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SUMMARY 

An analysis based on momentum and continuity considerations is used 
to evaluate the total-pressure recovery of zero-wave-drag external
compression supersonic air inlets for the Mach number range from 1.0 to 
4.0. 

The geometry of such inlets can cause a significant loss in inlet 
total-pressure recovery which arises in the process of turning the flow 
back to the axial direction after supersonic compression. This loss may 
become as large as 20 percent of the computed inlet recovery at Mach 4.0. 

Some consideration is given to wind tunnel blockage calculations in 
which the model drag enters as a parameter, and a criterion is developed 
which supplements the usual Kantrowitz condition. 

INTRODUCTION 

The design of a supersonic air inlet for a propulsion system usually 
requires many compromises to obtain satisfactory over-all performance. 
One such compromise involves the interplay of inlet total-pressure recov
ery and cowl pressure drag. Large cowl pressure drags are usually associ
ated with high-performance external-compression inlets (ref. 1, p. 627). 
Drag reduction has been obtained primarily by decreasing the cowl projected 
area, that is, by turning the inlet flow back to the axial direction more 
rapidly. 

The limiting form of such a philosophy is the zero-wave-drag inlet 
in which the external cowling is alined with the free-stream velocity. 
The recovery potential of this type of inlet is necessarily less than that 
of a conventional inlet because of the limited supersonic compression per
mitted by the requirement of internally attached shocks at the cowl lip. 
Further total-pressure losses are also incurred by abruptly turning the 
inlet flow back to the axial direction. 
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An analysis based on momentum and continuity considerations whereby 
these latter losses may be calculated is presented along with summary 
curves applicable to zero-drag inlets with a sharp centerbody shoulder. 
The effect of rounding the centerbody shoulder is also considered as 
well as some aspects of permissible inlet contraction and the analogous 
problem of wind tunnel blockage. 
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Subscripts : 

c 

i 

R 

s 

o 

1 

2 

Superscripts: 

m 

* 

ratio of specific heats for air} 1.4 

cowl-lip overhang angle } deg 

cone half-angle} deg 

mass density 

p~ AR ptg Ac 

Po Ao - Po Ao 

cowl 

basic inlet 

ramp or centerbody 

shoulder 

free stream 

inlet entrance station 

equivalent uniform flow 

evaluated at M 

average value 

corresponding to Kantrowitz contraction 

ANALYSIS 

3 

The momentum equation for the steady flow of a compressible fluid for 
a given control volume may be written in vector form as 

is (pV . ~ ) V dA + is p~ dA = 0 (1) 

if boundary shearing stresses are neglected. The notation ~ indicates 

the integration is to be performed over the entire surface S enclosing 
the contr ol volume) while ~ is a unit outward normal vector to the sur
face S . The first integral in equation (1) represents the vector momentum 
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leaving the control volume) while the second integral gives the resultant 
force which the volume exerts on its bounding surface S. 

A control volume with a bounding surface S generated by the line 
ABCDEFA can be constructed by referring to figure lea)) which shows a 
cross section of a typical supersonic inlet operating at full capture 
mass flow. The line segments FA and CD are taken as perpendicular to the 
free-stream flow vector VO) while the segments ABC and ED generate the 
centerbody and cowl contours) respectively. The duct at station CD is 
assumed to have its walls parallel to Vo' which corresponds to an inlet 
geometry in which the flow is returned to the axial direction after super
sonic compression. 

Defining the vector 1 to be of unit magnitude and parallel to the 
free-stream flow Vo and taking the scalar product of 1 and equation 
(1) result in 

,r (- ")- 1\ ,r 1\ 
~S pV' n V . i dA +~S pn 

A 
i dA = 0 

This equation is a scalar equation written for the axial component of 
momentum. 

The upstream internal thrust exerted on the cowl is given by the 
pressure integral (the second integral in eq. (2)) over the surface gen
erated by line ED, while the downstream force on the centerbody is given 
by the pressure integral over ABC. These two terms can be denoted by 
-P~Ac and P;AR) respectively) where p~ and p; are the average ef

fective pressures acting on Ac and AR, the internal cowl projected 
area and the centerbody projected area, in that order. 

