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TECHNICAL NOTE 4105

A METHOD OF COMPUTING THE TRANSIENT TEMPERATURE OF THICK
WALLS FROM ARBITRARY VARTATION OF ADIABATIC-WALL
TEMPERATURE AND HEAT-TRANSFER COEFFICIENT

By P. R. Hill
SUMMARY

A method of calculaeting the temperature of thick walls has been
developed in which are used relatively new concepts, such as the time
series and the response to a unit triangle variation of surface temper-
ature, together with essentially stenderd formulas for transient tem-
perature and heat flow into thick walls. The method can be used without
knowledge of the mathematical tools of its development. The method is
particularly suitable for determining the wall temperature in one-
dimensional thermal problems in aseronautics where there is a continuous
variation of the heat-transfer coefficient and sdisbatic-waell tempera-
ture. The method also offers a convenient means for solving the inverse
problem of determining the heat-flow history when temperature history is
known.

A series of diversified problems were solved by exact analysis as
well as by the new method. A comparison of the results shows the new
method to be accurate. The labor involved is very modest in considera-
tion of the nature of the thick-wall temperature problem. Limiting
solutions for the "infinitely thick" wall and for walls so thin that
thermal lag can be neglected were salso obtalned.

INTRODUCTION -

In aeronsutical applications, external surfaces are heated by the:
impact and friection of the air. For cases in which the structural tem-
peraturee never reach equilibrium, the transient temperatures of the
surfaces of'ten govern the design; and it is necessary to be able to pre-
dict these temperatures.

Literature on transient temperatures in thick walls dates from the
classical works of Fourier. Perhsps the most extensive work om the
subject is given in reference 1. Most literature giving the solution to
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the translient temperatures in thick walls 1s based on the premise that
the temperature history of one or more principal surfaces is known or
given. Only a limited amount of lliterature 1s available relative to
transient temperatures in thick walls under the Iinfluence of forced
convection. The forced-convection equation for heat transfer in aero-
nautical applications is q = h(Tgy - T), which states thet the rate of
heating q is proportional to the difference between the adisbatic-wall
temperature Taw and the wall temperature T. The coefficient of pro-

portionallty is the heat-transfer coefficient h. In the classical
problem of the convection heating of a thick wall, h has been assumed
to be .constant. In the usual aeronautical application, the fact that h
varies with time 1s the source of the difficulty in obtaining a solution.

The thick-wall case treated in thls paper is the one governed by
Fourier's classlcal partial differential equation

A _y T
ot 3x2

In the case governed by this equation, the wall 1s composed of a homo-
geneous material and the temperature gradients and heat flow parallel to
the surface are negligible. 1In one boundary relation for this case, the
convective heat rate 1s equated to the heat absorbed by the wall or to
the product of the conductivity and the temperature gradient in the weall
at the heated surface; that is,

B(Tay - T) = K(%)w

Since h occurs as & product with T in this boundary equation, the
usual procedures of operational calculus do not apply. When solutions
for the temperatures of thick walls have been necessary in aeronautical
work, the method generally used has been to divide the thick wall into a
number of slabs in order to make & step-by-step numerical integration of
Fourler's equation of heat flow. Since steps in both distance and time
must be teken, the procedure i1s tedious and time consuming unless the
use of a high-speed automatic computing machine is resorted to. If it
is necessary to do the work without the use of such equipment, a method
introduced by Schmidt (ref. 2) wherein some of the calculations are
accomplished grasphically may be used to reduce the labor to some extent.
This method is known as the Sclmidt plot method.
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In the present paper a simple method is developed for the calcula-
tion of the temperature history of the surfaces of a thick wall or of
any plane within the wall. The procedure is to select from a table a
set of coefficients which depend on the physical properties of the wall.
These coefficients and other data are substituted into expliclt algebraic
formulas to determine the temperature of the heated wall surface. If the
heat-transfer coefficients are known, no guess or iteration procedure is
required. As can be seen by the results of the example problems presented,
the accuracy can be as good as is desired. For equal time-step sizes, the
method is more accurate than more laborious numerical methods.

