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SUMMARY

Information collected from the referenced literature and supple-
mented by new solutions is presented on the flow characteristics - velocity
field, pressure drop, and friction - for steady, fully developed laminar
flow through a duct consisting of two parallel walls, for flow through
tubes with circular cross section, and for boundary-layer flow over in-
finite wedges. It is assumed that the fluid either is ejected through
the porous walls into the main flow or is removed from the main flow by
suction. The properties of the fluid both in the main flow and in pass-
ing through the porous walls are assumed constant, identical, and incom-
pressible.

In order to determine the extent to which the boundary conditions im-
posed on the flow by the various geometries influence the flow character-
istics, dimensionless parameters common to both channel and boundary-layer
flow (channel flow is flow with bounding walls, e€.g., a tube) were de-
veloped. By using these parameters to compare the various flows, the

flow on surfaces with fluid ejection as well as on solid surfaces was

found to depend mainly on the local boundary-layer thickness, on the
pressure gradient in main-flow direction, and on the ejection rates.
Whether the viscous flow is confined in a channel or unconfined in a
boundary layer is of secondary importance. This finding forms the basis
for general correlations and shows the conditions under which data on
channel and boundary-layer flow are interchangeable; it also should be
useful for calculations by integral methods.

INTRODUCTION

In the search for effective cooling methods, attention has been di-
rected towards a method known as transpiration cooling. In this method,
the surfaces to be protected against the influence of a hot fluid stream
are manufactured from a porous material, and a cold fluid is ejected
through the wall to form a protective layer along the surface. Certain
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areas on the skin of high-velocity aircraft may be provided with these
surfaces as protection against the influence of aerodynamic heating.
Porous surfaces with suction also are used on airfoils and bodies of air-
craft to delay separation or transition to turbulence; in these cases,

the flow along the surface is of a boundary-layer type. In nuclear appli-
cations, the protection of the channel walls by transpiration cooling is
of primary interest.

As a result of these applications, numerous studies of the flow and
heat transfer connected with fluid ejection or suction through porous sur-
faces have been made recently. Analytical investigations cover laminar
two-dimensional steady boundary-layer flow (ref. 1), laminar flow through
ducts bounded by two parallel walls with one or both walls porous {refs.

24 G 57e) 4), and laminar flow through tubes with circular cross section (ref.
5). Semiempirical treatments deal also with turbulent boundary-layer flow
over porous surfaces (refs. 6 to 11).

The laminar-flow characteristics determined in these studies differ
markedly from one geometry to the other. For instance, the velocity pro-
files in laminar boundary-layer flow over a flat plate become S-shaped as
soon as fluid is ejected through the wall into the main stream, and the
wall shear stress and the friction factor decrease with increasing ejec-
tion rate. In laminar flow through a circular tube, on the other hand,
the velocity profiles become fuller, and the wall shear stress and the
friction factor increase with increasing ejection rate. An investigation
of the reasons for these differences in flow behavior and of the order of
importance of the parameters influencing the velocity fields (and the
friction characteristics) in the various geometries would provide a better
understanding of the interplay of forces surrounding the flow-process de-
velopment. It also would provide specific geometry generalizations appli-
cable to other configurations.

This report presents the results of such a study conducted at the
NACA Lewis laboratory for laminar boundary-layer and channel flow. The
parameters used were dimensionless pressure gradient, friction factor, and
flow rate through the porous walls. In order to compare the different
flow geometries, solutions were obtained for flow with fluid ejection or
suction through the walls of a circular tube and through one or both walls
of a duct bounded by two parallel walls. These solutions were obtained on
an IBM 650 electronic computer and are given in this report; a few numer-
ical cases for laminar boundary-layer flow with fluid ejection also are
included. The flow characteristics described by these solutions and by
solutions available in the literature were analyzed in the manner described
in the preceeding paragraph.
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SOLUTION OF THE DIFFERENTIAL EQUATIONS
Laminar-Flow Equations

In all of the flow configurations, the following conditions are
assumed: that the fluid is incompressible, that the properties of the
fluid and of the coolant are constant, that the main-stream fluid and the
fluid passing through the wall have identical properties. Two-dimensional
flow is preserved in the viscous boundary layer and in the duct. With
two-dimensional flow, the width is much greater than the height in the
duct. In the present report, the term channel flow signifies flow in
rectangular ducts as well as in circular tubes. The term duct flow is
restricted to flow in a passage of rectangular cross section. Fully
developed flow is assumed in the channels; the meaning of this term for
channels with fluid ejection will be discussed later in the report.
Rotational symmetry is assumed for flow through a tube, and steady state
is postulated in all cases. In boundary-layer flow, a wedge-type flow
(flow with a velocity outside the boundary layer proportional to some
power of the distance from the leading edge) is considered. Such a
main-stream velocity distribution is established in flow over a wedge
of infinite extent.

Throughout this section, the equations are numbered to indicate by
suffix the type of geometry used: no suffix will indicate the fully
porous channel; suffix a, the semiporous channelj suffix b, the tube;
and suffix c, the wedge. (Thus, eq. (1b) shows tube geometry, (1c) wedge

flow, etc.)

Rectangular duct. - For the duct geometry (fig. 1(a) and (b)), the
foregoing assumptions allow the Navier-Stokes equations of motion to be

written as (e.g., ref. 12, p. 48)

2 2
du ou 19 d'u , 8 u
u&+v8§—-p x+V<———ax2+——ay2> (l)
dv 3 . 13 d%v ¥y
u&+va-§—-p5§+\)<—ax2+—ayz> (2)
The continuity equation is
Beeo @

Symbols are defined in appendix A.
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Tube. - For flow through a tube (fig. 1(c)), the equations of motion
are stated in cylindrical coordinates (e.g., ref. 12, p. 49):

du du 1 dp d%u . 1 du , d%u
u“&”&“ﬁ&”(gp*?é}'*é‘;) (1b)
ov ov _  1lop v  d%v _1lov v
u‘a—x”s;-‘as;“(g;wgé*;a-;) (2b)
The continuity equation is
o(ru) o(rv
_é_x_Jr rr)=0 (30)

Boundary-layer flow. - For the boundary-layer flow over wedges,
(fig. 1(d)) the simplifications to the Navier-Stokes equations proposed
by Prandtl are used. The equations then become (ref. 12, chap. VII)

ou du 1 op >%u
L - i Y S;E (1c)
%—i =0 (2e)
%+%=o (3e)

Boundary conditions. - For the boundary conditions, the main-flow
velocity u 1is specified as zero at the solid or porous boundary, and
the velocity normal to the wall may be either zero or a constant negative
or positive value.

For the fully porous rectangular duct, the flow is symmetrical about
the midchannel, so that only half the channel need be considered. The
boundary conditions are

Yo O(midchannel); v = 0; Svz = 0

h
¥yo =73 (porous wall); v = vy;

[+
Il
[}

8TSY
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For the semiporous channel,

y; =0 (solid well); v =03 uw.= 0
(42)
y, =h (porous wall); v = viu=0
In the porous tube,
; ou
r = 0 (midtube); v = 0; 57 =0
¥
(4p)
r = R (porous wall); v = v,; u =0
For the viscous flow over a wedge,
¥p = O (porous wall); v = vy; u=0
(4c)

Yp = = (main stream); u - uy

Similarity Transformations

The references show that solutions for a special set of boundary
conditions can be found for all differential equations presented in the
preceding section. These solutions are characterized by similar velocity
profiles at various x-locations. For channel flow this similarity is
consistent with a constant ejection or suction velocity v« For such

flow, this condition either restricts the shape of the velocity profile
in a selected upstream cross section or assumes a selected upstream
distance that is analogous to the fully established flow condition in a
duct with solid walls. In channels with fluid ejection, the similarity
in velocity profiles is encountered when the channel is closed at some
upstream cross-section location that can be calculated. In boundary-
layer wedge flow, the same condition requires that vy, vary in a speci-
fied manner in x-direction.

