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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 4o6 

A COMPARATIVE ANALYSIS OF THE PERFORMANCE OF 

LONG-RANGE HYPERVELOCITY VEHICLES' 

By Alfred J. Eggers, Jr., H. Julian Allen,
and Stanford E. Neice 

SUMMARY 

Long-range hypervelocity vehicles are studied in terms of their 
motion in powered flight, and their motion and aerodynamic heating in 
unpowered flight. Powered flight is analyzed for an idealized propulsion 
system which rather closely approaches present-day rocket motors. Unpow-
ered flight is characterized by a return to earth along a ballistic, skip, 
or glide trajectory. Only those trajectories are treated which yield the 
maximum range for a given velocity at the end of powered flight. Aero-
dynamic heating is treated in a manner similar to that employed previously 
by the senior authors in studying ballistic missiles (NACA TN 4047), 
with the exception that radiant as well as convective heat transfer is 
considered in connection with glide and skip vehicles. 

The ballistic vehicle is found to be the least efficient of the 
several types studied in the sense that it generally requires the highest 
velocity at the end of powered flight in order to attain a given range. 
This disadvantage may be offset, however, by reducing convective heat 
transfer to the re-entry body through the artifice of increasing pressure 
drag in relation to friction drag - that is, by using a blunt body. Thus 
the kinetic energy required by the vehicle at the end of powered flight 
may be reduced by minimizing the mass of coolant material involved. 

The glide vehicle developing lift-drag ratios in the neighborhood 
of and greater than 4 is far superior to the ballistic vehicle in ability 
to convert velocity into range. It has the disadvantage of having far 
more heat convected to it; however, it has the compensating advantage 
that this heat can In the main be radiated back to the atmosphere. Con-
sequently, the mass of coolant material may be kept relatively low. 

The skip vehicle developing lift-drag ratios from about 1 to 4 is 
found to be superior to comparable ballistic and glide vehicles In con-
verting velocity into range. At lift-drag ratios below 1 it is found to 
be about equal to comparable ballistic vehicles while at lift-drag ratios 

1Supersedes NACA RN A54LlO by Alfred J. Eggers, Jr., H. Julian Allen, 
and Stanford E. Neice, 195.
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above 4 it is about equal to comparable glide vehicles. The skip vehicle 
experiences extremely large loads, however, and it encounters most severe 
aerodynamic heating. 

As a final performance consideration, it is shown that on the basis 
of equal ratios of mass at take-off to mass at the end of powered flight, 
the hypervelocity vehicle compares favorably with the supersonic airplane 
for ranges in the neighborhood of and greater than one half the circum-
ference of the earth. In the light of this and previous findings, it is 
concluded that the ballistic and glide vehicles have, in addition to the 
advantages usually ascribed to great speed, the attractive possibility of 
providing relatively efficient long-range flight. 

Design aspects of the glide vehicle are touched on briefly. It is 
argued from considerations of motion and heating that vehicles of this 
type which fly at hypersonic speeds to impact with the earth's surface 
might profitably consist of blunt-nosed bodies of revolution stabilized 
by a conical flare at the base and controlled by deflectable sections of 
the afterbody. In the event that wings are necessary to provide accept-
able low-speed characteristics, it is indicated that they should have 
highly swept, rounded leading edges in order to alleviate the local 
heating problem with minimum drag penalty. 

INTRODUCTION 

It is generally recognized that hypervelocity vehicles are especially 
suited for military application because of the great difficulty of defend-
ing against them. It is also possible that for long-range operation, 
hypervelocity vehicles may not be overly extravagant in cost. A satellite 
vehicle, for example, can attain arbitrarily long range with a finite 
speed and hence finite energy input. E. Sanger was among the first to 
recognize this favorable connection between speed and range (ref. 1) and 
was, with Bredt, perhaps the first to exploit the speed factor in design-
ing a long-range bomber (ref. 2). This design envisioned a rocket-boost 
vehicle attaining hypervelocity speeds at burnout and returning to earth 
along a combined skip-glide trajectory. Considerable attention was given 
to the propulsion and motion analysis; however, little attention was given 
to what is now considered to be a principal problem associated with any 
type of hypersonic aircraft, namely that of aerodynamic heating. In 
addition, the category of expendable vehicles, perhaps best characterized 
by the ballistic missile, was not treated. 

Since the work of Sanger and Bredt there have been, of course, many 
treatments of long-range hypervelocity vehicles in which the propulsion, 
motion, and heating problems have been studied in considerable detail. 
However, these analyses have been devoted in the main to particular designs 
and are not intended to reveal, for example, the relative advantages and 

I
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disadvantages of ballistic-, skip-, and glide-type vehicles. Furthermore, 
it appears that the extent to which these vehicles can compete on a simple 
efficiency basis with lower speed aircraft of either the expendable or 
nonexpendable type has not been well established. 

It has therefore been undertaken in the present report to make a 
comparative analysis of the performance of hypervelocity vehicles having 
ballistic, skip, and glide trajectories. An idealized propulsion system, 
whose performance is rather closely approached by present-day rocket 
motors, is assumed. The motion analysis is simplified by treating, for 
the most part, only optimum trajectories yielding the maximum range for 
a given initial kinetic energy per unit mass in the unpowered portion of 
flight. Aerodynamic heating is treated in a manner analogous to that 
employed by the senior authors in studying ballistic missiles (ref. 3) 
with the exception that radiant heat transfer, as well as convective heat 
transfer, is considered in the treatment of glide and skip vehicles. The 
efficiencies of these vehicles are compared with supersonic aircraft with 
typical air-breathing power plants. 

ANALYSIS

General Considerations 

In the following analysis of long-range hypervelocity vehicles, only 
flight in planes containing the great circle arc between take-off and 
landing is considered. The flight is thought of in two phases: (a) the 
powered phase in which sufficient kinetic energy, as well as control, is 
imparted to the vehicle to bring it to a prescribed velocity, orientation, 
and position in space; and (b) the unpowered phase, in which the vehicle 
travels to its destination under the influence of gravity and aerodynamic 
forces. 

The analyses of motion and aerodynamic heating during unpowered flight 
will, of necessity, differ widely for the several types of vehicles under 
consideration. On the other hand, motion in the powered phase is con-
veniently treated by . a method common to all vehicles. The study of powered 
flight and its relation to range is therefore taken as a starting point 
in the analysis. The mathematical symbols employed in the analysis are 
listed in Appendix A. 

Powered Flight and the Breguet Range Equation 

In this part of the study, the following simplifying assumptions are 
made: (a) aerodynamic heating can be neglected on the premise that high 

I'
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flight speeds are not attained until the vehicle is in the rarefied upper 
atmosphere; 2 (b) sufficient stability and control is available to provide 
proper orientation and positioning of the vehicle in space; (c) the dis-
tance traveled while under power is negligible by comparison to the over-
all range; and finally, (d) the thrust is very large compared to the 
retarding aerodynamic and gravity forces. In terms of present-day power 
plants, the last assumption is tantamount to assuming a rocket drive for 
the vehicle. 

The velocity at burnout of the first stage of a multistage rocket 
(or the final velocity of a single-stage rocket) can then be expressed 
as (see, e.g., ref. 4):

-	 gI	 (mj\ 
Vf1 =

 

TS_
ln 	 (1) 

where the initial velocity is taken as zero. In this expression, mj and 
m 1 represent the mass of the vehicle at the beginning and ending of 
first-stage flight, and Vf 1 = Vf1/VS where VS =[gro = 25,930 feet 
per second is the satellite velocity at the surface of the earth. The 
coefficient g is the acceleration due to gravity and is, along with 
the specific impulse I, considered constant in this phase of the anal-
ysis. The final velocity of the vehicle at the end of the N stages of 
powered flight can be expressed as 

r(	 \\ 1i2'\	 (fliN"\l 
Vf = VN =	 ln /mi
	 (2) 

.	 •  

where the initial mass of any given stage differs from the final mass of 
the previous stage by the amount of structure, etc., jettisoned. 	 - 

Now let us define an equivalent single-stage rocket having the same 
initial and final mass as the N-stage rocket and the same initial and final 
velocity. There is, then, an effective specific impulse defined by 

2 This assumption is in the main permissible. A possible exception 
occurs, however, with the glide vehicle for which heat-transfer rates 
near the end of powered flight can be comparable to those experienced in 
unpowered gliding flight.
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(fli2\ 

=	 •	
(3) 

Ie	

in®) 

whereby equation (2) can be written as 

-	 e	
(Iflj\\ 

	

Vf =-V-_ln )	 (II.) 

The effective specific impulse 'e is always somewhat less than the 
actual specific impulse, but for an efficient design they are very nearly 
equal. Throughout the remainder of the analysis the effective impulse 
'e will be used. 

Equation (4) might be termed the "ideal power plant" equation for 
accelerated flight because, when considered in combination with the 
assumptions underlying its development, attention is naturally focused 
on the salient factors leading to maximum increase in velocity for given 
expenditure of propellant. Thus the thrust acts only in overcoming inertia 
forces, and the increase in vehicle velocity is directly proportional to 
the exhaust velocity (gI) for the propellant. 

Now we recognize that an essential feature of the hypervelocity 
vehicles under study here is that they use their velocity (or kinetic 
energy per unit mass) to obtain range. For this reason, equation (4) also 
constitutes a basic performance equation for these vehicles because it 
provides a connecting link between range requirements and power-plant 
requirements. 

