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NATIONAL ADVISORY COMII'ITTEE FOR AERONAUTIC S 

TEcm.ICAL IJOTE NO . 1050 

VVIND- .TUNNEL I tTVESTIGATION OF E1l) - PLATE EFFECTS OF 

HORIZONTAL TAILS ON A VERTICAL TAIL 

COMPARED WITH AVAILABLE THEORY 

By Harry E. Murray 

SUMMARY 

:A . vertical ~tail )11odel wi th stub fuselage was tested 
in combination with various simulated horizontal tails to 
determine the effect of horizontal - tail span and location 
on the aerodynamic characteristics of the vertical tail . 
Available. theoretical data on .end - plate effects were 
collected and presented i ~ the fo rm most suitable for 
design purposes . 

'Reasonable agreement was obt'ained be tween the 
measured and theoretical end-pl~te effects of horizontal 
t ai ls on vertical tails, and the data indicated that the 
end- nlate effect was determined J'l'lO re by the location of 
the horizontal tai'l than by the span of the horizontal 
tail . The horizontal tail gave mo st end - plate effect . 
when located n8 ar either tip ' of the ve'rtical tail and , 
when located near the base of the. verti cal tail, the end
plat~ effe~t was increased by moving t he horizontal tail 
rearward . 

INTRODGCTION 

A study of the end- plate effect of ;the horizontal 
tail on the vertical tail has be.en m.a¢l.e by lifting- line 
theory for the case of a horizontal" tail mounted at the 
base of an isolated vertical tail (reference 1) . A 
minimum-induced - drag theory 'of the end- plate 'e ffect of 
the horizontal . tail on the vertical tail is presented 
in rei'erence 2 for the case of a horizontal tail mounted 
in various vertical locations • . Because ' (If a deficiency 
in experimental data for the end - n late effects discussed 
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2 NACA TN No . 1 050 

in these re~erences ~nd for end- plate effects in general , 
the present investigation was ~ndertaken . Lift and hinge 
moment measurements were made to determine the variation 
of the end - pl ate effect with horizontal - tail span and 
location and to define an area- span convention that would 
most nearly g ive the correct lift - curve slope . 

SYll,130LS 

The coefficients and symbols used herein a r e defined 
as follows : 

CL lift coefficient (L/qS) 

Ch ru~der hinge - moment coefficient (H/qb r (Cr )2) 
L lift of mocel 

H 

s 

c 

x 

rudde r hinge moment; positive whe n moment tends to 
rotate trai l ing edge to left 

area of vertical- tail mode l a s defined by con
vention I (fiS . 1) unless other-vise noted 

" 

' loc 1 chord of vertical - tail mode l from leading 
edge (L . E . defined in l'ig . 1) 

rudder root -mean- sq~are chord 

span (reconmended in reference 3) of vertical
tail model as defined by convention I or II, 
figure 1 

span of vertical - tail 'node, l as defined by con
v0n tion III, figure 1 

rudder snan 
, -

horizontal t~i l span 

fr ee - stream dynamic Dressure 

horizontal locatio~ of 50 - ~erc8nt chord line of 
forward, center, and rearward end plates as 
measured from vertical - tail leading edge 
(L . E. defined in fig . 1) 

t -
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Y 

a 

6 

AG 

A 

A e 

vertical location of end Dlates measured upward 
from base of vertical tE\il as shown in figure 1 

angle of attack of vertical tail; positive when 
trailing edge is mo ved to left 

f 

rudder deflection relative to fin; positive when 
trailing edge is deflected to left 

geomet ric aspect ratio 

'VErrt i 0aI- tail aspect .. ratio computed from me asured 
lift for horizont~l - t~il -off condition . . . 

eff~ctive'aspect ratio cO$puted from measu;ed lift 
. . fOF horizontal - tail - on cbn~iti6n' 

. Ee . el'f'ec·tive· e.dg~ -Ye:l o·ci 'ty' c 'orrect-ion for lift 
c· ~ "' , . . . . . 

:k: . norizontal - locati-on .facto r 

Slopes : 

All angles are in' de'grees and the symbols 'outside the 
parenthese s indicate the quantities held constant . The 
slopes were taken for ranges of a an9 6 of ~2° . 

AP PARATUS AND 1IODE L 

A vertical - tail model with stub fuselage was tested 
in combination with horizontal tails ~imulated by flat 
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end p late s made of fr - inch- thick laminated mahogany with 

r ounded le adin g edges and beveled trailing edges . Photo 
grap hs of the mode l that show variations in the s pan and 
loca tion of the end p l ,ate s are ;Jresent ed as figure 2 . 
The princi pa l detai ls of the model are given in figure 3 . 