The partial differential equations describing the flow can be trans-
formed under the specified conditions into total differential equations
by the introduction of proper new variables. The continuity equation is
automatically satisfied by a stream function V, which is different for
each of the geometries. The equations of motion then can be transformed
to ordinary differential equations by the use of a dimensionless length
coordinate and a dimensionless stream function f that is postulated to




be a function only of the dimensionless normal distance
parameters are connected with the previously used variables according to
the following transformations:
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N1+ Both

Fully porous duct

Semiporous duct

Tube

Boundary layer

Zyz
L

= 2 W(x)r5(ng)

<
0o
|

J1
1y ==
¥y = Hﬁ(x)fl(nl)

e

o

vy = Reu(x)fy(ng)| ¥p

Ip
- q/Reb
APV xuy £y ()

Substitution of the new variables

Total Differential Equations

n and T

in the appropriate

equations of motion resulted in the following total differential equa-

tions.

sented in terms of the new variables.

The boundary conditions, given by equation (4), are also pre-
The references mentioned with

each geometry present the derivation of the eguations in detail.

Fully porous duct (refs. 2 and 3):

where

Semiporous duct (refs.

ed W
1t PR
Iy +—3

v
Red,w = —%E
N, =0 (midchannel); £, = 0;
ne = 1 (porous wall); fp =1; ¥
3 and 4):
f; - Red,w(fi2 - flfI) i

1 (porous wall); f

12 " i
(f2 - fzfz) = A,

Ik

= 1ls £

£8 = 0

N )

= 0 (solid wall); £ = 03 £] =0

=0

(5)

(5a)

(ea)
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Tube (ref. 5):

L " 1 2 T\
ngfy + £y + Rey (£1° - £.80) = Ay (5b)

where
VR
Fot,w =77
Mg = 0 (midtube); ft — el “tf£" &0

(6b)

ng =1 (porous wall); £, = 1/2; £ =0

It should be noted that the solution of equation (5b) as given in
reference 5 does not use the boundary condition 7. f}" (0) = 0. 1Instead,

Lim A/n, fg = 0, which stems from equations (4) to (6) herein and is ful-
n,>0
t

filled by the perturbation solution of reference 5, is used. Such a con-

dition apparently allows f£}(0) to take on any value in a numerical solu-

tion and, hence, is not useful in the numerical solution. It has been

replaced by the stated boundary condition, which satisfies the differential

equation for fY (0) finite. Then the condition lim Vfﬁg % = 0 for
N0

£"(0) finite is also satisfied.

The symbol A 1in equations (5) is an integration constant and, as
will be shown later, is related to the pressure drop in x-direction.

Wedge (ref. 13):

Eu + 1 2
"t — e —— U ! -, =
gl Tl Eu(fb 1) =0 (5¢)

M, = O (porous wall); fy, = fy, 3 T = O
(6c)

> o ' > 1

I, ity

Tn the channel-flow equations, the wall Reynolds number Re, 18 &

measure of the ejection rate for the channel and the tube.
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In the boundary-layer or wedge flow, the dimensionless parameter
called the Euler number

u = (7)

is a measure of the pressure gradient, and the dimensionless grouping

f L. - B V_w. Re (8)
b,w  Eu + 1 up b,x

characterizes the ejection rate. Equation (8) also prescribes the vari-
ation of the velocity v, with the distance in main-flow direction x,

since fb,w is independent of x:

Method of Solution and Results

Perturbation solutions of equations (5), (5a), and (S5b) are given
in references 2, 4, and 5, respectively. These solutions are valid only
for either large or small values of Rey. For a study of the flow at in-

termediate values of Re,, a numerical integration method was employed

for the solution of these equations.

Equations (5), (5a), and (5b), together with the associated boundary
conditions, constitute a nonlinear boundary-value problem with the param-
eter Rew. Each of these equations was solved by an iterative method us-

ing the IBM 650 computer. The machine input values for the three equa-
tions were estimates for the following parameters: A, and fé(o) in

equation (5), A, and f£"(0) in equation (5a), A, and f£}(1) in equation
& = 1 - t

(5b). In the solution for the tube, the equation was integrated from
n=1 to n =0 Dbecause the integrating technique required finding the
value of the high-order derivative for the first five points, and be-
cause difficulty was encountered in evaluating fg’(O).

Each iteration consisted of an integration using five-point formulas
and a subsequent machine calculation for the next trial values. The it-
eration process was stopped as soon as the boundary conditions were
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correct to four decimal places. This same technique was used for all
three equations. The five-point integration is described in detail by
Albers in appendix B of reference 14.

A comparison of the present results with those found in the litera-
ture is given in appendix B of the present report. The modifications
required to overcome specific obstacles in the solution of equations (5),
(5b), and (5c) are discussed in appendix C. An analogy between boundary-
layer flow near the separation point and channel flow near a wall shear
stress of zero also is suggested in appendix C.

The results of the numerical solutions are presented in tables I to
IV, with the values of f and its derivatives tabulated as functions of
N. In addition to the tables, a representative solution for each geometry
is given in figure 2. This figure illustrates the behavior of the func-
tions when the geometry is changed. No common ground appears to exist in
the changes from one geometry to another.

Relations Between Tabulated Functions and Physical Quantities

The functions f (e.g., Ty, £a, L4, etc.) can be interpreted in
terms of quantities with evident physical meaning.

Velocity. - The tabulated function f is connected with the stream
function V. Therefore, the first derivative f' can be related to the
velocity as follows:

By using the appropriate transformation and equation (3),

I SR U -

2" 5@’ T2m T () o

£ o= — e — Cm (9a)
1 0 X), 1,m u(x)
——— u . 1 — L]m

th T a(x) t,m  u(x) S

0 s
£ = ™ (9c)
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where, in channel flow,

¥ B 4Rey X
[3(x) ], = 0(0) (1 - 22 (10)
2
2Re
[T(x)]. =T(0) (1 - oo (10a)
) >
4]
&
4Re
s - 1 TR
(u(x) ], =a(0) | =757 + - (10p)
% ft(o) Ret,OR
and u(0) is the average velocity at an arbitrarily assigned location
x = 0. Equations (9) and (10) illustrate one of the fundamental differ-
ences between the bounded channel flow and the free boundary-layer flow.
For bounded flow, the maximum velocity wup is dependent upon the amount 4

of suction or blowing, whereas such an interdependence does not exist
for the boundary layer between the free-stream velocity up and the

ejection or suction rate.

Pressure gradient. - The results given in references 2 to 5 show
that the integration constant A 1is a measure of the pressure gradient
in the main-flow direction. For example, using equation (9) in refer-
ence 4 gives the following equation for the semiporous channel:

ap L Vw 12 " v e
ooy pu(x) ey (fl = flfl) + EE £7
Thus, using equation (5a) herein and substituting (see SYMBOLS),

Relh a
_— = 2A (11a)
P’ (x) B& g

In a similar manner, the equation for the fully porous channel

Reoh
22 %P = 8A, (11)
gac{x) °F
and, for the porous tube,
Re, R
e ie %13 = 16A; (11p) :
T2 (x) 9%

may be obtained.
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Shear stress. - The shear stress of a flowing fluid at a bounding
wall is given by

e -

Use of equations (9) and the definition of 1 1in conjunction with equa-
tion (12) results in

g =2 e (13)
h 2,w

2,w

_ Hulx "
Tl,w T il fl,w (132)

o, < Au(x) o (13b)

t,W R £,

o n z
L X fb,w (13¢)

for the various geometries.

