain the mode shapes which are presented in figure 3
and which are also sketched in figures 2, 4, and 5 to identify the modes
of vibration that correspond to the different natural frequencies of the
coupled system.

The effect of coupling of the various degrees of freedom on the
natural frequencies is indicated in figure 2 by a comparison of the
coupled frequencies (shown by solid lines) with the uncoupled frequencies
(shown by short-dashed lines). The curve for uncoupled blade first bending
represents the blades of both the front and rear rotors. There are also
short-dashed curves for uncoupled blade flapping; however, these curves
cannot be seen inasmuch as they are coincident with the frequency curve
for the lower coupled mode. The frequencies of the two- and three-per-
revolution harmonic component of the aerodynamic loading (designated 2-P
and 3-P herein and indicated by the long-dashed lines in fig. 2) are
also presented to permit comparison with the natural frequencies. With
the exception of the engine translational frequency and the fuselage
first-bending frequency, the differences between the coupled and uncoupled
frequencies are negligible at low rotor speeds. As the rotor speed is
increased, the uncoupled frequencies of the fuselage mode and the blade
bending modes approach each other, and, as expected, the effects of
coupling become pronounced.

The helicopter used as an example for these calculations has three
blades on each rotor, and, therefore, the 3-P components of the aero-
dynamic loading on the rotor blades are additive at the respective hubs.
Thus, the region of primary importance on the frequency diagram of fig-
ure 2 is the region at or near the crosshatched marks on the 3-P line
which brackets the normal variation of the design rotor speed.
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JTnasmuch as the two rotors rotate in opposite directions with a
phase difference of blade position on the two rotors of approximately-60°,
blades from both rotors are advancing into the wind simultaneously three
times per revolution of each rotor. This condition suggests that the
resultant 3-P periodic forces at the two hubs are in phase and would
be particularly effective in the excitation of the symmetrical modes of
the helicopter which have natural frequencies in the general region of
85 radians per second. Figure 2 shows that there are three coupled modes
of the helicopter which have natural frequencies reasonably close to the
3-P frequency, two of which are symmetrical and the other antisymmetrical.
In view of the preceding discussion, the data of figure 2 indicate that
at the higher rotor speed (30 radians per second) the response of this
helicopter in the third symmetrical mode to the 3-P oscillating excita-
tion forces would be increased substantially by resonance amplification.
Furthermore, if there is a component of the 3-P aerodynamic loading at
the two rotor hubs which is out of phase, it appears likely that the
structural response in the second antisymmetrical mode would also be
increased by resonance amplification.

The mode shapes presented in figure % show that the mode shapes
alternate between symmetrical and antisymmetrical configurations. The
relative motion of the engine with respect to the fuselage is shown to
be negligible for the lower frequency modes but becomes relatively large
at the highest frequency mode (sixth-coupled-mode shape).

Effect of Variations in Uncoupled Components

Effect of natural uncoupled frequency of the fuselage.- The analysis
presented in this paper permits the inclusion of the natural uncoupled
frequency of the fuselage as one of the parameters. This frequency can
be calculated by analytical methods such as those of references 1 and 2;
however, this requires an accurate knowledge of the mass and stiffness
distribution of the fuselage which may be difficult to obtain. The accu-
racy to which this frequency can be obtained experimentally for a given
helicopter depends upon such considerations as the manner of support and
the type of shaker installation. Since this frequency is one of the
primary parameters, it is of interest to determine to what extent the
natural frequencies of the coupled modes are changed by variations of
the uncoupled frequency of the fuselage. Conversely, if the natural
frequencies of the coupled system for a known design value of the natural
uncoupled frequency of the fuselage are of such a magnitude as to lead to
resonance amplification of the structural response, it is desirsble to
evaluate the extent to which the coupled frequencies can be changed by
varying the uncoupled frequency of the fuselage.

An indication of the change in the natural frequencies of the coupled
modes due to changes in the uncoupled frequency of the fuselage is shown
by the curves of figure 4. The calculations show that the frequencies of
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the second and third symmetrical modes are changed appreciably whereas

the frequencies of the antisymmetrical modes are not affected. Since

the amount of fuselage bending in the antisymmetrical modes is negli-
gible in comparison with the amount of fuselage bending in the symmetrical
modes, the results shown in figure 4 are in agreement with expectations.