The geome tr ic ch~racter istics o~ the mode l are 
prese nted in the fo llon ing table : 

Area , copvention I (f ig . 1) , square f ee t •••• 
Span of v0rtical ~ tail mode l , convention I , 

f o e t ..... ............... . 
Me an 'ge orne tric chord of ve rtical - tail 

mode l, fee t • • • • • • • • • • • • • • • •• 1 . 66 
Rudder span , f ee t ••••••••••••••• 3 . 208 
Rudder r oo t - mean - squ are chord , feet •••••• 0 . 646 
Trailing - edge angle , vertical tai l , degr ee s •• '. • 15 
Trailing- edge an le , end p l a t e s , degre e s • • • • • • 4 1 

The ordinates of the verti c al - tail a i rfoil s e ction are 
gi ven in t ab le I , the airfoi J., s e c 'l~ion being constant over 
t he span . Forward of the 50- pe rce n t - chord station the 
airfoi l ordinates are approximate l y the same as' ,t{hos e of 
the NACA 65(112 )- 011 airfoil; rearward of the ~ O-p~~Ge nt-
chord station t he airfoil was ~y. odified s o as to e l 'iminate 
the cusp . The plan- form ordinates of the vert~/c, al -: t ail 
mode l a re given i n t ab l e II . [ '" 

The inte rna l balance for the rudde r of the mode l was 
contained i n four s panwise chamb ers , whi ch we r e s eparated 
from each other a t the r udde r hinges . The nose anq ends 
of the internal bal ance p l a t e i n each chamber we re s eal ed 
t o the front of the balanc e chamber and to the sides of 
the hin ges wi th Koros eal coate d v oile . An enl a r ge d cross 
s e ctional diag r am of the vertical t ai l (fig . 4 ) ' shows the 
detalls of the intern a l bal ance . . 

U~published c al c u l at i ons based on reference 4 for 
an ai:rfo~l· section approximately the s a.>ne a s that of the 
mode l tested indicated' that , at a f li g h t Reyno,lds number 
of about 10 , 000 , 000 and VJith transition at the leading 
edge , the boundary- layer thickne ss (S-:~ is 0 . 0015 7c 
at 0 . 65 c . From b oundar y -laye r measurements it was 
found that , at v a lues of a and 5 of approx i mately 0 0

, 
a bounda r y - laye r thickness of 0 . 00157c could be obtained 
by p l a c ing rO,ughness strips at' the 20- pe..rcent chord line . 
The roughne s s s trips we re pre'pared by c errien t ing 

\ -
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No . 60 carborundum particles in a st.rip l/L~ inch wide to 
the back of celluloae tape. 

- , The model was mounted horizontall y in the 6 - by 
6-foot test section of t~e Langley stability tunnel and 
was supported entire l y by the bal ance frame so that all 
forces and moments acting on .the model could b e measured. 
In order to mount the mode l near the center of the tunnel, 
a model supp ort Was used that extended into -the ai r stream 
through an op"ening in the tunnel wall . A flexible seal 
was used between the model supp ort ~nd the tunnel wall 
to prevent the inward flow of' air from outside the tunnel 
along the mode l support . A fairing was installed around 
the part of the mode~ support strut located inside the 
tunnel~ (See fig . 3.) This fairing was attached to the 
tunnel wall and did not change attitude as the angle of 
attack of the mode l was varied . 

TESTS 

Tests were made of the vertical - tail mode l and stub 
fuselage withou t an e nd p l ate and with an end plate in 
nine combinations of end - plate locations and spans. A 
6-foot-span end plate was tested in the vertical locations 
designated in figure 3 as low, in.termediate - low, 
intermediate - high) and high . End plates of various spans 
were tested in the center horizontal location at two 
vertical locations : A 4 - foot- span end plate was tested 
in the low and in the intermediate - low vertical locat ions 
and a 2 - foot - span end plate wa& " tested in only the low 
vertical location . The 6-foot - span end plate in the low 
vertical location was tested in three horizontal locations, 
which will be deSignated as forward , center, and rearward. 
The configuration for the end plate " at the center hori 
z;onta'l location was identical with that at the low vertical 
location . For all configurations the "end plate had a 
cut - out for .the rudd e r . (See fig . 3 . ) In order to de ter
mine the effect of the rudder cut - out , a 4 - foot - span end 
plate without a cut - out was tested in the low vertical 
location . 

