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SUMMARY 

The total lift responses of wings to sinusoidal gusts and to sinus­
oidal vert ical oscillations are calcu lated from the response to gust 
penetration and to a sudden change in sinking velocity through use of the 
well-established reciprocal relations for unsteady flow. The cases con­
sidered are two-dimensional wings in incompressible, subsonic compressible, 
s onic, and s upersonic flow; elliptical and rectangular wings in incom­
pressible flow; wide rectangular and delta wings in supersonic flow; and 
delta wings of vanishingly low aspect ratio in incompressible and com­
pressible flow. For most of the cases conSidered, closed-form expressions 
are given and the final results are presented in the form . of plots of the 
square of the modulus of the lift coefficient for wings in a sinusoidally 
oscillating gust and in the form of the real and imaginary parts of the 
lift component for wings undergoing sinusoidal sinking oscillations. A 
summary table is presented as a guide to the scope and results of this 
paper; this table contains the figure and equation numbers for the types 
of flow and plan forms considered. 

INTRODUCTION 

Two of the factors required in the harmonic analysis of airplane 
response to continuous atmospheric turbulence are the unsteady-lift func­
tions associated with sinusoidal vertical oscillations and with sinusoidal 
gusts. The unsteady-lift functions associated with a rigid wing under­
going sinusoidal translational oscillations have been derived in refer­
ences 1 to 10 for two-dimensional wings in incompressible, subsonic com­
preSSible, sonic, and supersonic flow; for elliptical and rectangular 
wings in incompressible flow; for wide rectangular and delta wings in 
supersonic flow; and for very narrow delta wings in incompressible and 
compressible flow. Calculations of the unsteady-lift functions associated 
with rigid restra ined wings in sinusoidal gusts seem to be nonexistent, 
with the exception of the work by Jones (ref. 6) for elliptical wings in 
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incompressible flow and by Garrick (ref. 11) and Sears (ref. 12) for 
wings in two-dimensional incompressible flow. 

The purpose of this report is twofold - to compile the unsteady­
lift functions associated with sinusoidal sinking oscillations and to 
derive the unsteady-lift functions associated with a rigid restrained 
wing in a sinusoidal gust. These latter functions are derived herein 
from existing unsteady-lift functions for a wing penetrating a sharp­
edged gust by means of the reciprocal relation between the function for 
a wing in a sinusoidal gust and the function for a wing penetrating a 
unit sharp-edged gust. The reciprocal relation used was of the same type 
as that reported in reference 11. 

The unsteady-lift functions associated with a rigid restrained wing 
in a sinusoidal oscillating gust are derived for two-dimensional wings 
in incompressible) subsonic compressible) sonic) and supersonic flow; 
for elliptical and rectangular wings in incompressible flow; and for wide 
rectangular and delta wings in supersonic flow. In addition) the indicial 
lift function for a wing penetrating a sharp-edged gust and the corre­
sponding oscillatory lift function are derived for a delta wing of ,van­
ishing aspect ratio in compressible flow. The functions presented in 
this paper are total lift functions which include the Circulatory and 
noncirculatory components. 

In studies of the airplane response to atmospheric turbulence (see 
ref . 13) for instance)) the unsteady- lift functions for a rigid wing in 
a sinusoidal gust usually appear in the form of the square of the modulus 
of lift coefficient) whereas the unsteady-lift functions for a wing under­
going sinusoidal sinking oscillations appear in the form of the individual 
in-phase and out-of-phase (real and imaginary) respectively) components 
of lift. Therefore) on this basis) all the results in this paper are 
presented in the figures in the forms mentioned. An index to the figures 
and equations or other sources of information for the unsteady-lift func­
tions for the types of flow and wing plan forms considered herein is pre­
sented as a table. 