The simplicity of the results depends on two factors: One is the
suppression of the variable x representing the distance into the wall by
using an Integrated form of Fourier's equation and assigning a value of x
corresponding to the heated surface. The other is a mathematical device
known as the time series introduced by Tustin (ref. 3). The time series
1s defined in appendix A. Reference 3 also introduced various manipulas-
tlons of the serles. The multiplication of two series is an important
menipulation by means of which specific results can be generalized. Other
writers (ref. 4, for example) bhave also presented various manipulastions of
the series,

The present paper 1s divided into two parts, analysis and spplicsation.
The section on analysis includes a treatment of the determinstion of the
temperature history for the special cases of the thermally thin wall and
the infinitely thick waell as well as for the wall of intermediate thickness.
The inverse problem of determining the heat flow corresponding to a known
temperature history is also discussed. Although the method was set up for
the purpose of predicting wall temperatures in engineering applications, it
has also been found to be suitable for research spplications wherein the
transient skin tempereture is meassured and the heat-flow and heat-transfer-
coefficient histories are deduced. Appendix A gives background material
perteining to the use of time series that may be an aid to a study of the
analysis. Appendix B gives a summary of anmalytical temperature and hest-
flow formules used either as a basis of analysis or used in the solution
of examples to test the accuracy of the present method. In the section on
spplication the computing formulas are reviewed and several examples of
thelr use are given. DBecause of the explicit nature of the temperature
formulas, it is not necessary to study the analysis to use the results:

SYMBOLS

Agy Ay, Any o o o A dimensionless coefficients to determine heated-
surface temperature history

b slop7 of wall surface temperature with respect to time,
OF/hr
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. By dimensionless coefficients to determine insilde-
wall temperature history
specific heat, Btu/lb-CF
bage of natural logarithms
any function corresponding to reference slope ¥y = (l/5)t

any function corresponding to erbitrary.control line
vy = y(t)

any function corresponding to unit triangle control line
heat capacity of wall, pcl, Btu/(sq £t)(°F)

heet-transfer coefficient at_ x = 0, Btu/(hr)(sq ££)(°F)

heat-tranafer coefficient at x

1, Btu/(br)(sq £t)(°F)
heat-transfer number, hdn2/16G

heat-transfer number for infinitely thick wall, BhJEESVBK
diffusivity, K/cp, sq f£t/hr

conductivity, (Btu)(ft)/(hr)(sq £t)(°F)

wall thickness, ft

memory coefficients, dimensionless

term designating time in multiples of basic interval 3
term number in infinite series

instantaneous heat-transfer rate due to uniform tempera-
ture rise of heated wall surface of 1° in time 3B,
Btu/(br)(sq £t)

average heat-transfer rate from time (m - 1) to md
due to uniform temperature rise of heated wall surface
of 1° in time &, Btu/(hr)(sq ft)
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T

T1, Tps T3y o« « Ty

I

T&W

heat-transfer rate corresponding to unit triangle variation
of surface temperature .

average heat-transfer rate from time (m - 1)8 to md due
to unit triangle reference temperature variation of
heated-wall surface, Btu/(hr)(sq ft)

heat-flow history at heated surface due to unit temperature
step of heated surface

radiation rate, Btu/(hr)(sq £t)
radiation term, r&x2/16G, OF

rediation term for infinitely thick wall, 3R[xk5/8K, °F
time, hr

heated-wall-surface temperature, COF

T expressed as time series, OF

value of step in wall-surface temperature, oF

adisbatic-wall temperature or effective boundary-leyer
temperature, °OF

temperature of inside (unheated) surfaece or of any plane
within wall, °F

temperature response to unit step in T, °F

distance through wall, £t
ordinate of control line or altitude of triangle

positive roots of auxiliary equation in snalytical
solution of wall temperature .

basic time interval in time series

ratio of heat-transfer coefficient at cooler wall surface
to heat-transfer coefficient at heated wall surface

difference in temperature between heated surface and any
other plane due to unit triangle veriation of heated
surface, °F



6 NACA TN 4105

0y difference in temperature between heated surface and any
other plane due to uniform reference-temperature rise
of 1° in time &, °F

o weight density, 1b/cu £t

T dumy time varieble, hr

A prime denotes the derivative with respect to time.
ANALYSIS
TEMPERATURES ON OUTSIDE SURFACE