Effect of Southwell coefficient for the blade first elastic flapwise
bending mode.- The value of the Southwell coefficient chosen for the blade
first elastic flapwise bending mode has a direct effect on the uncoupled
frequency of the rotating blade. An indication of the effect of this
parameter on the coupled frequencies is shown in figure 5. The value
of KF,l estimated by means of reference 4 for the blade considered

is 6.2 and the range of values chosen for these calculations is believed
to be more than adequate to allow for estimation errors. These calcula-
tions show that the coupled frequencies of both the symmetrical and anti-
symmetrical modes which have frequencies approximately equal to the uncou-
pled blade-bending frequencies are increased slightly as the Southwell
coefficient is increased, and that errors in the values of the coupled
frequencies due to the estimation of the Southwell coefficient Xp 3

should not exceed 2 or 3 percent.

Comparison of Results of Three-Mode and Eight-Mode Analysis

Figure 2 shows that the uncoupled modes which are primarily affected
by coupling in the frequency region of the 3-P excitation forces are
fuselage bending and the bending of the blades on the front and rear
rotors. Calculations were made to determine how well the frequencies of
the coupled modes could be predicted by using only these three uncoupled
modes. The calculation procedure consisted of retaining only the fifth,
sixth, and seventh rows and columns of the frequency determinant of equa-
tion (11). The results are given in figure 6 together with the corre-
sponding frequencies obtained from the eight-mode analysis. A comparison
of the frequencies for the two cases shows that the frequencies calculated
by the three-mode analysis are from 3 to 6 percent lower than those
obtained by the eight-mode analysis, and suggests that a three-mode anal-
ysis might be useful for obtaining a first approximation of the coupled
frequencies in this region for configurations similar to the one treated
herein. !

Calculation of the Response of the Helicopter to Applied Loads

The methods developed in the previous sections of this paper were
applied to calculate the amplitudes of the response of the helicopter
at the location of the cockpit for harmonic oscillating forces applied
at the front and rear rotor hubs. The amplitudes of wvibration were cal-
culated as a function of frequency of the periodic force for one value
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of damping (gh = 0.1) and at a rotor speed of 30 radians per second for
the four cases which follow:

Case I: Oscillating force of unit magnitude applied in a vertical
direction at the front rotor hub.

Case II: Oscillating force of unit magnitude applied in a vertical
direction at the rear rotor hub.

Case IITI: Oscillating force of one-half unit magnitude applied in
a vertical direction at both the front and rear rotor hubs in the same
direction.

Case IV: Oscillating force of one-half unit magnitude applied in
a vertical direction at the front and rear rotor hubs in opposite direc-
tions (producing a pure pitching moment on the fuselage).

The in-phase and out-of-phase components of the response, or cock-
pit deflections, are given in figures T and 8 as a function of frequency
for cases I and II, respectively. The natural coupled frequencies are
indicated by the vertical dashed lines at the bottom of the figures.

The response curves are presented to familiarize the reader with the
nature of the components and as an aid in the calculation of the cackpit
deflections due to other combinations of loads at the front and rear rotor
hubs. The cockpit deflections for cases IIT and IV as well as for cases I
and IT were obtained by suitably combining the in-phase and out-of-phase
components of figures 7 and 8 as outlined in the analysis section.

The amplitude of the cockpit vibrations resulting from the oscillating
forces applied to the hub in the four cases previously outlined are given
in figures 9 to 12, respectively. Before discussing these figures, the
reader's attention is again directed to figure 2 where, at the rotor speed
of 30 radians per second for which these response calculations are appro-
priate, six distinct natural frequencies are indicated within the range
from O to 180 radians per second. These natural frequencies are indi-
cated by the vertical dashed lines at the bottom of figures 9 to 12. For
the hypothetical case of zero damping, it is expected then that the
response curves similar to those of figures 9 to 12 would indicate six
peaks of infinite amplitude at frequencies corresponding to the natural
frequencies. With the inclusion of a small amount of damping, these
peaks become finite and as the damping is progressively increased some
of the peaks disappear. The peaks which remain when the forces are
applied in a given manner indicate the modes in which the given forces
are more effective in doing work.

