"AIR TRANSPORT,"

BY

F. HANDLEY PAGE, C.B.E.

(Member of Council of Institute of Transport).

Tunbridge Wells:
C. Baldwin, Grosvenor Printing Works.
I purpose in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August, 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present. I propose to deal mainly with the actual results which have been achieved.

In 1919, transport by air commenced with a transport vehicle tried out only under war conditions, where performance rather than economy was the dominating feature. The personnel had all been trained under war conditions, and it was by no means certain that, apart from the service paying its way, such a service would be at all possible under the weather conditions prevailing in this part of the world. The results have, however, shown that, apart from the question of flying in fog or flying when there is practically no visibility, there are no meteorological conditions preventing a regular and reliable service.

I will deal with the subject following heads:

1. Character of the loads.
2. The routes operated.
3. The results in passengers carried and efficiency of the service.
4. The costs of the service.
5. The question of subsidies.

(1) Character of the loads.

It would appear that where there are two centres of large population and industrial development, with facilities for transportation between the two, the amount of correspondence and the number of travellers passing between them increase in like proportion. The call for quick delivery of parcels and freight does not seem to increase in anything like the same proportion, largely, perhaps, due to the time that is taken for the distribution on the ground. In air transport, therefore, most attention has been paid to and most success obtained by the carriage of passengers and mail rather than freight. It would be interesting to know if the results are the same for high speed rail and boat traffic.

Probably, if distance increases, there will be a greater demand for transport of samples and other packages by air. Another difficulty arising out of freight transported by air, is the Customs clearance delay, so that, combined with the time taken for delivery, there may be little gained over the ordinary boat or train.

(2) The routes operated.

There are, at the present time, three routes in operation by British companies, London—Paris, by Handley-Page Transport, Ltd.; London—Brussels—Cologne, by Instone Air Line, Ltd., and Manchester—London—Amsterdam, by Daimler Hire, Ltd.
French—The following are the main air lines:

SOUTH.—Toulouse—Barcelona, through Spain to Casablanca, by the Latécoère Co.

NORTH and SOUTH.—Paris—Brussels—Amsterdam by the Compagnie des Messageries Aériennes.

London—Paris—Marseilles, by the Compagnie des Messageries Aériennes.

Paris—Lausanne, by the Compagnie des Grand Express Aériens.

EAST.—Paris—Strassburg—Prague—Warsaw, by the Compagnie Franco-Roumaine de Navigation Aérienne.

Of these, the route to Marseilles has only just been opened and is, as yet, not fully organised.

The route to the east has been in operation since 1920, but is not operated during the winter months, the period of operation being from March 15th to November 15th. The third route from Toulouse occupies two days and covers a distance of 1,850 kilometres—say 1,150 miles.

The first day’s journey is from Toulouse to Alicante via Barcelona, the departure being 9 o’clock in the morning, the destination being reached at 3.15 in the afternoon; the next day the departure is made at 8 o’clock from Alicante, and the arrival at Casablanca is at 3.45 in the afternoon.

Figure A gives the map of these routes. It is interesting to observe on this map how Europe is cut up from an air point of view by the Alps and the eastern extensions. The crossing of these mountain ranges must present great difficulties from the air point of view for very many years to come.

(3) *The results in passengers carried and efficiency of the service.*

I have taken as an example the London—Paris route, as more attention has been given to this than the two other routes, and it, therefore, serves as an illustration of the way in which the traffic has developed. Table I.
TABLE 1.
MONTHLY RECORD OF PASSENGER TRAFFIC CARRIED BY FRENCH AND BRITISH AIRCRAFT ON LONDON—PARIS AIR ROUTE.