Problem

The wall considered in this paper is composed of a homogeneous
material, and the temperature gradients and heat flow parallel to the
surface are negligible. The transient temperatures of the heated or
outside surface of the wall are determined by means of Fourler's equa-
tion which governs the heat flow through the wall:

or _ g RT (1)
% o2 :

The wall properties expressed by the diffusivity k are constant. The
boundary conditions are given by the statements that the flow of heat at
the unheated face of the wall (where x 1s taken as zero) is zero, that
is,

. (S—E)ko =0 (2)

and that the heat transferred to the heated face is given by the relation

h(Tgy - T) = K(IT/3x), (3)
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For convenience, the initial temperature is taken as zero at zero time:
T =0 (t =0) (&)

Since both h and T are functions of t and occur as a product in

equation (3), the transform procedures of operational calculus do not
apply. The problem may be stated in another form by means of an integral
equation expressing the heat balance at the heated surface.

Let qs(t) be the heat-flow history at the heated wall surface at

x =1 due to a unit step in that wall-surface temperature at t = O.
Then the heat flow g(t) due to e temperature history T(t) of the
heated surface that is continuous and is zero when t = 0, but is other-
wise an arbitrary variation, can be expressed by Duhamel's lntegral in
the form indicated in equation (5). In this integral T' represents

é% T(t) and 7T is a dummy time varisble.

T
a(t) £ ' (¢ - T)q,(7)ar (5)

A hest balance is formed at x =1 by equating the integral in equa-
tion (5) to the left member of the boundary condition expressed by
equation (3): :

t
h(Tgy - T) =£ Tt(t - T)qs(T)dT (6)

The determination of T from equation (6) esteblishes the solution.

Method

The wall temperature T 1s determined, In general, from equation (6)
for thermally thin, thick, and infinitely thick walls. The method first
discussed is based on thick walls, and modifications of this method
are introduced for the special cases of thermally thin and infinitely
thick walls.



8 NACA TN 4105

Thermally thick walls.-

Time series: In the calculation of wall temperature T for thick
walls, the right member of equation (6) is replaced by the product of
two time series. As explained in detail in appendix A, a time series
is the value (here the ordinate) of a function of time at successive
equal increments of time ©®. Thus, any veriation of wall surface tem-
perature can be expressed as the series

T =Tl, Te, T3, * s T.III. (7)

When a wall surface has a unit triangle variation of surface temperature,
the surface temperature increases from O° at a constant rate to a value
of 1° at the time t = 5 and decreases at a constant rate to the value
0° at t = 25. The heat flow corresponding to & unit triangle variation
of surface temperature can be expressed by the series

qA = q.A,l‘J qA’21 qA,3, L S qA,m (8)

The product of equations (7) and (8) gives the instantaneous velues of
heat flow due to the temperature veriation given by equation (7) and
could be uBed to eliminate the Integral in equation (6). However, a
slight varlation or refinement of the method is introduced which has
been found to increase the accuracy of the results without increasing
the labor involved., '

If m represents the term number of a time series, the product md
represents the corresponding time. The refinement consists in averaging
the heat flow from the time (m - 1)8 +to the time md. ILet QA,m

represent the average heat flow over this interval due to a triangular
veriation in surface temperature. Then the heat-flow history due to the
triangular temperature varlation can be represented by the series

q'A = q'A,l’ qA,z’ qA,B, I qA,m (9)

where QA 1 is the average for the time O to &, QA 5 is the average
)
for time B +to 28, and so forth. ’
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The heat-flow history expressed as the average heat flow over
successive increments &, but due to the temperature variation (7), is
given by the product of equations (7) and (9):

= (T T2 5 - v To)(@a,00 B2 T30 - - dam) (20

Such a multiplication actually gives the result by forming the proper
superpositions, as demonstrated in appendix A.