The curves of figures 9 to 12 show the responses obtained for &p = 0.1
for the four cases investigated. The manner of application of the load in
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each case is indicated in the figure by the accompanying sketch of a
tandem helicopter. In a few instances where the number of calculated
points, indicated by the small circles, are insufficient to define the
peaks completely, the peaks are indicated by the long-dashed lines. All
the figures indlcate peaks at frequencies of approximately 32, 72, and
92 radians per second and show that the coupled modes which contribute
most to the responses are the second, third, and fifth coupled modes,
respectively, of figure 3. This effect was also observed during the cal-
culations by inspection of the values of the individual values of P,

and Qp. (See eq. (24)). The most significant deviation from the gen-
eral trend of high responses at forcing frequencies near the natural fre-
quencies of the aforementioned coupled modes is found in figure 12. In
this case, the response to forces applied so as to produce a moment on
the helicopter is found to diminish considerably at the higher forcing
frequencies. This reduction of the response at the higher frequencies
gppears significant because it indicates that, if the aerodynamic forcing
functions which are usually encountered in flight could be forced to
occur in an antisymmetric manner, the response at a frequency of 3-P

or 90 radians per second would be substantially reduced over that obtained
for symmetrically applied loadings as shown by figure 11.

Perhaps one of the most significant points brought out by these
studies is the fact that it is not always possible to obtain the natural
frequencies of all the coupled modes of a structure by observing the
response of the structure to arbitrary inputs. Conversely, if the applied
loads are realistically chosen to be representative of those encountered
under normal flight conditions, the peaks of the response curve appear to
give fairly good indications of the natural frequencies of the more impor-
tant coupled modes.

Considerations Regarding Further Refinement of the Method

The studies presented in this paper - although believed to be useful
in the evaluation and reduction of the critical vibrations of tandem heli-
copters by emphasizing the importance of coupled natural frequencies and
mode shapes, providing a method for estimating them, and, in turn, using
them to determine the response of the helicopter to applied loads - do
not provide a complete answer to the problem. For one thing, the number
of degrees of freedom treated, although they are believed to be the more
important ones, are not nearly sufficient to predict all the coupled fre-
quencies. A more complete analysis would also include the fore-and-aft
motions of the front and rear rotor hubs, the pitching motions of the
engine, and the chordwise motions of the blades in bending and rotation
about the drag hinge. In fact, each blade should be treated as an inde-
pendent flexible structure, subject only to the boundary conditions
imposed by the vibrating hub to which it is attached. The complexities
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of treating such a system analytically are apparent and they exceed the
intent of the present paper.

The method of analysis presented in this paper for the longitudinal
vibrations - namely, the coupling of the structural properties of the
uncoupled components of the helicopter to obtain the natural frequencies,
mode shapes, and response of the coupled system - also appears applicable
to the treatment of the case of coupled side bending and torsion of the
fuselage. Vibrations of this type have been observed in tandem helicopters
and a study of the effects of the significant parameters involved would
provide useful design information.

CONCLUDING REMARKS

A method is presented for the calculation of the coupled frequencies
and mode shapes of vibrations in the longitudinal plane of symmetry of
tandem helicopters. The coupled frequencies and mode shapes are then
used to calculate the response of the helicopter to applied loads. Sample
calculations were made for an existing helicopter and these calculations
yield the coupled frequencies and mode shapes and the deflection of the
cockpit to oscillating loads applied at the front and rear rotor hubs.

The mode shapes, both symmetrical and antisymmetrical, show the relative
deflections of the various components of the structure when excited in
a given mode.

- The results of the calculations for the helicopter chosen show that
the natural frequencies for the coupled modes may differ considerably
from the natural frequencies for the uncoupled modes; therefore, there
may be a need for making a rather comprehensive coupled-mode analysis
so that regions of adverse dynamic response can be detected and avoided.

The results of calculations for different values of the uncoupled
natural frequency of the fuselage indicate that the natural frequencies
of the symmetrical coupled modes in the general range of the uncoupled
frequency of the fuselage vary appreciably with changes in the uncoupled
frequency of the fuselage; however, the effect on the natural frequency
of the antisymmetrical coupled modes is negligible. An increase in the
values of the Southwell coefficient for the blade first elastic flapwise
bending mode resulted in a small increase in the coupled frequencies of
both the antisymmetrical and symmetrical coupled modes having frequencies
in the proximity of the blade frequencies.

The response calculations show that the amplitude of the vertical
vibrations of the cockpit changes appreciably with changes in frequency,
point of application, and manner of application of applied oscillating
forces. High amplitudes occur when the frequencies of the applied oscil-
lating forces are approximately equal to the natural frequencies of the
second, third, and fifth coupled modes of the helicopter and the results
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of calculations indicate that the contributions of other modes to the
vibrations of the cockpit are secondary for the specific forces chosen.

