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SUMMARY

The total 1ift responses of wings to sinusoidal gusts and to sinus-
oidal vertical oscillations are calculated from the response to gust
penetration and to a sudden change in sinking velocity through use of the
well-established reciprocal relations for unsteady flow. The cases con-
sidered are two-dimensional wings in incompressible, subsonic compressible,
sonic, and supersonic flow; elliptical and rectangular wings in incom-
pressible flow; wide rectangular and delta wings in supersonic flow; and
delta wings of vanishingly low aspect ratio in incompressible and com-
pressible flow. For most of the cases considered, closed-form expressions
are given and the final results are presented in the form of plots of the
square of the modulus of the lift coefficient for wings in a sinusoidally
oscillating gust and in the form of the real and imaginary parts of the
1ift component for wings undergoing sinusoidal sinking oscillations. A
summary table is presented as a guide to the scope and results of this
paper; this table contains the figure and equation numbers for the types
of flow and plan forms considered.

INTRODUCTION

Two of the factors required in the harmonic analysis of airplane
response to continuous atmospheric turbulence are the unsteady-lift func-
tions associated with sinusoidal vertical oscillations and with sinusoidal
gusts. The unsteady-lift functions associated with a rigid wing under-
going sinusoidal translational oscillations have been derived in refer-
ences 1 to 10 for two-dimensional wings in incompressible, subsonic com-
pressible, sonic, and supersonic flow; for elliptical and rectangular
wings in incompressible flow; for wide rectangular and delta wings in
supersonic flow; and for very narrow delta wings in incompressible and
compressible flow. Calculations of the unsteady-1lift functions associated
with rigid restrained wings in sinusoidal gusts seem to be nonexistent,
with the exception of the work by Jones (ref. 6) for elliptical wings in
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incompressible flow and by Gerrick (ref. 11) and Sears (rer: 12} for
wings in two-dimensional incompressible flow.

The purpose of this report is twofold - to compile the unsteady-
1ift functions associated with sinusoidal sinking oscillations and to
derive the unsteady-1lift functions associated with a rigid restrained
wing in a sinusoidal gust. These latter functions are derived herein
from existing unsteady-1ift functions for a wing penetrating a sharp-
edged gust by means of the reciprocal relation between the function for
a wing in a sinusoidal gust and the function for a wing penetrating a
unit sharp-edged gust. The reciprocal relation used was of the same type
as that reported in reference 1l.

The unsteady-1ift functions associated with a rigid restrained wing
in a sinusoidal oscillating gust are derived for two-dimensional wings
in incompressible, subsonic compressible, sonic, and supersonic flow;
for elliptical and rectangular wings in incompressible flow; and for wide
rectangular and delta wings in supersonic flow. In addition, the indicial
1ift function for a wing penetrating a sharp-edged gust and the corre-
sponding oscillatory lift function are derived for a delta wing of van-
ishing aspect ratio in compressible flow. The functions presented in
this paper are total lift functions which include the circulatory and
noncirculatory components.

In studies of the airplane response to atmospheric turbulence (see
ref. 15, for instance), the unsteady-lift functions for a rigid wing in
a sinusoidal gust usually esppear in the form of the square of the modulus
of 1ift coefficient, whereas the unsteady-1ift functions for a wing under-
going sinusoidal sinking oscillations appear in the form of the individual
in-phase and out-of-phase (real and imaginary, respectively) components
of 1ift. Therefore, on this basis, all the results in this paper are
presented in the figures in the forms mentioned. An index to the figures
and equations or other sources of information for the unsteady-1ift func-
tions for the types of flow and wing plan forms considered herein is pre-
sented as a table.