In order to adjust the boundary condition expressed by equation (3)
or the left side of equation (6) to represent an average flow of heat a,

over the interval &, the average flow of heat from the boundary layer is
approximated by the mean of the values at the beglnning and end of the
intervael. Thus, for the interval ending at t =md, q, has the value

G = %E”m(TaW = Op * bp-1 (Taw - T)m_]] (11)

If radistion is importemt to the problem, it may be included. Let

r, Dbe the rate of heat radiation per unit area at the time md. Equa-

tion (11) may then be written
o, _ _
9m = 'é'[_;]m(T&W - Pp = Tm + By 1 (Tawr - -1 - rm-]:I (11a)

With or without radiation, the heating history, or variation of g,
may be expressed by the serles

i=il,§2:i5,---§m (12)

wherein each term has the value given by equation (11) or (lla). Equating
the average heat flow given by equation (12) to that given by equation (10)
yields

415 s q§;- « . Gy = (Tl; T2; TB" .. Tm)(qA,l’ q‘A,Q’ iA;E" o . qA,m)

(13)
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In order to evaluate equation (13), the product in the right-hand
member is expanded by algebraic multiplication and values of both mem-

bers of the equation pertalning to equal time are equated. The following

set of equations results (for simplicity, the radiation terms are not
written in):

%Ell(Taw - T)]_ + hO(Taw - T)O] quA,l -

%Elg('l'aw - T)2 + hl(T&W - T)]J

%‘E’m(Taw - T)m + by (Ta.w - T)m_];] = Tpdp,1 + Tn-18p,0+ « - -+ TidAm

s

Todp,1 + Tipe > (1)

Equations (14) can be rearranged to obtain the equivalent equations for T:

\
o - PTaw,1 * PoTaw,0 T T

L = ) . .

23a,1 + Py b
T + hy T, - T - 2043 : :
To = hoTem,2 + By aw,1 - M7L 197,2 , (15)
23p,1 * B2
. - (hTaw)m + (h‘I‘aw - BT) . - 2(%,2%_1 T INE NPT +§A,mTl)
2qp,1 + by J

The values of ch,m must be derived.

Determination of average heat flow due to unit trlangle varilation

of gurface temperature: In order to obtain the average heat flow due to
a unit triangle variation of surface temperature, the average heat-flow
rate ﬁm due to & uniform increase in the surface temperature of 1° in

each unit time & must be obtained. The average 1s taken over the

time © Dby integrating the instantaneous heat-flow rate from t = (m - 1)8

to t =md and dividing by . This determination is carried out in
appendix B. The result is
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Gy = S by - ) (16)
%25 8
In equation (16), A, end Ay, ; are the sumations

2 72 k8
-m(2n-1) =9
e §r-12

n=1 x2 k5 o1y
I 12(2]1 1)

Am=

> (17)
_ -(@1)(2a1)2 12 ko
Apg =2 & > -

n=1 %r_%g(an _ 1)4

and G 4is the heat capacity of the wall per square foot per °F and is
the product of weight density, specifiec heat, and wall thickness:

G = pcl (18)

The average heat flow due to & unit triengle veriation of surface
temperature QA,m is obtained by the superposition of the heat flows

d due to three linear variations of wall temperature as follows (for
further details, see the development of equation (Al) in sppendix A):

Ga,m = G - 29p-1 + %mp (19)
Expanding equation (19) by substituting for q, from equation (16) glves

o 22 ) -+ A -2+ (B -]

28

(20)
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Substituting in equation (20) successive values of m, starting with
m =1, ignoring eny terms wilth negative subscripts, and collecting terms
result in the followlng equatlons:

a1 = j%%(%g+ A - Ao)

§A,2=f'2G—5(""ga‘+A2'3A1+2Ao)

> (21)
da,3 = ;Q%(AB" 3hp + 3A1 - Ao)

9A,m = :r25 (Am Shp-y + 3Bpp - Am-}))

For convenlence, the quantitlies in parentheses can be tabulated. The
quantities in parentheses usually retain significant values after the
completlon of the temperature triangle which created them. For this
reason, in accordance with the notation of reference 3, they are called
memory terms and are designated by the symbol M. With this notation,

equations (21) become

- 8a¢
1= 5 M
Gip o = 28
2 228

> ’ (21a)

Gh o = B& '
0,3 7 7°5 '
- 8G
q = ea—
A’m 1t28 }

Hence, the following equations for memory terms are established:
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Ml=“8-—2+Al-AO

M = - B4 By - 3y + 2l

M3=A3—3A2+5A1-A0

Mp = Ay - 3Ay 3 + 38p.0 - Ap 3

Obviocusly, the velues of M are combinations of the values of A.
However, as is explained in greater detail in the sectlon entitled
"Application," it is usually not necessary to calculate the values of
A and M since the values of M 1listed in table I may be used. The
value of M decreases with increasing term number and sooner or leater
further terms can be neglected.

