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ANALYSIS OF PARTICLE MOTIONS FOR A CLASS OF THREE-DIMENSIONAL
INCOMPRESSIBLE LAMINAR BOUNDARY LAYERS

By Arthur G. Hansen and Howard Z. Herzig

SUMMARY

An analysis is presented for the positions of particles at various
time intervals in a three-dimensional incompressible laminar boundary
layer on a flat surface for main flows consisting of streamline translates
having constant axial velocity. Boundary-layer particles initially ar-
rayed on a line normal to the surface trace out twisted surfaces as they
progress downstream. Tables are presented for computing the curves formed
by the instantaneous positions of the particles at various time intervals
for main-flow streamlines that can be approximated by third-order

polynomials.

For viscous-flow problems where it is important to know the length
of time a particle remains near a bounding surface, the tables facilitate
rapid computation of the residence times of boundary-layer particles for
a given flow configuration.

INTRODUCTION

Results obtained in the experimental investigations of secondary
flows in turbomachines (refs. 1 to 3) indicate that information concerning
three-dimensional laminar boundary-layer behavior can be of practical
value in interpreting and correlating measurements of losses in the turbo-
machines for design purposes. Reference 4 gives a theoretical analysis
of the overturning (more than mainstream turning) of the three-dimensional
laminar boundary layer developed on flat or nearly flat surfaces, under
mainstream flows which consist of streamline translates (i.e., the entire
streamline pattern can be obtained by translating any particular stream-
line parallel to the leading edge, fig. 1) with constant axial velocity
component. For such two-dimensional mainstream flows, defined by

U=1Uy (a constant) (1a)
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W= E aixi (1b)
1=

The orientation of the coordinate axes is depicted in figure 2. The
boundary-layer velocity components found in reference 4 are

L= UOF'(W) (2a)

where F satisfies the well-known Blasius equation

FF" + 2F" =0 (2b)
m

W = E aixiPi(n) (3a)
i=0

where P; satisfies the ordinary differential equation

FPt

P} +—= - iFfP; +1=0 (3b)

with the boundary conditions

P;(0) =0 (4a)
lim Pj(n):=1 (4b)
N - »

Numerical solutions of equations (3) were obtained and tabulated in
reference 4 for values of i from 1 to 10. Thus solutions for the
boundary-layer flow can be obtained for any main streamline shape that
can be reasonably approximated by polynomials up to the eleventh order.

The x-, z-coordinates of a given boundary-layer streamline, identi-
fied by a corresponding constant K, may be represented by

K

X = ——— Sa
[F(n))® e

and

* 1
z = E 8% Ji(n)dx + 2z (5b)
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where

P,
A5
i = re (6a)

(J; is likewise tabulated in ref. 4) and

a .

Bé (6év)

*
ai=
The results of this theoretical analysis were employed in reference
4 to predict the cross-channel boundary-layer flow in a two-dimensional
channel for both thick- and thin-boundary-layer flows. These boundary-
layer overturnings were then checked experimentally. The close agreement
that was obtained between the theoretical and the experimental boundary-
layer overturnings indicates that the theoretical assumptions may be con-
sidered reasonable for the cases considered by this laminar cross-channel
flow theory. Accordingly, this class of flows, for which the mainstream
can be represented by approximating polynomials, is used here in investi-
gating the influence of main streamline configurations on boundary-layer

behavior.

The present investigation is an extension of reference 4 and develops
an analysis that permits a more detailed understanding of the boundary-
layer behavior as the boundary layer passes through a flow configuration.
In particular, the analysis makes it possible to determine the position
of a boundary-layer particle at any given time after it leaves the leading
edge. Thus, for example, the subsequent history of particles arrayed in
a line normal to the surface at the leading edge can be determined, and
the curves (skewed profiles) formed by the instantaneous positions of the
particles can be traced out. Tables are provided for rapid calculations
of these properties of the boundary-layer flow under main streamline
shapes that can be approximated by third-order polynomials.

For viscous-flow problems, in general, where it is important to know
the length of time the particles remain near the surface, the tables make
possible rapid calculation of the through-flow times of particles for a
given configuration.