SYMBOLS
A aspect ratio
a velocity of sound
b(x) spanwise coordinate of leading edge of wing, measured from root
chord, mx
c(k) total 1lift coefficient for wing oscillating harmonically in pure

translational motion, normalized to unity by its steady-state
value, F(k) + iG(k)
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C(k)cir
Cr,

Cle

F(k)
f(k)
£n(M,®)

G(k)

In(k)

k1 (s)
kl(s)cir
ky(s)

Lg,ind

Lg,osc
I‘ind
Lose

l(x)

circulatory component of C(k)
steady-state 1ift coefficient
wing lift-curve slope

root chord of wing
complete elliptic integral of second kind with modulus
k 2
L - (30)
in-phase component of C(k) (real part)
Fresnel integral (see eq. (56))
Schwarz function of order n (see eq. (62))
out-of-phase component of C(k) (imaginary part)

amplitude of vertical velocity of wing
Bessel function of first kind

reduced-frequency parameter, wc/2V

1lift coefficient for wing experiencing sudden change in sinking

speed, normalized to unity by its steady-state 1lift

circulatory component of kj(s)

1ift coefficient for wing penetrating sharp-edged gust,
normalized to unity by its steady-state 1lift

1lift on rigid restrained wing penetrating sharp-edged gust

total 1ift on rigid restrained wing in sinusoidal gust

1ift on rigid wing experiencing sudden change in sinking speed

total lift on rigid wing oscillating harmonically in pure

translational motion

1ift per unit length
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M Mach number ~
m tangent of semiapex angle of delta wing
Mp/q loading coefficient
pV2
a dynamic pressure, =
S wing area
s nondimensional distance traveled, root semichords
t distance traveled by sound wave, at'
s time variable
v forward velocity
Wo amplitude of vertical gust velocity
X,¥ % coordinate axes, fixed on wing
Yo (k) Bessel function of second kind
B = \[|M2 - 1 i
5(s) unit impulse function or Dirac delta function
P air density
(k) total lift coefficient for wing immersed in harmonically
oscillating gust, normalized to unity by its steady-state
value
W circular frequency
5 = alk/s?
1(s) unit jump function
PROCEDURE
Since this paper deals with the lift functions C(k) and ®(k), the . ‘

1ift due to sinusoidal sinking oscillations and the 1lift due to sinusoidal
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gusts, respectively, a brief description of the total 1ift in terms of
these functions and the method by which they were derived is in order.

For a rigid ﬁing oscillating harmonically in pure translational
motion, the total 1lift can be expressed as
. ‘ks
hse™
Losc 3 'qSC]_'_u '—OT—' C(k) (l)

where k 1is the reduced-frequency parameter wc/2V, and C(k) is a
complex quantity F(k) + iG(k). The real part of this quantity is asso-
ciated with the in-phase component of 1lift and the imaginary part with
the out-of-phase component of 1lift; the total 1ift functions include both
circulatory and noncirculatory effects. For a rigid restrained wing in
a sinusoidal gust the total 1lift can be expressed as
eiks
Lg,osc = ‘QSCI_u OT" Cp(k) (2)

The lift on a rigid wing experiencing a sudden acquisition of verti-
cal velocity h, can be expressed as

h
Ling = -aSCr,, Vo ky(s) (3)

and for a wing penetrating a sharp-edged gust of vertical velocity Wo,
the 1lift can be expressed as

Lg,ind = -qSCIu p—\J,Q ke(S) ()4»)

where kl(s) and kg(s) are the indicial 1lift functions for a wing given

a sudden change in sinking speed and for a wing penetrating a sharp-edged
gust, respectively.

The functions C(k) and kl(s) are reciprocally related as shown
in reference 1l by the following expressions:

c(k) = F(k) + ia(k) = 1 + ik fw [kl(s) - 1] e-1ks34 (5)
0

ki(s) =1+ E%I\/C: 915%;1—1 S (s >0) (6)
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Similarly, ®(k) and ke(s) are reciprocally related as follows:

o : A e-iks
(k) = 1+ ikfo [1p(5) - 1]ek2as (7)
ke(s) =1 + E%IL/:: QEE%—:—E elkSqy (s > 0) (8)

In eppendix A the functions ki(s) and k,(s) are given as obtained

from various references for different types of flows and plan forms. The
functions C(k) and ¢(k) were obtained by means of equations (5) and
(7), respectively, and are also presented in appendix A. The various
types of flows and plan forms for which these functions were derived are
discussed more fully in the following section.