Resulting temperature formﬁlas: Equations (2la) give the value of
d, , sought to complete equations (15); therefore, equations (2la) are
2

substituted into equations (15). The result can be simplified by
dividing through by 16G/x26 and letting

h

H =
lng
n28

If rediation 1s important, the sppropriate terms are included by using
equation (1le) rather than equation (11). Since equations (15) are
being divided through by 16G ﬁ25, the radiation term R is defined as

r
"~ 7iee
)

With the substitutions of equations (23) and (2%) in equations (15),
the finsl results, including terms for radlation, are

(23)

(24)
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1 = H Taw,1 + HoTgy,0 - R - Ro
Ml + Hl -
T, - HoTaw,2 + HiTgy 1 - 1Ty - MpTy - By - Ry { (25)
TN "
r o (Fe)n + (Fow - M)y - MoTud - MsTup- - - =Ty - By - Ru
M+ Hy )

Infinltely thick walls.-

General consliderations: If a wall 1s thermally very thick and is
heated repidly so that the unheated side experiences little heating, it
is convenient and accurate to assume that the wall ls infinitely thick.
The same formulas, equations (25), are used to compute the wall surface
temperature. However, ingtead of the values of M for a particuler .
wall or diffusion number, the values of M which are used are always a
fixed set of numbers which are now derived, The values of H and R
are also changed. -

Determinetion of average heat flow due to unit trlangle variation
of surface temperature: The determination of the heat flow due to a
unit triangle variatlon of surface temperature of an infinitely thick
wall depends upon the instantaneous heat flow into the surface due to a
unilt rise in surface temperature in unit time. From page 110 of' ref-
erence 4, the instantaneous heat flow is equivalent to 2K/T/Vrk. Since
the heat-flow rate is proportlonal to the surface-temperature slope, the
instentaneous heat transfer due to unit rise of surface temperature in
the time & is 2K/T/8/nk. This expression is integrated with respect
to t between the limits (m - 1) and md. Dividing by & gives,
for the averasge heat-flow rate §m over the interval & terminating

at md,

5 - K | 3/2_ _1)3/2 6
Ay s (m - 1) ] (26)

The usual superposition required to change the result of the slope func-
tion to that of the unit triangle input function is accomplished by sub-
stituting equation (26) into equation (19): -
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Tyn = —E[w3/2 - 302 - 1)3/2 4 3(n - 2)3/2 - (@ - 3)5/2] (27)

3,/ k8

Resulting temperature formulas.- If the bracketed quantity in equa-
tion (27) is designated as the memory coefficient My, then

M, = En3/2 - 3(m - 1)3/2 + 3(m - 2)5/2 - (m - 5)5/2] (28)

A dimensionless heat-transfer coefficient (suggested by eq. (27)) is
defined as

H, = 233[5%5{ (29)

8K

and a corresponding term for ra.éiation 1s defined as

R, = éféggé (30)

The substitution of equation (27) into equations (15) egain results in
equations (25). Hence, equations (25) are used to obtain the heated-
surface temperature of the infinitely thick wall as well as of walls of
intermediete thickness, except that M, H, end R for infinitely thick
walls are defined by equations (28) to (30). Imspection of equations (28)
to (30) indlcates that the wall material properties and time-step size are
expressed by equations (29) and (30) , while the memory terms are invariant
with wall properties or step size. Substituting successive integers for
m from 1 to 20 into equation (28) gives the following corresponding
values of M:

M; = 1.0 Mg
Mp = -0.1T15T3 M
Mz = -0.289129 Mg

-0.006807\

-0.040234 My, = -0.01287h M

-0.029536 My, = -0.011069 My7 = -0.006157

-0.022885 Mz = -0.009650 Mg = '0'0056°5T (31)

M, = -0.103176 My = -0.018k12 My = -0.008511 Mg = -0.005130

My = -0.059630 M;q = -0.015232 M5 = -0.007580  Myq

-0.00k719
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These values of M, along with values of H_ and Re from equa-

tions (29) and (30), can be used in all problems wherein the wall is so
thick relative to the heating rates and times involved that the wall
behaves as though it were infinitely thick.