<table>
<thead>
<tr>
<th></th>
<th>1920.</th>
<th>1921.</th>
<th>1922.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>206</td>
<td>18</td>
<td>224</td>
</tr>
<tr>
<td>May</td>
<td>435</td>
<td>106</td>
<td>541</td>
</tr>
<tr>
<td>June</td>
<td>591</td>
<td>75</td>
<td>666</td>
</tr>
<tr>
<td>July</td>
<td>792</td>
<td>73</td>
<td>865</td>
</tr>
<tr>
<td>August</td>
<td>775</td>
<td>50</td>
<td>825</td>
</tr>
<tr>
<td>September</td>
<td>643</td>
<td>35</td>
<td>678</td>
</tr>
<tr>
<td>October</td>
<td>585</td>
<td>49</td>
<td>634</td>
</tr>
<tr>
<td>November</td>
<td>281</td>
<td>48</td>
<td>329</td>
</tr>
<tr>
<td>December</td>
<td>88</td>
<td>26</td>
<td>114</td>
</tr>
</tbody>
</table>

shows the number of passengers carried per month for the three years 1920, 1921 and 1922.

Several features emerge from a comparison of the figures. The first is the great similarity between the passenger distribution for the different months in any given year. The high peak attained in July and August of each year indicates either that the service is largely composed of tourists, or that weather conditions or the longer days of summer permit of flying and, therefore, more services to be run. All of these causes, no doubt, operate to produce the effect shown. Very noteworthy are the low figures of passengers carried in the four months November, December, January and February, a result largely due to the number of days on which flying is prevented owing to fog and bad visibility. The increase in traffic in succeeding years is negligible for these months compared with the big increases in the summer months. This disparity between traffic in winter and summer working must be evened up if air transport is to be an economic proposition.

The results for 1922 are particularly interesting. For this year, three British companies were in competition, and two French, and a great deal of publicity was given to the services. This competition started from April 1st. Prior to that, the curve shows that there was an increase in passenger traffic over 1921, a year of exceptionally fine weather. In April, a collision in the air occurred in France, a machine operated by the Daimler Hire, Ltd., colliding with one belonging to the Compagnie des Grand Express Aeriens, and, in consequence, the adverse effect is shown in the April figures, which drop below those of 1921. The good results of the next few weeks' working helped to make this accident forgotten, so that, in May, the figures for 1921 and 1922 are approximately equal. In June, a Spad belonging to the Compagnie des Grand Express Aeriens fell into the sea off Folkestone, the pilot and three passengers being killed. The effect of this accident is again shown in the June and July figures, these falling below those of 1921. An examination of the weather figures for 1922 for these months does not afford any meteorological explanation for the fall in passengers. In August, September and October, the adverse effect of the accidents is no longer felt and the numbers increase. These figures are interesting as showing the effect of (a) fog and bad weather conditions, and (b) accidents, upon the resulting traffic. More important than all, it is interesting to see the way in which the traffic has grown.

I have given the number of passengers who in these years travelled by British machines, and the figures for both the total passengers, as well as the British passengers, are given in Tables 1 and 2 for the three years. In 1920, 80 per cent. of the passengers went by British machines. In 1921, the number of British machines was restricted owing to the subsidy conditions.
TABLE 2.
MONTHLY RECORD OF FLIGHTS CARRIED OUT ON LONDON—PARIS ROUTE BY BRITISH AND FRENCH AIRCRAFT.