In addition to comparing various types of hypervelocity vehicles, 
our attention will also be focused upon comparison of these vehicles with 
lower speed, more conventional types of aircraft. For this purpose it is 
useful to develop an alternate form of equation (4). We observe that the 
kinetic energy imparted to the vehicle is 

1 u2 mfvf 

This energy is equated to an effective work done, defined as the product 
of the range traveled and a constant retarding force. (Note that the 
useful kinetic energy at the end of powered flight is zero.) This force 
is termed the "effective drag" De. Thus
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DeR = mfVf	 (5) 

where R is flight range measured along the surface of the earth. 
Similarly, we may define an "effective lift" Le, equal to the final 
weight of the vehicle

Le = Wf = mfg 

from which it follows that equation (5) may be written as 

R = ()Le2g	
(6) 

where (L/D)e is termed the "effective lift-drag ratio." Combining 
equations ( ii-) and (6), we obtain 

R = (D_) eIeVeln ()	
(7.) 

where
Vf 

Ve=	 (8) 

and represents an "effective" flight velocity of the vehicle. Equa-
tion (7) will prove useful in comparing hypersonic vehicles with conven-
tional aircraft because of its analogy to the Breguet range equation, 

R = L IV in () (9) 

It will also prove useful to have equation (7) in the dimensionless form 
obtained by dividing through with r0 , the radius of the earth. In this, 

case we have

(gle'\ (mj\ 
= ()Ve	\V5) in	

(10)
ro 

where 0 is the range in radians of arc traversed along the surface of the 
the earth.

Motion in Unpowered Flight 

Ballistic trajectory.- In studying the motion of long-range vehicles 
in this trajectory, advantage is taken of the fact that the traverse 
through the earth t s atmosphere generally forms only a small part of the 
total trajectory. Therefore, the deflection and deceleration encountered 
in the re-entry phase (discussed in detail in ref. 3) are neglected in
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the computation of the total range and rotation of the earth is neglected 
in this and all other phases of the analysis. With the added simplifica-
tion that the contribution to range of the powered phase of flight is 
negligible, the ballistic trajectory becomes one of Kepler's planetary 
ellipses, the major axis of which bisects the total angle of arc 
traveled around the earth (see sketch). For the trajectories of interest 
here (Vf S.L), the far focus of the ellipse is at the mass center of the 
earth. For purposes of range computation, then, the ballistic vehicle 
leaves and returns to the earth's surface at the same absolute magnitude 
of velocity and incidence (see sketch). 

/6f 

Vf	 ,,,-Elliptical orbit 

Earth's surface 

to

Vf\\ 

ef 

The expression for range follows easily from the equation of the 
ellipse (see, e.g., ref. 5) and can be written 

R= - =
I sin e fcos e f \ 

I (11) 
r

2 tan'^
l̂ 

2-- cosO
Vf2 

where the angle of incidence ef	 is considered positive. In order to 
determine the optimum trajectory giving maximum range for a given velocity 
1J, equation (ii) is differentiated with respect to	 ef and equated to 
0, yielding

Vf2_f_l_ tan 2O 
V2

(12) 

=	 = it: -4e f
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Equations (ii) and (12) have been employed to determine velocity as a 
function of incidence for various values of range and the results are 
presented in figure 1. The "minimum velocity line" of figure 1 cor-
responds to the optimum trajectories (eqs. (12)). 

The effective lift-drag ratios can easily be calculated for optimum 
ballistic vehicles using equation (6) in combination with the information 
of figure 1. The required values of '(L/D)e as a function of range are 
presented in figure 2. 

Skip trajectory.- This trajectory can be thought of as a succession 
of ballistic trajectories, each connected to the next by a "skipping 
phase" during which the vehicle enters the atmosphere, negotiates a turn, 
and is then ejected from the atmosphere. The motion analysis for the 
ballistic missile can, of course, be applied to the ballistic phases of 
the skip trajectory. It remains, then, to analyze the skipping phases 
and to combine this analysis with the ballistic analysis to determine 
over-all range. 

To this end, consider a vehicle in the process of executing a skip 
from the atmosphere (see sketch). 

/ 

Ven
- - - 

-
-- U 

w	 V -

Vex

-Outer reach of 
atmosphere 

Earth's surface
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The parametric equations of motion in directions perpendicular and 
parallel to the flight path s are, respectively, 

2 1 
CL 2L. A - mg cos 0 

= mV	
(13) 

	

_CD 2L 	 dv A+mgsinO =ni-

where re is the local radius of curvature of the flight path, 0 is the 
local inclination to the horizontal (positive downward), p is the local 
air density, and CL and CD are the lift and drag coefficients, respec-
tively, based on the reference area, A, of the aircraft. 

In the turning process, aerodynamic lift must obviously predominate 
over the gravity component, mg cos 0. By analogy to the atmospheric 
re-entry of ballistic missiles (see ref. 3), aerodynamic drag generally 
predominates over the gravity component, mg sin 0. Moreover, the inte-
grated contribution to velocity of this gravity component during descent 
in a skip is largely balanced by an opposite contribution during ascent. 
For these reasons we will idealize the analysis by neglecting gravity 
entirely. This approach is analogous to the classical treatment of impact 
problems in which all forces exclusive of impact forces (aerodynamic forces 
in this case) are neglected as being of secondary importance. Gravity is 
shown to be of secondary importance in figure 3 where the trajectory 
results obtainable from equations (13) and (14) are presented for the first 
skipping phase of an L/D 2, 0 = 1 skip missile.. 

With gravity terms neglected, equations (13) reduce to 

CpvA= -mV 2 dO 

	

-	 - I 
ds	 I

(i) 

CDpv2A 

	

--	 =m — I 

	

dt	
j 

where dO/ds = -	 to the accuracy of this analysis. rc 

Now we assume an isothermal atmosphere, in which case 

P = p0e1Y	 (15) 

where p0 and 13 are constants, and y = (r - r 0 ) is the altitude from 
sea level (see ref. 3 for discussion of accuracy of this assumption).
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Noting that dy/ds = -sin e, we combine the first of equations (14) with 

equation ( 17) to yield

	

CLP0A eYdy = sin e de	 (16) 

This expression can be integrated to give 

CLp0A eY = cos e - cos Gen	 (17) 
2f3m 

where p is taken as zero at the altitude corresponding to the effective 
"outer reach" of the atmosphere. Equation (17) points out an important 
feature of the skip path; namely, cos e is a single-valued function of 
altitude. Since U proceeds from positive to negative values, it is 

evident that

°enn_i	 Uex
	 (18) 

where the subscripts en and ex refer to atmospheric entrance and exit 
conditions, respectively, and the numbers n - 1 and n refer to suc-
cessive ballistic phases of the trajectory. Now since 

dV V dV ldV2 
dt	 ds2 ds 

equations ( 111) may be combined to obtain

(19) 
2 d L/Dds 

which, for constant L/D, can be integrated to yield 

	

0ex - °enn_1	 (20) 
Vexn - e
	 L/D 

Venn-1 - 

With the aid of equation (18), this expression may be written
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Vex	 - 2Oenn_i 

e	 LID	 (21)Venn- 1 = 

which relates the velocities at the beginning and end of a skip to the 
lift-drag ratio and the entrance angle of the vehicle to the earth's 
atmosphere. From equation (18) it follows further that the entrance 
angle for each skip in the trajectory is the same, so that 

	

0en = 6en	 = .	 . = of 

and hence equation (21) becomes 

Vex
=e 

Venn-1 

We now combine this result of the skip analysis with that of the 
ballistic analysis to obtain the total flight range. From equation (ii), 
the range of the nth ballistic segment of the trajectory is 

CPn= 2 tan1 [_Sin OfCOS of 
 (Vs2 Vex) - cos2efj	

(23) 

Consistent with the idealization of the skipping process as an impact 
problem, we neglect the contribution to range of each skipping phase so 
that the total range is simply the sum of the ballistic contributions. 
From equations (22) and (23) this range is then 

00	 00

1 7 sin Ofcos 

ro 
R  =	 =	 = 2tan ( nef
	

20)	

(24) 

n=o	 n=o

- cos 

2ef

(22)
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From this expression we see that for any given velocity at the end 
of powered flight there is a definite skipping angle which maximizes the 
range of an aircraft developing a particular lift-drag ratio. These 
skipping angles have been obtained with the aid of an IBM CPC, and the 
corresponding values of Vf as a function of range for various L/D are 
presented in figure -i-. Corresponding values of ( L/D)e have been obtained 
using equation (6) and the results are shown in figure 5. 

Glide trajectory.- The trajectory of the glide vehicle is illustrated 
in the accompanying sketch. As in the previous analyses, the distance 
covered in the powered phase will be neglected in the determination of 
total range.