Thin walls.- When a wall is thermally thin, the temperature drop
through the wall becomes negligible and the problem is simplified by
essuming that all interior temperatures are equal to the surface tem-
perature. The heat absorbed by the wall during any time interval B
must be equal to the gain in enthalpy or total heat during this time.
Hence,

Gy = (Gme - Gm-le-l) (32)

o -

Equating the average rate of gain jin enthelpy as given by equation (32)
to the average rate of heat transfer through the boundary layer as given
by equétion (1ls) results in the following heat balance:

hm(Taw - T)m - Tm + hm-l(Taw - T)m-l" r’m-1 = %EGT)m - (GT)m—J;l (33)

Solving for T, gives _ L . . Sl

2 \
7 thaw,l + hOTa.w,O - hoTp + 5 GoTo - 1 - To
l — -
20y + by
5
2
g o 2law,2 * PaTey,y - BTy + 5 OT -7 -0 ! (3)
2 =
2
S G +h
B Taw m + (hf.l?ELW - 1T + % G‘I') !
= m-—
T, = 5
' B Cn + B J
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Any variation of G wlth temperature 1s accounted for by equa-
tions (34). If the wall properties do not change over the temperature
range covered, obviously, G 1s a constant. If G 1s considered to be
constant, equations (34) can be derived from equations (25) as follows:
As the diffusion number k5/12 becomes large, all values of A approach
the value n2/8, and from equations (22) it is seen that the only memory
terms not identically equal to zeroc are M; and My, which have the

values =2/8 and -n2/8. Eliminating M from equations (25) and uti-
lizing definitions (23) and (24) yield equations (34).

In equations (34) the terms hg, Taw,0, 80d T have been
retained since, unlike the thick-wall problem, it is here convenlent for
To to have any value. These equations have considerable advantage since

the need for temperature extrapolation i1s reduced, if not eliminated. The
equations tend to give accurate results and, as is shown subsequently, are
gsultable for the use of relatively large time increments.

INSIDE TEMPERATURES

If the heated wall surface is called the outside surface, the temper-
atures at other parsllel planes may be called inside temperatures. In
particular, this paper is concerned with the inside surface temperature.
According to the notation used in this paper, the inside surface is desig-
nated by x/l = 0, the outside surface by x/l = 1, and other planes by
values of x/1 between O and 1.

Consider & wall, initlally at zero temperature, which has the heated
surface x =1 raised at a reference temperature slope T = (l/B)t, while
the surface x = O 1is insulated. The difference in temperature 8,

between the heated surface end any plane x 1is shown by equation (B11) of
appendix B to be

_16 125 (ot _E ]
Oy g;; on - 1)5 cos E2n 1)2 i]

2

w 1 -(2n-1)2 - kt

& <(_'l)n et [(on - 25 e " (%)
n=l (2n -1

A set of terms is defined to represent the summations in equation (35):
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-1
By = 16 32 : (-1)" cos [(En 1)% 5]
x5 B4 (2n - 1)° 21
2
-(2n-1)2 s kg
'_B:L=é7’2 _("_an:l_cos (21’1 l)’l&e 4 12
w3 ¥® 5 (2n - 1)3 21
> (36a)
2 k
% n-1 -2(2n-1)% J'th_ 50
Be:ﬁ.ﬁzli)——cosEZn-l)’-‘-ﬂe t
x5 ¥8 701 (2n - 1)3 21
2
2 nc k
- 1 _ -m(2n-1) =3
Bm=l_6_ﬁz—,(:_]-'£-—cos‘£2n-l)’l§e b
70 ¥8 11 (en - 1) : 21

If the temperature difference across the entire wall 1s sought, then
x/1 = O and equations (36a) become