<table>
<thead>
<tr>
<th></th>
<th>1920.</th>
<th></th>
<th>1921.</th>
<th></th>
<th>1922.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>British</td>
<td>French</td>
<td>Total</td>
<td>British</td>
<td>French</td>
</tr>
<tr>
<td>January</td>
<td>77</td>
<td>8</td>
<td>85</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td>February</td>
<td>82</td>
<td>13</td>
<td>95</td>
<td>25</td>
<td>48</td>
</tr>
<tr>
<td>March</td>
<td>128</td>
<td>48</td>
<td>176</td>
<td>34</td>
<td>102</td>
</tr>
<tr>
<td>April</td>
<td>130</td>
<td>54</td>
<td>184</td>
<td>58</td>
<td>104</td>
</tr>
<tr>
<td>May</td>
<td>237</td>
<td>86</td>
<td>323</td>
<td>76</td>
<td>161</td>
</tr>
<tr>
<td>June</td>
<td>360</td>
<td>74</td>
<td>434</td>
<td>112</td>
<td>211</td>
</tr>
<tr>
<td>July</td>
<td>415</td>
<td>62</td>
<td>477</td>
<td>159</td>
<td>193</td>
</tr>
<tr>
<td>August</td>
<td>448</td>
<td>66</td>
<td>514</td>
<td>155</td>
<td>222</td>
</tr>
<tr>
<td>September</td>
<td>407</td>
<td>66</td>
<td>473</td>
<td>111</td>
<td>167</td>
</tr>
<tr>
<td>October</td>
<td>374</td>
<td>83</td>
<td>457</td>
<td>106</td>
<td>148</td>
</tr>
<tr>
<td>November</td>
<td>155</td>
<td>62</td>
<td>217</td>
<td>74</td>
<td>110</td>
</tr>
<tr>
<td>December</td>
<td>41</td>
<td>35</td>
<td>76</td>
<td>68</td>
<td>51</td>
</tr>
</tbody>
</table>

The figures for the regularity of the service shown in the Table 3 show a great improvement in this respect in 1922 compared with 1920.

I have heard it stated by some writers for the press that the subsidized services merely provide pleasure trips for joy-riders, and that the nationality of the passengers travelling, and the seasonal variation referred to above, prove that the greater proportion of the traffic is tourist. The argument deduced is that the country’s money is wasted in subsidies merely to provide such pleasure trips. There is, however, another side to the argument. If it is a national necessity to have a reserve of machines in the air and pilots and mechanics in training, the cost to this country of such service is diminished by the amount of the contribution made by such passengers, and the greater the number of passengers from abroad who patronize and pay for the service, the greater the proportion of the contribution paid for from abroad.

The figures given above relate to the London—Paris air service and have been taken as typical; more passengers travel on this route than on any other.

The results from these French lines are given in Tables 4, 5, 6, 7 and 8 and are exceedingly interesting, especially on the Casablanca route. Here there is a clear indication of the gradual patronage by the public for postal purposes of the service when the saving of time becomes appreciated by the public.

TABLE 3.
EFFICIENCY* OF BRITISH AIR SERVICES ON THE LONDON—PARIS AIR ROUTE.

<table>
<thead>
<tr>
<th></th>
<th>1920.</th>
<th></th>
<th>1921.</th>
<th></th>
<th>1922.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>42.1</td>
<td>58.3</td>
<td>65.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>February</td>
<td>58</td>
<td>76</td>
<td>92.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>71.4</td>
<td>95.4</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>76.7</td>
<td>94.8</td>
<td>93.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>78.6</td>
<td>94.7</td>
<td>92.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>85.3</td>
<td>91</td>
<td>92.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>75.3</td>
<td>93.8</td>
<td>93.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>89.4</td>
<td>94.8</td>
<td>93.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>86</td>
<td>93</td>
<td>95.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>87.3</td>
<td>92.9</td>
<td>89.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>November</td>
<td>78.5</td>
<td>71</td>
<td>84.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>61.8</td>
<td>71.6</td>
<td>—</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Per cent. to total flights commenced of flights completed in less than four hours.
TABLE 4.
TRAFFIC UPON THE PARIS, BRUSSELS, AMSTERDAM AIR ROUTE IN FRENCH, BELGIAN OR DUTCH AIRCRAFT.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1919</td>
<td>407</td>
<td>101,789</td>
<td>193</td>
<td>4,217</td>
<td>214</td>
</tr>
<tr>
<td>1920</td>
<td>388</td>
<td>110,245</td>
<td>371</td>
<td>1,739</td>
<td>225</td>
</tr>
<tr>
<td>1921</td>
<td>814</td>
<td>310,710</td>
<td>2,010</td>
<td>20,522</td>
<td>566</td>
</tr>
<tr>
<td>1922</td>
<td>503</td>
<td>138,615</td>
<td>1,224</td>
<td>38,183</td>
<td>474</td>
</tr>
</tbody>
</table>

(4) The costs of the service.