With the previous notation, equation (2) may be written 

PWAR + lD (pV . ~)v . i dA + JD p~ . i dA - p~Ac - PoV6Ao - poAo = 0 
(3) 

where ~D indicates an integration over the surface generated by line 

CD . The evaluation of the two remaining integrals in equation (3) would 
require a detailed knowledge of the flow at the station CD. It is con
venient then to consider the properties of the equivalent uniform flow 
having the same mass flow and momentum as the nonuniform flow at station 
CD. The term uniform here implies constant velocity and fluid properties 
across the duct as well as parallel flow, which at station CD is taken 
to be in th~ axial direction. By denoting the equivalent uniform flow 
with the subscript 2, equation (3) becomes 
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or) for a perfect gas) 

(4) 

The continuity equation written between FA and CD in terms of the 
D function is 

(5) 

Dividing equation (5) by equation (4) Yields 

which determines m Pc are known. To each value of the 

function N 
one subsonic. 
tion since it 
tion (6) then 
P2/PO may be 

there are two corresponding Mach numbers, one supersonic and 
By taking the latter as pertinent to critical inlet opera

evaluates the flow downstream of the terminal shocks) equa
determines M2, and, consequently, the effective recovery 
calculated from equation (5) as 

(7) 

The functions G) D) and N are tabulated in reference 2. 

Equations (6) and (7) cannot be evaluated unless the average pres
sures P~ and P~ are known. In general) because of the uncertainty ' 

in the location of the terminal shock, it is impossible to predict the 
internal cowl pressures with any assurance; however) for a zero-drag in
let) which for the purposes of this report will mean that Ac = 0, only 

a knowledge of the average pressure on the centerbody is necessary. In 
the event the centerbody is a two-dimensional ramp surface or a single 
cone with a sharp corner at the shoulder (as in fig. l(b) in which BC is 
parallel to Va)' the average centerbodypressure may be readily calcu
lated by existing methods. It is assumed that all flow disturbances 
from the cowl lip strike the centerbody downstream of the shoulder B) a 
usual condition for the previously mentioned inlet types which are not 
overcontracted. 

By referring to the zero- drag inlet geometry with a corner shoulder 
as the basic inlet) the effects of geometry changes) such as rounding 
the centerbody shoulder) may be determined by differentiating equation (7) 
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with respect to 
of equation (6) . 

~,where ~ is the bracketed term in the denominator 
Thus, the equation 

(8) 

gives 

(9) 

where R denotes the total -pressure recovery P2/Po' and the subscript 
i refers to the basic inlet values of R,~, and M2 . Thus, equation 
(9) evaluates the rate of increase of recovery with respect to ~. From 
equation (6) with Ac = 0, N(Mo ) < N(M2). Thus, by equation (9), 
d(R/Ri)/d(~/~i) < 0, which means that in order to obtain an increase in 

recovery d(~/~i) must be negative, or, equivalently, for a given AR 
the mean ramp pressure p~ must decrease. 

For most two - dimensional zero-drag inlets the turning loss may be 
calculated without considering the entire supersonic compression process. 
If the flow at the entrance station EB of figure l(b) is uniform, the 
control volume enclosed by BCDEB may be considered in place of the for
mer volume. In figure l(c) the volume BCDEB is redrawn to larger scale 
with Ml and ~ indicating the Mach number and flow inclination of the 
entrance flow with respect to the duct BC-ED. The specific type of 
supersonic compression that the free - stream flow MO undergoes to arrive 

at Ml and ~ is immaterial . 