A 

a 

b(x) 

C(k) 

SYMBOLS 

aspect ratio 

velocity of sound 

spanwise coordinate of leading edge of wing) measured from root 
chord) mx 

total lift coefficient for wing oscillating harmonically in pure 
translational motion) normalized to unity by its steady-state 
value) F(k) + iG(k) 

.. ' 
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circulatory component of C(k) 

CL steady-state lift coefficient 

C~ wing lift-curve slope 

c root chord of wing 

E complete elliptic integral of second kind with modulus 

Vl - (~t 
F(k) in-phase component of C(k) (real part) 

f(k) Fresnel integral (see eq. (56)) 

fn(M,m) Schwarz function of order n (see eq. (62)) 

G(k) out-of-phase component of C(k) (imaginary part) 

ho amplitude of vertical velocity of wing 

In(k) Bessel function of first kind 

k reduced-frequency parameter, roc/2V 

kl(s) lift coefficient for wing experiencing sudden change in Sinking 
speed, normalized to unity by its steady-state lift 

kl(s)cir 

~(s) 

Lg,ind 

Lg,osc 

~nd 

Losc 

1- (x) 

circulatory component of kl(s) 

lift coefficient for wing penetrating sharp-edged gust, 
normalized to unity by its steady-state lift 

lift on rigid restrained wing penetrating sharp-edged gust 

total lift on rigid restrained wing in sinusoidal gust 

lift on rigid wing experiencing sudden change in sinking speed 

total lift on rigid wing oscillating harmonically in pure 
translational motion 

lift per unit length 
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M 

m 

q 

s 

Mach number 

tangent of semiapex angle of delta wing 

loading coefficient 

dynamic pressure, 

wing area 

py2 

2 

NAeA TN 3748 

s nondimensional distance traveled, root semichords 

t distance traveled by sound wave, at' 

t ' time variable 

y forward velocity 

amplitude of vertical gust velocit y 

coordinate axes, fixed on wing 

Bessel function of second kind 

o(s) unit impulse function or Dirac delta function 

p air 'dens i ty 

~(k) total lift coefficient for wing immersed in harmonically 
oscillating gust, normalized to unity by its steady-state 
value 

m circular frequency 

ill = 2M
2k/02 

1 (s ) uni t jump function 

PROCEDURE 

Since this paper deals with the lift functions C(k) and ~(k), the 
lift due to sinusoidal sinking oscillations and the ' lift due to sinusoidal 
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gusts, respective~, a brief description of the total lift in terms of 
t hes e functions and the method by which they were derived i s i n order. 

For a rigid wing oscillat ing harmonical~ in pure translational 
motion, the total lift can be expressed as 

. iks 
hoe 

Losc == -qSClu. V C( k ) (1) 

where k is the reduced-frequency parameter wc/2V, and C(k) is a 
complex quantity F(k) + iG(k). The real part of this quantity is asso­
ciated with the in-phase component of lift and the imaginary part with 
the out- of-phase component of lift; the total lift functions include both 
circulatory and noncirculatory effects. For a rigid restrained wing in 
a sinusoidal gust the total lift can be expressed as 

The lift on a rigid wing experiencing a sudden acquisition of verti­
cal velocity ho can be expressed as 

and for a wing penetrating a sharp - edged gust of vert ical velocity Wo ' 
the lift can be expressed as 

(4) 

where kl(s) and ~(s) are the indicial lift functions for a wing given 

a sudden change in sinking speed and for a wing penetrating a sharp-edged 
gust, respective~ . 

The functions C(k) and kl(s) are reciprocal~ related as shown 

in reference 11 by the following expressions: 

C(k) = F(k) + iG(k) 

== 1 + -.L 100 

C(k) - 1 eiksdk 
2rci _ 00 k 

(s > 0) (6) 
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Similarly) CP (k) and ~(s) are reciprocally related as follows: 

cp(k) = 1 + ik foo [~(s) _ ~ e-iksds (7) 
0 

~(s) = 1 + ~ foo cp(k) - 1 eiksdk 
21!i _00 k 

(s > 0) (8) 

In appendix A the functions kl(s) and ~(s) are given as obtained 

from various references for different types of flows and plan forms. The 
functions C(k) and cp(k) were obtained by means of equations (5) and 
(7), respectively, and are also presented in appendix A. The various 
types of flows and plan forms for which these functions were derived are 
discussed mor e fully in the following section. 