Air transport, to be successful, must not be too expensive, although, owing to its high speed, a higher price can be obtained than for slower means of transportation. The largest portion of the cost, when the service is small, is the overhead expense and general establishment charges, which cannot be reduced below a certain amount. These reach a high figure per passenger when the service is small. The capital of the transport company is mostly invested in machines, engines and spare parts necessary for the carrying on of the service, and it is essential, if the cost per passenger is to be kept down, that the equipment should be used the maximum amount possible. Aircraft in operation, as regards the aeroplane itself, cost little to keep up, and have quite a long life; it is the motor that is the most expensive part to run. In determining the actual cost of running, it is, therefore, an obsolescence rather than a depreciation charge for the aircraft that has to be included, the amount to be written off per annum depending on the rate of technical progress in aircraft.

It is obvious that the aircraft should be kept flying continuously in the service with no time on the ground beyond that necessary for inspection, adjustment or overhaul, and that there should be a sufficient supply of engines always available for change when they require overhaul or when a fault develops. There are limits, however, imposed upon such system of operation, owing to night flying being as yet impossible commercially, and owing to the restricted hours of flying in winter time caused by the shorter flying hours, also by bad weather such as fog, etc. As the services expand so will the overhead charge per passenger or pound freight decrease, and therefore great improvement is to be expected along these lines.

The actual costs at the present day vary considerably, and are dependent on whether the aircraft are used in an extensive manner, or whether a large fleet is used with a large number of machines in reserve but not used. The cost, for instance, of the twin engine machines used on the London—Paris service is approximately 6s. per mile flown, and the single engine machines about 4s. 6d. This corresponds to a cost per ton mile, calculated on the full load capacity of the machine, of 3s. 6d. for a twin engine machine and 4s. 6d. to 5s. for the single engine machine of a similar capacity. The cost of petrol and oil in the twin engine machine is approximately £4 per hour. With an average flying speed of 85 miles per hour, this corresponds to 13s. per mile, or, say, 7½d. per ton mile. It is evident, therefore, that between this figure and 3s. 6d. there is an ample margin for economy and improvement. These figures show that the actual cost of running to-day does not depend so much upon the economy of the actual machine used and petrol, oil, etc., or even on the question of upkeep. The cost of air transport to-day is mainly due to the minimum cost of the general charges that have to be maintained if a service of any description is run. For an increase in the size of the service by two or three times, there will be nothing like a corresponding increase in the running cost.

(5) The question of subsidies.

Subsidies have never been favourably looked upon in this country. If public money is spent in subsidizing an industry, there must always be a certain amount of State control, and wherever there is State
TABLE 5.
Compagnie Franco-Roumaine de Navigation Aerienne.

TRAFFIC UPON THE PARIS, STRASBOURG, PRAGUE, WARSAW, BUCHAREST, CONSTANTINOPLE
AIR ROUTE IN FRENCH AIRCRAFT.

1920 (Paris, Strasbourg, Prague).

<table>
<thead>
<tr>
<th>Month</th>
<th>Kilom. flown</th>
<th>Passengers</th>
<th>Freight</th>
<th>Mail Post.</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>4,210</td>
<td>1</td>
<td>1,800</td>
<td>4,301</td>
</tr>
<tr>
<td>October</td>
<td>33,733</td>
<td>13</td>
<td>187,385</td>
<td>33,173</td>
</tr>
<tr>
<td>November</td>
<td>18,783</td>
<td>1</td>
<td>303,245</td>
<td>24,156</td>
</tr>
<tr>
<td>December</td>
<td>2,026</td>
<td>—</td>
<td>14,658</td>
<td>3,145</td>
</tr>
<tr>
<td>Total for 1920</td>
<td>59,252</td>
<td>15</td>
<td>507,215</td>
<td>64,775</td>
</tr>
</tbody>
</table>

1921 (Paris, Strasbourg, Prague, Warsaw).