The lip overhang angle ~ is a measure of the contraction ratio 
~/A2 : 

cos (~ - ~) 
cos ~ 

By use of equation ( 2) the momentum equation may be written as 

(10) 

P G(M ) = P G(M ) - 2P (51\ [ 1 _ cos ~ cos(~ - ~)j (11) 
2 2 1 1 1 p) cos ~ 

Ml 

while the continuity equation is 

P1D(M
l

) cos(~ - ~) 
cos ~ 

(12) 
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Dividing equation (12) by equation (11) yields 

(13) 
cos 

Aga~n for given Ml'~' and ~,taking the subsonic root corresponding 

to N(~) determines M2 and thus D(~) and gives for the recovery 

cos(a, _ ~) D(Ml ) 
cos ~ D(M2) 

(14) 

For ~ = ~/2 no internal contraction occurs as can be seen from 
equation (10). Equations (13) and (14) then read 

and 

P2 D(Ml) 
Pl == D(M2) 

- cos ~) 
(13a) 

(14a) 

The case ~ == 0, where the lip is directly over the corner shoulder B, 
also corresponds to the geometry of an unswept normal-shock inlet flying 
at Ml and an angle of attack ~. Equations (13) and (14) may also be 
taken as the equations for swept normal-shock inlets and are equivalent 
to those of reference 3 which considers such inlets. 

RESULTS AND DISCUSSION 

Significance of Effective Total Pressure 

It is necessary at this point to consider the significance of the 
effective total-pressure recovery P2/PO introduced in the previous 

section, ANALYSIS. Mathematically, P2/P
O 

was defined as the total
pressure recovery of a uniform stream having the same mass flow and total 
momentum at the inlet constant - area throat section as the actual nonuni
form inlet flow. If the inlet were operating at its critical point and 
the constant-area throat section were infinitely long, the flow in this 
duct would eventually become a uniform subsonic stream if wall friction 
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is neglected . The recovery of this stream would then correspond to the 
effective recovery computed herein and would take into account total 
pressure losses due to mixing at constant area. The physical mechanism 
giving rise to what has been designated as a turning loss is thus a 
combination of internal shock and mixing losses. 

Practical zero - drag inlet configurations will not provide sufficient 
constant-area throat length for complete mixing to occur. However, in 
general, the throat length should be sufficient to contain the terminal
shock system when the inlet is operating critically. If each filament 
of the subsonic flow leaving the throat is then assumed to diffuse isen
tropically, reference 4 indicates that the effective recovery after this 
diffusion process will be less than the init i al effective recovery. Thus, 
the recoveries presented herein are an upper limit to the effective re
covery that an engine at the terminus of an ideal subsonic diffuser would 
experience . 

It is desirable to establish that the effective recoveries of this 
report are an upper limit to the average total pressure of the flow at 
the exit of the subsonic diffuser independent of the subsonic diffuser 
configuration or performance. Reference 4 indicates that, for moderate 
distortion and effective duct Mach numbers up to 0.1, the mass flow 
weighted and effective recoveries are almost identical. As the mass flow 
weighted recovery of the flow leaving the inlet throat cannot increase, 
it follows that, under fairly general Circumstances, the effective re
covery at the throat is an upper limit to the inlet recovery for all 
subsonic diffusers. 

Turning -Loss Considerations in Diffuser Design and Evaluation 

The results of calculations made for single-cone zero-drag inlets 
with shock on lip and no internal contraction using equations (6) and 
(7) are presented in figure 2 by the solid lines which give effective re
covery P2/PO plotted against cone half-angle e for various free
stream Mach numbers. For these inlets the throat area was set equal to 
the area projected normal to the average flow direction in the conical 
flow fiel d at the entrance station . All curves are terminated at the lip 
detachment value; that is, for larger e the conical shock is incapable 
of regular reflection at the cowl lip . 