SYMBOLS

aj constants, coefficients of polynomials in powers of x

F,F(n) Blasius function
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8

d
I(n) S (eq. (22))

o

n

i constant, i = 0,1,2, . . . m

. P, (n)
Ji,94(n)  function of 1, Ji(n) = Y
K constant of integration for stream equation in x,y-plane
k constant
m constant

m
P;,P;(n) function of n, w = E aixiPi(n)

i=0
t time
U,w mainstream velocity components in x- and z-directions,
respectively
Ug mainstream axial-velocity component
u,v,w boundary-layer velocity components in the x-, y-, and z-

directions, respectively

X,Y,% rectangular coordinates
X0 constant
Ax initial axial location of boundary-layer particle near the

leading edge

) constant
Yo
Ul similarity variable, n =y =
Mg value of 7 defining final position of particle in boundary

layer

v coefficient of kinematic viscosity

66TY
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Subscripts:
K final position of boundary-layer particle

X1 exit value

JAV'S initial position near leading edge

i: exit
Superscripts:
3 denotes division by UO

Primes denote differentiation with respect to 7

BOUNDARY-LAYER SKEWED-PROFILE ANALYSIS

For a main flow whose streamline translates are described by

¥*.2 ¥ m+1
z = constant + a’x + 21" 4 & e #* EEE——— (7)
0 2 m+ 1

boundary-layer streamlines can be determined from equations (5) corre-
sponding to various initial positions in the boundary layer. As an
example, several boundary-layer streamlines are plotted in figure 3
(fig. 5, ref. 4) for a mainstream flow represented by

BT

X X
z = constant + = g + 7

Figure 3 shows the familiar progressive increase in overturning through
the boundary layer. There is no indication in figure 3, however, (or

in ref. 4) how far mainstream and boundary-layer particles that start
simultaneously from the leading edge travel along their respective paths
in a given interval of time t. The present investigation extends the
analysis to compare the relative positions of such particles after such
an interval of time. For a numerical example the results of the analysis

are applied to the main-flow case 2z = x2 + k. The curve that is then

drawn by connecting the final positions of the particles represents a
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profile of the travel of the boundary-layer particles. The residence
time, the time required for a boundary-layer particle to pass through a
particular configuration, can likewise be computed.

Derivation of Equations

Parametric representation of a boundary-layer streamline. - For a
given boundary-layer streamline the relation

[F(n)]?

determines x = x(n) for all points on the streamline. Differentiating
equation (5a) results in

(52)

-2K

1=

Substitution of equations (5a), (6), and (8) into equation (5b) yields

dx = Ftdn (8)

m n

P
__2 o o
z = -2 2 aj K 2143 an + zg (9)
o
where 173 and 7 correspond to xy and x, respectively, along the

streamline.

The definition of the Blasius similarity parameter

N = Y'\/?g (10)

and substitution of equation (5a) give

7 =4 for 14E (11)
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From equations (5a), (9), and (11) a given boundary-layer streamline
is thus given in the parametric form as

x = x(n,K)
z = z(n,K) (12)
y = y(n,K)

Boundary-layer particles at time t. - Because the projection of a

boundary-layer streamline in the x,y-plane is determined from the well-
known Blasius two-dimensional boundary-layer development (ref. 4), at-
tention here is directed to the projection of the streamline in the
X,z~plane. In particular, for a particle in the boundary layer that,
starting from the leading edge, has reached an axial position x, equa-
tion (5a) determines 1 corresponding to the axial position x and
because 7, approaches infinity at the leading edge, equation (9)

becomes

m l
L 7o
< 3% +1 1
2 =2 .Eo a¥ K LJN 21 an + zg (13)
1= ©

For n > 8, good approximations to F(n) and Pi(n) are, respectively,
P(n) & v - 1.72077 (14a)

P;(1) = 1.00000 (14v)

Equation (13) can then be written

8 I
m

P
- . s
z = E 2a¥yitl ) . an + z
] Fai+s (o> 1, 7R077) 25 :
8

5=0
(15)
Integration of the last term yields

8

m
N Py 1
z = E 2a¥gitl — dn + + z
= Foi+d (21 + 2)(6.27923)21+2 2
5 N

(16)
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Consider now several particles all at z = zy but at varying

boundary-layer heights (a range of K). All the particles leave the
leading edge simultaneously. In order to compare the relative positions
(x,z) of these particles after some time interval t, it will be neces-
sary to determine n = nx at time t corresponding to each boundary-

layer streamline K, and then to evaluate equations (5a) and (16).