PRESENTATI ON OF RESULTS 

The unsteady- lift functions kl(s), k2 (S), C(k), and cp(k) are 

presented in appendix A and in figures 1 to 20. These functions are 
given for two-dimensional wings in incompressible flow (figs. 1 and 2), 
subsonic compressible flow (figs. 7 and 8), sonic flow ( f igs. 11 and 12), 
and supersonic flow (figs. 13 and 14); for elliptical and rectangular 
wings in incompressible flow (figs . 3 t o 6); for wide delta and rectan­
gular wings in supersonic flow (figs. 15 t o 20); and for delta wings of 
vanishing aspect ratio in incompressible and compressible flow (figs. 9 
and 10). 

The C(k) functions, although derived by other authors for all the 
wings considered herein, were recalculated by means of equation (5) from 
existing kl(s) functions. The functions C(k) as derived by use of 

equation (5) are in agreement with the f unctions derived by other authors. 

The results are given by the equations in appendix A and the 
which contain plots of the modulus squared for the function cp(k) 

figures 
( that 

is, I cP ( k ) 12) and 
tion C(k ) (that 
has been pr epared 
functions kl(s) , 

the separated real and imaginary parts of the func-
is, F( k) and G(k)). As an aid to the reader, table I 
as an index to the equ ation or reference identifying the 
~(s), C( k), or cp(k), t he plan form and type of flow 

for which these functions were conSidered, and the figures where the func­

tions ICP(k)1 2 , F(k), and -G( k) are plotted . 

. _-_ . .. -----
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CONCWDrnG IDMARKS 

The total lift responses to .sinusoidal sinking oscillations C(k), 
and to sinusoidal gusts ~(k), have been calculated through use of the 
well-established reciprocal relations for unsteady flow for two-dimensional 
wings in incompressible, subsonic compressible, sonic, and supersonic flow; 
for elliptical and rectangular wings in incompressible flow; for wide 
rectangular and delta wings in supersonic flow; and for delta wings of 
vanishing~ low aspect ratio in incompressible and compressible flow. For 
most of the cases considered, closed-form expressions are given and the 
final results are presented in the form of plots of the square of the 
modulus of the lift coefficients for a wing in a sinusoidal gust, and the 
in-phase and out-of-phase lift components are presented for a wing under­
going sinusoidal sinking oscillations. 

Certain gaps still exist in the knowledge of the unsteady-lift problem. 
For instance, there seems to be little or no information available for the 
swept wing. For rectangular wings in subsonic flOW, and in supersonic flow 
for which the characteristic Mach lines intersect the side edges of the 
wing , the uns t eady-lift prob lem remains unsolved, as it is for the delta 
wing for subsonic compressible and incompressible flow. Information on 
other wings with subsonic leading edges in supersonic flow is also 
missing . 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley ·Field, Va., June 8, 1956. 
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APPENDIX A 

A COMP I LATI ON OF THE FUNCTIONS kl(s), k2(s), 

C( k ) , AND .ql(k) 

Two -Dimensional Wing in Incompressible Flow 

The functions kl (s ) and ~ (s ) have been derived by Wagner 

(ref. 14) and Von Karm~ and Sears (ref. 15), respectively. Exponential 
appr oximations to these functions have been given by Robert T. Jones 
(ref . 6) and are now presented, together with the C(k) and ~(k) func­
tions as given in references l ·and 11, respectively: 

0.335e-0.300s + ~ o(s) 

~( s ) ~ 1.0 - 0 . 236e- 0.058s - 0 .513e-0.364s - 0.171e-2 .42S (10) 

C( k ) = C( k) cir + ~k (11) 

~(k ) ~ {C ( k)Cir~O( k) - iJ1(k)] + iJ1(kl}e-ik ( 12) 

where C( k ) is defined as the total lift function and C(k)cir repre­
sents the circulatory component of the lift and is given in reference 1 
as 

and 

C( k ) ~ 1 ( 1 + ik) 
2 

ICP (k ) 12 ~ .l 
2:rrk 

} (k» 1.0) (14 ) 

The multiplier e - ik ( eq. 12 ) is not included in the function ~(k) 
(ref . 11) because in reference 11 the time origin is the instant at which 
the gust reaches the midchord position of the wing, whereas in this paper 
the time origin is the instant at which the gust reaches the leading edge 
of the wing . 