For each configuration , tests were made for various 
rudder deflections with the model at zero angle of attack 
and for various angles of att"ack with zero rudder deflec 
tion . Th e angles of attack r a n ged from a pproximately 
- 4 0 to 16 0 and the rudder deflections , from - 200 to 8° 
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throughout the tests . The geometric angle of attack of 
the end plate was maintained at zero . The tests included 
measurements of the lift of the mode l and measurements of 
the rudder hinge mome nt . , . 

All tests were made at a dynamic pressure of 
64 .3 pounds per square foot, which corresponds to an air -

. speed of 159 miles per hour under standard sea- level 
atmospheric conditions . The Reynolds number based on 
the mean peometr~o chord of the vertical tail was approxi -
mate l y 2;400,000 .• ' , 

Jet -boundary corrections , as, dete r mined by the 
general methods described in referenc e 5, were applied 
to the lift coefficient, rudder hing~ -mpment coeff~cient, 
and angle of attack . These corrections , which neglected 
the presence of the end plate , were added directly to the 
lift and hinge - moment coefficients and to the angle of 
attack , respe ctively, and are as follows : 

.. No corrections or tares were applied for the effects 
of :tbe mode l support - strut fairing or for the effec t of 
the exposed rudder hinge - moment linkage . This ' linkage 
may be seen in the photographs of figure 2 and in the 
ske tche s . of "figure 3 • . An a ttempt to calculate the effe c t 
of ' the support - s trut fairing on the .lift · of · the vertical 
tail by lifting- line thedry was unsuccessful . A rough 

' estima~ion of this effect based on reference 6 indicated, 
however, that the support - strut fairing :might PQssib l y 
increase the vertical - tail lift as much as 3.5 percent . 

THEORY 

The theory of reference 1 , in which the root chords 
of the horizontal and vertical tails are assumed to 
coincide and to be the same l ength accounts for the 
effect of end - p late span on the effective aspect ratio 
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of the vertical t'ail . In this theory, the horizontal 
tail is assuJned to be mounted at the base of the vertical 
tail . ~he minimum- induced - drag theory of reference 2 
accounts for the vertical location of the end plates on 
a vertical tail that is symmetrical about both its 
midspan and rnidchord lines . The theory of re,ference 2 
also accounts for the end - plate s~nn but assumes the 
end - plate chord to be infinite . A' combination of the 
results of these two theories is shown in figure 5 in 
which the results of reference 1 are used to , extrapolate 
those of reference 2 to a finite end- plate chord . In 
figure 5 the effect of end - plate vertical location is 
indicated to be much greater ,than either the effect of 
end- plate span or vertical - tail aspect rat~o and the 
end plates located near either ti9 of the vertical tail 
are shown to h9.ve the largest effects . The lift - curve 
slope for vertical tails with end plates can be estimated 
by the follov:ing formula from lifting-·line theory : 

_ A (Ae/ A) ll'ao 
CL -

a A (Ae / A ) rr + a 0 

" 

. \ 

( 1 ) 

A better result .can ' p:r:'obabl y be., obta i ned , however , from 
the foJ ,loi~n~'equat~oh based on lifting- surf~ce theory: 

A (Ae/ A) Trao 

CLd :=~(Ae/~)rrEec + ao 
(2 ) 

where t he form of equation (2) is taken froni. reference 7 
and the values of ,EGt 'are taken from reference' 8 . A 
chart from which ,val.ue.s -bf GLa 'm~y De conveniently , 

obtained is p're s ei1.-ced, as ,figure 6. , 

RESULTS AND DISCUSSIO~ 

Results of the' tests, are g iven, in figures 7 to 11 . 
The analysis' of the etata' (figs G 12 to 18) was made by a 
stud y of the' lif~ and hinge - moments lope s through zero 
angle of attack"and ' t~hrough zero ru~der deflection . 
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Effect of Vertical Location of End Plate 

The variations 'JIli th a and a of lift and rudder 
hinge - moment coefficients of the vertical tail for 
various vertical locations of the 6 - foot - sran end plato 
in the cehter ~orizontal location are presented in 
figure 7 . The greatest end - plato effects , as indi cated 
by the higher values of CLa and CLa' were obtained 

with the end plate in either the low or high location . 
(See fig . 12 . ) As might be expected, the results for 
the intermed iate locations show almost no change from 
the results for the horizontal - tail - off condition . A 