<table>
<thead>
<tr>
<th>Month</th>
<th>Kilom. flown</th>
<th>Passengers</th>
<th>Freight</th>
<th>Mail Post.</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>10,163</td>
<td>—</td>
<td>5,650</td>
<td>7,516</td>
</tr>
<tr>
<td>February</td>
<td>16,339</td>
<td>4</td>
<td>26,650</td>
<td>7,393</td>
</tr>
<tr>
<td>March</td>
<td>40,093</td>
<td>55</td>
<td>167,475</td>
<td>24,154</td>
</tr>
<tr>
<td>April</td>
<td>31,128</td>
<td>72</td>
<td>951,725</td>
<td>81,449</td>
</tr>
<tr>
<td>May</td>
<td>65,233</td>
<td>134</td>
<td>5,170,073</td>
<td>113,425</td>
</tr>
<tr>
<td>June</td>
<td>69,909</td>
<td>188</td>
<td>4,692,845</td>
<td>149,915</td>
</tr>
<tr>
<td>July</td>
<td>71,983</td>
<td>205</td>
<td>3,262,413</td>
<td>195,842</td>
</tr>
<tr>
<td>August</td>
<td>89,938</td>
<td>276</td>
<td>3,972,784</td>
<td>227,791</td>
</tr>
<tr>
<td>September</td>
<td>92,855</td>
<td>199</td>
<td>6,231,605</td>
<td>314,413</td>
</tr>
<tr>
<td>October</td>
<td>82,708</td>
<td>166</td>
<td>5,453,700</td>
<td>312,590</td>
</tr>
<tr>
<td>November</td>
<td>15,565</td>
<td>29</td>
<td>977,220</td>
<td>16,066</td>
</tr>
<tr>
<td>Total for 1921</td>
<td>606,514</td>
<td>1,328</td>
<td>31,912,140</td>
<td>1,450,554</td>
</tr>
<tr>
<td>Preceding year</td>
<td>59,252</td>
<td>15</td>
<td>507,215</td>
<td>64,775</td>
</tr>
<tr>
<td>Total to end of 1921</td>
<td>665,766</td>
<td>1,343</td>
<td>32,419,355</td>
<td>1,515,329</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Month</th>
<th>Kilom. flown</th>
<th>Passengers</th>
<th>Freight</th>
<th>Mail Post.</th>
</tr>
</thead>
<tbody>
<tr>
<td>February</td>
<td>11,645</td>
<td>10</td>
<td>132,300</td>
<td>15,600</td>
</tr>
<tr>
<td>March</td>
<td>43,106</td>
<td>22</td>
<td>1,335,000</td>
<td>134,000</td>
</tr>
<tr>
<td>April</td>
<td>70,630</td>
<td>40</td>
<td>2,240,000</td>
<td>134,000</td>
</tr>
<tr>
<td>May</td>
<td>122,397</td>
<td>135</td>
<td>3,298,000</td>
<td>248,000</td>
</tr>
<tr>
<td>June</td>
<td>140,603</td>
<td>158</td>
<td>8,170,000</td>
<td>338,000</td>
</tr>
<tr>
<td>July</td>
<td>118,304</td>
<td>157</td>
<td>4,830,000</td>
<td>314,000</td>
</tr>
<tr>
<td>August</td>
<td>135,799</td>
<td>170</td>
<td>3,970,000</td>
<td>408,000</td>
</tr>
<tr>
<td>September</td>
<td>128,608</td>
<td>99</td>
<td>5,060,000</td>
<td>382,000</td>
</tr>
<tr>
<td>October</td>
<td>94,646</td>
<td>34</td>
<td>3,814,000</td>
<td>250,000</td>
</tr>
<tr>
<td>November</td>
<td>33,294</td>
<td>8</td>
<td>1,068,000</td>
<td>100,000</td>
</tr>
<tr>
<td>Total for 1922</td>
<td>898,972</td>
<td>933</td>
<td>33,917,300</td>
<td>2,323,600</td>
</tr>
<tr>
<td>Preceding year</td>
<td>665,766</td>
<td>1,343</td>
<td>32,419,355</td>
<td>1,515,329</td>
</tr>
<tr>
<td>Total to end of 1922</td>
<td>1,564,738</td>
<td>2,176</td>
<td>56,336,655</td>
<td>3,838,929</td>
</tr>
</tbody>
</table>
TABLE 6.
Compagnie Franco-Roumaine de Navigation Aérienne.