Determination of K- - Consider a particle in the main flow which

has travelled to a point (xl,zl). The mainstream particle has a constant
axial velocity component Uy. Therefore, the time taken to travel from
the leading edge to (x7,z7) is simply

d| ]
o I+

(17)

Next consider a particle in the boundary layer that has travelled
from the leading edge for a time t. Along a boundary-layer streamline

& = u = UgF*(n) (18)

Substituting from equation (8) gives

z2K dn = dt (19)
U
and, therefore,
e t
2K dn
= = at = t (20)
Uo Fo
n 0

Assuming that the particles in the mainstream and in the boundary
layer start simultaneously and both travel for a time t, then the value
of m = Mg associated with the particle at the end of that time can be

determined (from egs. (20) and (17)) as the solution to the integral
equation

2K (21)

S

X1
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Making use again of the approximation (14a), ng can be determined from

8
an _ %1 1 )
I(n) = = e S (22
P 2K 3(6.27923)2
N
Boundary-layer velocities at time t. - Once ng has been obtained

for a boundary-layer particle on a particular streamline, the velocity
components are readily established as functions of mg:

u = UgF*(ng) (23a)

From equations (2b), (5a), and (6b)

L 3

K
w=Uy ok e P, (ng) (23p)

i=0

vU,
v = % I\ /—;9 (nF*t - F) (2¢)

Substitution of equation (5a) into equation (2c) gives

v = %,\/V_i__o [nKF(nK)F‘(nK) - Fz(nK)] (23c)

Tables

From reference (4)

The integral I(n) has been computed for a range of n from 8.0 to
0.05, and the values are presented in table I. The computation was done
by numerical integration using the trapezoidal rule for intervals of 1
corresponding to the intervals between the consecutive values of 1 in

the table.

8
Py 1

——= dn + - required for
Feit+d (21 + 2)(6.27923)21+2

The expression

i
use in equation (16) has been evaluated for i = 1,2,3 for a range of

n from 8.0 to 0.05. The results are presented in table II. It may be
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I

observed that for values of 1 > 3 at small 1 the quantity ne=

B

!
comes very large (ﬁ = 0.05, —% = 3.8X102%> while the quantity Xitl
F

(eq. (16)) becomes very small <from eq. (22), for i =3 when 7 = 0.05,
4

X
4 - ————i——!>. These factors combine to restrict the practical range of
2.4x103%

i (and hence the order of the approximating polynomial (eq. (5b)) that
may be used. More accurate values of F(7) than are generally available
were required for these computations. Accordingly, these values are
likewise presented in table I.

Numerical Example

The method described has been applied to the case of mainstream flow
defined by

7R = x2 + k

from the leading edge to xp = 1/2, corresponding to 45° turning (fig. 4).
The computing procedure is outlined briefly in the following paragraphs:

Evaluate the right side of equation (22) for xj = 1/2,

1

2(6.27923)2 2t

1
I(ng) = 7% -

for a range of values of K. In this numerical example values of
K = 19, 10, 1, 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.07, 0.05, 0.02, 0.005,
0.0005, 0.0003, and 0.0002 were chosen. For each value of I(nK), find

the value of 7 = ng in table L.

For this example, equation (7) requires that

m= 1
ag = 0 (25)
¥z

LEIf7
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The x-, z-coordinates for the particles in the boundary layers when the
mainstream particle is at x; may now be obtained from equations (5a)

and (16) which, for this example, become

K
X =~ (26)
FZ(HK)
. B
i i
7 = 4K@ = G} dp e a7
. s 4(6.27923)% oLk
s
e
The coordinates of the boundary-layer particles at the time t 2 5
0]

when the mainstream particle reaches the axial position x; = 0.5 have

been computed from equations (26), (27), and table II; and the results are
plotted in figure 5, as a boundary-layer profile curve projected on the
surface. Figure 6 illustrates that the skewed profile is actually a
three-dimensional curve in space.