-

16125 ()t a2

"o = 23 K8 47T (en - 1)3 28
(2n-1)2 12 ks
B, = 16 12 (-1)n-L . 32
%2 ¥®nol (en - 1) | '
\ (%61b)
2
2(en-1)2 £ K5
BE:-J-—6-7'2 (_l)n-l e ( ) -}+—22

oo -m(2n-1)2 ’-EE X5
NEETED et z

%2 ¥® na1 (on - 1)3

In either case, by using equations (36a) or (36b) equation (35) may be
written

8, = By - By (37)
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By the ususl superposition, in order to change the result of the
reference slope function to that of a unit triangular input function,
the temperature difference between the plane of the heated wall and the
plane of consideration is

=By - Bn - 2(Bo - Bu-1) + Bo - Bu-p (38)

Asgigning integral values tc¢c m and simplifying give the equations
corresponding to successive values of time:

01 = -By + B
85 = -Bo + 2B, - By
-B5 + 2B - By
8y = -By + 233 - B
Om = -Bp + 2Bp_1 - By o

v—

(39)

@
\N
]

A gufficient number of values of 6 for practical purposes are given in
table I. Equations (39) mean that the temperature difference between the
plane of the heated surface and any other plane due to & unit triangle
temperature veriation of the heated surface is given by the time series
8y =671, 8o, 95, « « « 6. In addition, any general temperature of the
heated surface can be represented as T =Ty, Tp, T3, « « « Ty. The
temperature difference due to thils general temperature varistion i1s
obtained by formally multiplying these two time series, and the inside

temperature is obtained by subtracting the product from the heated-surface
temperature T, Hence

Ti,10 =T - 61Ty
Ti,2 = Tz - (61T + 62Ty !
(40)
Ty 3 = Tz - (elT5 + 8,1, + 95Tl)
Ty = Ty - (elmm O emT])

Computation of Ti,m does not depend on prior computation of Ti,l’

Ti,z’ and so forth.
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If the temperature distribution through the wall is required in &
form which is analytical with respect to x and can be differentiated
or integrated analytlcally with respect to x, the procedures outlined
in appendix C should be followed.

CALCULATION OF HEAT FLOW FROM TEMPERATURE HISTORY
Temperature History of Outside Surface Known
If the heated-surface temperature history is known, the heat-flow

history can be determined by substituting equations (2la) into equa-
tion (10) as follows:

q ='ﬁ%§(T1: oy Tz « =« Tﬁn)(lffl: Mp, Mz, « . . Mm) (41)

Multiplication shows that the mth term i1s given by

G = (M Ty + MoTy g + .+« o+ MyTy) (k2)

b1

[e/

The heat-flow hlstory cen be determined readlly from a given temperature
history of the heated surface by means of equation (42). The average
heat flow over a small Interval © can be assumed to give the instan-
taneous rate at the center of the interval.

Temperature History of Inside Surface Known

If the temperature history of the outer surface or of a plane near
the outer surface is known, the feasibility of accurately determining
the heat flow is excellent. If the temgerature history of the inside
surface for a thermally thin wall (kt/12 large and hi/K small) is
known, i1t is also feasible to determine the history of the heat flow
into the outer surface. However, if the wall is thermally thick, rela-
tively small changes in temperatures at the inside surface may make it
difficult to reconstruct the temperature history and heat flow at the
outer surface.

A rearrangement of equations (40) mey be used to determine the
outslde-surface-temperature history from the inside-surface-temperature
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history. Rearrangling equations (40) glves

- 3
T
7, = bl
1-061
T. + 85T
7, = 2227 21 3 (43)
1 -85
T - Ty,m+ 02Tp-1 + 03Ty + « « « + BTy
1-84

The rate of heat flow at any time is then determined from equation (42).
APPLICATION
GENERAT. CONSIDERATIONS

The section on gpplication is devoted to demonstrating the solution
of two types of problems: In the first type the heat-transfer coeffi-
cient and adisbatic-wall-temperature histories are given and the wall-
temperature solutions are obtained. In the second type the temperature
history is known and the heating-rate history is computed. In each
exemple, the problem chosen was & special case, selected so that its
solution could be and was obtalned by an exact snalytical method. The
degree of exactness of the present method is demonstrated by comparing
each result with the solution calculated by exact theory.