SCHEDULE OF FLIGHTS ON PARIS, STRASBOURG, PRAGUE, WARSAW, CONSTANTINOPLE AIR ROUTE—1922.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Flights scheduled</td>
<td>84</td>
<td>186</td>
<td>180</td>
<td>240</td>
<td>300</td>
<td>310</td>
<td>310</td>
<td>311</td>
<td>346</td>
</tr>
<tr>
<td>Flights completed</td>
<td>20</td>
<td>77</td>
<td>113</td>
<td>216</td>
<td>262</td>
<td>239</td>
<td>257</td>
<td>206</td>
<td>157</td>
</tr>
</tbody>
</table>

Bad weather interruptions of Service—

Scheduled flights not started	58	88	60	10	19	46	26	77	155
Flights started but not continued	1	8	—	—	—	—	—	—	—
Flights completed with interruptions	1	5	5	2	3	5	3	7	23
Total	60	101	65	12	22	51	29	84	178

Interruption of Service due to engine trouble—

Flights not started	—	1	2	6	5	8	6	4	
Flights started but not continued	—	2	1	3	2	1	3	1	
Flights interrupted owing to engine trouble	4	5	2	9	7	11	15	12	6
Total	4	8	2	12	16	18	24	21	11

TABLE 7.
NUMBER OF LETTERS CARRIED PER MONTH BY THE LATECOERE AIR LINE ON THE AIR ROUTE TOULOUSE—CASABLANCA (ALGIERS).

<table>
<thead>
<tr>
<th></th>
<th>1920</th>
<th>1921</th>
<th>1922</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>4,502</td>
<td>16,377</td>
<td>50,851</td>
</tr>
<tr>
<td>February</td>
<td>5,717</td>
<td>12,025</td>
<td>52,699</td>
</tr>
<tr>
<td>March</td>
<td>7,147</td>
<td>14,005</td>
<td>75,909</td>
</tr>
<tr>
<td>April</td>
<td>8,381</td>
<td>17,179</td>
<td>80,556</td>
</tr>
<tr>
<td>May</td>
<td>12,828</td>
<td>18,878</td>
<td>93,837</td>
</tr>
<tr>
<td>June</td>
<td>12,897</td>
<td>22,788</td>
<td>119,258</td>
</tr>
<tr>
<td>July</td>
<td>17,758</td>
<td>28,107</td>
<td>124,977</td>
</tr>
<tr>
<td>August</td>
<td>22,582</td>
<td>34,283</td>
<td>128,562</td>
</tr>
<tr>
<td>September</td>
<td>24,373</td>
<td>35,036</td>
<td>141,532</td>
</tr>
<tr>
<td>October</td>
<td>24,347</td>
<td>40,601</td>
<td>172,313</td>
</tr>
<tr>
<td>November</td>
<td>23,098</td>
<td>41,340</td>
<td>161,778</td>
</tr>
<tr>
<td>December</td>
<td>17,969</td>
<td>47,245</td>
<td></td>
</tr>
</tbody>
</table>

Interference in commerce, results are bad for both sides, as has been only too clearly shown during and since the war.