The parametric equations of motion normal and parallel to the direc-
tion of motion are the relations of equations (13) rewritten in the form 

L - mg cos U = - mV2 - 

dV 1	
(25) 

-D + mg sin U = m - 
dt 

Under the assumption of small inclination angle e to the horizontal 

(thus cos e z 1, sin e z 0), constant gravity acceleration (i.e., r. 
and noting the following relations
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clv -
	

v - 1 d2 
dt	 ds2 ds 

1	 d(r - o) 
rc	 ds 

- cos e	 1 
ds	 r	 r0 

equations (25) can be written in the forms 

L = mV 	 + mg - ds	 r0 I 1  D = - - m dv2- + mg 0 
2	 ds 

Dividing the first of equations (27) by the second yields the following 
differential equation 

g(i	
e) (2: L If 2L0	 (28) 

-	 2Dd	 TS-) r0 

But, as is demonstrated in Appendix B, the terms	 gO and V2 	 may
be neglected so that equation (28) reduces to 

dv2	 2 
Ts-- r(L/D) 

2 + 2g = 0	 (29) 
L7 

Since

= gr0 

equation (29) can be integrated for constant 	 to give the velocity
in non'.imensional form as

2  

= 1 - Ci - Vf2)eL/D
	

(30)

(26) 

(27)
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This expression gives velocity as a function of range for what Sanger 

(ref. 2) has termed the equilibrium trajectory - that is, the trajectory 
for which the gravity force is essentially balanced by the aerodynamic 
lift and centrifugal force, or

L	 -2 
z1 - V 

It follows from equation (25) that velocity can be expressed in the form 

1 

- 1 + CJAV2p 
2mg 

Now it is intuitively obvious that as the maximum range is approached, 
L/W-->l and hence V2 becomes small compared to one (see eq. (31)). 
In this event it follows from equation (30) that the maximum range for 
the glide vehicle is given by 

R
	 l(

L)( 1	 (33) 
-	 1 _Vf2/I 

The relation between velocity and range has been determined with 

equation (33) for various values of L/D and the results are presented 
in figure 6. corresponding values of (L/D)e have been obtained using 
equation (6) and are presented in figure 7. 

These considerations complete the motion analysis and attention is 
now turned to the aerodynamic heating of the several types of vehicles 
under consideration.

Heating in Unpowered Flight 

General considerations.- Three aspects of the aerodynamic heating 
of hypervelocity vehicles will be treated here; namely, 

1. The total heat input 

2. The maximum time rate of average heat input per unit area 

3. The maximum time rate of local heat input per unit area

(31)

(32)
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Total heat input is, of course, an important factor in determining 
over-all coolant weight, whether the coolant be solid (e.g., the struc-
ture), liquid, or gas, or a combination thereof. The maximum time rate 
of average heat input per unit area can determine peak average flow 
rates in the case of fluid coolants and may dictate over-all structural 
strength in the event that thermal stresses predominate. 

Excessive local heating is, of course, a serious problem with hyper-
velocity vehicles. This problem may vary depending upon the type of the 
vehicle. Thus, for the ballistic vehicle, an important local "hot spot" 
is the stagnation region of the nose, while for the skip or glide vehicle 
attention may also be focused on the leading edges of planar surfaces 
used for developing lift and obtaining stable and controlled flight. In 
this analysis attention is, for the purpose of simplicity, restricted to 
the "hot Spot" at the nose. In particular, we consider the maximum time 
rate of local heat input per unit area because of its bearing on local 
coolant flow rates and local structural strength. 

It is undertaken to treat only convective heat transfer at this 
stage of the study. As will be demonstrated, radiant heat transfer from 
the surface should not appreciably influence convective heat transfer 
to a vehicle. Therefore, alleviating effects of radiation are reserved 
for attention in the discussion of particular vehicles later in the paper. 
This analysis is further simplified by making the assumptions that 

1. Effects of gaseous imperfections may be neglected 

2. Shock-wave boundary-layer interaction may be neglected 

3. Prandtl number is unity 

I. Reynolds analogy is applicable 

These assumptions are obviously not permissible for an accurate quanti-
tative study of a specific vehicle. Nevertheless they should not inval-
idate this comparative analysis which is only intended to yield informa-
tion of a general nature regarding the relative merits and problems of 
different types of vehicle (see ref. 3 for a more complete discussion 
of these assumptions in connection with ballistic vehicles). 

In calculating convective heat transfer to hypervelocity vehicles, 
the theoretical approach taken in reference 3 for ballistic vehicles is, 
up to a point, quite general and can be employed here. Thus, on the 
basis .of the foregoing assumptions, it follows that for large Mach numbers, 
the difference between the local recovery temperature and wall tempera-
ture can be expressed as

V2 
(Tr - Tw) 1 =	 (34)
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where Tr is the recovery temperature, Tw is the wall temperature, C 
is the specific heat at constant pressure, and. the subscript 1. denotes 

local conditions at a point on the surface. 

It is clear, however, that the walls of a vehicle should be maintained 
sufficiently cool to insure structural integrity. It follows in this case 
that, the recovery temperature at hypervelocities will be large by compar-
ison to the wall temperature and equation (34) may be simplified to read 

2 

Tr1_
CP	

(35) 

To the accuracy of this analysis, then, the convective heat transfer is 
iidependent of wall temperature. Therefore, as previously asserted, 
radiant heat transfer should not appreciably influence convective heat 
transfer and the one can be studied independently of the other. 

Now, according to Reynolds analogy, the local heat-transfer coef-
ficient h1 is, for a Prandtl number of unity, given by the expression 

h = - CFZCP1PZV1 
2 

where CF 1 is the local skin-friction coefficient based on conditions 

just outside the boundary layer. With the aid of equations (35) and (36) 
the time rate of local heat transfer per unit area, 

dH 
= h 1 (T - T)1	 (37) 

dt 

can be written as

d.H - iV2
(CFZCplPJVz)	 (38) 

- IICp 

Equation (38) can be integfated over the surface of a body to yield the 
time rate of total heat input-as follows 

dQ r •;j:j =J	 dS =	 PV3CF 1 S	 (39) 
S

(36)
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wherein Cp is set equal to Cp and 

 P1 Vz 

	

CF' = fCF 1 dS	 (li.o) 

The parameter CF' is termed the "equivalent skin-friction coefficient" 
and will be assumed constant for a particular vehicle. From equation (39) 
we can obtain two alternate forms which will prove useful; namely, the 
altitude rate of total heat input defined by (note that dy is negative 
for dt positive)

dQ -	 1	 dQ- PV2CF'S 
dy -	 - V sin of dt - sin ef	 #i) 

and the range rate of total heat input defined as 

dQ -	 1	
12 PV2CF?S

(Ii.2) 
d(r0(p) - V cos of dt	 4 cos O 

The total heat input may be obtained by integration of equations (39), 
( li.i) or (42), depending upon the particular variable used. 

The time rate of average heat input per unit area may be obtained 
from equation (39) as

av =	 =
	 PV CF?
	 (14.3) 

dt	 Sdt	 14. 

Consider next the local convective heat transfer in the region of 
the nose. The time rate of local heat input per unit area was determined 
in reference 3 under the assumptions that viscosity coefficient varies as 
the square root of the absolute temperature, and that flow between the 
bow shock wave and the stagnation point is incompressible In this case 
it was found that
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dHs 

dt
= 6.8x1o_6R v3	 (1) 

where a is the radius of curvature of the body at the stagnation point. 

With these relations we are now in a position to study the heating 
of the several types of vehicles of interest. 

Ballistic vehicle.- The heating for this case has already been 
analyzed in reference 3. Only the results will be given here. 

The ratio of the total heat input to the initial kinetic energy was 
found to be

Q	 1(
	

- CDPOA 
CF'S  

MV 	

DA - e m sin Of 

1	 2 2C 

For the "relatively light missile," which is of principal interest here, 

- CDPOA 

Pm sin Of 
e	 <<1	 (46) 

and equation 5) reduces to

Q	 =	 CFtS	
(17) 

mV2 2 CDA 

The time rate of average heat input per unit area was found to be 

3Cp0A	 -y 
dffav = 1	 = CF' p0Vf3 _3y23m sin Of	 (48) 
dt	 Sdt	 1. 

which has the maximum value 

(dJIav'\	 - (d1Iav'\ 

dt )max -^dt )ya

- ---	 mVsin O 
- 6e CDA

(19) 

at the altitude



NACA TN 1 o46	 19 

( 3CPoA \ 

	

Ya = in	 Sifl Of)	
(50) 

Equation (19) applies, of course, only if the altitude of occurrence is 
above ground level. If the value of ya is negative then the maximum 
rate will, of course, occur at sea level. 

The time rate of local heat input per unit area to the stagnation 
region of the nose was found to be

	

3CDPOA	 -13y

dHs = 6.8xlO_6Vf3e	 e2m sin 0 e
	

(51)dt 

having a maximum value of 

(dfls\	
6 
8xl06f3eCDcYA

 sin 0 Vf3
(52)

t'jmax = "dt   

occurring at the altitude

i.3CDPOA \ 
= ln

13m sin Of,) 

If the value of Yb is negative, then the maximum value occurs at 
ground level. 

Skip vehicle.- With the aid of equation (17), the density at any 
point in a given skipping phase is found to be 

p - p0e	 - (cos 0 - cos Of)	 (51i.) 
-	 CLA 

where it is to be recalled that 0 en = O. The corresponding velocity 
is obtained by integrating equation (19) for constant L/D, yielding
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Of -0 

	

V = Vene L/D
	

(55) 

By substitution of equations (51) and (55) into equation (39), the time 
rate of total heat input at any point in a skipping phase can be expressed 
as follows:

3 (Of -O) 

	

- i CF'S -!?--- Ven 3( Co S 0 - cos 0f)e t)	 ( 56)
dt - 2 CDA L/D 

Now, recalling that ds/dt = V, the first of equations (14) may be com-
bined with equation (17) to yield. 

dO = -3V(cos e - cos Of) 
dt 

Inasmuch as Ven = Vex for any ballistic phase, it then follows from 
equation (22) that

- (Ven)	 - (Ven) = -(n-i) 
e	 L/D	 (58) 

(Ven) 1 - Vf 

With the aid of equations (57) and (58), equation (56) can be integrated 
to give the total heat input for a given skipping phase. Thus we obtain 

	

4ef	
40f 

Qn 	 1 CF' S -:•m	 L/D 

mV2 = 2 CDA	
- e	 e	 (59) 

where n refers to the ballistic phase subsequent to the given skipping 
phase. 