DISCUSSION
Skewed Boundary-Layer Profile

It may be observed in figures 5 and 6 how fluid particles that were
all arrayed in a line normal to the surface at the inlet have fanned out
to form a twisted curve (skewed profile) after a time interval t. A
mainstream flow path and the limiting boundary-layer position (line of
maximum flow deflection directly on the surface) are likewise shown in
figures 5 and 6 for comparison. It is interesting to note that the
boundary-layer particles on the streamlines designated by K = 1, 0.5,
0.4, and 0.3 have actually travelled farther in the z-direction than
have mainstream particles in the same period of time. This indicates
that the tangential component of velocity in the boundary layer can and
does surpass the tangential velocity in the mainstream overhead. This
phenomenon is likewise noted in reference 4.

The velocity components of a particle in the boundary layer at time
t may be determined by equations (23).
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Residence Time of Particles in Boundary Layer

For such mainstream flows as are being considered here with flow
uniformity in the z-direction and constant axial velocity U, the time

required for a boundary-layer particle to pass through a given configura-
tion (residence time) depends only upon the axial velocity Up, the axial
length of the configuration, and the 1 position of the particle in the
boundary layer. The residence time may be calculated readily by the use
of I(n), evaluated in table I.

From equations (20) and (14) the residence time of a boundary-layer
particle is expressed as a function of n at x4, the exit of the
configuration,

3 [ - . (25)
0 F 2(6.27923)
Ny

This may be expressed for convenience as the ratio of the residence time
of a boundary-layer particle to the residence time of the main flow using

equation (17):

t
boundary layer _ zK dn n i’ (29)

thainstream il L 2(6.27923)2

Equations (28) and (29) find the residence time in terms of the 1 posi-
tion at the exit xy. It may be convenient to determine the residence

times of particles in terms of their positions in the boundary layer at
the inlet. However, m 1is not properly defined at the leading edge.
Nevertheless, the residence time can be calculated for a particle at any
given 71 in the boundary layer at some axial position Ax close to the
leading edge. From equation (5a) for a given streamline

AX
R R (30)
Xl X Xl

The residence time for a boundary-layer particle at a given 17 near the
leading edge may then be computed by first using equations (5a) and (30)
and the F tables (ref. 4) to find nxl and then using table I for

values of I(n) to evaluate equations (28) or (29). 1In the present numer-
ical example, for the boundary-layer streamlines corresponding to 1n = 6.4,
4.8, 3.2, and 1.6 at &x = 0.01 (fig. 3), the ratios of the boundary layer
to mainstream through-flow times are 1.069, 1.577, 2.148, and 4.105,
respectively.
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CONCLUDING REMARKS

An analysis is presented that describes the positions of individual
particles at various time intervals in the three-dimensional incompressible
laminar boundary layer developed on a flat (or slightly curved) surface
under a main flow of streamline translates with constant axial velocity.
Boundary-layer particles arrayed normal to the surface near the inlet are
found to fan out forming a skewed curve. Tables are presented which
facilitate rapid calculation of detailed boundary-layer information for
main streamlines that can be described by third-order polynomials. A
numerical example for main flow

Zi= %2 + k

is computed for demonstration purposes. The profile curve of this exam-
ple illustrates a case in which tangential velocity components in the
boundary layer exceed those of the local mainstream (similarly noted

in ref. 4).

For viscous-flow problems where it is important to know the duration
of time a particle remains near the surface, use of the tables makes 1t
possible to determine quickly the residence time of the chosen particle
for a given flow configuration. The residence time can be computed either
in terms of the final boundary-layer height of a particle at the exit of
the flow configuration or in terms of its initial position. For the
main-flow case 2z = X2 + k with a turning of 45°, the residence times
of particles at positions corresponding initially tor m = B4, 4B 5 2,
and 1.6 (nearly mainstream, 3/4, 1/2, and 1/4 boundary-layer height)
respectively) were 1.069, 1.577, 2.148, and 4.105 times the mainstream
residence time, respectively.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 14, 1956
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% a
TABLE I. - I, = 4
e LJ\ =
n
1 F I(n) 1 F I(n) 1 F I(n)