The dashed curves were taken from reference 5 and are included for 
comparison to illustrate the variation of inlet total-pressure recovery 
if it is assumed that the flow proceeds isentropically from the entrance 
station EB of figure l(b) to station CD and there undergoes a normal 
shock . The lower recovery values given by equations (6) and (1) must 
then be attributed to the nonisentropic nature of the process involved 
in attaining a uniform axial f l ow after supersonic compression, in 
essence,a turning loss . 
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As may be seen from figure 2, the effect of turning losses favors 
smaller cone angles for zero - drag single-cone inlets than would other
wise be indicated. For example, at a Mach number of 4.0 the optimum 
cone half - angle is reduced to 250 as compared with 320 if turning losses 
are neglected. 

As explained in the section entitled ANALYSIS, associating Ml and 
~ with the final ramp Mach number and angle permits a ready evaluation 
of the total-pressure recovery through the combined turning and terminal
shock process of a two-dimensional inlet. 

Figures 3(a) and (b) are constructed from equations (13) and (14) 
for 1] = ~/2 and 1]:= 1] *, respectively, and indicate the extent to which 
increased turning influences recovery. At ~ = 0 the value of P2/Pl 
is simply the normal-shock recovery for Ml or Mi. All curves of figure 
3(b) are terminated at the left for those values of ~ for which the lip 
reflected shock lies forward of the corner shoulder B. The over-all in
let recovery would be the product of the recovery P2/Pl given by equa-
tions (13) and (14) and Pl/PO' which is the recovery through the super

sonic compression process up to the entrance station. 

The curves of figure 4 illustrate the variation in pressure recovery 
with Mach number for isentropic ramp and single-wedge zero-drag inlets. 
These inlets incorporated no internal contraction and were designed for 
maximum recovery consistent with full mass-flow capture. The calculations 
for the solid curves include turning losses, while for the dashed curves 
these losses were neglected. The decrement in pressure recovery for the 
isentropic inlet at Mach 4.0 is 17 percent. A similar calculation for a 
maximum contraction isentropic inlet gives a 19-percent decrease. 

The performance of single-cone zero-drag inlets was readily evaluated 
for the corner-shoulder configuration as the average static pressure act
ing on the fore part of the centerbody was known. For a multicone or 
isentropic spike inlet, the average entrance station Mach number and the 
flow angle are usually known more accuately than the centerbody surface 
pressure. If this is true, equations (13) and (14), or, when appropriate, 
figures 3(a) or (b), may be employed to eValuate the effective recovery 
of such inlets using the average Mach number and flow angle to replace 
M1 and ~. The accuracy of such a procedure was checked for the case 
of single - cone inlets where, for example, at MO = 3.0 and e = 260 the 
exact turning loss from figure 2 is 0.054 PO' while using the mean values 
of Mach number and flow angle in the conical field and equations (13) and 
(14) yields a loss of 0.052 PO ' 

All consideration of turning l osses has been previously confined to 
corner - shoulder configurations . The recovery will increase if the 
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centerbody shoulder is rounded off. This is indicated by the discussion 
related to equation (9) where it was shown that p~, the average pressure 

acting over the forward projected area of the ramp or centerbody, must 
decrease if the recovery is to increase. The extent to which the shoulder 
may be rounded, however, is limited by internal contraction considera
tions, as the rounding will increase the entrance area. Also, for ex
tensive rounding, the reflected shock from the cowl may strike the center
body before the shoulder turn is completed, a circumstance which would 

m tend to increase PR o 

An indication of the improvement in inlet performance that might be 
expected because of rounding is given by the following examples. A Mach 
4.0, isentropic ramp inlet with the corner shoulder rounded off to a 
circular arc as illustrated in figure led) a!,d with As/AR = 0.1 has a 

calculated increase in total-pressure recovery of 0.01 Po compared with 

the corner - shoulder configuration. This is equivalent to reducing the 
turning loss from the original 0.09 Po of figure 4 to 0.08 PO' The 

same modification at Me = 3.0 also resulted in only a 0.01 Po in
crease in recovery. In both examples the pressures on the shoulder were 
computed by Prandtl-Meyer theory. 