COMMON PARAMETERS FOR BOUNDARY-IAYER AND CHANNEL FLOW

From information available for boundary-layer flow along a surface
with fluid ejection, the local flow conditions, as described by the shape
of the velocity profile and by the local shear stress, are known to be
functions mainly of the local pressure gradient, the local blowing rate,
and the local boundary-layer thickness. The previous history of the
boundary layer is of minor importance unless sudden stepwise variations
in one of the parameters occur just upstream of the location under con-
sideration. The boundary-layer thickness can be eliminated as a param-
eter by expressing the pressure gradient and the blowing rate in dimen-
sionless form with the boundary-layer thickness used as a characteristic
length.

It may be suspected from this knowledge that the differences between
channel flow and boundary-layer flow will be minimized where the compari-
son is made on the basis of these parameters; this comparison is carried

out in the next section. In this section, the following common dimension-

less parameters for boundary layer and for duct flow are developed and
expressed in terms of the parameters previously used:
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Dimensionless boundary-layer thickness:

*
_ud
Re gy = (14)
Dimensionless ejection rate:
V.
il W
$=— Regx (15)
m
Dimensionless pressure gradient:
Rex3d
- 0" By
Iy = e o (16)
m
Dimensionless friction factor:
T
i e ¥ o Re % (17)
AT o)
2

The displacement Reynolds number Re6* appears in each grouping

and, as will be seen later, allows the evaluation of ¢, II,, and T from
numerical solutions of the differential equations.

Boundary-Layer Flow

The dimensionless parameters expressing the ejection or suction
fb,w’ the pressure gradient Eu, and the shear stress at the wall

1 /\/ReX
RSP
parameters that utilize the boundary-layer displacement as defined by

are based on the length x (ref. 13) and can be converted to

5*=£°(l_-u%)@=v%.é.(l-fg)dnb (18)
8 *A/Re,,

Denoting the parameter e R by 3B,

Reg% = B/\/Rex (19)

1]
where B Ef (1 - ) dmye.
0

8TS¥
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The ejection parameter éb (eq. (15)), which uses the boundary-
layer displacement thickness 0% (as Res*), becomes

-V
b,w 1378 o AL
Al T PR S e i

The velocity Vb,w is positive for fluid ejection with boundary-layer

flow and negative for the channels, according to the notation introduced
before. The minus sign is inserted in equation (20) in order to make
¢, positive for suction in all configurations. The value of <§b can

be calculated from the results in table V and is given therein.

To obtain a dimensionless parameter for the pressure drop ap{ax,

&% is substituted for x in the Euler number. From equation (19),

X = 8*'Re8*/B2

and, from equation (7),

B e o e O (21)

Hb = - B2 Eu (22)

a parameter that can be calculated from table V and is given therein.

The shear stress is given by equation (13c). Replacing x by 5"
results in

T Re ot
f" = b,w o) (23)
bW puf B
The dimensionless friction parameter (eq. (17)) is
T, = ZBfg,w (24)

and may be calculated from table IV; results are given in table V.
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Channel Flow

In order to obtain channel-flow parameters that are analogous to
those for boundary-layer flow, a velocity analogous to uy and a length

analogous to &* must be chosen. It is reasonable to use the maximum
velocity wu, in the channel cross section under consideration as the

characteristic velocity. An equivalent boundary-layer thickness &% for
channel flow can be obtained from the equation

Rl &

where the integral is extended from the wall under consideration to the
distance . where the maximum velocity occurs.

Fully porous duct. - For the fully porous duct, ®* is the same for
each surface, since the velocity profile is symmetric.

The ejection-rate parameter Red,w: which is used in tables I and
II, is converted by introducing 5% and upe This procedure yields

Reg v = T8% v ~ = &% Bege (26)
m

¥*
5. =t m (27)

The pressure drop in channel flow is determined by equation (11).
Introducing 5% and u, into this relation results in

(%) = 4A, (28)

2 2
=) 8= (%)
<_h_ i Ty ey (29)

DS
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The wall shear stress is given by equation (13). Replacing the
length x by 8% results in

7 Ty h Yy Regx

I R (30)
From this, the friction parameter
4:frr *
2w o
i = = F—L h—- {51)
2,m

which corresponds to equation (17) is obtained. The minus sign arises
from the fact that y; was measured in a direction opposite to the one

used for boundary-layer flow. The parameters 8*/h, ¢2, Hx,Z) and Tz
are calculable from information in table I.

Semiporous duct. - The semiporous duct has a different 8% for flow
along the solid and the porous surface, since wu, generally is not at

the center of the duct.

The pressure drop and wall-shear-stress parameters for the semi-
porous duct are given by equations (lla) and (13a). The parameters cor-
responding to equations (15), (16), and (17) may be obtained from these
relations and the definition of Red,w in the same manner as for the
fully porous channel:

8*
él,s > (T;)S Red,w,s

(32)
5*
@l;P G (E—) Red:W;P
T [ &¥%\2 1 5% \2
o [ e 22
1,Xx,s u, \ B /g fl,m s
(33)

W 52 & <6*>2
o 1 Bk (T) L e
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Zfi Wab {BF
g o
2 1,m s
(34)
L sz'i v <§>
el h
)p l,m P }

The sign in the equation for T is governed by the direction in which
¥y 1is measured. The preceding parameters may be calculated from values
in table II and are given in table V.

Porous tube. - An investigation to determine how &% should be de-
fined so as to correspond best to the boundary-layer-displacement thick-
ness showed that the tube-flow parameters agreed best with those for the
other geometries when equation (25) was used with y interpreted as the
radial distance from the tube wall (yw becomes equal to R).

The ejection rate is expressed in table III by the parameter Ret,w'

Introducing 5% and u, results in

m w R
Retw=———§-“=g€¥Re5* (55)

and the parameter corresponding to equation (15) is

8%
$y = =5 Beyy (36)

The characteristic parameter for the pressure drop is given by equation
(11b). Introducing &% and u; results in

op
6* 5— u 2
% ome (OR
Regx " = (g;;) = 8At (37)

By using equations (37) and (Sb) and dividing by 2, the pressure-
drop parameter II_ (eq. (16)) becomes

ZA‘t 5"“2
Ht,x T (TT) (s8)
t,m

sz,

o1
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where the division by 2 matches Ht,x with Hd,x for impermeable walls:
nt,x = fh’x when Re, = O.

From equation (13b) the parameter for the wall shear stress

f" *

AR 58 (39)
i R
t,m

which corresponds to equation (17) is obtained. These parameters may be
calculated from table III and are given in table V.

COMPARISON OF FLOW CHARACTERISTICS FOR BOUNDARY-LAYER
AND CHANNEL FLOW

Figures 3 to 5 present the results of calculations that converted
the various parameters used in the section SOLUTION OF THE DIFFERENTIAL
EQUATIONS to the ones developed in the section COMMON PARAMETERS FOR
BOUNDARY-ILAYER AND CHANNEL FLOW. Table V presents a summary of the di-
mensionless parameters for different geometries.