PRESENTATION OF RESULTS

The unsteady-1lift functions kl(s), k2(s), c(k), and ¢(k) are

presented in appendix A and in figures 1 to 20. These functions are
given for two-dimensional wings in incompressible flow (figs. 1 and 2);
subsonic compressible flow (figs. T end 8), sonic flow (figs. 11 and 12);
and supersonic flow (figs. 13 and 14); for elliptical and rectangular
wings in incompressible flow (figs. 3 to 6); for wide delta and rectan-
gular wings in supersonic flow (Pizn. 15 to 20); and for delta wings of
vanishing aspect ratio in incompressible and compressible flow (figs. 9
and 10).

The C(k) functions, although derived by other authors for all the
wings considered herein, were recalculated by meeans of equation (5) from
existing kl(s) functions. The functions C(k) as derived by use of

equation (5) are in agreement with the functions derived by other authors.

The results are given by the equations in appendix A and the figures
which contein plots of the modulus squared for the function o(k) (that

affe s ]¢(k)l22 and the separated real and imaginary parts of the func=-

tion C(k) (that is, F(x) and G(k)). As en aid to the reeder, teble I
has been prepared as an index to the equation or reference identifying the
functions kq(s), ko(s), C(k), or @ k), the plan form and type of flow

for which these functions were considered, and the figures where the func-
tions |¢(k)|2, F(k), and -G(k) are plotted.
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CONCLUDING REMARKS

The total 1lift responses to simusoidal sinking oscillations C(k),
and to sinusoidal gusts @(k), have been calculated through use of the
well-established reciprocal relations for unsteady flow for two-dimensional
wings in incompressible, subsonic compressible, sonic, and supersonic flow;
for elliptical and rectangular wings in incompressible flow; for wide
rectangular and delta wings in supersonic flow; and for delta wings of
vanishingly low aspect ratio in incompressible and compressible flow. For
most of the cases considered, closed-form expressions are given and the
final results are presented in the form of plots of the square of the
modulus of the 1lift coefficients for a wing in a sinusoidal gust, and the
in-phase and out-of-phase 1ift components are presented for a wing under-
going sinusoidal sinking oscillations.

Certain gaps still exist in the knowledge of the unsteady-1ift problem.
For instance, there seems to be little or no information availeble for the
swept wing. For rectangular wings in subsonic flow, and in supersonic flow
for which the characteristic Mach lines intersect the side edges of the
wing, the unsteady-1ift problem remains unsolved, as it is for the delta
wing for subsonic compressible and incompressible flow. Information on
other wings with subsonic leading edges in supersonic flow is also
missing.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June 8, 1956.
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APPENDIX A

A COMPILATION OF THE FUNCTIONS Xk;(s), kx(s),

c(k), AND 9(k)

Two-Dimensional Wing in Incompressible Flow

The functions kl(s) and kg(s) have been derived by Wagner

(ref. 14) and Von Kérmén and Sears (ref. 15), respectively. Exponential
approximations to these functions have been given by Robert T. Jones
(ref. 6) and are now presented, together with the C(k) and @(k) func-
tions as given in references 1 and 11, respectively:

k (s) ~ 1.0 - 0.165e=0- 0438 - 0.335¢70-3008 + L 5(s) (9)
ky(s) ~ 1.0 - 0.236e0-0585 . 0.513e=0-3648 _ o.171¢-2-428 (10)
o(k) = C(K)giy + 5 (11)

(k) = {?(k)cir[?o(k) - 13, ()] iJl(ks}e'ik (12)

where C(k) is defined as the total lift function and C(k)iy, Tepre-

sents the circulatory component of the lift and is given in reference 1
as

=71 (x) + 1¥;(k)

C(k)pip = (13)
)+ )] 1[¥, (k) - To(w)]
and
c(x) = %(1 + 1k)
{ki>5"1.0) (14)
lo(x)[? ~ Lo

The multiplier e-ik (eq. 12) is not included in the function @(k)
(ref. 11) because in reference 11 the time origin is the instant at which
the gust reaches the midchord position of the wing, whereas in this paper
the time origin is the instant at which the gust reaches the leading edge
of the wing.
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Elliptical Wing in Incompressible Flow

For an elliptical wing in incompressible flow, the following equa-
tions were derived from references 6, 16, and 17:

k) (s), o, =2(s) + £ 8(s) (15)
kl(s)A=3 ~ 1.0 -0.283e=0-5408 4 8 (s) > (16)
N
5CI{LE[1 - <§>]
” 85
kl(S)A=6 ~ 1.0 = 0.361e-0-3618 | e (s) = (17)
R