There are three main reasons why subsidies have been and are being given by a great many European countries for commercial aviation. They are as follows: Firstly—a political consideration. If a country subsidizes an international line, the aeronautical outlook of the countries through which that line passes tends towards the same point of view as that of the country subsidizing the service. This might be considered as a political penetration to obtain a control in aeronautical policy.

There is a possibility, too, of orders resulting for the aircraft industry of the country giving the subsidy. The latter is not, however, a valid reason for the subsidy being given. If the organization and running of such an international air line will benefit the aeronautical industry with orders, then it is for the industry to subsidize the line to obtain the business.

The second reason is a military one. Even in a country where there is conscription, the provision of a large enough number of pilots and mechanics by military training only is a matter of difficulty. By maintaining a large number of machines in the air on commercial air services, with a corresponding number of pilots and mechanics, etc., there is available, in time of war a reserve for national emergencies. Whether this is a better means than, say, a territorial air force is a matter for the service experts to determine, and also is dependent upon the relative cost to the State of the two methods. On the face of it, it would appear to the layman that it would be cheaper to maintain reserves on the civil aviation basis, as a large proportion of the cost is contributed by the public in the shape of the air transport companies' receipts.

A further and more important point is
that, unless the public in a country is educated to air travel and the use of aircraft, it is impossible to develop fully an air sense. Military supremacy in the air will not, unless civil aviation is encouraged, come to any nation in the way that supremacy on the sea has come to the British Empire as a result of the great mercantile marine development that there has been always in the Empire.

The third reason for the giving of subsidies is a commercial one. Improvement of communication develops the resources of a country. It is especially necessary within the British Empire where such large distances have to be traversed. At the commencement, the cost of organisation of air communication owing to overhead charges, etc., is high, and it is to help the initial lean years that a subsidy is necessary. Eventually, however, from a commercial point of view the subsidies must cease and the whole policy underlying their grant must be to make the services ultimately self-supporting.

The way in which subsidies should be paid has been a subject of discussion in many countries. From the military point of view, as machines have to be kept in the air and pilots and mechanics kept in training, the basis of a lump sum payment per annum for a minimum number of miles flown and pilots and mechanics kept in training, seems to be the fairest one that is possible to both sides.

From a commercial point of view, unless the service results in a minimum amount of traffic, it has no ultimate value to the State. Therefore, it would appear that here again a lump sum payment for a minimum amount of passenger traffic or freight obtained during the year would be the most equitable basis. Better still it would be if, in addition to the lump sum payment for the minimum traffic, there were a subsidy increasing in amount the results obtained; so that there was a direct incentive to the further development of the line.

In Great Britain at the present time, the subsidy is based on the lump sum payment for a minimum number of flights made and machines, pilots and mechanics kept in training. The basic reason for the subsidy in Great Britain, therefore, seems to be military.

Attached hereto are the subsidy conditions for three of the French companies, with examples of the sums paid per trip. A comparison between the English and French subsidy amounts is as striking as the discrepancy between the results achieved. It would appear that some intermediate subsidy arrangement between the two extremes which we have in the two countries, would lead to the most favourable development of aviation.

(6) Probable future developments.

The development of civil aviation in the future from the point of view of the British Empire has been most ably dealt with in the report of the Air Ministry for the half-year ended September 30th, 1921, in Appendix III, where the value to the Empire of air services, and the services rendered by them, is dealt with very fully. I do not propose to go over this ground which has been so often covered.

I have referred in the costs to the figures which obtain to-day, namely, approximately 3s. 6d. per ton mile. If civil aviation is to run on its own feet, without subsidy, although the first necessity is expansion of services so as to reduce overhead charges per passenger or per lb. of freight, yet, at the same time, there is ample scope for improvement in machines. To-day, the average covered aircraft carries between 15 and 17 lb. for every horse-power installed, of which, at the outside, 4 to 5 lb. per horse-power is the useful or paying load. The cruising speed

TABLE 8.