(i)::mi;::i::eO:n:~:1:::d::c~~::~:f:;C;~::::8~2p::::::er 
t his parameter to-be constant lNithin the accuracy of the 
data and to have the value 

A curve of the theoretical end- p l ate effect , obtained 
by use of figure 5 and equation (2) , is also shown in 
figure 12 . Two discrepancies 8etwee n the theoretical 
curve and the test points are noticeable . First , because 
the vertical - tail Dlan form was not symmetric about its 
center section , the test points fail to ind icate , as 
does the theory, a zero end - plate effect at the center 
section ' of the vertical tail . Second , the end pla tes 
near the base of the ve rtical tail d o not produce as 
much effect as indicat8d by the theory , although a 
slightly large r effect would be expected because of the 
asymmetry of the vertical - tail plan form . This second 
discrepancy prob ably results from two facto rs: The 
sunport strut probably causes the end- .. late effect to 
correspond to that of an end plate at a vertical location 
farthe r from the base of the ve rtical tail . Also , the 
stub fuselage probably had an end - ~) late effect, for 
unpublished tests have indicated that a stub fuselage 
such as the one on this model can have an end - plate 
effect on CLa of approximately 5 pe rcent . This incre -
m8nt of end - p late effect would be absorbed by another 
end nlate mounted near the stub fuselage and the 
resulting effect would be smaller than that expected 
for an end plate mounted on a mode l without stub fuselage . 
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The · theoretical curve is believed to be aoproximately 
correct when the conditions fO,r which it was derived are 
met. 

The value of Ch was very close to zero for each 
a 

of the four vertical locations in which the model was 
tested . Values of Ch

6 
ranged from - 0 . 0017 to - 0 . 0021 

(see fig . 15) and were negatively largest for the high 
and low vertical locations . ' The ' small changes in Ch 

a 
and Ch

6 
indicated in figure 15 probab l y cannot always 

be expected, particularly for rudd.ers with little or no 
b a lance . 

Effect of Horizontal Location o f End ' Pl ate 

Tpe variations with a and 6 of the lif t and 
rudder hinge -~oment coefficients of the ve r tical tail for 
various horizohtal locations of"the 6 - foot - span end plate 
in the low vertical location are presented in f i gure 8 . 
The center and rearward horizontal locations gave the 
largest values of CLa . and CL6 • (See fig . 13 . ) The 

val ue s· of Ch a 
were approximate l y zero and the values 

of Ch6 ranged from - 0 . 0021foT, the forward and center 
locations to - 0 . 0030 for the rearward locat~on . (See 
fig . 15.) 

Effect of Varying, Span of End .' Pl ate 
.. .. " . 

The variations with a and 6 of the lift and 
rudder hinge - moment coeffi c ients of. the · vertical tail 
for end lates' of various sp.ans with . the end plate mounted 
in the center hor izontal 'locat ion : for the l ow and the 
intermediate - I .ow .. v.ertical locati·ohs · are presented i.n 
figures 9. and 10 , respectively. Th.e presence of the 
2-foot - span end; plate increased the yalues of CLa 

and CL6 a,ppreciably·. ( see f i g . 14)' '. but additional end
plate span caused only a s l ight inc rease in these 
parame te_rs . " The hinge - moment pararne te rs Cha and Ch

6 
were almost entirely unaffe cte-d by increased span . 
(See fig . 15 .' ) Because the end plate · 'of 6- foot span 
reached almost to the tunnel wall , this span was effectively 
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larger than the aotual span tested; but e ven for this end 
p l ate the values of the lift parame ters were just slightly 
h i ghe r than those for the 2 - foot - span confi guration . A 
c omparison of t he results shown in figure lL~ with those 
of fi gures 12 and 13 indicates that ch an ge s in end- plate 
span ha ve only a re l atively small efL'ect on CLa and CLB 

when the e nd - p l ate s pan is greater than one - half the 
vertical - tail snan and t hat the end- o late l ocation 
relative to the've rt i cal t ai l isthe ~ more i..mpo ;rtant of 
the two variable s . 

Effect o f Rudde r Cut - Out 

The effect of the rudder cut - out on the lift and 
rudder hinge - moment coefficients of the vertical - tai l 
model for the cente r h orizonta l l ocation of the 4 - f oot 
span end p l a te in the low vertical l ocat ion is shown in 
f igure 11 . Thes e data indicate that the onl y apprec iab le 
effe,~t o'f the rudd er cu t - o'ut in the end p l ate was a 
change of about - 0 . 0007 in eh

B 
at snall deflect ions . 