... 
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Elliptical Wing in Incompressible Flow 

For an elliptical wing in incompressible flow, the following equa­
tions were derived from references 6, 16, and 17: 

where 

kind. 

k ( ) 1 0 - 0.361e-0.381S 
1 

s ~. 

A=6 
+ 8o(s) 

3Cr..E~ 1 - (!t] 
is a complete elliptic integral of the second 

k_(S) = s(2 - s) 
-C A=O 

k 2(s) = l.0 
A=O 

4"k 
C(k)A=O = 1 + ~ 

(O - ~ s ~ l.0) } 

(s > l.0) 

C(k) ~ ik(l _ 0.283 ) + 8ik 
A=3 ik 0.540 + ik 3EC~ 

C(k) ~ iki l _ 0.361 ) + 8ik 
A=6 \ ik 0.381 + ik 3EC~ 

( -ik) ~(k) = ik _ ~ + 2 - 2e 
A=O 2 3 

k ik 

(18) 

(20 ) 

(21) 

( 22) 

(23 ) 

(24 ) 
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(k) - ik( 1 0.679 0.227 ) (25) 
~ A=3 - ik - 0.558 + ik - 3.20 + ik 

~(k) ~ ik(Jl _ 0.448 _ 0.272 _ 0.193) (26) 
A=6 \ik 0 . 290 + ik 0.725 + ik 3 .00 + ik 

Since the functions C(k) and ~(k) have been derived from approximate 
expressions for ~pect ratios of 3 and 6, no exact asymptotic expressions 
could be obtained. However, for the vanishing-aspect-ratio case, it can 
be shown that 

C(k) "" 1 + 4ik 
3 

I~(k) 12 ~ 1:... 
k2 

(k» l.0) 

(The magnitude of the Dirac delta function in equations (16) and (17) 

approaches JL as A--7oo for s in half root chords but reduces to ~ 
6. ) 2 

for s in half mean geometric chords. 

Rectangular Wing in Incompressible Flow 

The functions kl(S) . , k2(S), and C(k). for rectangular wings Clr Clr 
of aspect ratio 4 and 6 have been calculated approximate~ and are tabulated 
in reference 7. The noncirculatory components of kl(S ) are shown in refer-

ence 18 to be °c86o. 5(s) and °0895• 5 (s) for A = 4 and A = 6, 
Iu Iu, 

respective~. In order to obtain the function ~(k), an exponential 
approximation was made for the function ~(s). These expressions are 
now presented, together with the expression for the vanishing-aspect-ratio 
case obtained from reference 16 and the corresponding OSCillatory 
functions ~(k): 

(28) 

(30) 
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cp(k) ~ ik(l _ 0.391 _ 0.609 ) 
A=4 ik D.285 + ik 1.638 + ik 

cp(k) ~ ik(Jl _ 0·535 _ 0.465 ) 
A=6 ik 0.299 + ik 2.00 + ik 

Again, the asymptotic expressions could not be obtained except for the 
vanishing-aspect-ratio case: 

(k » 1.0) 

Two-Dimensional Wing in Subsonic Compressible Flow 

For the two-dimensional wing in subsonic compressible flow, the 
following equations have been derived from references 2 and 3 : 

(34) 

k (s) ~ 1.0 - 0.352e-0. 0754s - 0 .261e-0.372s + 0.66ge-l.890s (35) 
1 M=0.5 

k (s) ~ 1.0 - 0.362e-O ·0646s - 0 .504e-0.481S + 0.714e-0.958s (36) 
1 M=0.6 

k
2

(s) 6 ~ 1.0 - 0.328e-0.0545S - 0.430e-0.257s - 0.242e-l.461s (39) 
M=O. 

cp ( k) - ik( 1 0.390 0.407 0.203 ) (41) 
M=0·5 - ik - 0.0716 + ik - 0.374 + ik - 2.165 + ik 
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CP(k)M==0.6 ~ 'k(l 0.328 0.430 0.242 
ik) 

~ l -
0.0545 + ik 0.257 + ik 1.461 + ik (42) 

CP (k)M==0 .7 ~ ik(~ 0 .402 0.461 0.131 
ik) ik 0.0542 + ik 0.3125 + ik 1.474 + 

The function C(k) has been calculated from the coefficients com­
piled in table I of reference 3. 