Pressure Gradient

The ejection-rate parameter ¢ is used as the abscissa in figure 3
because it has to be considered as the independent variable for boundary-
layer as well as for channel flow. The situation is different with re-
gard to the pressure-drop parameter [I,. The pressure drop is an inde-
pendent variable for boundary-layer flow impressed on the boundary layer
by the main stream. Correspondingly, a series of dashed curves using
the Euler number as parameter represents the boundary-layer flow in fig-
ure 3. For channel flow, however, the pressure drop is uniquely deter-
mined by the ejection~rate parameter, and only one curve appears in fig-
ure 3 for each geometry representing the duct with two porous walls, the
duct with one porous wall (considering the porous surface), and the tube.

A comparison of the curves for the various duct geometries (rig.
3(b)) reveals that the two curves for the ducts with one and two porous
walls are quite close together. This proximity indicates that, for these
duct-flow geometries, the pressure-drop parameter is almost the same func-
tion of the ejection-rate parameter. For boundary-layer fillow, elficentain
value of the Euler number that makes the pressure-drop parameter equal to
the one for duct flow exists for each ejection rate. For the solid sur-
face % = 0, this Euler number has a value of approximately O.l2. This
value increases with increasing ejection rate and has, for instance, at
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® = - 2,0 a value of approximately 0.4 for the semiporous duct, 0.2 for
the tube, and 0.5 for the fully porous duct, as may be interpreted from
figure 3(b). Too little information is available for suction on the
various geometries to make a detailed comparison, but, in a qualitative
way, the difference for the various geometries appears to be larger in
this range.

Shear Stress

The shear parameter T plotted over the ejection-rate parameter is
presented in figure 4. A series of dashed curves with the Euler number
as parameter again represents boundary-layer flow, and channel flow is
shown by single curves for each of the various geometries. In the suc-
tion range, no agreement exists between the various channel flows, even
in a qualitative way. The curves for the ducts with one and two porous
walls again agree quite well with each other in the ejection range; the
values for tube flow are somewhat higher. The shear-stress parameter
for zero ejection is identical for all channel geometries. Again, an
Euler number that makes the shear parameter for boundary-layer flow agree
‘with the values for the various channel flows can be determined for each
ejection rate (e.g., at & = -2.0, Eu = 0.3 for the semiporous duct,

Bu = 0,45 for the fully porous duct, and Eu > 1 for the tube) .

An inspection of figures 3(b) and 4 reveals that, for the two duct
flows, the Euler numbers obtained in this way are in extremely good agree-
ment. Thus, the friction parameters for duct flow and boundary-layer
flow are almost identical when the proper pressure gradient is chosen for
the boundary layer. The agreement is less good between the tube flow and
the boundary-layer flow. A comparison of figures 3(b) and 4 also reveals
that in both ducts a slight suction corresponding to approximately
® = 0,5 makes the pressure gradient vanish. The friction parameter
agrees very well with the one on a flat plate with constant velocity
outside the boundary layer. The agreement is slightly less for the fully
porous duct than for the semiporous one.

The shear-stress parameter was also calculated for the solid wall of
the duct with parallel walls. With fluid ejection at the porous wall,
the shear-stress parameter for the solid wall (not shown in fig. 4) takes
on values between 1.33 and 1.47, which are not too far from the value of
1.33 that is valid for all channel geometries and for zero ejection rate
(fig. 4). Table V(b) presents these shear-stress parameters for the
solid surface as a function of ejection or suction rate.

Velocity Profiles

In order to make a valid comparison of the velocity profiles, a
pressure-drop parameter was selected so that profiles were available for

8TS¥.
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each geometry with a pressure-drop parameter close to the selected one.
Figure 5 plots these profiles as the velocity ratio u/um over the di-
mensionless wall distance y/6*. The velocity profile for boundary-layer
flow was selected as that with an Euler number closest to the value that
would make the pressure-drop parameter of the boundary layer agree with
that of the channel.

The data of figure 5(a) are valid at zero ejection. In this case
the velocity profiles for all channel flows become identical in shape, and
the boundary-layer profile agrees quite closely with the channel profiles.
The agreement would be even better if a boundary-layer profile for a
pressure-drop parameter of -0.222 had been used for the comparison; such
a solution, however, is not available. Figures 5(b) and (c) show increas-
ing blowing rates, and figure 5(d) gives ejection rates that bring the
pressure-drop parameter close to zero. The various velocity profiles in
each figure agree very well with each other, and the differences from
one figure to the next also are remarkably small. Certain characteristic
trends exist for the various geometries. The tube-flow profile at higher
ejection rates is, for instance, fuller than the channel or the boundary-
layer profiles. This fullness also is reflected in the fact that the
shear-stress parameter for tube flow is higher than for the channel flows.
The boundary-layer profiles, on the other hand, approach the value
u/um = 1 more gradually than the channel-flow profiles.

Generally, the characteristics of two-dimensional laminar flow, as
indicated by the dimensionless shear-stress parameter and by the shape of
the velocity profiles, appear to be determined mainly by the ejection rate
and by the pressure drop in the flow. Whether the flow is unconfined as
in boundary layers or confined as in a duct is of minor importance. The
curvature of the bounding walls of the channel (i.e., whether the channel
is a tube or a duct) has a greater influence as can be seen from a com-
parison of duct or boundary-layer flow with tube flow. For larger ejec-
tion rates, even the influence of the ejection parameter on the shear
parameter and on the profile shape becomes quite small.

Applications

There are several areas of research in which these findings should
be useful, for instance, the development of a procedure based on the mo-
mentum integral equation and on the velocity profile shape established
in figures 5 and 6. Such a procedure should allow accurate calculations
of the flow in porous channels and over porous surfaces both with fluid
ejection and with the proper pressure gradient. These boundary-layer and
channel-flow relations should also be helpful in deciding what informa-
tion on boundary-layer flow can be obtained from experiments in channels
that are more amenable to experiment (ref. 15). In this connection, the




20 NACA TN 4102

influence of surface roughness and pore size (encountered in a fabri-
cated porous wall) is still an open question. It has been seen that, in
a duct with constant cross-sectional area in flow direction, only one of
the two parameters % and IIx can be adjusted at will. However, when
the duct is designed in such a way that the cross-sectional area can be
made to increase or decrease in flow direction, any pressure gradient
corresponding to a desired Euler number can be produced.

CONCILUSIONS

Solutions of the equations describing laminar steady flow through a
duct consisting of two parallel walls, flow through a tube with circular
cross section, and boundary-layer flow over a wedge with fluid ejection
and suction through the porous walls point out the following facts:

1. Common dimensionless parameters can be developed for all investi-
gated geometries by using a properly defined displacement thickness as
the reference length and the maximum velocity as the reference velocity.

2. Comparison of the various flow geometries on the basis of these
parameters indicated that the local flow conditions (velocity profile -
friction factor) depend primarily on the local pressure-drop and fluid-
ejection rates.

3. Under the conditions existing when both the pressure-drop and
fluid-ejection-rate parameters are matched for the different geometries:

(a) The confinement of the flow in a duct, or freedom in a boundary
layer, influences the flow only to a minor degree.

(b) Curvature of the surface normal to the flow direction has a
stronger effect on the flow than the effect of the factor listed under
(a), but not as strong as the effect of the local pressure-drop and
fluid-ejection rates.