NG
where E =E||1 - (ﬁ%) :] is a complete elliptic integral of the second

kind. Also,

- s(2 - et en
ky(s), , = s(2 - s) (0.5 5§ 1.0) } o
kz(s)A=O = 1.0 (s > 1.:0)
kp(s), 5 = 1.0 - 0.679¢=0-558s _ 0.227¢=3-208 (19)

ky(s),  ~ 1.0 - 0.448e=0-2908 _ g 272¢=0-T258 _ 0,193e~2-008  (20)

C(k)pg = 1 + l%k (21)
C(k)py = ik(ﬁ H 0.2&583 ik) : 5%?1; (22)
C(k)y g ~ 1K & - 0.22'3361 ik) N 5}?:?:};@ (23)
o(k),_o = ik(— =+ 2——"2—ng> (24)

k ik
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Liamhl e ROREEGN o 0.227 >

q)(k)A=3 ik(ik 0.558 + ik 3.20 + ik (25)
D aNEe . - Geeye 0 T0.008 )

?(k)p=t ik(ik 0.290 + ik _ 0.725 + 1k _ 3.00 + ik (26)

Since the functions C(k) and (k) have been derived from approximate
expressions for aspect ratios of 3 and 6, no exact asymptotic expressions
could be obtained. However, for the vanishing-aspect-ratio case, it can
be shown that

’ hik
C ~ A ol il
(k) i 3

k)az_l_
o) ~ 5

(x > > 1.0) (27)

(The magnitude of the Dirac delta function in equations (16) and (17)

approaches 8 as A—» for s 1in half root chords but reduces to %

i
for s 1n half mean geometric chords.)

Rectangular Wing in Incompressible Flow

The functions kl(s)cir’ k2(s), and C(k)cir for rectangular wings

of aspect ratio 4 and 6 have been calculated approximately and are tabulated
in reference 7. The noncirculatory components of kl(s) are shown in refer-

ence 18 to be Oé860ﬁ 5(s) 0é895ﬂ 6l(s) | for A=l land A =6,
Lo, Lo

respectively. In order to obtain the function ¢(k), an exponential

approximation was made for the function ke(s). These expressions are

now presented, together with the expression for the vanishing-aspect-ratio

case obtained from reference 16 and the corresponding oscillatory
functions @(k):

and

iy(s), , =1(s) (28)

.08 0.391e'0-285s < o.6o9e'l°6385 (29)

2

kp(s)pn,

kp(s), _¢ = 1.0 = 0.535¢70-2998 _ 0.1465¢2-008 (30)




NACA TN 3748

Pli)aey = ik(——

11

®(k)p—g = 1.0 (31)
I . @398 . 0.660 > 5
ik 0.285 + ik 1.638 + ik o
B b JOLEHE . O o OGS )
ik  0.299 + ik 2.00 + ik (33)

cp(k)A=6 ~ ik<

Again, the asymptotic expressions could not be obtained except for the

vanishing-aspect-ratio case

c(k) =1 + 21k

lp(x)|?

=1

(18> 1.0) (34)

Two-Dimensional Wing in Subsomic Compressible Flow

For the two-dimensional wing in subsonic compressible flow, the
following equations have been derived from references 2 and Die

kl(S)M=O.5 ~ 1.0 - 0.3500~0-0T4s
kl(S)M=O.6 ~ 1.0 - 0.36pe~0-06l6s
kl(s)M=o.7 = 1.0 = 0.364e~0-05568
k2(8%4=0.5-z 1.0 - 0.390e~0-0T16s
k2(S)M=O.6 ~ 1.0 - 0.328¢=0-0545s
kp(s)yg.p = 10 - 0.L40pe=0-05k42s

.