The asymptotic expressions can be shown to be 

(k » 1.0) (44) 

provided it is assumed that the functions kl(s) and k2(s) and their 

first derivatives are continuous. (See appendix B.) 

As shown in appendix B, the determination of the asymptotic behavior 
is dependent not on~ on the continuity of the function and its deriva­
tives, but also on the value of the function and its derivatives at 
s == O. Therefore, although the kl and k2 functions have been deter-

mined numerical~ for s > ~, the known exact expression for l+M 

< 2M. . f s -- as glven In re erence 19 may be utilized to obtain the 
1 + M 

asymptotic expressions for C(k) 
the functions kl(S) and k2 (s) 

and cp(k), provided it is assumed that 
and their first derivatives are 

continuous. 

Vanishing-Aspect-Ratio Delta Wing in Incompressible 

and Compressible Flow 

For a delta wing of vanishing aspect ratio in incompressible flow, 
the indicial lift functions have b een obtained from reference 16 and are 

(0 ~ s ~ 2) ) 

(6 > 2) 
(46) 
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The corresponding oscillatory functions are 

and 

C(k) ~ 1.0 + ~ ik 

C(k) ~ 1.0 + g ik 
3 

13 

(48) 

(k » 1.0) (49) 

The kl function for the vanishing-aspect-ratio delta wing in com­

pressible flow has been presented in reference 19. However, because of 
the difficulty of obtaining the oscillatory lift function C(k) from 
this function, the results derived in reference 10 for the oscillatory 
lift function for the delta wing are presented instead. The ~ function 
has been derived in appendix C of this report and the corresponding ~(k) 

function was subsequent~ derived. The functions 1~(k)12 and C(k) are 

presented in figures 9 and 10 for Mm ~ N A = 0.1 where m 
4 

is the tangent 

of the semiapex angle of the delta wing. The asymptotic behavior of 

1~(k)12 for Mm = 0.1 can be obtained if it is assumed that the ~(s) 
function and its first two derivatives are continuous. Based on the 
analysis obtained in appendix B and the ~ function presented in appen-

dix C, it can be shown that 

(k» l.0) 

The asymptotic expression for the function C(k), also based on the 
assumptions stated previously, can be shown to be 

(k » l.0) 

(50) 
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Two-Dimensional Wing in Sonic Flow 

The functions C~kl(s) and CLtt~(s) for a wing in two-dimensional 

sonic flow were obtained from the functions presented in reference 20 for 
a wing in two-dimensional supersonic flow by taking the limit as M~l.O. 

The resulting expressions are 

C~kl(s) = 4 

CLttkl (s) = ~[2 va - 1 + cos-l(S ; 2)] 

CIu,~(s) = 26 

(0 ~ s ~ l.0) 

(s>l.O) 

(0 ~ s ~ l.O)) 

(s > l.0) 

The function C~C(k) was obtained from reference 4 and C~~(k) was 

derived by the use of e~uation (7). These expressions are 

C C(k) = 4(1 - i) e - ik + 4(1 + i)f(k) 
Ia. V21rk 

where the Fresnel integral f(k) is defined by 

J k -ix 
f(k) = _e_ dx 

o V21rX 

The unnormalized functions have been presented) since the theoretical 
value of CIu, for two-dimensional sonic flow is infinite. 

Two-Dimensional Wing in Supersonic Flow 

(54 ) 

For a two-dimensional wing in supersonic flow) the following e~ua­
tions have been derived from references 20 and 5: 
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= ~~(~ + 
1! ~ 2 

sl'n-l 2M - MS) 1 _12M
2 

+ S - sM
2 

+ - cos + 
S 13 2M 

(~< s<~) M+l =M-l 

(s > M~ 1) 

k
2
(s) = ~ S(~ + sin-l 2M - Ms) + 1 cos-1 2M2 + s - sM2 

2:Jd4 \ 2 s 1! 2M 

(
2M <2M ) 

M+l<s=M_l 

where 

15 

(58) 

(60 ) 

( 61) 

and fO and fl are the Schwarz functions of order 0 and 1, the Schwarz 

function of order n being defined as 

The functions fn(M)w) are tabulated for M > 1 .0 in reference 21, 

for example. The asymptotic expressions are 
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(k » l.0) 