4. The flow parameters for the condition where fluid is sucked away
from the stream through the porous surfaces cannot be investigated in the
same way as for fluid ejection because of insufficient information.
Qualitatively, the influence of the specific geometry on flow character-
istics appears to be stronger in suction than in ejection.

Lewis Flight Propulsion ILaboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, September 3, 1957

8TSY
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APPENDIX A

SYMBOLS

2l

constant of integration (egs. (5), (5a), (5b))

arbitrary exponents

dimensionless displacement thickness, S*A/Rex/k

Tw

i

friction coefficient,

et

P

|

Euler number :§§£é§§, iR const. (xEu)
Pup,

dimensionless stream function

first, second, and third derivatives of
(o) 1|

f with respect

channel height (shown in figs. 1(a) and (b))

interpolation constant (eqs. (C4))
static pressure

radius of tube

distance in normal flow direction for tube

main-flow Reynolds number using average
porous duct, 2u(x)h/v

main-flow Reynolds number using average
porous duct, 2u(x)h/v

main-flow Reynolds number using average
tube, 2u(x)R/v

main-flow Reynolds number using average
semiporous duct, 2u(0)h/v

main-flow Reynolds number using average
fully porous duct, 2u(0)n/v

velocity for semi-

velocity for fully

velocity for porous

inlet velocity for

inletivelocitytor
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Ret)o

Red,w

Ret,w
Reb,x

Rea*

Tk

o

NACA TN 4102
main-flow Reynolds number using average inlet velocity for
porous tube, EE(O)R/y
wall Reynolds number for porous duct, vwh/v
wall Reynolds number for porous tube, vy R/v
main-flow Reynolds number for wedge flow, umx/v
displacement Reynolds number, qmﬁ*/v
fluid velocity parallel to wall
fluid velocity normal to wall
distance in main-flow direction

distance in normal flow direction for all geometries except
the tube (see r)

2Eu

parameter EE_;—E

Ym
displacement thickness in channel or tube, ./. < - lL) dy
0 Uy

boundary-layer displacement thickness, ./g (l - il) dy

Um
dimensionless normal distance for wedge flow, yV/E;7V§
dimensionless normal distance for porous tube, (r/R)2
dimensionless normal distance for semiporous duct, y/h
dimensionless normal distance for fully porous duct, Zy/h

viscosity of fluid

kinematic viscosity of fluid, p/p

* {
pressure-gradient parameter, Rea* < szax

PUp

density of fluid
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Subscripts:

b

d

Tw

T
2 P'm

wall friction parameter, Regk

wall shear stress, p(ou/dy)y
wall shear stress for semiporous duct, Qﬁ(x)f{ w/h
2
wall shear stress for fully porous duct, Zpﬁ(x)f% W/h
£
wall shearvstress for wedge flow, uumq/Rexf;,w/x

wall shear stress for porous tube, zga(x)f% w/R
J

flow parameter, Re

v
v
e G0T

stream function

stream function for semiporous duct, hu(x)fj

s ol =
stream function for fully porous duct, Z u(x)fo
stream function for wedge flow, «/vxum Y

stream function for porous tube, Rzﬁ(x)ft

boundary layer or wedge
duct

maximum

porous wall

solid wall

porous tube

wall

x-direction
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i semiporous duct

2 fully porous duct

i[igs AT trial number

L] main stream outside boundary layer
Superscripts:

= average value

NACA TN 4102

denotes transformed dimensionless quantities (appendix B)

DERES;
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APPENDIX B

COMPARISON OF RESULTS WITH PREVIOUS INVESTIGATIONS

The following table compares the results of the present numerical
integrating techniques (five-point or Runge-Kutta formula) with those of
other techniques and with perturbation solutions. The comparison is made
for the fully porous duct and for the porous tube. The integration con-
stant A and the first and second derivatives of the tabulated function
f, £'(0) and f"(1), are given for different values of the wall Reynolds
number Rey for the fully porous duct and for the porous tube. As noted
by equations (9) and (13), £'(0) and f'"(1l) are related to the ratio of
maximum to average velocity and to the shear stress, respectively.

(a) Fully porous duct (b) Porous tube

Inves- |Refer- Ay £4(0) £4(1) Inves- |Refer-| Ay f%(O) f%(l)
tigator|ence tigator|ence
Red’w = - 20 Ret’w = - 10

Yuan® 16 |-26.723 1.51365 -2.6756| | Yuan® -7.4938 [0.8698|-1.2520

Berman 1K 1.538 (b) -7.4752 |.,.8467(-1.2052
(v) -- |-27.028¢ |1.5380 -2,6382

Ret,w =R
Red W a
) a
Yuan -2.3370 |0.9504(-1.0704
(a) -0,7031 1.4923 -3.095 (b) -2.3980 .9278(-1.1054
(b) -- -.7046 |1.4923 -3.0964
Re =1
Red,y = 40 i
Yuan® -0,20926|1.0709|-0.8926

Sellars®| 18 18.8916 |[1.0554 -21.108 (v) -.19095(1.0777| -.8823

Yuan@ 16 47.299 1.5994 -2.3634

Berman 1L 1.150 Rey = 2
(b) == 26.054991|1.1550783|-15.7047 4
(c) - 26.054991 (1.1550783|-15.7129| | Yuan® 0,6630 [1.1726(-0,7370

(p) 09807 [1.2907| -.5633
Red,w = 98
@Perturbation solution.

Sellars?® 18 47,958 15,0213 -50,042 b i ’

Yuan@ 16 118.853 1.5824 -2.4249| Ffresent report, five-point formula.
(b) == 53,313961|1.0430000|-16.7769| Present report, Runge-Kutta formula.
(v) e 53.313962|1.0430000| 94.4472
(c) ey 53.313961|1.0430000|-16.9776




26 NACA TN 410z

The results given for references 4, 5 and 16 (Yuan), and 18 (Sellars)
are calculated from equations obtained in the perturbation analyses per-
formed therein. The reference 17 results (Berman) are taken from a curve
given in that report, which gives values only for the ratio of the maxi-
mum to the average axial velocity for a series of ejection and suction
parameter values.

The table shows that the results for the fully porous duct at both
Red,w = - 20 and 2 agree well. As noted in reference 4, accurate per-

turbation solutions are limited to small values of Rey when the solu-
tion is perturbed about Rey = O. Similar reasoning holds for perturba-
tion solutions obtained for large values of Rey; that is, as Rey takes
on smaller values, such a solution becomes less accurate. Although
Sellars (ref. 18) noted that his approach may not be good unless

Red,w = 100, a value is included at Red,w = 40 for comparison purposes.
At both Req,y = 40 and 98, the results of reference 16 are much higher
than those of the other studies.

For the porous tube, the perturbation solution of Yuan (ref. 16)
at Rey ., = 10 yields good values not only for A, and f.(0) but also
2

for f§(1) (and, hence, friction, eq. (13b)). At the smaller values of

the agreement is fair at +2 but improves as Re approaches

Ret,w’ t,w

G e g, 1)

8TS¥
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APPENDIX C

MODIFICATIONS REQUIRED AND EFFECT OF STEP SIZE IN NUMERICAL SOLUTIONS
Duct

Since finding a solution of equation (5) for a large Reynolds

number Red & (>40) proved difficult, the following transformation was
2

made :
Let

Re L Re b Re S
np z<ﬂ> fpy £p = <—-—‘1Ll’> B, e = <—‘-1¢1’> i,

2 a 2

Substitution for f,, 7n,, and A, in equation (5) gives

2a+2b+1 (6] 3a+b
Re Re Re
d,w ~ o~ ~ 2 d w) ~ d,w ~
By W no_ e TS S S o 1
< = > (fzfz £} >+< DI A, ( 5 > 3 (€1)

By choosing a, b, and c¢ properly, the important terms in the differ-
ential equation can then be made the same order in Red’W (ref. 14, p.