0.390

- 0.261e™0-3728

- O.5ohe-0.1+8ls

0.405e=0-35Ts

- 0.407e~0-3Tks

0.430e~0-2578

~0.461e~0-31258

0.407

+ 0.669e~1-8908  (35)

0.714e=0-9988  (3¢)

+

O.hl9e'0'9025 (37)

0.203¢72-1658  (38)

- 0.242e"1-4618  (39)

- 0.157e~L-¥Ths  (140)

¢(k)M=o.5 = ik({i " 0.0716 + ik  O0.37k + ik

0.203
2.165 + ik) (1)
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A 0.328 0.430 0.242 >
P(Khyo.6 ~ ik(ﬁ - 0.0545 + ik 0.257 + ik 1.461 + ik (42)

sl . oo BliEE L 2 OL61 . o QIET )
q)(R)M=O-7 1k<ik 0.0542 + ik  0.3125 + ik  1.k7h + ik (43)

The function C(k) has been calculated from the coefficients com-
piled in table I of reference 3.

The asymptotic expressions can be shown to be

c(x) ~ ?-ﬂ%(l +1 LQ'WM>

(k > 1.0) (4k4)

provided it is assumed that the functions kl(s) and kz(s) and their

first derivatives are contimuous. (See appendix B.)

As shown in appendix B, the determination of the asymptotic behavior
is dependent not only on the continuity of the function and its deriva-
tives, but also on the value of the function and its derivatives at
s = 0. Therefore, although the kl and k2 functions have been deter-

mined numerically for s > laf W the known exact expression for
s < T+ o as given in reference 19 may be utilized to obtain the

asymptotic expressions for C(k) and @(k), provided it is assumed that
the functions kl(s) and ke(s) and their first derivatives are

continuous.

Vanishing-Aspect-Ratio Delta Wing in Incompressible
and Compressible Flow

For a delta wing of vanishing aspect ratio in incompressible flow,
the indicial lift functions have been obtained from reference 16 and are

k,(s) =1(s) +§6(S) (45)
2
ks(s) = %— (0 €8 <2) (46)
kg(s) = 1.0 (s > 2)

L
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The corresponding oscillatory functions are

c(k) = 1.0 + % ik (47)
-2ik
(k) = 18 bl o gt (48)
K -

and

c(k) ~ 1.0 + % ik

(k' 5% 1,0) (49)
2
()] =~ L5
k
The kl function for the vanishing-aspect-ratio delta wing in com-

pressible flow has been presented in reference 19. However, because of
the difficulty of obtaining the oscillatory 1lift function C(k) from

this function, the results derived in reference 10 for the oscillatory
lift function for the delta wing are presented instead. The k, function

has been derived in appendix C of this report and the corresponding ¢(k)
function was subsequently derived. The functions ’@(k)lg and C(k) are

presented in figures 9 and 10 for Mm = M % = 0.1 where m is the tangent

of the semiapex angle of the delta wing. The asymptotic behavior of

|¢(k)|2 for Mm = 0.1 can be obtained if it is assumed that the ke(s)

function and its first two derivatives are continuous. Based on the
analysis obtained in appendix B and the ks, function presented in appen-

dix C, it can be shown that

|o(x)] 2 ~ 221 (x >> 1.0) (50)
k

The asymptotic expression for the function C(k), also based on the
assumptions stated previously, can be shown to be

c(x) ~ -fmﬁl:l + 1 1mb'4k2mM)J (k >> 1.0) (51)
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Two-Dimensional Wing in Sonic Flow

The functions CLukl(s) and Clukg(s) for a wing in two-dimensional

sonic flow were obtained from the functions presented in reference 20 for
a wing in two-dimensional supersonic flow by taking the limit as M—1.0.
The resulting expressions are

;

Crki(s) = b (0 <5< 1.0)

CLakl(s) = %[2 Ve - 1+ cos"l<s - 2)} (s > 1.0)

r {52)

2s (0% 55 1:0)

Cr, ks(s)
E > (53)

S

CIG¥2(S) % S cos'1(5—1;2> - %ws e g 108

7

The function Clnp(k) was obtained from reference 4 and Ch;y(k) was

derived by the use of equation (7). These expressions are

or C(x) = %&i) eI 4 4(1 + 1)£(k) (54)

o 9(k) = 21 o) (55)

where the Fresnel integral f(k) is defined by

k -ix
£(k) =f € __ ax (56)
0

The unnormalized functions have been presented, since the theoretical
value of CLu for two-dimensional sonic flow is infinite.