The total heat input for the entire trajectory can be obtained by 
summing up the heat inputs for each separate skipping phase. Performing 
this operation yields

(57)
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4Qf'\	 I.ef 

2	
n=1 mVf2 - 2 CDA	

e	
) ; (n-i) Qn	 (60) 

1 mVf2 	

- i CF'S

/ n=1 

The summation on the right side of equation (60) represents a geometric 
series which can readily be evaluated. The total heat input for the 
entire trajectory then becomes 

	

2 MVf	 2 CDA 

	

Q	 1 
	

(61) 

which is identical to the result obtained for the light ballistic missile 
(eq. (47)). 

The timrate of average heat input per unit area is obtained by 
dividing equation (76) with the surface area, thus yielding 

L

3(Of-0) 
av - 1 CF' ll1 

dt -	
Ven3(cos e - cos ef)e	 /D (62) 

It can be shown that this expression has a peak value at a point in the 
skip, ea, given by

(cos 0a - cos Of) -
	

sin 

or

-:1-	 -	
cos Of 

(63)Oa =  tan L/D
	

ji + () 2 

From equation (22) it can be concluded that the maximum heat-transfer 
rate will occur in the first skip where Ven = Vf; consequently,
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3( OfO) 
-



Pm  (dflav	 =	 Vf3sin Oae 
L/D	

(64) 
\\ at )max	 6 CDA 

The time rate of local heat input per unit area in the stagnation 
region of the nose is obtained: by introducing equations (71) and (55) 
into equation ( li- li-) with the following result:

3 (Of -e) 

dHs = 6.8x106 (213m 
\1/2	 1/2	

e	 L/D	
(65) dt	 CLA) (cos 

e - cos Of)	 Ven 

Equation (65) has a peak value at a point 6b in a skip given by 

(cos 0b - cos O) = 5ifl 9b 
6 

or

Ob = tan

	

-1 6 - sin-
1	

COS Of	 (66) 

J

l+ +̂DL/D )2 

It is clear in this case also that the heat-transfer rate will have its 
maximum value in the first skipping phase where the velocities are 
highest. Since Ven = Vf in the first skip, equation (65) becomes 

3(f -b) 
(d11S"\	

6 
8xlo6 [3m(L/D) sin Oblh/2 3e

	 L/D	 (67) 
[	 3CAa	 j Vf 

Glide vehicle.- From equations (30) and (32), the density at a point 
in the glide trajectory is found to be
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2mg	 (1 - Vf)e 

= CLAVS 1 - (1 - V 2 ) e	
(68) 

where

J -- -
L/D 

By substitution of equations (30) and (68) into equation (39), the time 
rate of total heat input can be expressed as 

= i CF' S ingV 

	

dt 2 CDA
 L/D (1 - v2)J[1 - (1 - Vf2)eJ] 

1/2	

(69) 

Now with the aid of equations (30) and (33), equation (69) can be inte-
grated over the limits of the glide trajectory to yield the total heat 
input in terms of the initial kinetic energy as 

	

Q	 1 CF' S 

mV2 2 CDA 

which expression is identical with that obtained for the skip vehicle 
(eq. (61)) and for the light ballistic vehicle (eq. (47)). 

Now the time rate of average heat input per unit area is found by 
dividing equation (69) with the surface area, thus yielding 

av - 1 C.FfmgV3 

	

dt - 2 CDA 
L/D (1 - Vf2)eJ[l - (i - vf2)eJ]

1/2 	
(71) 

It follows from this expression that the maximum time rate of average 
heat input per unit area is

(70)
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(d.Hav"	 (dflav'\	 1 CF ' mgV 

at )Max = ..
 at
	 =	 i7i5	 (72) 

at a value Ja given by

-2'\ = -in ( - Vf	 (73) 

If Ja is taken as a reference value, and equations (71) and (72) expres-
sed in terms of Ja and incremental changes AJ = J - a, it can easily 
be shown that

dflav/dt
= e(3 - 2e')	 Fa(J)	 (74)

(1av/dt)max  

The dependence of Fa(LJ) on AJ is shown in figure 8. 

The velocity at which the maximum average heat input rate occurs 
can be obtained by substituting equation (73) into equation (30) yielding 

1	
(75) 

In equation (30) it is seen that the velocity is greatest at the start of 
unpowered flight (i.e., when J = 0). Equations (7 2), (73), and (74) 
apply, therefore, only when Vf 	 (i/.f). 

For cases when Vf (i/.f), the maximum time rate of average heat 
input per unit area will occur at the start of unpowered flight and is 
given by

7111av	
) 

/av'\	 i CF' mgi!5	 - Vf)Vf	 (76) 
dt lax	 dt	

2 
Ja 0	

CDA L/D \	 /m 
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The maximum time rate of local heat input per unit area in the stag-
nation region of the nose is found by first substituting equations (30) 
and (68) into equation ( li-li-) to obtain

1/2 
dHs= 6.8xiOJ	 V52[l 	 v2)J][(l - V2)J]	 (77)
dt

-4 

The maximum time rate is then 

(dEs'\	

= (

	

dH 
) = -a-. 6.8x1oJ! v 2 	 (78) 

dt b 

occurring at a value of Jb given by 

Jb = -ln 3(1 - Vf)	 (79) 

With Jb as a reference, it can easily be shown that 

	

dfl5/dt	
i e (3 -	 = Fb(LJ)	 ( 80)

(dHs/dt)max 2 

where

AJ = J - 

The dependence of Fb(LJ) on AJ is shown in figure 8. 

With reference to equations (30) and (71I) it can be seen that the 
maximum time rate of local heat transfer in the stagnation region occurs 
when

V =,j (81)
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It is apparent then that equations (77), (78), and (79) apply only when 
Vf	 For cases where V	 the maximum time rate of local 
heat input per unit area will occur at the start of unpowered flight and 
is given by

 _2]/2 
=	 = 6.8xio 

F2VS2^;f2(1f
 )	 (82) 

\dtJmax\dtJ0  

DISCUSSION 

Performance of Hypervelocity Vehicles 

In this study the point of view is taken that the performance of 
long-range hypervelocity vehicles is measured by their efficiency of 
flight. Thus, for example, it is presumed that the advantages (military 
and otherwise) of short time of flight accrue equally to all vehicles. 

The efficiency of flight is perhaps best measured by the cost of 
delivering a given pay load agiven range - the higher the cost, the 
lower the efficiency. Quite obviously it is far beyond the scope of the 
present paper to actually compute this cost. Rather, then, we adopt a 
more accessible parameter of hypervelocity flight, namely, the initial 
mass of the vehicle, as a measure of cost. In effect, then, the assump-
tion is made that the higher the initial mass of a vehicle the higher the 
cost and the lower the efficiency. With these thoughts In mind, it is 
constructive to reconsider the basic performance equation (eq. ( Ii-)) writ-
ten in the form

mj = mfe
Vf/gI
	 (83) 

This expression clearly demonstrates the roles played by the three factors 
which influence the initial mass of a vehicle required to travel a given 
range. For one thing there is the power plant, and as we would expect, 
increasing the effective specific impulse increases the over-all efficiency 
of flight in the sense that it tends to reduce the initial mass. The 
velocity at burnout influences initial mass by dictating the amount of 
fuel required, and it is not surprising that decreasing the required burn-
out velocity (e.g., by increasing the L/D of a skip or glide vehicle) 
tends to decrease the initial mass. Finally, we see that the initial 
mass is proportional to the final mass which consists of the pay load, 
structure (and associated equipment), and coolant. If we presume the mass 
of the pay load to be some fixed quantity, then the initial mass will 
vary in accordance with this mass of structure and coolant.
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Now we assume for comparative purposes that the power plant for one 
vehicle is equally as good as the power plant for another vehicle - that 
is to say 'e is a more or less fixed quantity. In this event it is per-
missible to restrict our attention to two main performance considerations; 
namely, the prescribed motion as it influences the required burnout 
velocity, and the resulting aerodynamic heating as it influences structure 
and coolant. We therefore proceed to discuss the comparative performance 
of long-range hypervelocity vehicles in terms of these considerations. 

Motion. - The dependence of burnout velocity Vf on range was deter-
mined in the analysis of motion in unpowered flight and the results 
obtained for the several types of hypervelocity vehicle under study were 
presented in figures 1, Ii. , and 6. Using these results in combination 
with the basic performance equation we have calculated the corresponding 
initial to final mass ratios mj/mf as a function of range. For these 
and subsequent calculations it has been assumed that the rocket power 
plant develops an effective specific impulse of 227 seconds. The results 
of these calculations are presented in figure 9 and we observe that, in 
general, the mass ratios are highest for the ballistic vehicle. The glide 
and skip vehicles have comparable and relatively low mass ratios at lift-
drag ratios in the neighborhood of Ii. and greater. The skip vehicle is 
superior, however, to the glide vehicle at lift-drag ratios in the neigh-
borhood of 2. From considerations of motion alone, then, we conclude 
that the skip vehicle and the glide vehicle developing lift-drag ratios 
greater than 2 are superior efficiencywise, in the sense of this report, 
to the ballistic vehicle. Let us now determine how these observations 
are modified by considerations of aerodynamic heating. 