8.0|6.27923|0 4.3 |2.59499 0.062212 || 1.80|5.29521x10"1| 2.58098
7.9!16.17923| .00041387 || 4.2 |2.49805 068281 1| 1.75]5. OlZLZ‘SBXlO’l 2.94800
7.8|6.07924| .00084834 | 4.1 |2.40162 .075098 || 1.70|4.73472x10-1| 3.38217
7.7/ 5.97924| .0013048 [ 4.0 |2.30576 .082786 || 1.65(4.46530%10"1(3.89851
7.6|5.87924| .0017847 | 3.9 |2.21053 .091494 || 1.60|4.20323X10"1| 4.51596
7.5/5.77924| .0022898 | 3.8 |2.11604 .10140 | 1.55|3.94857x10-1|5.25871
7.4|5.67924| .0028218 | 3.7 |2.02234 .11272 | 1.50|3.70140%10-1|6.15778
7.35.57924| .0033827 | 3.6 |1.92953 .12575 | 1.45|3.46180%x10-1|7.25337
7.215.47925| .0039745 | 3.5 |1.83771 .14074 | 1.40|3.22983x10-1|8.59798
7.115.37925| .0045997 | 3.4 |1.74698 .15818 | 1.35|3.00556x10"1|1.02608 X10
7.0/5.27926| .0052607 | 3.3 |1.65739 .17854 || 1.30|2.78904x10-1|1.23339X10
6.9/5.17927| .0059604 | 3.2 |1.56910 .20246 | 1.25|2.58034x10-1|1.49416X10
6.8]5.07928| .0067019 | 3.1 |1.48221 .23076 | 1.20|2.37950%10-1|1.82524X10
6.7|4.97929| .0074885 | 3.0 |1.39682 .26446 | 1.15|2.18658%10-1|2.24992X10
6.6(4.87931| .0083239 [ 2.95(1.35472 .28369 || 1.10]2.00161x10"1|2.80080X10
6.5|4.77933| .0092123 | 2.90|1.31304 30479 || 1.05|1.82465x10"1|3.52415X10
6.4|4.67937| .010158 2.85|1.27179 .32799 | 1.00|1.65573%10-1|4.48652X10
6.3|4.57942| .011167 2.80|1.23098 .35354 .95|1.49488%10"1|5.78558X10
6.2|4.47947| .012244 2.75|1.19064 .38176 .90|1.34214x10"1|7.56820%10
6.1|4.37955| .013395 2.70|1.15077 41297 .85/1.19753x10-1|1.00586x102
6.0|4.27964| .014628 2.65[1.11139 . 44759 .80(1.06109x10"1{1.36066x10
5.9/4.17975| .015951 2.60[1.07251 . 48606 .75|9.32828%10-2 | 1.87790x102
5.8|4.07990| .017372 2.55[1.03415 .52893 .70/8.12774x10-2|2.65149x102
5.7|3.98007| .018901 2.50|9.96316X10"1| .57682 .65|7.00942x10"2|3.84315x10
5.6/3.88031| .020550 2.45|9.59027x10-1| .63044 .60|5.97350X10-2| 5. 74242x102
5.5[3.78059| .022331 2.40]9.22295x10"1| .69064 .55|5.02008X10-2|8.89168x102
5.4|3.68093| .024259 2.35|8.86133%10-1| .75844 .50|4.14930x10-2|1.43684%x103
5.3|3.58136| .026350 2.30|8.50554x10"1| .83509 .45|3.36125x10-2|2.44530x103
5.2|3.48188| .028623 2.25|8.15571x10-1| .92171 40|2.65600X10-2|4.43775x103
5.1|3.38252| .031100 2.20(7.81197x10-1|1.02024 .35|2.03362x10-2|8.74268x103
5.0[3.28329| .033804 2.15(7.47444x10-1(1.13255 .30(1.49415x10-2|1.92098x10%
4.9(3.18422| .036766 2.10(7.14324x10"1|1.26101 .25/1.03764x10"2|4.90674x10%
4.8(3.08533| .040017 2.05|6.81848x10-1|1.40846 .20|6.64104x10-3|1.56811x10°
4.7(2.98667| .043596 2.00|6.50028x10-1|1.57834 .15|3.73563x10-3| 7.20522X10°
4.6|2.88826| .047548 1.95|6.18874x10-1|1.77484 .10|1.66029x10-3| 6.66403x106
4.5|2.79015| .051925 1.90|5.88399x10-1(2.00303 .05|4.15074x10-4|3.49557x108
4.4|2.69237| .056789 1.85|5.58611x10-1|2.26918
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1.95618%x10-4
2.09279X10-4
2.24153x10"4
2.40372x10-4
2.58085%104
2.77459X10-4
2.98685x10"4
3.21980X10-4
3.47592x10-4
3.75801X10-4
4.06931X10-4
4.41352X1074
4.79491x10-4
5.21842x10-4
5.68975X10-4
6.21552x10-4
6.80348x10-4
7.46266X10-4
8.20369x10-4
9.03907x10-4
9.98361x10-4
1.10549x10-3
1.22738x10-3
1.36656%10-3
1.52604x10-3
1.70948x10-3
1.92132¢10-3
2.16701X10-3
2.45318X10-3
2.78810X10-3
3,18201X10-3
3.64769%X10-3
4.20126X1073
4.86313X10-3