Two-Dimensional Wing in Supersonic Flow

For a two-dimensional wing in supersonic flow, the following equa-
tions have been derived from references 20 and 5:
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=B . oM
k(s) = B G
o i in'lem'MS>+lcos"12M2+s —sM2+
SR L o
. (57)
;i_(l_g\? <2M <352M)(
M\ 2/_ M+ 1 =M=
oM
iciE =10 <s > 2 1)
kn(s) = g% s (O Sas sz l>
ky(s) = §%ﬁ s(% + sin™t gﬂ—é—M§> + % cos~L gﬂg—i§ﬁ—:—§mg
( (58)
2M < M
<M - 1)
k2(S) = 1.0 <s > M2¥ l> J
(k) = £(04,3) + 21K 2,00,3) - £ (0,3)] (59)
o(k) = £,(M,3) (60)
where
2
5= 2 (61)
B

and fo and fl

function of order n being defined as

are the Schwarz functions of order O and 1, the Schwarz

£, (M,@) =j;l xne’mJo<%—x>dx (62)

The functions fn(M,G) are tabulated for M > 1.0 in reference 21,

for example. The asymptotic expressions are
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Wide Delta Wing in Supersonic Flow
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> (x >> 1.0) (63)

For a wide delta wing in supersonic flow, the following equations

have been derived from references 22 and 8:

2
k,(s) = %(l + 2;4—§> (O €93 le_f l)
2 2 2
LBl b4 -1 2M - Ms 1 =1 2Mii=lsMs 8
kl(s) - <i -+ @)(5 + gin 3 > 1 E cos M = } (6)+)
2 2
8 S EWIA o o ik M <5< QM)
M<2 hNu_M? (l 2)} <M+l T
k (s) = 1.0 <s,>1‘,121”:I 1>
2 oM
ky(s) = £ s <°53§M+—1>
()_l os_12M2-sM2+s+ B Szcos-lMs-eM
kg\B8r = gF M e 5
o r (65)
s i S M < M
%<§' >c°5h M[s - 2] <M+l<S=M-l>
y oM
ky(s) = 1.0 (s e 1) ]

olk) = 2 {fO(M,cB) - £,(M,®) + ik[fO(M,a) - 2f1(M,3) + fe(M,m)]} (66)

o(k) = %%-Eikf‘o(%:b%) = fo(M:a)-):l

(67)
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and
(it = 1.0) (68)
2(\2
2 M= + 1
|cp(k)| B ( - )
UMk
The function f < _E> was calculated by numerical integration of equa-
tion (62), inasmuch as no tebulations were available of the Schwarz
funetion s for. M < L. :
Wide Rectangular Wing in Supersonic Flow
For a wide rectangular wing in supersonic flow, the following equa-
tions have been derived from references 23 and 9:
4 2 4 2 < g2 < oM
B k S) = = - S = O <
R ACICRE S~ S Sas )
)i—i-k(s) =Li-l-(£+sin12M_Ms> +lcos'12M2+S st
69)
1 [s2 -(1 5\2 2M-l+[32 " BQ(M-1)52$(
M\ w2 i ) - - ]
M \lum 2/ B2A M am
M. o 2M
(M Ll s m)
s Bolnfi) o 2 ( 5 _2M )
=& wn=lka(n — s -~
(;3 52a B 3 M- 1 J
L 2 e e (osss_eM_l>
<[3 ﬁ>k2(s) M 2MEA o M+ (703)
- 2 (s) g—S--T£+sa_n'l<2M_Ms) R M7 + 5 - oM -
g o2, 2w T |3 s ) M
BTA
Pagib b L ipt _gM-l)@252>
oM e 2Ml>
(M s (700)
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le o 0 . e 2M c
<B BEA>k2( R gl - U
Ly ] 8 L — s - =
(E - ;—3-2X>C(k) = E’ {5 fO(M,U.)) + ik Eo(M:w) "‘ fl(M)w)]} &
b-d—e—ll?EX[Eik -1+ e—i5<cos (‘;% - }iz sin g :l (71)

(% - —%—)cp(k) - % £o(M,3) + 2—12—E - e"i“’(cos .