Aerodynamic heating.- The analysis has revealed one particularly 
salient factor in regard to the heat transferred by convection to hyper-
velocity vehicles that expend the majority of their kinetic energy of 
flight in traveling through the earth's atmosphere. This factor is that 
the amount of kinetic energy which appears in the body in the form of 
heat is proportional to. the ratio of friction force to total drag force 
acting on the body (see eqs. (47), (61), and (70)). With the possible 
exception of the relatively heavy ballistic vehicle (see ref. 3) all of 
the hypervelocity vehicles treated here do expend the major part of their 
kinetic energy in flight. It is, in fact, only by virtue of this expend-
iture of energy that the skip and glide vehicles achieve long range. From 
the standpoint, then, of reducing the total heat transferred by convec-
tion, the problem is to determine how the ratio of friction force to total 
drag force can be reduced. This matter was discussed in detail in ref-
erence 3 in connection with ballistic vehicles and it was demonstrated 
that the ratio could be reduced by employing high-pressure-drag (i.e., 
blunt) shapes. It would be most fortunate if this avenue of solution 

were open also to the skip and glide vehicles; however, it is readily 
apparent that such is not the case. This conclusion follows simply from 
the fact that the skip and glide vehicles must develop reasonably high
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lift-drag ratios to achieve long range. But, as is well known, high 
lift-drag ratios and high pressure drag are incompatible aerodynamic 
properties. Evidently, then, the skip and glide vehicles will be rela-
tively slender and they will, by comparison to blunt ballistic vehicles, 
be required to absorb large amounts of their kinetic energy of flight in 
the form of heat. On the basis of the calculations of reference 3, it 

does not seem feasible for slender hypervelocity vehicles to absorb ' and 

retain so much heat (of the order of one-tenth the kinetic energy of 
flight). We are led, therefore, to consider the possibility of radiating 
part or all of this heat back to the atmosphere. 

Let us first consider radiation heat transfer from the surface of a 
glide vehicle. For purposes of simplicity we presume a vehicle conical 
in shape. The base diameter is taken as 3 feet and the weight as 5,000 
pounds. We consider two slender cones which, according to hypersonic 
theory including friction drag, can develop maximum lift-drag ratios of 

4 and 6 (see Appendix C). We find (see Appendix D) that the L/D = 
glide vehicle can radiate heat like a black body at a rate equal to the 
maximum average convective heat-transfer rate if the surface temperature 
is allowed to rise to about 1500 0 F. If the vehicle develops a lift-

drag ratio of 6, then the allowable surface temperature must be increased 

to about 18000 F. These surface temperatures are high; nevertheless they 
are within the range of useful strengths of available alloys. Further-
more, they can, if necessary, be reduced somewhat by designing a less 
dense vehicle (or, more specifically, a vehicle of lower mg/S, see 

Appendix D). 

It is indicated, then, that the glide vehicle has the attractive 
possibility of radiating back to the atmosphere a large fraction of the 
heat transferred to it by convection. As a result the mass of coolant 
required to protect the vehicle may be greatly reduced. Just as with 
the ballistic vehicle, however (see ref. 3), it is evident that additional 

means, such as transpiration cooling, may well be necessary to protect 
local hot spots on the surface, like the stagnation region of the nose. 
It is also well to note that the alleviating effects of radiative cooling 
are not limited to the glide vehicle alone, but would apply to any hyper-
velocity vehicle in level flight. 

We inquire now if the skip vehicle is capable of radiating heat at 
a rate comparable to the maximum convective heat-transfer rate. For this 
purpose it suffices to confine our attention to the first skip wherein 
the maximum convective heat-transfer rates are encountered (see eq. (64)). 
On the basis of our calculations for glide vehicles developing lift-drag 

ratios of J# and 6, we conclude that the skip vehicle developing compa-
rable lift-drag ratios cannot radiate heat at anything . like the maximum 

convective rate. This conclusion follows directly from the fact that, 
although the heat absorbed by the skip vehicle in the first skip would 
be about the same as that for the glide vehicle experiencing the same
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loss of kinetic energy, the rates of absorption would be far greater for 
the skip vehicle. Hence, the surface temperatures required for radiation 
to offset convection would probably exceed the temperatures at which 
known materials retain appreciable strength. 

Now the skip vehicle operating at lift-drag ratios in the neighbor-
hood of 2 will absorb less heat than skip vehicles developing higher 
lift-drag ratios. However, as shown in Appendix D, the former vehicle 
still absorbs more heat than a comparable high-pressure-drag ballistic 
vehicle and it accrues no appreciable advantage by radiation. From the 
standpoint of heat transfer, then, it is indicated that the skip vehicle 
is inferior to both the ballistic and glide vehicles. That is to say, 
proportionately more coolant of one form or another would be required to 
protect the skip vehicle than would be required to protect ballistic or 
glide vehicles of the same range. The skip vehicle has other disadvantages 
as well. Certainly one of the most serious of these is the very high 
lateral loads (see fig. 3) that the vehicle would be required to with-
stand during a skip from the earth's atmosphere. These loads, coupled 
with simultaneous high thermal stresses (due to high convective rates), 
would require the structure to. be stronger and, consequently, heavier 
than that of a comparable glide vehicle. 3 For these and other reasons 
concerned with problems of stability, control, and guidance, the skip 
vehicle is thought to be the least promising of the three types of hyper-
velocity vehicle considered here. 

In essence, then, the preceding study has indicated that the ballistic 
vehicle exhibits the possibility of being relatively efficient for hyper-
velocity flight by virtue of the fact that aerodynamic heating can be 
markedly reduced through the artifice of using blunt, high-pressure-drag 
re-entry shapes. The disadvantage of using the relatively inefficient 
ballistic trajectory is counterbalanced by this advantage which tends to 
keep initial mass down by reducing coolant mass. The glide vehicle 
appears promising for hypervelocity flight because it has, coupled with 
the relatively high efficiency of the glide trajectory, the possibility 
of radiating a large fraction of the heat absorbed by convection. 

Up to this point we have considered the performance efficiency of 
the several types of hypervelocity vehicle by comparison with each other. 
It is of interest now to compare, insofar as is possible, the efficiency 
of flight of these vehicles with that of lower speed, more conventional 
type aircraft. 

3 Added weight means, of course, added coolant (see, again, eq. (61)) 
which, in turn, means added weight. The performance efficiency of vehi-
cles is reduced accordingly - indeed one can easily demonstrate that ulti-
mately the coolant is being added to cool coolant. This situation must 
obviously be avoided.
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Comparison of Hypervelocity Vehicles
With the Supersonic Airplane 

In the analysis of powered flight it was found that the basic per-
formance equation for hypervelocity vehicles could be written in a form 
analogous to the Breguet range equation. Thus, according to equations (7) 
and (9), we have for both hypervelocity and lower speed vehicles that 

R = ()eIe1n ()	
(81) 

where it is understood that the effective quantities are the same as the 
actual quantities in the case of the lower speed, more conventional air-
craft. Now let us consider the product (L/D)eleVe. Taking first the 
supersonic airplane we assume flight at a Mach number of 2 and a maximum 
lift-drag ratio of 5. The product leVe for a ram-jet or turbojet is 
not likely to exceed about 4.4xl06 feet. 4 The product (L/D)eleVe is 
then 22xl06 feet for the airplane. Now let us compare these quantities 
with the corresponding quantities for a ballistic vehicle and let us pre-
sume that the range will be half the circumference of the earth. In this 
event, the effective lift-drag ratio for the ballistic vehicle is 2it (see 
fig. 2) which is slightly greater than that for the airplane, while the 
effective velocity is just half the satellite velocity, or 13,000 feet 
per second. Let us again assume that the effective specific impulse is 
225 seconds. In this case, the product of leVe is 2.9x106 feet which 
is about two thirds of that for the airplane. The product (L/D)eleVe is 
about 18x106 feet which is less than, but certainly comparable to, that 
for the supersonic , airplane. Thus we have our first suggestion that the 
hypervelocity vehicle is not necessarily an inefficient type vehicle for 
long-range flight. 

In order to pursue this point further, a performance efficiency 
factor (see eq. (10)) defined as 

E (8) = 
(DL)e 

Ve 
 Vs	 7m1\ 

in 

has been calculated for ballistic and glide vehicles for 'e = 225 sec-
onds, and ranges up to the circumference of the earth. The corresponding 
quantity E has been calculated for the supersonic airplane 

4This observation holds essentially for any air-breathing engine - 
note that the maximum value of leVe is simply the product of the thermal 
efficiency (taken as 0.3 - see, e.g., ref. 6) and the specific heat 
content of the fuel (taken as 14,6x106 feet for gasoline-type fuels).
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(leVe = 4.4xl06 feet) for several lift-drag ratios. The results of these 
calculations are presented in figure 10 and we observe, as our example 
calculation suggested., that both the ballistic and glide vehicles compare 
favorably with the supersonic airplane for ranges in the neighborhood of 
and greater than half the circumference of the earth. The glide vehicle 
is again superior to the ballistic vehicle at lift-drag ratios in excess 
of 2 and, as a result, it compares favorably with the airplane at shorter 
ranges than the ballistic vehicle. 