End- Plate Effec t i n Te rms o f 3ffective As pe ct Rati o 

In order to make the experi~enta l results of this 
i nvestigat i on of the end - p late effec ts of the horizontal 
tatl on the vertical tail comparable to the theoretical 
results (f ig . 5 ), the lift - curve - slope results were 
reduced to the fo r m o f the r a tio of the effective 'aspect 
r a tio computed fr om the measur ed lift fo r the end- p l ate -
on condition to the as pe ct ratio compu ted from the measured 
lift for the end- p l ate - off condition Ae/A . 

The ~s.pect ratios were c omput ed by means of equa
ti on ,S (1) apd (2) , whi ch are based , re spec tively , on the 
lift i n g - line and lifting - surface theory for an iso l ated 
wi n g . The section lift-curv.e slope ao was estimated 
to have ,a value of 0 . 105 for the'vertical tail . The " 
r a tio ' AelA is shown in figure 1 6 as de t ermined by the _ 
lifting - surfac e theor y ,for al l model c onfigurati ons for 
area- s pan c onvention I of figure 1 . With the end p la t e ' 
i n t he l ow ' vertical 10cation, this s ame ratio (Ae/A) , is ., 
shown in figure 17 as de termined by the lifting- line , 
theory f or al l three area- span conventions of fi gu r e 1. 
The ratio AelA i s shovJn in ,fi gure,s 1 6 and 17 to 'depe'nd 

J 
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only' slightly on which formul·a or which area- span con
vention is used . The values of Ae/A determined from 
the test data are shown in fiaure 17 to be smaller than 
those from figure 5, . ,: This discrepancy is the same as 
that discussed in c6rthection with the effect of the vertical 
location of the end plate . 

Estimation of CL for a Vertical Tail 
a 

If an estimate of CLa for a vertical 'tail is 

desir~d , an aspect ratio must be arrived at by means of 
some area ~ span convention . In the fo llowing table a 
comparison is presented of the geometri c aspect ratios 
and the aspect ratios for the horizontal-tail - orf condi
tion as computed by use of equations (1) -:and (2) for the 
three' area- span conventions shown in figure 1. 

Area- span A A ,Cor r ected 
.convention , AG ( Equ'ation (1) ) ( Equation ( 2) ) A 

( See fig, . 1.) ( Equation ( 2)) 

I 2 . 17 1.99 2. 85 2 • f:fJ 

II 2 . 05 1.77 2. 58 . - , 2 ·38 

III 2. 25 1.46 2. 20 2 .05 

The corrected values of the aspect ratio were obtained 
by reducing t~e lift - curve slope 5 pe rcent to correct the 
data approximately to the conditions , for the model without 
stub fuselage . ,The values in the first three columns of 
aspect ratio indicate that for this model , in order to 
estimate eLa for the end- p late - off:condition from a 

geometric aspect ratio , the formula for the lift- curve 
slope based on lifting - surface theory (equation (2)) 
should be used in conjunction with area- span conven -
tion III . The measured lift - curve slope , however , is 
probably higher than that which would b ,e realized in 

'. flight because of the effect of aerodynamic induction 
on the supnort - strut f airing and because of the ab sence 
of most of - the fuselage sidewash: It dat?- on fuselage 
sid'ewash are unavailable " an ar~a"- span convention 
defining'the vertical - tail area as that above the fuselage 
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center line (conventi on II, fig . 1), as proposed by Pass 
in reference 3, and corres ponding to a somewhat lower 
lift - curve slope than c onvention III may more nearly represent 
the case of the vert i cal tail on an airplane . In order ~ . 

to estimate CLa for a vertical tail wi th the horizontal 

tail on, use may be made of the effective aspect rat io 
obtained by mul tiplying the geometric aspect ratio 
by Ael A as given i n :f igure 5 . 

Ae 
An average value of -- = 1 . 5 was suggested in 

A 
reference 3 . This value is considerab ly more than will 
generally result because it 1s based on a vertical-tai l 
aspect ratio of 1.4, which is somewhat smaller than the 
aspect ratios now generally used and , more ' important, is 
based on an end p l ate located at the base of the vertical 
tail - a condition s e l dom if ever met in practice. 