BA M KA
and
i
2 +
olk) ~ MAk
M2 - L
-
4
lq’(k)le T

+ iM sin %ﬂ (72)

(k >> 1.0) (73)
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APPENDIX B

ASYMPTOTIC BEHAVIOR OF OSCILLATORY LIFT COEFFICIENTS AS

DETERMINED FROM INDICIAL LIFT FUNCTIONS

In the following analysis it is shown that the asymptotic
behavior of the oscillating 1lift coefficients can be determined from the
initial behavior and the discontinuities in the derivatives of the
indicial 1ift functions.

If (k) represents either C(k) or @(k) and if K(s) repre-
sents the corresponding function k;(s) or k2(s), then the reciprocal

relation is
y(k) = ik f K(s)e 1¥5as (74)
0

If K(s) has the following properties:

(1) K(s) and all its derivatives up to and including K(N)(s) are
continuous

(2) There is a sequence of points 53 (where J =1, 2, . . «)

at which one or more of the derivatives K n)(s) (where
n > N) has a finite discontinuity

then by N + 1 successive integrations by parts, equation (7&) can be
expressed as

e X (n)
y) = —1k fo () (a)ett0s 43 K(_k§g_> (75)

(ik)

For further integrations by parts, the discontinuities contribute terms
of the form

__(i;)nEc(n)(sf) : K<n>(sj-)]e-iksa (76)
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so that

k(1) (o) + Z[(n +) K(n) ﬂe-iks'j
(k) = Z L Lok

n=0 1k) n=N+1 (ik)

(n)(o o

(77)
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APPENDIX C

INDICTAL LIFT FUNCTION FOR DELTA WING OF VANISHING
ASPECT RATIO IN COMPRESSIBLE FLOW PENETRATING
A SHARP-EDGED GUST

The differential equation which governs the flow field for a very
narrow delta wing has been shown in reference 19 to be

Byy + Boz = Pit (78)

where the x, y, and z axes are fixed on the wing and the time variable
is t' = t/a. The loading coefficient can be shown to be

2 ks, + 4,) (79)

and the boundary conditions associated with this wing penetrating a
sharp-edged gust are

Wy = W (x< Mt)
(80)
Wy=0 (x > Mt)

where W, is the induced vertical velocity on the wing. As in refer-

ence 19 the boundary conditions meed only be satisfied over a span strip
of the wing, since it was assumed that the velocity gradients in the

y-, z-, and t-directions are independent of the gradient in the x-direction.

See following sketch.

tan™im

Bl — — e p(x) AL |

. |

X

Sketch (a)
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Sketch (b) then represents the problem under consideration:

Y

t

Sketch (b)

If the axes are transformed by the relation

(81)
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then the problem can be represented by the following sketch:

<— D (x) —

2b(x)

4 -

Sketch (ec)

25

In the lifting-surface analog, this corresponds to the problem of
finding the velocity potential over a flat rectangular wing of low aspect

ratio situated in a free stream at a Mach number equal to \[5

Solutions

to this problem are given in reference 19 and are now presented; the sub-
scripts represent the region under consideration.

W
el tan"l\/
7

= -Wo

b(x) - |yl

T -b(x) + |y]|

b(x) +y

b(x) -y

+ ‘ta.n-l\/
T -b(x) -y T -b(x) +y

(82)

(835)

-2l (8



2l NACA TN 3748

and, for large vaelues of T (that is, for the higher number regions in
sketch (c)),

b(x) b(x)

fo = ot [ J b [_LT (85)

where an integral equation for f[—l—} together with a tebulation of

b(x)
this function is given in reference 19.

Solving equations (82) to (85) for the velocity potential ¢ and
substituting into. equation (79) yields the following loading coeffi-
cients for the various regions:

[ e (86)
(o S:x‘}m \/ ;é(j‘f ;“y'\y‘ (87)
9, - |
(%) Mgl s ik TR s W

™>2b(x) AN 1 v
Eel

The corresponding lift coefficient per unit length is

- b(x)-T b(x)
Z_P(X{} t bgg)\]; (%?>1dy L bg;)\/;(x)_TC%?>2dy (r7= Dl

- T b(x)-T b(x)
b(x; 3 b(lx) fo (%’)3@ & b(lx) j;(x)-T(%)edy (D) siED

b(x)