It should be kept in mind, of course, that mf may be substantially 
greater than mp, the mass of the pay load. This point takes on particular 
significance with regard to expendable vehicles where mj/mp is perhaps a 
better measure of cost than m j/mf . Thus, noting that mi/mp=(mi/mf)(mf/mp), 
and recognizing that mf/mp is probabLy lowest for the ballistic vehicle, 
we anticipate that the ballistic vehicle would appear to better advantage 
than shown in figure 10. 

CONCLUDING REMAREB AND SOME DESIGN CONSIDERATIONS
FOR GLIDE VEHICLES 

During the course of this study it has been indicated that ballistic 
and glide vehicles can be operated at hypervelocities with the reasonable 
assurance that problems of aerodynamic heating can be largely alleviated 
by proper design. Skip vehicles appeared substantially less promising 
in this as well as other respects. It was further demonstrated that on 
the basis of equal ratios of initial to final mass, the long-range hyper-
velocity vehicle compares favorably with the supersonic airplane. These 
considerations suggest that the ballistic and glide vehicles have, in 
addition to the advantages usually ascribed to great speed, the attractive 
possibility of providing relatively efficient long-range f1ight 

In view of these findings, it seems appropriate as a final point to 
touch on what appear to be favorable design features of glide-type vehi-
cles. Comparable aspects of the ballistic vehicle are not treated here 
inasmuch as they have already been considered in some detail in refer-
ence 3. Two categories of glide vehicle will be considered. The first 
category is made up of those vehicles whose flight through the earth's 
atmosphere is entirely at hypersonic speeds. More specifically, a vehi-
cle in this category is required to be stable and controllable to the 
point of high-speed impact with the surface of the earth. The second 
category includes those vehicles which are required to have acceptable 
low-speed aerodynamic characteristics (perhaps to the point of landing). 

Considering now the first category, we recognize that while the 
shape of the vehicle must be such as to provide reasonably high lift-drag 
ratios, it should also be a compact configuration designed to minimize
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structural and, hence, propellant weight. Furthermore, it appears most 
desirable from the standpoint of aerodynamic heating to eliminate all 
surfaces that .present extremely severe heating problems. These considera-
tions tend naturally to focus our attention on configurations free of 
the planar surfaces normally used for developing lift and providing stable 
and controlled flight. We pursue this point, therefore, by inquiring of 
the efficiency of a body of revolution as a lifting device at hypersonic 
speeds. For this purpose, theory, including friction drag estimates, was 
employed to calculate the maximum lift-drag ratios of cones and flat 
plates (see Appendix E) and the results are presented in figure 11. It 
is seen that while the flat plate is, as would be expected, by far the 
most efficient lifting device at low supersonic speeds (l/M—l), it has 
relatively little advantage over the cone at hypersonic speeds (l/M—.0). 
Evidently, the body of revolution is relatively efficient for developing 
lift at hypersonic speeds. 

Now, it is clear (see eq. (78)) that just as with the ballistic 
vehicle, the nose of the glide vehicle should be rounded to alleviate 
the local heating problem. There is evidence, both theoretical and exper-
imental, that in addition to alleviating the heating problem, rounding the 
nose may, in fact, increase the lifting efficiency of a body. Recalling 
that for slender bodies the maximum lift-drag ratio is governed primarily 
by zero-lift drag, we recognize the validity of this statement on the 
basis of the theoretical and experimental work of reference 7 and the 
experimental work of reference 8. 

The body must, of course, be stable and controllable in flight. It 
appears feasible to provide these requirements without recourse to planar 
surfaces. Stability in pitch and yaw can be provided by a conical flare 
at the base of the body,' and control in pitch and yaw can be provided by 
deflectable sections of the surface of the body. These sections are 
located on the rear portion of the body to provide a configuration which 
is inherently stable in roll. A hypervelocity glide vehicle in the first 
category might, then, in view of these considerations, appear something 
like that shown in figure 12. 

Consid.ernow a glide vehicle falling in category two. First of all, 
It appears most unlikely that acceptable low-speed aerodynamic character-
istics can be obtained without using more conventional planar surfaces, 
at least to the extent of a wing. The question then is: What can be 
done to alleviate the aerodynamic heating of planar surfaces Especially 
in this regard are we concerned with the very severe heating encountered 
at the leading edges of these surfaces. It is apparent by analogy to the 
nose of the body that the severity of aerodynamic heating at the leading 
edge of a wing can be reduced by simply rounding the leading edge. In 
fact, on comparing the theoretical results of references 9 and 10, we see 
that for the purposes of this report there is no essential difference 
between the heat-transfer rate at the stagnation point of a blunt leading
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edge and that at the stagnation point of a comparable blunt nose as given 
by equation (4). We may anticipate, however, that rounding the leading 
edge will incur a drag penalty which will, in turn, reduce the attainable 
lift-drag ratio-s. This difficulty may be largely circumvented by simply 
sweeping the leading edge of the wing. The contribution to total drag 
of the drag at the leading edge is in this manner reduced approximately 
in proportion to the square of the cosine of the angle of sweep. Equally 
important, the rate of heat transfer to the leading edge may also be sub-
stantially decreased by sweep. This possibility is suggested by the 
independence principle for cylindrical viscous flows (refs. 11 and 12) 
which applies to the components of flow normal and parallel to the axis 
of a cylinder. 5 We conclude, therefore, that in the event rounded lead-
ing edges are used to alleviate heat transfer to wings of glide vehicles, 
or for that matter any hypersonic vehicle, these wings might well have 
highly swept leading edges. One is lead naturally to consider triangular 
or delta plan form configurations. By entirely analogous reasoning, the 
triangular plan form may also prove desirable for stabilizing and control-
ling surfaces. 

It is entirely possible, of course, and perhaps even desirable, 
that wing-body junctures of a glide vehicle should not be discontinuous 
but rather that the body, in effect, should be simply flattened out to 
appear more or less elliptic in cross section. In any event we see that, 
interestingly enough, the concept of sweepback may play an important role 
in reducing the heating and drag of practical configurations at hypersonic 
speeds, much as it has for drag alone at supersonic speeds. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Dec. 10, 1954

5According to the independence principle and equation (I4), heat-
transfer rates will be reduced by the cube of the cosine of the leading-
edge sweep angle. This principle is, of course, not strictly applicable to 
viscous flow about blunt cylinders. Actually, there may be a sizable con-
tribution to heat :traner by the component of flow parallel to the leading 
edge, and unpublished theoretical and experimental results indicate that 
the reduction in heat transfer may be more nearly proportional to the 
square of the cosine of the sweep angle. In any case, it is sufficient 
for the purposes 'of this report, to note that a sizable reduction in heat 
transfer is achieved by sweeping a blunt leading edge.
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APPENDIX A 

NOTATION 

A	 reference area for lift and drag evaluation, sq ft 

c	 specific heat of vehicle material, ft-lb/slug OR 

CD	 drag coefficient 

CL	 lift coefficient 

CF	 skin-friction coefficient 

CF t	 equivalent skin-friction coefficient, (see eq. (40)) 

Cp	 specific heat of air at constant pressure ft-lb/slug OR 

Cv	 specific heat of air at constant volume, ft-lb/slug OR 

D	 drag, lb 

e	 Naperian logarithm base 

E	 performance efficiency factor, (see eq. (87)) 

f	 general functional designation 

Fa,Fb	 functions of 6J, (see eqs. (74) and (80)) 

g	 acceleration due to force of gravity, ft/sec2 

h	 convective heat-transfer coefficient, ft-lb/ft 2 sec 

H	 convective heat transferred per unit area (unless otherwise 
designated ), ft-lb/ft2 

I	 specific impulse, sec 

J	 range parameter for glide vehicle (see eq. (68)) 

k	 Stefan-Boltzmann constant for black body radiation (3.7x101° 
ft_lb/ft2 sec °R4) 

L	 lift, lb 

m	 mass, slugs 

M	 Mach number
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convective heat transferred (unless otherwise designated), 
ft-lb 

distance from center of the earth, ft 

radius of curvature of flight path, ft 

radius of earth, ft 

range, ft 

distance along flight path, ft 

surface area, sq ft 

time, sec 

temperature (ambient air temperature unless otherwise spec-
ified)., OR 

velocity, ft/sec 

ratio of velocity to satellite velocity 

velocity of satellite at earth's surface (taken as 25,930 
ft/see) 

weight, lb 

vertical distance from surface of earth, ft 

angle of attack, radians unless otherwise specified 

constant in density-altitude relation, (22,000 ft) -3' (see 
eq. (15)) 

ratio of specific heats, Cp/Cv 

semivertex angle of cones, radians unless otherwise specified 

increment 

lift-drag efficiency factor, (see eq. (C27)) 

angle of flight path to horizontal, radians unless otherwise 
specified 

function of Mach number, (see eq. (E7)) 

air density, slugs/cu ft (Po = 0.0034) 

r 

r 

r0 

R 

S 

S 

t 

T 

V 

V 

VS 

W 

y 

U 

7 

II 

e 

pi'
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CT	
nose or leading-edge radius of body or wing, ft 

cp	 partial range, radians 

total range, radians 

remaining range ( -(p), radians 

Subscripts 

	

0	 conditions at zero angle of attack 

12,3" 
conditions at end of particular rocket stages 

	

a	 conditions at point of maximum average heat-transfer rate 

	

av	 average values 

	

b	 conditions at point of maximum local heat-transfer rate 

	

C	 convection 

	

e	 effective values 

en	 conditions at entrance to earth's atmosphere 

ex	 conditions at exit from earth's atmosphere 

	

f	 conditions at end of powered flight 

	

j	 initial conditions 

	

1	 local conditions 

	

n	 ballistic phases of skip vehicles 

	

N	 total number of rocket stages 

	

p	 pressure effects 

	

P	 pay load 

	

r	 recovery conditions 

	

R	 radiation 

	

s	 stagnation conditions 

	

T	 total values 

	

w	 wall conditions



1	 1= 2.10x103 
- (iV 2)e-J	 V2..