Wide Delta Wing in Supersonic Flow 

For a wide delta wing in supersonic flow) the following equations 
have been derived from references 22 and 8: 

( 0 < s ~ 2M ) 
- M + 1 

() 13 ~ 1 s 
2 

) (11: . -1 2M - Ms) 1 _12M
2 

- 6M
2 

+ 6 k1 s = - - + - - + 6ln + - cos + 
11: M. (j,13 2 8 13 2M ( 64 ) 

1(2 -£!)\/~ - (1 - ~)2J (~< 8 ~ ~) 
M 2 4 ~4Ml 2 M + 1 - M - 1 

(s >M~ 1) 

k~(8) = ! cos - 1 2M2 - 8M
2 

+ 8 + 13 82 cos- 1 Ms - 2M 
-c 11: 2M 4n:M 8-

( 2M < <2M) 
M+1 8=M_1 

~(8) = l.0 (8)~) M - 1 

C(k) = 2 {fO(M)W) - fl(M,w ) + ik~O(M,w) - 2f1(M)w) + f 2(M)wD} (66) 

q>(k ) ~ ~t-2i~O(~':') -fO(M,iiil] (67) 

--------- - --
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and 

(k » 1.0) 

The function fO(~)~) was calculated by numerical integration of equa­

tion (62), inasmuch as no tabulations were available of the Schwarz 
function for M < 1. 

Wide Rectangular Wing in Supersonic Flow 

For a wide rectangular wing in supersonic flow) the following equa­
tions have been derived from references 23 and 9: 

== ~Ji (~ + sin-l 2M - MS) 1( LM 2 s 
+ 1 -1 ~ + s - sM

2 
+ i3 cos 2M 

1 s2 ( S)2J 2 ~ - 1 ~ (32 (M_ 
M 4M2 - 1-"2 - (32A [ -2},1-+ 2M2 s - 8M3 

( 2M < <2M) M+l s==M_l 

(S>M~l) 

(
4 2 ) == ~~ ~1(2 + . - 1(2M - MS)~ + 4 _1 (2M2 + s - SM2) _ - - - k (s) JU'l Sln s 1( r.l cos 2M 
(3 (32A 2 ~ 

(68 ) 

(~<S~2M \ 
M+l M-iJ (70b) 
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(s>~) M - 1 

and 

(k » 1.0) 



NAeA TN 3748 19 

APPENDIX B 

ASYMPTOTIC BEHAVIOR OF OSCILLATORY LIFT COEFFICIENTS AS 

DETERMINED FROM INDICIAL LIFT FUNCTIONS 

In the following ana~sis it is shown that the asymptotic 
behavior of the oscillating lift coefficients can be determined from the 
initial behavior and the discontinuities in the derivatives of the 
indicial lift functions. 

If *(k) represents either C(k) 
sents the corresponding function kl(s) 

or ~(k) and if K(s) repre­
or ~(s), then the reciprocal 

relation is 

If K(s) has the following properties: 

(1) K(s) and all its derivatives up to and including K(N)(s) 
continuous 

There is a sequence of points Sj (where j = 1,2, ... ) 

at which one or more of the derivatives K(n)(S) (where 
n > N) has a finite discontinuity 

then by N + 1 successive integrations by parts, equation (74) ·can be 
expressed as 

. 100 
( ) N (n ) ( 

*(k) = l~+l K N+l (s)e-iksds + ~ K ~) 
(ik) 0 n=O (ik) 

are 

For further integrations by parts, the discontinuities contribute terms 
of the form 
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so that 
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APPENDIX C 

INDICIAL LIFT FUNCTION FOR DELTA WING OF VANISHING 

ASPECT RATIO IN COMPRESSIBLE FIDW PENETRATING 

A SHARP-EDGED GUST 

The differential equation which governs the flow field for a very 
narrow delta wing has been shown in reference 19 to be 

where the x, y, and z axes are fixed on the wing and the time variable 
is t' = t/a. The loading coefficient can be shown to be 

and the boundary conditions associated with this wing penetrating a 
sharp-edged gust are 