The practical use of the momentum-continuity method for calculating 
inlet recovery is not limited to the case of a uniform flow at the en
trance station or to shock-on-lip zero-drag inlets. For an inlet operat
ing at above design speed the compression shock or shocks may fall down
stream of the cowl lip. For zero-drag two-dimensional inlets the ramp 
pressures may still be calculated, and, thus, equations (6) and (7) may 
be used to calculate the recovery_ For either the two-dimens ional or 
axisymmetric inlet the pressure recovery will be independent of center
body translation as long as the inlet neither spills flow nor 
overcontracts. 

Blockage Considerations 

The function N appearing in equation (6) assumes a maximum value 
of 0.4564 at Mach 1.0 for y = 1 .4 and decreases monotomically in value 
on either side of Mach 1 . 0 . Quantitatively, the condition that the func
tion N yield a meaningful result may be formulated by writing equation 
(6), with Ac = 0, as 

P~ AR < [G(M ) - D(MO) J (!:) - z 
p A ' 0 N(M = 1 . 0 ) p M 
000 

(15) 

A plot of the r ight side of equation (15), designated Z, for y = 1.4 
is given in figure 5 . 
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A particular inlet geometry may be such that equation (6) yields 
values of N greater than N(M = 1.0). If this should happen} the inter
pretation is that no equivalent flow M2 exists which would satisfy the 

inlet geometry; that is} the assumed flow structure is untenable and} as 
a result) the inlet will not operate at full capture mass flow. 

In order for an inlet of the type in figure l(b) to operate at full 
m 

PR AR 
capture mass flow) the centerbody force parameter -- -- must be less 

Po Ao 
than the critical value Z . For a given p~/po this requirement then 

places a lower limit on the over-all contraction ratio for the inlet 
A2/AO = 1 - (AR/Aa). The use of variable-geometry techniques would be 

unsuccessful in circumventing this limitation on over-all contraction 
since the critical force parameter may not be exceeded at any time sub
sequent to starting the inlet. 

If the inlet centerbody is consideren as a wind tunnel model and 
the straight inlet cowling as wind tunnel walls) the condition specified 
by equation (15) and figure 5 determines whether the tunnel may start . 
This wind tunnel starting criterion supplements the usual Kantrowitz con
dition in that both criteria must be satisfied. 

Usually those configurations satisfying the Kantrowitz requirements 
will also satisfy the momentum considerations of equation (15). There are 
exceptions to this rule) however. For example} a normal-shock inlet oper
ating at zero mass flow was calculated to block a wind tunnel if sized 
according to Kantrowitz for all Mach numbers up to 4.0) the range of 
calculations made. For this case the pressure pW is the pitot pressure) 
and equation (15) requires approximately a 20-percent reduction in model 
size to permit starting. 

Whenever the starting criterion presented herein is more stringent 
than the Kantrowitz requirement} that is} requires a smaller model size} 
it means in essence that the wind tunnel model} if sized according to 
Kantrowitz) introduces greater total-pressure losses in the tunnel flow 
than a normal shock spanning the entire test section. For instance} in 
the case of the zero-flow normal-shock inlet described previously} the 
loss in total pressure suffered by the tunnel flow because of the de
tached bow shock} the shocks following the reexpansion around the inlet 
lip}. and whatever mixing occurs exceed those of a normal shock at the 
tunnel Mach number. 

CONCLUDING REMARKS 

For zero-drag external-compression inlets a loss in total pressure 
is inherent in turning the flow back to the axial direction after 
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supersonic compression. An analysis based on momentum and continuity 
considerations, applicable to most. zero-drag inlets, indicates that these 
losses may at times become as high as 20 percent of the inlet recovery 
at Mach 4 .0. For zero-drag single - cone inlets, the effect of including 
turning losses decreases the cone angle required for optimum pressure 
recovery. 

The momentum-continuity analysis applied to the eValuation of inlet 
turning losses yields a wind tunnel starting criterion which supplements 
the usual Kantrowitz condition and is particularly appropriate for the 
testing of high-drag models . 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, August 12, 1957 
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Figure 2. - Performance of single-cone inlets with 
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