11). Thus, if a = 1/2, b = - 1/2, and c = 1, equation (Cl) reduces to
B P8 - £22 + Ky = Fyn (c2)
where
Fp = (Reg,y/2) /2 ¢
fp =1}
- (Red’w/z)‘l/2 =

The boundary conditions associated with equation (C2) are then

Ny = 03 My = O3 f2 = 0; f% =0
(c3)
=10

~ 1/2 ~ AL/
T]g = 1; le (Red,w/z) / B fz = (Red,w/z) / ; fé
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Equation (C2) was solved for Reg,, = 98 on the IBM 650 computer by us-

ing the Runge-Kutta integrating method. The results are listed in table
I(j). This solution was then checked in the original total differential
equation (5b) by using the five-point integration formulas. Results are
shown in table I(h) and (i). In this particular case eight significant
figures were not sufficient to satisfy the boundary conditions. The
change caused by a difference of one in the eighth significant figure

can be seen in table I(h) and (i). A technique similar to that discussed
later for boundary-layer flow possibly could be used by starting at

n ~ 0.5. The Sellars solution of reference 18 also should be useful in
this region.

Tube

For the porous tube, two solutions were found at Ret,w = 2 and
at Ret,w = 10. Of the two solutions for Ret,w = 2, the one listed in

table III(e) (A, = 0.9087 and £{(1) = -0.5633) appears to fit better

with an extrapolation of the curve determined by the solutions for other
Ret,w values (fig. 7). The two solutions for Ret,w = 10 are far

away from any reasonable extrapolation of the curve obtained from the
other solutions, and u, is not at the center of the channel, as may be

seen from a study of table III(g) and (h). Although a considerable
amount of effort was expended, solutions to equation (5b) satisfying
equation (6b) for 2 < Rey,, <10 were not found. A possible explana-

tion for the lack of solutions in this range follows.

A pressure rise in main-flow direction is connected with the fluid
suction in channel flow when Rey 1is sufficiently high. (The pressure
increases in flow direction when A is positive, cf. egs. (11).) The
lack of solutions for the intermediate suction rates (o= Ret,W <10)

may be analogous to the difficulty encountered by Hartree (ref. 19) in
solving the boundary-layer equation near the separation point, which is
defined as the solution of the boundary-layer equation where fg(O) =0
oL, = 0 (eq. (13c)). In the porous-tuBe calculation, f%(l) is close
)
to zero for Rey . >2 (see fig. R
)

Similar trouble was encountered in the semiporous duct for
Req,w > 13. As may be seen in table II(e), (f), and (g), fi(O) is ap-
proaching zero in this region; that is, because of the suction at the
porous wall, the fluid is pulled away from the solid wall, and the shear
stress at the solid wall tends toward zero as separation at the solid
wall is imminent. No such difficulty was experienced for the fully
porous duct and, for all values of Reg y, £3(1) was far from zero

(table I(a), (b), and (c)).

8TS¥
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In the geometries where a numerical solution was difficult, there-
fore, the values of Re,, are such that the wall shear stress is close
to zero. This instability for channel flow possibly is analogous to
that discussed in reference 19 for separated boundary-layer flow. If
desired, Rey could be found such that f£§(1) or £{(1) = O, which would

be analogous to Hartree's finding of B = - 0.1988, yielding fg(o) =0

(ref. 19). Such a calculation was not pursued.

Attempts were made without success to find additional solutions of
equation (Sb) for Reth < 0. No attempt was made to find an additional

solution for Ret,y = 1.

Boundary lLayer

A few solutions in addition to those in references 13, 20, 21, 22,
and 23 for the wedge flow were obtained in a similar manner by using
punched cards on the IBM Card-Programmed Calculator. (These solutions
were found shortly after publication of ref. 13, at which time an IBM
650 computer was not available.) In these solutions (table IV), eight
significant figures for fg(o) were not sufficient to satisfy the bound-

ary condition fy(e) = 1. In fact, one fy(n) curve went above the pre-
scribed f'(=) condition and the other (having a fg(o) value that dif-

fered by only one in the eighth significant figure) went below it (£ig.
6). The method devised for interpolating between these two near-solutions
consisted of using, as a starting point for the final integration, inter-
polated values at some intermediate point (say my, = 4) where the differ-

ences between solutions are in, perhaps, the sixth place. Sample equa-
tions for the new starting values are

£ =1 AT
fy, = Kfy, 1+ (1 - K) fy, 11 at M, =4
T e 0 ~ ! =
£ = be,I+ (1 - K) beII at m =4
- (ca)
TR 1" i " =
£y = be,1+ (1 - K) fb’II at n, =4
Uty m = AL =
£ = be,1+ (1 - K) fb,II at m, 4/

By proper choice of K, the desired condition on fy(*) can be ap-
proximated closely enough. The effective fﬁ(O) would then be
ng,I(O) + (1 - K) fg,II(O), a number with more than eight significant
figures. Table IV gives only the interpolated values.
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Effect of Step Size on Solution
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A step-size check was made at the extreme wall Reynolds number for

each of the channel geometries.

was sufficiently small.

step-size checks:

In most cases, a step-size An = 0.025

(a) Fully porous duct

The following table shows the results of these

n m
Red,w fé(O) A, A, fz(l) fé(l) fz(l) £3 (1)
-20 1.5380 -27.0284 0.05 1.0000 0.000011 -2.6393 -0.6356
-20 1.5380 -27.0284 .025 | 1.0000 .000001 -2.6382 -.6464
20 | 1.3549 16.4780 .025 [ 1.0000 .000005| -5.9974 -43,496
20 1.3549 16.4770 .01 | 1.0000 .000003 -5.9989 -43.512
98 1.0430000| 53.313961| .01 . 71646 1759581 -16.7769 [-30037.447
98 1.0430000| 53.313962| .01 |1.2669 11.3912 94 .4472 | 24386.718
98 1.0430002| 53.313962| .005 .6461 -17.4837 -882.4353 |-42863.032
98 1.0430003| 53.313962| .005 |1.4064 17.9747 814.7355 | 40368.260
(b) Semiporous duct
n 1 " e
Red’w fl(O) Ay Any fl(l) fl(l) fl(l) £4 (1)
-20 |13.0038 -65.3486 0.025 |0.9999 -0.0002 -3.1067 -3.2192
-20 [13.0040 -65.0040 .01 1.0000 -.0001 -3.2420 -.5100
-20 |13.0039 -65.3486 .0025| 1.0000 .0000 -3.2418 -.5126
13 .0855 9.1350 .025 | 1.0000 .0000 -30.283 -384 .54
13 .0832 9.1406 .01 1.0000 .0000 -30.321 -385.04
(¢) Porous tube
n 1 " "
Ret,w ft(l) Ay An ft(O) ft(O) ft(O) n i (0)
-10 [-1.2052 -7.4750 0.05 0.000003 0.8466 -0.3116 0.0043
-10 [-1.2052 -7.4752 .025 | -.000004 .8467 -.3158 .0093
10 |-2.2940 3.3059 .05 | .000000 .4907 .8979 .0000
10 [-2.2940 53058 «025 .00000 4907 .8980 .0000
Step-size checks were also made for intermediate wall Reynolds
numbers. However, the greatest differences due to step size were at the

extreme wall Reynolds numbers; these are shown in the preceding tables.