The results indicate that the vibration of the cockpit due to oscillating
forces having a frequency of 3 per revolution (3-P) or 90 radians per second
are substantially greater for forces applied symmetrically at the front

and rear rotor hubs than for forces applied antisymmetrically. The results
also emphasize that it is very unlikely that all natural frequencies of a
helicopter could be obtained by observing the response of the helicopter

to oscillating forces applied at any given point.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 2, 1956.
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APPENDIX
STEPS IN REDUCING THE ORDER OF THE MATRIX EQUATION
Procedure When Q # O
When Q % 0, the matrix of the differential equations of motion,

equation (11) of the text, can be written in concise notation of sub-
matrices as follows:

el B Hmpl s o) lmll L, .
o] )| | {ne} [ o I {4 v

where

le log
Mg + Mg + pMp + dMp MeT+qMR+Mf-—_L—
A k
e S oo B (i) (3] o
A0  Bo Mey,(le) + pMpy,(0) + aMgy,(1) A3 B1 Mg
(43)

fer]
.
1]

l
0O Bo Mg —=yy(le) + aMgy;(2) 0 By Me "
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[BJY' = Transpose of Lﬁj

0 v1(0)Ag 0 0 0
Do y1(1)Bg 0 0 0

v (DBy  Mp 1+ Mey,P(le) + v (08 ¥y (VB Mey; (Te)

qMRylz( 1 )
0 y1(0) 2y Cy 0 0
0 y1(1)By 0 Dy o}
Y Moy (e) 0 0 Me
DOQE
(we,1)e,2
Cl[(“?, 1)2 + Kg, 1“2]
Dl[(“’ﬁ, 12+ K12,192]

(Ak)

(43)

(46)
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b
{711} = ﬁ,o (A7)
bo

and

(48)

PR
o3
\V}
| N
]
H?IJ?
~—

If [ﬁ] = o, {“1} = M1, and so forth, then the algebraic expressions

for the matrix equation, equation (Al), are as follows:

any + B = O (A9)

B'my + BNp = = enp (A10)

4
of

If equation (A9) is solved for 17 and the result substituted into equa-
tion (Al10), then

(5 - prarlp)n, = L en, (A11)

o

Multiplication of equation (All) by the inverse of ¢ reduces it
to the desired form; however, the resulting matrix is unsymmetrical and
poorly conditioned. These characteristics are undesirable if iteration
procedures are used to determine the frequencies and mode shapes, parti-
cularly so in this case because the frequencies are in some instances
nearly equal to each other. The condition of the matrix can be improved
and the matrix can be made symmetrical by the following transformation:
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Jgﬂg = (A12)

which yields the final matrix

[\fe“l(s - B'm‘lﬁ) \F—l - :lé]g =0 (13)

The natural frequencies are then obtained when the determinant of
-equation (A13) vanishes. When the natural frequencies are substituted back
into the matrix (eq. (Al3)) and the value of unity assigned to one of
the coefficients (for example, gn), the rest of the coefficients §-,

€o, and so forth, can be obtained. If an iteration procedure is used,

the values of £ are determined simultaneously with the natural fre-
quencies. In either case, the mode shapes are then obtained as follows:

ny = -alp e it (A1k)
and.
-1
o= \E ¢ (A15)

The relative magnitudes of the elements of equation (Al3) are illus-
trated by the following matrix which results when Q = 30 radians per
second and the parameters are those for the basic configuration:

r -
0.0001715 - i -0.00002270 0.00008273 ~0.0000194%4 0.0001195 -~0.00002808 3

~0.00002270  0.000042L42 - :’;2- ~0.0000004435 0.0000001042 ~0.00003199 0.000007518 £n
0.00008273 -0.0000004435  0.001030 - -al’-a- 0.00001907 0.00002841  -0.000006676 &3
{ =0 (A16)

-0.00001944  0.0000001042 0.00001907  0.0001563 - 0—3;2- -0.000006676  0.000001569 £)

0.0001195 ~0.00003199 0.000028%1 -0.000006676  0.001039 - iz- 0.00001684 £

-0.00002808 0.000007518 -0.000006676 0.000001569 0.0000168%  0.0001568 - —1@ &g
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Procedure When 0 = O