For tail oonfigurations similar ,to the 6 - foot - span 
end plate in low vertical location, the effect of hor i 
zont~l location can be con~idered by multiplying the 
value of AelA given in figure 5 by the horizontal -
location factor k shown in figure 18 arid derived from 
the CLa- data of figure 13 . ' 

CONCLUSIONS 

Tests we re, made of a vertical,- tail mode l with stub 
fuselage in combination wi th various simulated horizontal 
tails to d'eterm'ine the effect of hor izontal - tail span 
and location on the aerodynamic characteris tics of the 
vertical tail , and , the test results were compared with 
theoretical resul ts . The results of the investigation 
indicated the foliowing conclusions : 

1 ., The ,theoretical end- p late effec t is approximate l y 
correct when the conditions for which it was derived are 
met . 

2 . The end - plate effect of the hori zontal t~il on 
the vertical tail was influenced more by the location of 
the ho rizontal tall than by the horizon'tal tail span . 

3 . The greate st end- p late effect was ob t ained , ~ith 
the horizontal tail located near either tip ,of the 
ve rt ical tail ~ 
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!+ . ,Shen the hor iz ontal tail was located near the 
base of the vertical tail , the end - ~ l ate effect was 
increased by moving the horizont a l tail re arward • 

Langley Memor i a l Aeronauti c a l Laborator y 
National Advisor y Committee for Aeronautic s 

Lang l ey Fie ld, Va., J anuary 21, 1946 
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TABLE I 

OR:;)lnATSS OF VEitTICAI,- TAIL AIR.FCIL SECTI01J 

[Stations a"1d ordinates in percent of air foi l chord] 

UnJ. er surfac e i Lone r surface __ J I 
. I 'T---

Station Ordinate I Station L Ordlna'ce ! 
i ,-- --j I 

0 0 
I 

0 0 
. 5 . 8~-5 · 5 -. 845 
. 75 1 . 019 

I 
. 75 -1. 019 

1.25 1.270 1.25 -1.270 
2.5 1·719 I 2.5 -1. 719 
5 2. 339 I 5 ') 30O 

I 
- L . .J / 

7.5 2 ·909 I 7·5 -2 .909 
10 -, ~l 3 10 - 3 . 3L~3 ; . )4- I 
15 ' 02 L 

I 15 -L~ . 036 I.L • ..)0 

20 11. . S61 20 -h .561 
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S-:ation 
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PLAN- [.'ORM OHDI11!'l.'I'ES OF' V-E~TIC A:S- TAIL ~,:ODE L 

[Sc~tions end ordindte s are in inche s] 

Or d Jnate i r. 
( Forw~rd of ISta w ~on 

rudc.er hinge [....Xis) I (a J 
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I------+_~ _ __ .+_~---:~.__ __._----4 
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"7 "/7 - ) . 00 
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------------------ I - 4 .500 
------ _____ _ ____ _ _ 1 _ I, 1 v"7 
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----------------- - 1 - 3 · g3~ 73 
------------------ - 2 . v ------------------1 - 2 , 00 
------i7:333------, - ~ .lG7 
. ----------------- 1.833 
-------.--------.- 2, 167 
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"----~.-----.---.~ 5 .500 
------------~----. 7 •• ~6070 
----------- •• ---_"1 8_~ 

16. 962 I 9. 167 
-----------------.110.3 33 
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-- ~ ---------------
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------------------

70 721 
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5 . 025 
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1. 183 

.721 
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5po/7 =36/ II 
Aspecl rallo =2.17 

Area = 0 . ..148 J'q (I 
Span =3. 61 /1 

Fig. 1 

h, AJ'jJecl /O!IO = 2.05 
(Re;-erence 3 ) 

JIl 
Areo = 7055 J'fj II 
JfJon = J9!J II 

be Aspec! 1'0110 = 2.25 
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~'lure I. - Three orc>o -JjJon conven!IOrlJ which ore cued 

In ca/ciL/ohng Ihe oSjJecl ra!lo and Ihe /orce and 

momenl coe//;clC'I7IJ 0/ vC'rllcal lads. (Convt3n!/on.17 

/5 11J01 recommended 117 reference 3.) 





(a) Center horizontal location of the 6-foot-span end plate in low 
vertical location. 

Figure 2.- Front views of the vertical-tail model as mounted in the 6- by 6-foot 
section of the Lan~lev stability tunnel. 
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(b) Center horizontal location of the 4-foot-span end plate in the intermediate
low vertical location. 

Figure 2.- Concluded. 
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