A study of the table for the fully porous duct shows that the values
of fo and its derivatives at n =1 for Red,w = 98 are considerably

different for An = 0.01 and An = 0.005. Since the input values
(fé(O) and Az) changed very little, solutions at a smaller step size

were not attempted.
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NUMERICAL SOLUTIONS FOR POROUS TUBE

- Concluded.

TABLE III.
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was not at center of channel.

t,max

lcalculations for 5*/R were not made because
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NUMERICAL SOLUTIONS FOR POROUS WEDGE

- Concluded.

TABLE IV.

(e)

4518

Eu

fb,w = - 2.0

6% 4/Rex 1.8464
; b

fg(o) = 0.32446
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TABLE V. - SUMMARY OF DIMENSIONLESS PARAMETERS FOR THE DIFFERENT GEOMETRIES
(a) Fully porous channel
Re A £1(0) |(26%/n) L4 T T Additional
o e 2 e - £ 2 information
Refer-| Page or table*
ence
Ejection -20 |-27.028 1.5380(0.17489 | -3.4978|-2.1501|1.2000 Iéag
-10 |-14.870 1.5252| .17217 |-1.7217|-1.1560|1.2366 I(b
-4 -7.698 1,5199| .17102 -.6841| -.5926(1.2909 4 18
-2 -5.3303| 1.5066| .16814 -.3363| -.4001(1.3049 I(c)
0 -3 1.5000| .16667 0] -2 222211 .5534 4 18
Shction 2 | -0.7046| 1.4923|0.16494 | 0.3299(-0.0514|1.3689 1(a
10 7.9139| 1.4473| .15453 1.5453 <5225 16256 I(e
20 16.478 1.3549| .13097 2.6194 .8344(2.3189 I(f
40 26.055 1.1551] " . 06714 2.6856 .4067| 3.6513 I(e
98 53514 1.0430( .0206 2.019 .0868 Teh)E L)L or
J
(b) Semiporous channel
R A £"(0) |[(8*/n @ ™ T Additional
Ll i 1( ) /h)a ¥ o A information
Refer-| Page or table*
ence
Ejection| Porous| -20 |-65.350 [13.004 (0.2731 -5.462 (-3.1132|1.1310 II(a
solid 0 [-65.350 [13.004 .0882 0 -.3247|1.4652 II(a
porous| -10 |-38.103 [10.037 .2419 -2.419 |-1.4454(1.1555 II(b
solid 0 [-38.103 |10.037 .1099 0 -.2983(1.4301 TT(D
porous -8 |-32.655 9.3296| .2318 -1.854 |-1.1426(1.1688 II(c
solid 0 [-32.655 9.3296| .1167 0 -.2899(1.4192 LT
porous -4 |-21.947 7.7620| .2049 -.8196| -.6077|1.2225 Lfd
solid 0 [-21.947 7276201 .1356 (0] -.2661(1.3883 TL(d
porous -3 |-19.36 74356 .1965 -.5895| -.4948|1.2439 4 18
solid 0 (-19.36 7336 .1416 [0} -.257011.3752
porous -2 ([-16.82 6.900 .1870 -.3740| -.3905(1.2685
solid 0 |[-16.82 6.900 .1490 (0] -.2479|1.3653
porous -1 [-14.37 6.454 salirf e -.1772| -.3003|1.2996
solid 0 [-14.37 6.454 1573 0 -.2366|1.3513
porous 0 |-12 6 .1667 0 ~-.2222(1.3336
solid 0 |-12 6 .1667 0 -.2222(1.3336
Suction |Porous 1 -9.742 5042 101557 01557 =0.1575|01:3706 4 18
solid (6] -9.742 5.542 1774 0 -.2045|1.3113 4 18
porous 4 =3 7ol6 1" 4.1699] .1219 .4876 | -.0367|1.4843 II(e
solid 0 -3.7516| 4.1699| .2199 (0] -.1194|1.2072 II(e
porous 10 4.8506| 1.5982( .0703 3103 .013711.6138 TP
solid 0 4.8506| 1.5982| .3586 0 .3562| .6546 IT(e
porous 13 9.1350 +0855| .0551 QAls 10136/ 1.6258 II(g
solid 0 9.1350 .0855| .4577 0 .9323| 5813 II(g
(¢) Porous tube
Ret,w Ay £'(1) |(6%/R) ® Tt x 7 Additional
’ - 4 b 2 t information
Refer-|Page or table*
ence
Ejection -10 ~7.4751|-1.2052 [0.2589 -2.5894 |-1.1841(1.4744 III(a
-4 =3,.7023 [=1-1531 | .2838 -1.1352 | -.6683(1.4669 IITI(b
-2 -2.3980(-1.1054| .3014 -.6028 | -.4695|1.4364 III(e
0 -1 -1 B 1615) 0 =1, 22021135553 55 720, 521
Suction 1 -0.1910(-0.8823 (0.3627 -0.3627 |-0.0466(1.1878 III(d
2 .9807| -.5633| .4257 .8514 L2754 | .7432 IITI(e
2 4.5934| 1.1844 | .4210 .8420 .6097 | .7468 DT
10 3.3058(-2.2940 IIT(g
10 2.0666|-4.0122 ITT(h