When § = O, the freguency parameter 1/uf occurs in only the last
four rows and columns of equation (11}, The transformation of the matrix
for the solution in this case is accomplished in the same fashion as for
Q # O except that the submatrices (a, B, B', b, €, 13, and 7, of

eq. (A1l)) are of the fourth order. The relative mognitudes of the elements

of the final matrix for Q = O and for the basic parameters are shown by
the following equation:

<N
0.0001516 - }u;?- .0.00006283  -0.00009185  -0.00001905 | {81
o
-0. ) -1 g.o000v ~0.0000003405 | |t
0.00006283 0.001515 = 159 2l (a7
~0,00009185 0.00001759  0.001521 - ié 0.00002506 £5
-0.00001905  -0.0000003405  0.00002506  0.00004143 - (-:3;5 £
i ’ R L J
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TABLE I.- PARAMETERS USED IN CALCULATIONS

(a) Blade parameters (blades on front and rear rotor
assumed to be identical)

[?F 1 = ag ) = 25.3 radians/sec; Kp,1 = Kg,1 = 6.2; Ry = Bg = 210 in.;

P=q= 3 Mp=Mg= 0.194 1b- se02/1n:}

Radial Mass First-bending
Station location, distribution, mode shape,
rp Or Iy, mp Or mg, Xy or zj,
in. lb-sece/in.2 in.
1 10.5 3.03 -0.09
2 31.5 1.52 -.27
3 52.5 67 -.h42
L 13+5 <29 -+250
5 ok.5 59 -.5%
6 115.5 .53 --50
7 136.5 15 -3k
8 157.5 .40 -.07
9 178.5 «50 .28
10 199.5 59 <15
(b) Fuselage and engine parameters
[?T = 89.2 radians/sec; we = 130 radians/sec;
’
Me = 2.861 1b-secZ/in.; 1g/1 = O. 735]
Length of Mass of First-bending
gyseigge fuselage element, | fuselage element, mode shape,
Station °°:/%°n’ b, mg 48, Y1
in. 1b-sec2/in. in.
1 0 32,44 1.28 0.76
2 .123 32,44 1.98 . .36
3 .250 32.44 A2 .03
L ¢375 32,44 .86 -.21
5 .500 32,44 2.12 -.36
6 .625 2l 46 .8 -.38
T T35 ho.42 .23 -.27
8 875 32,40 .81 .26
9 1.000 32,44 1.58 1.00
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TABLE II.- MODAL COEFFICIENTS

Modal coefficients for natural frequencies -
! 2 @3 wy @5 g
Q=0
bo | -memmmm | mmmee- -2.362 86.36 -0.02010 0.02635
by | —mmmmmm | memee- -0.6313 | -157.3 0.1598 -1.736
8y | —mmmmmm | e 2.652 -14k.2 -1.224 -1.301
S | mmmmee- SR 3.299 115.7 -1.886 1.174
ST —— ———— 1 1 1 1
T e T [ -182.1 2,802 1.043 1.032
[T R [——. -226.5 -2,250 1.607 -0.9300
Wp | mmmmmme | mmmee- -0.1233 -1.212 | -0.1182 L. 266
= 20 radians/sec
o -3.925 123.1 ~0.2716 32.21 | -0.01219 | 0.031L48
%o -0.9383 -225.3% ~0.04228 -56.51 0.1701 -1.748
g 153.4 -2,18% -0.9310 -62.22 -1.310 -1.33%0
o 187.5 1,782 -1.3%08 43.95 -2.028 1.204
By 1 1 1 1 1 1
R 0.6192 | -26.11 | -21.4%0 1,060 1.684 1.148
5 0.7558 21.31 -30.06 43.95 2.608 -1.040
wp | -0.1227 | -1.146 -0.1252 | -2.282 -0.1171 4.273
= 30 radians/sec
bo ~1.552 62.72 | -0.07493 35.59 | 0.0092k2 | 0.04096
bop | -0.k512 | -113.6 0.0985 | -60.30 | 0.2010 -1.775
8y 61.00 -1,123 -1.369 -69.86 -1.425 -1.3%66
o TT-30 881.8 -2.045 45.57 -2.242 1.266
by 1 1 1 1 1 1
ay 0.1760 -15.41 -L4.654 1,188 3.734 1.389
cy 0.2225 12.11 -6.968 ~T76.4 5.883 -1.27h
Wp -0.1239 -1.312 -0.1223 -5.586 -0.1128 4.293
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Figure k.- Effect of natural uncoupled frequency of fuselage on natural
frequencies of coupled system. 0 = 30 radians per second.