(89)

o~
[

b(x)|  2b(x) _b(x)(q)"r>>2b(x)dy (r>> 20(x))

(90)

)

J
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Evaluation of equation (90) yields

hWom i
(g(—y) N ~T§7 (r < 2b(x)) (91a)

g _ 2nWym 7/b(x) i p
Z(b(x)>11 ok - \/g £(n)dn o f[;(xi] (t > 2n(x)) (91b)

where the subscripts indicate the regions in the xt-plane where Z(x)
applies. See following sketch.

t A |
| te= x(& + 29
!
I X
t =2
3 l M
Il
1 iy
e
Sketch (4d)

A plot of equations (91a) and (91b) is presented in figure 21 where it

can be seen that an error of about 3 percent exists at Z.) = 2 Ybecause
blx

of the assumption made in equation (85).

The 1ift coefficient for the wing is obtained from the equation

-2 [ 2 e l

Substituting the appropriate expression from equations (91a) and (91b)
into equation (92) gives




- 0 i [
(v<3) ’
cr(t) = rf?ﬁj;;mm o(x)1fory | o +foMt/l+2Mm vyl & b
| (<< o(2529)
c(t) = f—gfo o] e (&> o(:-t2))

Evaluating equation (93) end making the substitution

o o SNE | DMt
c

gives
2 - 1
ek Chisl . 88 8Mm 5 + 1 2\]F £(n)an + __ELnlin_g
1A Wo “ﬂ(1+m) (1L + 24m) VYO 2 (1 + Mun)
25V
(s £2)
7 (9k)
2
o(e) = - g v e+ [l - sl SR
52
2Mm 2 Moo
ky(s) = £(n)an + - ST 3 (s > 2 + LMn)
0 % (1 + Mmn) )
Equation (9&) has been evaluated numerically for Mm = %é = 0.1 and the

results are presented in figure 22, together with the results for M =0
as given in reference 17. It might be of interest to note that for
M = 0 equation (94 ) reduced to the equation given in reference 17.
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TABLE I.- INDEX TO FIGURES, EQUATIONS, AND REFERENCES
C(k) = F(k) + 1G(k k)|2
Type of flow Wing plan form c(k) (k) ( )m f:EgL)Lr; _G( ) in'?igﬂle L
Incompressible Two dimensional Eg. (11) | Eq. (12) il 2
Elliptical
A =10 Eq. (21) | Eq. (24)
Incompressible A=3 Eq. (22) [ Eq. (25) (a) L
A=6 Eq. (23) | Eq. (26) 3
A=o Eq. (11) | Eq. (12)
Rectangular
A=0 Ref. 16 | Eq. E}l) Gl
Incompressible A=14 Eq. (32) a
AL Ref. T Ea. (33) 5 6
A=ow Eq. (11) | Eq. (12)
Subsonic compressible:
M=0 Egq. (11) | Eq. (12)
M= 0.5 Two dimensional Eq. (41) 7 8
M= 0.6 Ref. 3 Eq. (42)
v M= 0.7 Eq. (43)
Compressible and
v incompressible: Vanishingly low
M=0 aspect-ratio delta| Eq. (47) | Eq. (48)
MA 9 10
5= 0. Ref. 10 (v)
Sonie Two dimensional | Eq. (54) [ Eq. (55) 1 12
Supersonic:
¥el 0, .10 Two dimensional Eq. (59) | Eq. (60) 13 14
9—) 7 2 ) 5
S sonic:
uﬁe: 1 “lo 2 2 Wide delta Eq. (66) | Eq. (67) 15 16
9 } 4 7 ) ) 3
Supersonic: Wide rectangular
Afl="1 17(a) 18(a)
M= l_O’ 2, and 10 A=2 17(b) ls(b)
' 3 A=} 17(c) 18(c)
| M- -l%l [ Eq. (71) |pEq. (72) 19(a) 20(a)
=2 A=1, 2, &, and 19(b) 20(b)
M- J 19(c) 20(c)

80nly circulatory component of 1ift plotted.
S Pealculated mumerically from kp(s) function given in appendix C.
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for a wing in two-dimensional incom-

Reduced frequency, k
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Figure 1l.- The functions
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in incompressible flow.
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