<table>
<thead>
<tr>
<th></th>
<th>Flights made</th>
<th>Kilometres flown</th>
<th>Passengers carried</th>
<th>Freight in kg.</th>
<th>Mail Post in kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1919</td>
<td>250</td>
<td>107,470</td>
<td>41</td>
<td>678</td>
<td>178</td>
</tr>
<tr>
<td>1920</td>
<td>923</td>
<td>366,049</td>
<td>223</td>
<td>9,948</td>
<td>3,417</td>
</tr>
<tr>
<td>1921</td>
<td>1,900</td>
<td>692,415</td>
<td>455</td>
<td>25,555</td>
<td>6,707</td>
</tr>
<tr>
<td>1922</td>
<td>2,270</td>
<td>840,406</td>
<td>739</td>
<td>33,560</td>
<td>24,995</td>
</tr>
</tbody>
</table>
varies between 85 and 100 miles per hour. It should not be impossible within the next few years to increase the total carrying capacity for the same top speed to, say, 25 lb\cdotper horse-power, and obtain a useful load of 10 lb\cdotper horse-power. If this were done the cost per ton-mile would be reduced to 6d. for full load. With the London—Paris route, this means a cost of approximately £18 per ton, or say £10s. per passenger and 1½d. per lb\cdotof freight.

In this paper I have limited myself to a plain review of the traffic results and conditions obtaining in air transport at the present time.

The necessary basis for commercial air operations has been thoroughly tried out in these few experimental years and it needs only the necessary support to be forthcoming for the extensions of the routes to be opened and the great Imperial air route to the East to be started.

APPENDIX.

EXAMPLES OF FRENCH SUBSIDIES.

PAID PER TRIP ON PARIS—LONDON ROUTE.

(1) Farman-Goliath.

Purchase subsidy.

State pays half cost of machine (without engines) and three-quarter cost of engines. Life of machine reckoned at 200 hours. Therefore, proportion per trip (2.6 hours)=1,460 hrs.

Kilometric subsidy.

Fixed subsidy, 0.87 frs. (for Goliath machine) =3,520 frs.

Commercial profits subsidy.

Passengers ... 100% of rate charged on Goods ... 100% of rate charged on London-Paris route.

Half-load: 7 passengers ... 2,100 frs.
(1,670 lb\cdot) 250 km\cdot per kg\cdot, say,
2.5 frs. per kg\cdot ... 625

(1,377 lb\cdot) ... 1.13 frs. per lb\cdot, ... 2,725

Full load: 12 passengers ... 3,600 frs.
(3,050 lb\cdot) 500 km\cdot per kg\cdot, say,
2.5 frs. per kg\cdot ... 1,250

(1,192 lb\cdot) ... 1.13 frs. per lb\cdot, ... 4,850

W/T bonus: 375 km\cdot at 25 cts. = 93 frs.

Total: Half-load, 7,798 frs.=£310 at par.
Full load 11,923 frs.=£475...

(2) Spad 33 (Limousine).

Purchase subsidy.

State pays half-cost of machine (without engine) and three-quarter cost of engines. Life of machine reckoned as 200 hours. Therefore, proportion per trip (2.6 hours)=643 hrs.

Kilometric subsidy.

Fixed subsidy, 4.86 frs.=1,822 frs.

Commercial profits subsidy.

Passengers ... 100% of rates charged on Freight ... 100% of rates charged on London-Paris route.

Half-load: 2 passengers ... 600 frs.
(50 kg\cdot per kg\cdot, say,
2.50 frs. per kg\cdot ... 125

(1,100 lb\cdot) ... 1.13 frs. per lb\cdot, ... 725

Full load: 5 passengers ... 1,500 frs.
(100 kg\cdot per kg\cdot, say,
2.50 frs. per kg\cdot ... 250

(2,200 lb\cdot) ... 1.13 frs. per lb\cdot, ... 1,700

Total: Half-load 3,100 frs.=£128 at par.
Full load 4,215 frs.=£168...