38 NACA TN 3849

18Q
160
]
&
140
120]__
- /\/{/\
Natural 100 “('/
frequency,
w’
radians/sec
80 g Y »
’_’_—— /
N
N
60 —
40 | / _—
“
|
. | \\/J\
0
56 58 60 6.2 6.4 6.6

Southwell coefficient, Kg .

Figure 5.- Effect of Southwell coefficient for blade first elastic
flapwise bending on natural frequencies of coupled system.
Q = 30 radians per second.



NACA TN 3849
140
120l ----- Three-mode analysis
Eight-mode analysis
(taken from fig. 2)
100
80|——— — ==
Natural
frequency,
w ? R
radians/sec /
60 ”
,’/,
40
20

8 16

24

Rotor speed, (), radians/sec

39

32

Figure 6.- Comparison of natural frequencies of coupled system from
three-mode analysis with corresponding frequencies from eight-mode

analysis.



Lo

NACA TN 3849

20xi07
18
o In-phase component, X ]
16 0 o QOut-of-phase component, Yy
4
12 { )
10 T
E\g—,

_._
LT[

.08 4
08| é 7

%‘D*-D-‘_

In-phase and out-of-phase components of cockpit deflection, in.

o g Lw
> | /1
M AN
NS X
03—’1 VSA L‘! . . W
/ BEuN
-.02 ) /
-04 )
o6 L1/
» r Natural coupled frequencies-J7
-.08 | ' E, | /
0 20 40 60 80 100 120 140 160 180

w, radians/sec

Figure 7.- Effect of forcing frequency on in-phase and out-of-phase
components of amplitude of vibration of cockpit. Oscillating
force of unit magnitude applied at front rotor hub.



NACA TN 3849 L1

241073

O In-phase component, Xy
20 o Qut-of-phase component, ™
16

o

In-phase and out-of-phase components of cockpit deflection, in
o)
| d
7c<£
P

(@)

[¢1]
Pl

‘ﬁ\\

o
ol L[ [ ]
______‘__..-D-r——""‘""a"-

(e}

Y
\
e

3
N
Y
|
y

o)
@

]

N
M —
o |
\y

=

Natural coupled frequencies —\

0 20 40 60 80 100 120 140 lG'OA 180
w,radians/sec

Figure 8.- Effect of forcing frequency on in-phase and out-of-phase
" components of amplitude of vibration of cockpit. Oscillating
force of unit magnitude applied at rear rotor hub.



Lo NACA TN %849

.22x1073

f

,’——-D—'—_'—O——_

|

odf 1]
i /

| /

04 b
\ // N
Natural coupled frequencies k\\
. A\ NSRS

[ = o
% 20 40 60 80 100 120 140 160 180

w, radians/sec

Figure 9.- Effect of forcing frequency on amplitude of vibration of
cockpit. Oscillating force of unit magnitude applied at front
rotor hub.



NACA TN 38L9

24x10°®
22 !
|
20 ] %
i
{EaEsE
] \
16 f!r \
14 | \
g 1
m.la l

/
FilN
]
’ ! / ! \\
08
VR
A
06 ¥ (
\
04
‘ ?\ ‘
o Natural coupled frequencies 4 3 L
L /: E gl// l\\T——’
% 20 i ) ei) 00 20 140 160 180

w, radians /sec

Figure 10.- Effect of forcing frequency on amplitude of vibration of
cockpit.

Oscillating force of unit magnitude applied at rear rotor
hub.

L3



Lk NACA TN 3849

20x107®

=]
o
TS
S

06 J; ? \
04 / /4 )
| 7

v Natural coupled frequencies—~ \c
02 ¢

[
|

0 20 40 60 80 00 120 140 160 180

w, radians/sec

Figure 11.- Effect of forcing frequency on amplitude of vibration of
cockpit. Oscillating force of unit magnitude equally divided
between front and rear rotor hubs and applied in same direction.



NACA TN 38L9 L5

.20x1073

~
&

08

Oeep——fO——

oo
|

N | ies—
N (i! atural coupled frequencies v

02 : o
q ./ 5 X 18 4
. El i s R [

0 20 40 60 80 100 120 140 160 18

w, radians/sec

Figure 12.- Effect of forcing frequency on amplitude of vibration of
cockpit. Oscillating force of unit magnitude equally divided
between front and rear rotor hubs and applied in opposite directions.

NACA - Langley Field, Va.