3.64853%x10-6
4.03748X10-6
4.47564x1076
4.97026X10-6
5.52980X10-6
6.16420%x10-6
6.88521%X10-6
7.70649x10-6
8.64422X10-6
9.71778%10-6
1.09501X10-5
1.23687X10-°
1.40064X10-5
1.59026X10-5
1.81053X10-9
2.08723X10-5
2.36741X10-5
2.71971x10-°
3.13472X10-°
3.62553X10-°
4.,20839x10-5
4.90356X10-°
5.73646X10-°
6.73915410-5
7.95232X10-5
9.42793X10-5
1.12328X10-4
1.34533X10-4
1.62023X10-4
1.96276X10-%
2.39253x10-%
2.93569X10-4
3.62745X107%
4,51561X10-4

7.65644X10-8
8.76408%10-8
1.00551x10~7
1.15638%x10-7
1.33319%107/
1.54097%X10-7
1.78591%10-7
2.07548X10~7
2.41890%10-7
2.82755%10-7
3.31551X10-7
3.90027X10-7
4.60364X10-7
5.45296X10-7
6.48267x10-7
7.73635x10-7
9.26946X10-7
1.11529x10-6
1.34780x10-6
1.63627X10-6
1.99607x10-6
2.44733%X10-6
3.01660710-6
3.73916%10-6
4.66217710-6
5.84926X10-6
7.38686710-6
9.39347710-6
1.20329X10-5
1.55337x107°
2.02181X10-5
2.65444X10-5
3.51723X10"°
4,70613x10-5

LN ANPRNO N DOOH NN

™ o © ©
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douomoouonmoOuounououn
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FHRHMDDMDNDNDNMNMNDNDNDNDN NN N

@ © ©
SRR

9.24051%10-3
1.10245%10-2
1.32485x10-2
1.60442%1072
1.95892¢10-2
2.41256X10-2
2.99870%10-2
3.76371x10-2
4.77282X10-2
6.11880X10-2
7.93528X10-2
9.06982X10-2
1.03997x10-L
1.19635x10-1
1.38087x10-1
1.59934X10-1
1.85892x10-1
2.16848%10-1
2.53903x10-1
2.98429X10-1
3.52146X10-L
4,17220x10"1
4.96384X10-1
5.93113x10"1
7.11840x10-1
8.58253x10-1
1.03969

1.26566

1.54858

1.90474

2.35566

2.92992

3.66582

4.61499

1.17937x10-3
1.53524x10-3
2.01994x10-3
2.68795X10-3
3.62014X10-3
4.93817X10-3
6.82769x10-3
9.57621X10-3
1.36360X10-2
1.97306X10-2
2.90365%X10-2
3.53753X10-2
4.33091X10-2
5.32869X10-2
6.58965x10-2
8.19129%X10-2
1.02362x10-1
1.28610%x10-1
1.62487x10-1
2.06457x1071
2.63861x10-1
3.39259x10-1
4.38902x10-1
5.71437x10-1
7.48895x10-1
9.88140x10-1
1.31298
1.75733
2.36982
3.22084
4.41315
6.09816
8.50109
1.19605x101