L	 2r 
D 0 =Pro (Bil.) 

NACA TN 4o46
	

37 

APPENDIX B 

SIMPLIFYING ASSUMPTIONS IN THE ANALYSIS OF THE GLIDE TRAJECTORY 

The assumption of small deflection angle (0 <<1) was used through-
out the study of the glide trajectory. In addition, equation (28) was 
simplified on the assumptions that 

(L/D)e <<i	 (Bl) 

and

	

V2<<_	 (B2) Ts-	 2 ds 

The extent to which these assumptions are permissible can be checked by 
deriving an expression for (L/D)o and examining its variation over a 
range of trajectory parameters. 

From equations (30), (33), and (34) the altitude of any point in a 
glide trajectory is found to be

e	 11Vrr 1	 l 
Iin[' -

	 - Vf	
+ m	 =_Oil	 (B3) 

v2)eJJ	
L V2rro JJ 

By retaining the assumption of small inclination angle, whereby 0 z-dy/ds, 
and recalling that J = (2s/ro) / (L/D) , we find the inclination angle by 
differentiating equation (B3). Performing this operation and making use 
of equation (30) reduces the expression for (L/D)e to 

Since V becomes very small toward the end of the trajectory, it is 
apparent from equation (B li-) that the assumption of small (L/D)e cannot 
be justified..in this portion of flight. The problem then is to determine 
the conditions under which (L/D)e remains negligibly small over the 
major part of the trajectory.
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With the Said of equations (30) and (36), equation (B it) can be modi-

f-h g9 1-n the following form

F_______ 
=	 - L/D in	

[2	 .1	
(B5) 

/pro  

1 - L(L/D)eiJ 

For given values of L/D and total range 0, equation (B5) determines 
the fractional part of the total range which corresponds to a given value 
of (L/D)e. Since the deflection angle is always increasing, we can there-
fore determine the portion of the total range through which (L/D)e remains 
equal to or less than a given value. A computation of this nature was 
performed for a value of (L/D)e 0.05, and the results are presented in 
figure 13. From this figure we can see that except for short ranges 
and large lift-drag ratios, (L/D)e (as well as o) remains at a value less 
than 0.05 for better than 90 percent of the total range. 

The second assumption, equation (B2), can also be verified from the 
results of the analysis. By differentiation of equation (B ).i-) we find that 

V2=	
4v2	 r(1vr2)eJl

(B6)

	

as	 r02(I/D)2 L v2	 _  
while differentiation of equation (30) yields 

	

(L/D)	
= - v52 (i - Vf2)eJ	

(B7)dV22	 as

Dividing equation (B6) by equation ( Bi), and making use of equation (B4), 

we find that

V2
ds	 20	 2	

[(L/D)e]	 (B8) 

(L/D)	 = (L/D) = (L/D)2 
as 

By comparing equation (B8) with the previous results obtained for (L/D)0, 

(fig. 13) we can readily see that this assumption, equation (B2), is 
actually less stringent than the previous one for practical values of 
L/D.
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APPENDIX C 

THE RELATION BETWEEN CF'S AND I —)	 FOR CONICAL MISSILES 
CDA 

The lift and drag coefficients for slender cones at small angles of 
attack can be expressed in the following manner: 

CL=2cL	 (Cl) 

CD = CD0 +	 ( C2) 

By dividing the first of the preceding equations by the second, one can 
obtain an expression for the lift-drag ratio 

CL	 -	 CL	
(c3) 

D CD CD + ctCL - C]) 0 + CL2/2 

It can be shown that equation (c3) has a maximum value when 

CD0 = CL2/2
	

(Cli) 

whereby

(L/D)max = 2CJ
	 (c5) 

From equations (Cl) through (C5), the maximum value of the lift-drag 
ratio can be expressed in the following ways: 

11	 1	 (c6) 
(T max 2m CL J2CDO 

The drag coefficient at zero angle of attack appearing in equa-
tion (C2) can be broken down into its component parts to yield 

CD = ( CD) + CF S/A	 (c7)
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where (CD0 )	 is the zero-lift pressure drag coefficient and CFO is the 

zero-lift scin-friction coefficient based on wetted area. The skin-
friction coefficient, CFO, in equation (ct) can be related to the equi-

valent skin-friction, CF', (see eq. (43)) by considering average conditions 
over the surface of the cone. Equating the friction drags as determined 
from free-stream and local average conditions, it is found that 

CFO = (CFI)av
(Pi)av(Vi)av2

pV2
(C8) 

By referring to local average conditions on the body surface, the expres-
sion for CF', equation (40), can be written as 

CF' =<CFZ)av

( Pd av('i)av
PV

(C9) 

Comparing equations (C8) and (C9) itis apparent that 

- _ C CF	 F	 V
(cia) 

For slender shapes at hypersonic speeds, the local velocity does not 
differ appreciably from the free-stream value. Also, for small angles 
of attack, the skin-friction coefficient should remain fairly constant. 
Consequently, equation (do) can be written as

•	 (Cli) 

(C12) 

(cl3) 

CFO = CF = CF' = constant 

and equation (c7) then becomes

F' S 
CD  = (c00) + A 

From equations (c5) and (C12) it can then be shown that 

(CF '	 - 1 [	 (cDo)pl 

\\ CDA /I(L/D) ITlax - 2	 - CD j
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From the Newtonian impact theory, the zero-lift pressure drag coef-
ficient for slender cones at hypersonic speeds can be expressed as 

(CD0) = 262	 (C14) 

where 8 is the semivertex angle of the cone. By further noting that 
for slender cones

(c15) 
A 8 

equation (C12) then becomes

o=282+_f	
(c16) 

For a given value of CFI it can be shown that equation (ci6) has 
minimum value when1

6 = 8opt = 

(ct)1/3	
(cri) 

whereby, at 6 = 8opt

(CDo)Min = 6o t2 = 3(CD0 )	 (c18) 

Obviously, then, the highest value of maximum lift-drag ratio (eq. (c6)) 
will be attained by the cone with the semivertex angle given by equa-
tion 017). By substitution from equation (c18) into equation (c6), the 
optimum value of maximum lift-drag ratio is 

(L\	 i /ii-'\u/3	 1 =	

=2 8opt	

(c19) 

By further substituting the expression for minimum zero-lift drag 
coefficient, equation (ci8), into equation (c13), the following relation, 
corresponding to the condition of optimum maximum lift-drag ratio, is 
obtained:

(CF'S\	 1 
CDA)(L/D)	 =	

(c20)
max 

3 

'The remaining analysis assumes Cv I constant. Although this is 
definitely not the situation in real flight, this analysis provides an 
tt order of magnitude" estimate of pertinent parameters.



42
	

NACA TN 4b46 

With the aid of equations (Ciii. ) and (ci6), equation (C13) can also 
be expressed in the following form, corresponding to any maximum lift-
drag ratio including the optimum value: 

(2CF?S)
CF')
253

(c21) 
CDA(L/D) 	 l+ 

From. equations (C20) and (C21) it can readily be seen that in the case of 
the optimum (L/D)max

Ct,
=2 

2opt3 

from which it follows directly that 

CF 
I 

= 2 (Oopt 

so that equation (C21) may be written as 

(

CF'S\I	 =	 1 

CA)(L/D)	 2 + ( 
=60p V

(c22)

(c23) 

(c211.) 

With the aid of equations (C16) and (C23), the expression for any 
(L/D)max (eq. (c6)) can be 'shown to be 

Oil
(c27) 

ax = r 25[l + 2(oPt)3]1/ 

and it follows directly from equation (C19) that the ratio of (L/D)max 
for any cone to that for the optimum cone is
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_ 
- opt [

	

3 

1 + 2 C0Pt)]	 (c26) 

where ii is defined as the "lift-drag efficiency factor." By substitu-
tion from equation (c214), the ratio of (L/D)max to the optimum value can 
then be expressed in terms of (CFS/CDA) as follows: 

Ti	

?3\1/3(	 CFtS\hI'6
^_3 

(EC F 
=	 - 

2 CDA,)	
(c27) 

The dependence of r on CF'S/CDA is shown in figure 114. It should 
be noted, however, that for small values of Tj the assumption of slender 
cones will be violated, although the results as shown will be qualitatively 
correct in that CF'S/CDA will become exceedingly small for low values 
of (L/D)max regardless of body shape.
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APPENDIX D 

COMPUTATION OF HEATING ASSOCIATED WITH ROCKET VEHICLES 

Radiation of Heat From Glide Vehicles 

From equation (72), the maximum time rate of total heat input to 

the glide vehicle can be expressed as 

(Edt
av'\	 mgV	 (CF S\ 

t)max = 	 )max = 	 CDA)	
(Dl) 

The rate of heat radiation from the vehicle can be expressed by the fol-
lowing standard relation

	

5--=kT4S	 (D2)
dt 

Using equations (Dl) and (D2), the requirement for continuous radia-
tion of all convective heat input to a surface at a temperature 20000 R 

(151+00 F) can be expressed as

mg CF'S < 1.20	 (D3)
S(L/D) CDA - 

If a value of (L/D)max = 6 is assumed, values of the parameter CF'S/CDA 
opt 

and cone angle, 5,, can be determined as a function of actual (L/D)max 
from the analysis given in Appendix C. A vehicle weight of 5000 pounds 
with a maximum diameter of 3 feet is assumed whereby equation ( D 3) can 

be evaluated for various (L/D) giving the results in the following table: 

L/D CF'S/C]A deg sq ft
mg	 CF'S 

s(I/D)	 CDA 

6 0.333 2.75 11+7 1.89 

1+ .0600 6.73 60.2 1.2+ 

2 '.00710 14.3 28.6 .619 

1 .000890 29.6 14.3 .312 

1/2 .000115 55.8 8.55 .135
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We see, therefore, that at surface temperatures of 2000 0 R and for an 
LID of II, this glide-type vehicle can radiate heat at a rate equal to or 
greater than the maximum convective heat rate. 