* Roman numerals indicate tables in present report.
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TABLE V. - Continued. SUMMARY OF DIMENSIONLESS PARAMETERS FOR THE DIFFERENT GEOMETRIES
(d) Porous wedge
T Eu £2(0) | 5%A/Rex L &y Th, x T, Additional information
X Reference Page or table
Ejection|-4.3346 1¢@ 0.2300 2.5734 -11.1547 -6.6224 | 1.1838 23 63
-3.1905 150 .3106 1.9585 -6.2486 -3.8357 | 1.2166 23 63
-3 1l50) .32945 1.8581 -5.5743 -3.4525 | 1.2243 This report IV(b
-2 -5 .32446 1.8464 -2.7696 -1.70460| 1.1982 IV(e
-2 150 .47581 1.3616 -2.7232 -1.8540 | 1.2957 l IV(a
-1.4618 CLTATR 15116 2.8911 -2.3479 -.92871| .8740 22 12
-1.23849( O (0] 19.29038 -11.9455 (0] 21
-1.2 (0] .0033575 7.85212 -4.7113 (0] 052727 21
-1.198 1750 .6864 1.0180 -1.2196 -1.0363 |1.3975 23 63
-1.15 0 .00965 6.25417 -3.5961 .12071 21
-1.10 (o] .01728 5.40261 -2.9714 (] .18671 21
-1.05 [¢] .0259575 4.82483 -2.5330 [0} .25048 21
-1.0 -.0072 |0 6.398 -3.1760 .2947 | O 20 39!
(0] 0355175 4.39079 -2.1954 (0] .31190 13,21,23 18,%,46
<05 .1410 2.796 -1.4679 -.3909 .7885 20 41
LS .2703 2.008 -1.1546 -.6048 |1.0885 20 42
B .5345 1.260 -.945 -.7938 |1.3469 13 19
1.0 7565 .945 -.945 -.8930 [1.4298 13 20
-.95 0 .04586 4.04534 -1.9215 [¢] .37104 21
-.9382 LR 2597 2.1452 -1.1181 -.51132|1.0258 22 12
-.90 (0] .056895 3.76021 -1.6921 (0] .42787 27!
-.85 (0] .0685675 3.51861 -1.4954 o] .48252 21
-.80 (0] .080820 3.30988 -1.3240 (6] .53501 21
-.75 0 .0936125 3.12695 -1.1726 (o] .58544 21,23 %, 46
-.70 0 .1069050 2.96469 -1.0376 0 .63388 21
-.65 0 .1206675 2.81935 -.91629 0 .68041
-.60 (0] .1348700 2.68814 -.80644 (] 212510
-.55 (0] .149485 2.56880 -.70642 (] « 16799,
-.5 -.0418 (O 4.272 -1.0234 .7628 |0 20 28
(0] .16449 2.4599 -.61498 (6] .80926 13,20,21,23 15,21, *%,46
(3E5) .6974 1.034 -.3878 -.5346 |1.4422 15 16
aLAs) .9692 .7805 -.3902 -.6092 (1.5129 13! 17
-.4643 .11111| - .3602 1.6602 -.4282 -.30625|1.1960 22 12
-.45 (0] .1798650 2.35976 -.53095 0 .84888 21
-.40 (o] .1955875 2.26737 -.45347 (o] .88694
-.35 (o] .2116425 2.0.8177 -.38181 (o] +92351
-.30 (0] .2280125 2.10220 -.31533 (0] .95866
-.25 (o] .2446800 2.02802 -.25350 (o] .99243
-.20 (o] .2616350 1.95866 -.195866 | O 1.0249
-.15 (0] .2788625 1.89364 -.14202 0 1.0561
-.1107 150 nlsakzil .6763 -.07487 -.4574 |1.5819 2% 63
-.10 (0] .2963500 1.83255 -.091627 | O 1.0862 21
-.05 (o] .314085 1.77503 -.044375| O LE1150: ¢l
Solid [0} -0.0904 |O 34977 0 1.1059 |0 13,19,24 11,237,229
-.0868 .0581 2.9702 .7658 .3451
-.0826 .0870 2.7628 .6305 .4807
-.0741 .1296 2.5097 .4667 .6505 12,237,29
-.0654 .1637 2.3358 .3568 L7647
-.0476 .2202 2.0919 .2083 +9213
+5321 17207 0o 1.1429 19,2021 ,23 || 12, 23T, 1550k, 46
05263 | .4259 1.4891 -.1167 (1.2684 19,24 237,29
1T12961 05120 18035199 =.1936 |1.3516 19,22,24 237,12,29
.1765 .5942 1.1876 -.2489 [1.4113 19,24 237,29,
.25 .6753 1.0785 -.2908 |1.4566
- 33333 | . T57S .9851 -.3234 |1.4924
4286 .8418 .9037 -.3500 |1.5215

*Pages in tables of ref. 21

are not numbered.
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TABLE V. - Concluded. SUMMARY OF DIMENSIONLESS PARAMETERS FOR THE DIFFERENT GEOMETRIES

(d) Concluded. Porous wedge

Ty Eu £p(0) 5*«/?6}'5 " &y Ty Ty Additional information
2 Reference Page
Solid | O 0.05 |0.8998 0.854 0 -0.3647 |1.5370 20,23 13,14
.6667 |1.0225 . 7654 -.3906 |1.5652 19,24 231,29
1.0 1.2326 .6479 -.4198 |1.5972 13,19,20,21,23 14,237,15,%,46
15 1.4937 .5427 -.4418 |1.6213 19,24 237,29
4 2.4049 .3440 -.4733 |1.6546 i i
= = 0
Suction| 0.05 0 0.3502575| 1.66951 |0.041737 | O 1.1695 el
il .3686725| 1.62098 | .081049 1.1952
15 .3872975| 1.57498 | .11812 1.2200
.2 .4061200| 1.53129 .15313 1.2438
.25 .4251350| 1.48977 .18622 1.2667
-3 .444335 | 1.45025 | .21754 1.2888
.35 .4637100| 1.41257 .24720 1.3100°
4 .4832525| 1.37664 | .27533 1.3305
.45 .502960 | 1.34231 .30202 1.3503
:5 .5228225| 1.30949 32757 I |1.3693 21,23 * ,46
'5 1.0 1.5418 .5419 .2710 -.2937 [1.6710 23 63
.5005 .11111| .7030 1.0612 .2951 -.12513|1.4920 22 12
.6 0 .562995 | 1.24801 .37440 0 1.4052 21
o7 .603725 | 1.19151 .41703 1.4387
.8 .644970 | 1.13945 | .45578 1.4698
-9 .686695 | 1.09130 | .49108 1.4988
1.0 .7288675| 1.04667 | .52334 1.5258 21,23 *,46
1.095 1.0 1.9550 . 4440 .4862 -.1971 |1.7360 23 63
1.1 0 .771455 | 1.00521 .55286 0 1.5509 21
1,2 .814430 .96658 | .57995 1.5744
1.5 .8577600|  .93056 .60486 1.5964
1.4 .9014350|  .89682 | .62777 1.6168
1.5 .9454205|  .86523 .64892 1.6360 211,85 %, 46
1.6828 11231 (12871 .6967 -6515 -.05393]1.7098 22 12
1.9265 | 1.0 2.6080 .3485 6714 -.1215 |1.8178 23 83
2.0 0 1.169425| .73335 | .73335 0 |78 21
2.5 0 1.398825|  .63380 . 79225 0 1.7732 21
2.664 1.0 3.2400 .2900 . 7726 -.0841 [1.8792 23 63
3.0 0 1.632225|  .55640 | .83460 0 1.8163 21,28 *,46
5:¢ 211111 231352 .4363 .8484 -.02115|1.8614 22 12
4.0 0 2.107400 |  .44470 | .88940 0 1.8743 21
5.0 l 2.58990 .36869 .92172 l 1.9097 21,25 46
6.0 3.077075|  .31403 -94209 1.9326 21
6.4139 .11111| 3.6794 .2640 .9407 -.00774 |1.9427 22 12
10.0 0 5.048525( .19530 | .97650 0 1.9720 21

20T% NI VOVN

*Pages in tables of ref. 21 are not numbered.
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(c) Porous tube. (@) Boundary layer on porous wedge.

20Ty NL VOVN

Figure 1. - Geometries of various flow configurations.
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Figure 2. - Representative solution of appropriate equation (7).
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Figure 2. - Concluded. Representative solutioh of appropriate equation (7).
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Dimensionless pressure gradient, II
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Figure 3. - Dimensionless pressure gradients and flow parameters for various geometries.
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Dimensionless pressure gradient, 3
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Figure 3. - Concluded. Dimensionless pressure gradients and flow parameters for various geometries.
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Dimensionless friction parameter,
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Figure 4. - Wall friction for various geometries.
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Velocity ratio, u/um
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Figure 5. - Velocity distribution for various geometries.
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Velocity ratio, u/uy
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(b) Flow parameter ¢, =-0.4; pressure-drop parameter I'Ix, =-0.45.

Figure 5. - Continued. Velocity distribution for various geometries.
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Figure 5. - Concluded. Velocity distribution for various geometries.

Gs



56

1.01

1.00

<99

.98

u/u
m

kel

f'
b

.96

Function,

.94

.93

.92

NACA TN 4102
T
fb(lo)
|
| —o.32045313

|

/% .3294531282

/// \\ .32945312
/ :
4.0 4.8 EE Bl4 7.2 8.0 8.8

Dimensionless distance, T
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Figure 7. - Numerical results for porous tube.
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