Wu = 0 

(x < Mt) } 

(x > Mt) 
(80) 

where Wu is the induced vertical velocity on the wing. As in refer­
ence 19 the boundary conditions 'need on~ be satisfied over a span strip 
of the wing , since it was assumed that the velocity gradients in the 
y-, z-, and t-directions are independent of the gradient in the x-direction. 
See following sketch. 

y 

A _ _ _ 
b(x) 

x 

Sketch (a) 

_J 
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Sketch (b) then represents the problem under consideration: 
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b (x) 
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If the axes are transformed by the relation 

T = t x 
M 

~ y 

t 
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/ -M 
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"-

,) 
/ 

(81) 
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then the problem can be represented by the following sketch: 

Y 

1 

"" 
/ 

/ 
"" '" 

/ 
2b(x) 

2 

1 
/ '" / "" / '" / ~ 

3 

"" 
/ 

"" 
/ 

T 

Sketch (c) 

In the lifting-surface analog) this corresponds to the problem of 
finding the velocity potential Over a flat rectangular wing of low aspect 
ratio situated in a free stream at a Mach number equal to f2. Solutions 
to this problem are given in reference 19 and are now presented; the sub­
scripts represent the region under consideration. 

(82) 

(¢T )2 
2Wo -1 b(x) - I y I = - - tan 

:r( T - b(x) + I y I 

-~l (¢T h 2WOt -1 b(x) + Y + tan- l \ 
b(x) - y = - 1{ tan 

T - b(x) - Y T - b(x) + Y 
(84) 
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and, for large values of T (that is, for the higher number regions in 
sketch ( c) ) , 

¢ ~ - W fl~J 1 - [--Ll2 
T 0 ~ (x ) b(x)J 

where an integral eCluation for f [b ex )J together with a tabulation of 

this function is given in reference 19. 

Solving eCluations (82 ) to (85) for the velocity potential ¢ and 
substituting into, eCluation (79 ) yields the following loading coeffi­
cients for the various regions: 

(86) 

(~) _ SWorn T - b(x) + Iyl 
q:- 2 - rr:v b(x) - ly I 

(~) = SWorn ~ 
Cl 3 reV L T - b (x) - y 

---:--7--'---~ + 
b(x) + Y 

T - b(x) + yJ 
b(x) - Y 

4WcfI1 1 iT Ib(x) T T 

(':t>2b(X) ~ ---v- ~l _ r Y J2 0 f( T))dT) - b(x) f ~(x)J 
Lb(x) 

The corresponding lift coefficient per unit length is 

(T < b(x)) 

(88) 

(b(x) < T < 2b(x)) 

(T » 2b(x)) 

(90 ) 
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Evaluation of equation (90) yields 

( 
T) 4Wom T 

Z bTXJ I = V- bTxT (T < 2b(x») 

T 0 ( ) T T 2rcW m{lT/b
(X) ~ ~} Z -- = -- f TJ dTJ - -- f --

(b (x) )II V 0 2b (x) b(x) 
(T » 2b(x» 

where the subscripts indicate the regions in the xt-plane where Z(x) 
applies. See following sketch. 

t 

c 

Sketch (d) 

t = ~ 
M 

x 

25 

(91a) 

(91b) 

A plot of equations (91a) and (91b) is presented in figure 21 where it 
can be seen that an error of about 3 percent exists at _T - = 2 because 

b(x) 
of the assumption made in equation (85). 

The lift coefficient fOT the wing is obtained from the equation 

C =! l c 
2b(x) zr-:: T Jdx 

LeO mc l§"GCT 

Substituting the appropriate expression from equations (91a) and (91b) 
into equation (92) gives 
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CL(t) = ~{lMt b(x)Z[ (T )] d.x +l Mt
/

l
+

2Mm 
b(x)ZI- (T )=1 d.x ~ 

mc Mt/l+2Mm l1> x I 0 Lb x U II J 

(t < g) 

CL( t ) = ~flC b(x) lr T l ax + rMt
/l+

2Mrn 
b (x) l [T l dx} 

mc2 Mt/l+2Mm Lb"rx1JI J 0 ~JII 

( ~ < t < c(l + M 2Mrn) ) 