1.68364X10-4
2.38823x10-4
3.43511X10-4
5.01424x10-4
7.43457X10-4
1.12073X10-3
1.71936X10-3
2.68723%x10-3
4.28341x10-3
6.97149x10-3
1.15996Xx10-2
1.50195%10-2
1.95812x10-2
2.57038x10-2
3.39738%10-2
4.52182x10-2
6.06105%10-2
8.18281%x10-2
1.11286%10-1
1.52489x10"1
2.10562%x10-1
2.93058x10-1
£.11209%10-1
5.81856X10-1L
8.30480x10-1
1.19600
1.73824
2.55122
3.78153
5.66347
8.57380
1.31261x101
2.03323%10L
3.18822x10L

1.24058X101
1.61851x101
2.12919X10%
2.82578X10%
3.78549 X101
5.12182%101
7.00389x10%
9.68706X10L
1.35628x102
1.92409x102
2.76878x102
4.04642X102
6.014267102
9.10598,102
1.40707x103
2.22384x103
3.60416x103
6.00821X103
1.03400x10%4
1.84526x10%
3.43346x10%
6.70666x10%
1.38721%x109
3.07268X105
7.39807X10°
1.97618x106
6.02916X106
2.19376x107
1.01921x108
6.79386X108
8.11319X109
2.86133x10LL
1.41891x1014

5.14453x101
7.65341X101
1.15190X102
1.75571L4102
2.71266%102
4.25294X102
6.77354::102
1.097224103
1.81005X103
3.04544X103
5.23460X103
3.20880X103
1.66163X104
3.08278X10%
5.89737X10%
1.16713X105
2.39894X10°
5.14476X10°
1.15763X108
2.75141X106
6.96504 XL06
1.89743x107
5.63622%107
1.85690%108
6.94059%108
3.03559x109
1.62311x 1010
1.13196x101L
1.13926%1012
1.96143x1013
7.93459 1014
1.52313%10%7
1.26472x1021

3
P,
TABLE II. - e 1
Fai+d (21 + 2)(6.27923)21+2
1
1 i=1 1=2 i=3 1 i=1 {=2 i=3 i=1 i=2 i=3

1.60810k10-4| 2.71900x10-6|5.17197%1078 || 4. 5.65931X10-3| 5.66577x10~4|6.36237x107° 5.84759 1.67871x10L | 5.08379X10L
"9 1.71482x10-%|2.99427%10-6|5.88212x1078 | 4.2 |6.62323%10-3 7.16871%10-4|8.69636X10-5 7.45971 2.39738x10} | 8.15151x10%
1.83054X10-4| 3.30257x10-6|6.70368X10-8 7.79815%10-3|9.15148x10-4|1.20258x10-4 9.58409 3.49508X10L | 1.33086X102

2.20537X102
3,71231X102
6.35343X10
1.10664X10
1.96390X103
3.55528 X103
6.57450 X103
1.24379x10%
2.41141x10%
4.80031x10%
9.83315X10%
2.07788X10°
4.54243%105
1.03067 X106
2.43652X106
6.02783x106
1.56879x107
4.32193x107
1.26979X10°8
4.01468%108
1.38121x109
5.24305%10°
2.23490%1010
1.09439x1011
6.34501%10L1
4.53819x1012
1.24290x1013
9.46399x1014
1.35767%1016
5.33082%1017
7.07569 x1019
7.07664x1022
9.51275X1027
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Figure 1. - Streamline pattern as system of translates.
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Figure 2. - Coordinate axes for flow over surface.
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Figure 3. - Boundary-layer streamlines for circular-arc flow

(fig. B, Tef. 1).
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Figure 4. - Boundary-layer streamlines.
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Figure 5. - Boundary-layer profile curve at time t = O.5/UO.
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Figure 6. - Three-dimensional

sketch of

boundary-layer profile curve.
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