Radiative and Convective Heat Transfer Associated 
With Skip Vehicle 

In this section the problem is to determine the extent to which 
heat absorbed by a skip vehicle in the first skipping phase, can be 
reradiated during the subsequent ballistic phase. The quantity of heat 
absorbed in the first skipping phase has already been obtained in the 
heating analysis, (eq. (79) for n = i) 

Qi 1 CF'S(	 - 

mVf - CDA	
-

 e
 

where the total heat absorbed throughout the entire trajectory is 

1CF'S
(D5) 

mVf22 CDA 

In order to determine the heat radiated, three quantities must be 
determined: 

1. Temperature of the vehicle at the start of the second ballistic 
phase 

2. Temperature of the vehicle at the end of the second ballistic 
phase 

3. The time duration of the second ballistic phase 

To determine the first of the above quantities, we employ the rela-
tion for heat absorbed

Qi = cWeAT
	

(D6) 

where c is the specific heat of the material, We is the effective 
weight of material absorbing heat, and AT is the temperature rise during 
the first skip. If it is assumed that 1/3 of the missile weight will
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absorb heat, equation (D6) becomes 

=(D7) 
gc (Mi) 

where m is the total mass of the vehicle. It is assumed that the 
material has a specific heat of 0.11 Btu/lb °R. If it is also assumed 
that the temperature at the start of the first skip is 7000 R, equa-
tion (D7') becomes

Tex2 = 500 + 1.ixio 3 ( 2 	 (D8) 

which defines the temperature at the beginning of the second ballistic 
phase. 

To find the temperature at the end of the second ballistic phase, 
we equate the radiant heat-transfer rate from the body to the rate of 
heat loss in terms of the temperature drop of the body 

-kT4S dt = cWedT
	

(D9) 

This expression can be integrated between limits from beginning to end 
of the second ballistic phase to yield 

3	 1 
T	 =	 (Dlo)en2  

(7.95x1o15)st +
	 13 
Tex 

for a vehicle weight of 5000 pounds (effective absorbing weight of 1667 
pounds) where Ten2 is the temperature at the end of the second ballistic 
phase and t is the total time of the second ballistic phase. The total 
heat lost by radiation can now be expressed in terms of the temperature 
drop as

= (Tex2 - Ten2) Wec 

or

QR2 = 1.41Xl0(Tex2 - Ten2 )	 (Dil)
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The time of flight in any ballistic trajectory can be shown to be 

2r0 (
1 - COS 2	

an	
2	 1 + tan
	

(Dl2) 

+ _ 	 tantV_	
(1-i2)	 L	 Ji-i	 i 

where

tan O 

= sin 1 + tan OfCOS 

-(sin OfCOS Of 

2 T 
tan'( 

-	
-cos2ef) 

The foregoing relations were applied to a computation of the radia-
tive cooling of a missile weighing 5000 pounds and traversing a total 
range of 30 nautical miles ( = 1.0). Values of Of were obtained in 
the motion analysis, whereas values of CF'S/CDA and S obtained in the 
previous calculation with regard to the glide missile will apply to this 
case also. The computations are summarized in the following table. Note 
that the case of L/D = 1/2 is essentially the ballistic vehicle (see 
fig. 9). 

L/D d Vf2 Q1xl0 Q1/QT
t, Ten2,

2xlO 5 QR2/Qi 

6 12.5 0.275 3115 0-135213 2710 1490 1725 0 .554 - 
4 17.0 .315 11470 .258335 15112 1323 316 .211 
2 24.0 .525 549 .575 395 889 885 27 .049 
1 27.5 .620 122 .85321 7 587 585 3 .023 

30.0 .650 19 .985 80.4 514 514 0 0

We see, therefore, that the quantity of heat which must be absorbed 
by this skip vehicle decreases rapidly with decreasing lift-drag ratio. 
The quantity of heat which must be absorbed by a ballistic vehicle 
(L/D 1/2) is almost ne1igible compared with the quantities associated 
with vehicles with an L/D = 2 or greater. Comparison of the heat absorbed 
in the first skipping phase with the heat radiated in the second ballistic 
phase indicates no appreciable advantage is obtained due to radiation for 
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values of L/D = 2 and lover. To be sure, this situation could be sub-
stantially altered (near L/D = 2) by allowing the surface temperatures 
to reach higher values during the skip; however, it seems most unlikely 
that the net heat absorbed by the skip vehicle could ever be reduced to 
the low value of the ballistic vehicle for any reasonable surface tem-

perature.	 -
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APPENDIX E 

DETERMINATION OF THE RATIO OF (L/D)max FOR 

A FLAT PLATE TO (L/D)max FOR A CONE 

In Appendix C the expression for the optimum (L/D)max for a slender 
cone was developed with the assumption of large Mach numbers and a constant 
value of CF'. A simple analysis will now be presented whereby it is 
shown that equation (C19) will apply, for the most part, throughout the 
Mach number range and for a variable CF' . Inasmuch as the lift coef-
ficient (eq. (Cl)) is essentially independent of Mach number and cone 
angle, modification of the results obtained in Appendix C (eq. (C19)) 
will occur only through the evaluation of the zero-lift drag coefficient 
(eq. (c6)). 

The variation with Mach number of the zero-lift pressure-drag coef-
ficient, (CD0 ), can be represented as 

( CD O) = 2f(M) sin 2	 (El)
op 

while CF' is assumed to vary with cone angle in the following manner 

CF' = CF'05
	

(E2) 

where m is chosen to give the required variation of OF' with 6. By 
an analysis paralleling that presented in Appendix C, it can be shown 
that the optimum value of the lift-drag ratio assumes the following form 

=(1-mm/33)  	 (E3) 
)max =	 [f() 

11/6 

Now the values of f(M) should not differ greatly from 1 while values of 
in should not differ greatly from 0. It follows then that values of 
(L/D)	 obtained from equation (E3) will not differ appreciably from those 
those otained from equation (C19). Furthermore, the coefficient CF' 
will not differ appreciably from CF for the slender shapes and small 
angles of attack under consideration. Equation (E3) then reduces to 
the form
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1/ 3 
(L)(Eli.) 

'max 

which corresponds to equation (C19) and is also a suitable approximation 
for all supersonic Mach numbers. 

For a flat plate in supersonic flow, the lift and drag coefficients 
can be expressed as

2 
___ 

CL = ____ +2a,	 (E5)
JM2l 

CD = CD0 +
	

(E6) 

which follows easily from the equation for pressure coefficient given by 
Ivey and Cline (ref. 13). By noting that 

CD0 = 2CF 

the lift-drag ratio can be written from equations (ES) and (E6) as 

L_	 2Aa+a2 (El) 
- CF + 2Ac + 

where

1 

..1M2 - 1 

Equation (E7) is found to have the following maximum value 

(L	 -	 . 1 

,)max - c +
	 + 2&	

(E8) 

2(A + a)(27 + a)	 (27k + a) 

which occurs at values of the independent variables given by the maximum 
condition
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-, 

CF =	
+ (X 	

(E9) 

From equations (E li-), (E8), and. (E9), and recalling that 7 = (M 2 - 1) 1/2 

the ratio of (L/D)max for a flat plate to (L/D)max for a cone can be 
determined as a function of Mach number and CF. The variation of this 
ratio with Mach number for given values of CF has been presented in 
figure 11, where it was found convenient to use the inverse Mach number as 
the abscissa in order to illustrate conveniently the behavior at hyper-
sonic speeds.
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Incidence angle, 8jr, degrees 

Figure 1— Variation of velocity with incidence angle for various values 
of range of ballistic vehicle. 
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Figure 2.— Variation of effective lift-drag ratio with range 
for opt/mum ballistic vehicle.
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Figure 3- Trajectory of the first skipping phase for a skip vehicle with 
a lift-drag ratio of 2 and a total range of 3440 nautical miles 
(=l). 
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Figure 5— Variation of effective lift-drag ratio with range for various 
values of aerodynamic lift- drag ratio of skip vehicle.
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Figure 7— Variation of effective lift- drag ratio with range for various 
values of aerodynamic fift-drag ratio of glide vehicle. 
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