CL( t ) = 221
c 

b (x ) lr. (T )l dx 
mc 0 8> x ~ II 

Evaluating equation (93) and making the substitution 

s = 2Vt ' = 2Mt 
c c 

gives 

_ L _ s Mill + C 2~ 8 
- 1(A Wo - "4 1(( 1 + 2Mrn)2 

2 V 

(s ~ 2) 

2 2 I: _ _~ l 6

4

2 
~(s) = - 1!Mm + 1!Mm s + L~(2) Ju.wiJ (2 < s ~ 2 + 4Mm) 

~( s ) (s > 2 + 4Mm) 

Equation (94 ) has been evaluated numerical~ for Mm = ~ = 0.1 and the 

results are presented in figure 22) together with the results for M = 0 
as given in reference 17. It might be of interest to note that for 
M = 0 equation (94 ) reduced to the equation given in reference 17. 
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TABLE I .- INDEX TO FIGURES, EQUATIONS, AND REFERENCES 

Type of flow Wing plan form C(k) cp(k) C(k) = F(k) + iG(k) 1 cp(k) 12 
in figure - in figure -

Incompressible TIIo dimens i onal Eq. (11) Eq . (12) 1 2 
-

Elliptical 

f 

A = 0 Eq . (21) Eq . (24) Incompressible A = 3 Eq. (22) Eq. (25 ) (a)3 4 A = 6 Eq . (23) Eq . (26) 
A = '" Eq . (11) Eq. (12) 

Rectangular 

I 
A = 0 } Ref . 16 Eq. (31) Incompressible A = 4 

Ref . 7 Eq. (32) (a)5 6 A = 6 Eq . (33) 
A=- a::J Eq . (11) Eq . (12) 

Subsonic compressible: 

I I 
M=O Eq . (11) Eq. (12) M = 0 .5 TIIo dimensional 

} Ref' . 3 
Eq . (41) 

7 8 M = 0 .6 Eq. (42) M = 0 .7 Eq . (43) 

Compressible and 
incompr essible: 

Vanishingly low 

I 
M = 0 aspect-ratio delta Eq . (47) Eq. (48) 
't = 0.1 (b) 9 10 Ref' . 10 

Sonic ~.m dimensional Eq. (54) Eq. (55) 11 12 

Supersonic: 
Eq. (59) Eq . (60) M = 10 10 2, and 10 TIIo diJnensional 13 14 9 ' 7' 3 

Supersonic : 
Wide delta Eq. (66) Eq. (67) 15 16 M - 10 10 2, and 10 - 9' 7' 3 

Supersonic: Wide ~ectangular 

M = 10, and 10 r = 1 17(a) 18(a) 2, A = 2 17(b) 18(b ) 7 3 A = 4 17(c) 18(c) M = 10 

tA = 1, 

Eq . (71) Eq. (72) 19(a) 2O(a) 7 
M = 2 2, 4, and '" 19(b) 2O(b) M = 10 

J 19(c) 2O(c) 3 

aOnly circulatory component of lift plotted . 
bCalculated numerically from k2 (s) function given in appendix C. 
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Figure 2.- The function I~(k) 12 for a wing in two-dimensional incom­

pressible flo~ . 
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Figure 4.- The functions 1~(k)12 for elliptical wings of various aspect 

ratios in incompre ssible flow . 
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Figure 6.- The functions 1~(k)12 for rectangular wings of various aspect 

ratios in incompressible flow. 
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Figure 8. - The functions 1~(k)12 for a wing in two -dimensional subsonic 
compressible flow. 
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Figure IO.~ The functions 1~(k)12 for a delta wing of vanishingly small 
aspect r atio in incompressible and compressible flow. 
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Figure 12.- The function ICL~(k)12 for a wing in two-dimensional sonic 

flow .. 
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Figure 17 .- The effect of Mach number on the functions C(k) for a wide 
rectangular wing in supersonic flow. 
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Figure 19 .- The effect of aspect ratio on the functions C(k) for a 
rectangular wing in supersonic flow. 
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Figure 19.- Continued. 
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Figure 22 .- The indicial lift function k2 (s) for a delta wing of 

vanishingly small aspect ratio in incompressible and compressible 
flow. 
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