With one exception, radiation was a negligible conslideration in the
examples given. Although the method presented is well sulted to accounting
for radiation and includes terms for that purpose, radiatlon was neglected
in all cases to meke possible an exact analytical solution for comparisom.

Equations for Heated Surface

If the temperature of the heated surface of the wall is requilred,
equations (18) and (23) to (25) are used. For convenlence, these equa-
tions are summarized as follows: '

o -
K hén 812
k== G = pecl H=—]— R =
co e 16G 16G
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H Taw,1 + HoTaw,0 - B1 - Ro

Tl - Ml + El

7 o 2Tew,2 * (HTa.w - HT)]. -MTy -Rp - Ry

¢ M+ Hy

T = H5T3w13 + (HTaw - ET)2 - M2T2 - MBT]. - 35 - R2

> M + Hy

n - Bl * (BToy - HT)s - MpTs - MsTp - MyTy - Ry - Rs
Ml + H}_‘_ '

m o= HyTow m + (HTaw - HT):m—l - MpTpp -~ MzTpo- . .. -MpTy - By - Bpg

=

M + Hy

Whether the obgective 1s to compute wall temperature or to compute
the heat flow from a known wall temperature, the first steps involve the
determination of the required memory coefficlients. In order to minimize
the labor involved, the recommended procedure is as follows: First,
choose a tentative time interval & which seems eppropriate to the
particuler problem. (A review of the examples presented herein will give
an idea of a reasonable value.) Then compute a tentative value of the
dimensionless diffusion number k&/12. From table I or II pick a dif-
fusion number closée to the one tentatlvely computed. The memory coeffi-
clents M and inslde temperature coefficlients € gliven in the table for
this diffusion number are to be used, and they do not therefore have to
be computed. An adjustment in the wvalue of .8 i1s made by multiplying it
by the ratio of the tabular value of kS/I selected to the value of
k8/12 tentatively computed. Then compute from equations (18) and (23)
the value of G and the values of H; if the radiation is important,

R must be computed also (eq. (24)). The temperature history of the
heated-wall surface is then found from equations (25). If the heating
rate 1s being Getermined from a known temperature history, the values of
H and R are not required. The procedure for this case is discussed
in the sectlon entitled "Exemple 6."

The temperature formulas were derived with the assumption that the
initial wall temperature was zero in order to avoid writing T - Tg
numerous times 1n the formula. The simplest way to handle most problems
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is to subtract the amount that the initisl well temperature is above
zero from both the wall and the sdiabatlc-wall temperatures. The last
step in the problem is to add this amount to the solution.

Equations for Inside Surface

IT the temperature of the unheated side of the wall is required,
equations (40) are used. These equations sre summaerized for convenience:

Ti,0=T1 - 81Ty

Ty o= Tp - (01T, + 0Ty )
Ty om = Tp- (01T, + 8T, 1 + - .+ . + 0,Ty)

Except for the case of the thermally thin wall, all equations were
derived for constant material properties. For small changes in material
properties with temperature, it appears reasonable to use an average
value of the properties for the tempersture range involved. For cases
in which meterisl properties veary, it seems possible that a more accurate
answer might be obtained by varying the diffusion number or by varying
the step slze to keep the diffusion number constant; however, any con-
sideration of such a technique is beyond the scope of this paper.

APPLTICATION OF METHOD IN SPECIFIC EXAMPLES

The following illustrative examples were calculated before table I
was prepared. Therefore, the values of the coefficients M and 6 were
computed for the particular walls end chosen time intervels & of the
examples. The values of M and 6 wused are all listed in table ITI,
which may be considered as being supplementary to table I.

Example 1

Example 1(a).-

Problem: A copper wall which is 1/2 inch thick is initlally at a
temperature of 0° F. One surface is heated by a boundary layer whille the
other side is insulated. The effective boundary-lsyer temperature T,

is initially O° F but increases linesrly at the rate of 1,000° F per
second for 10 seconds. The heat-transfer coefflclent remains constant at




2k NACA TN 4105

h = 100 Btu/(hr)(sq £t)(°F). The conductivity K and diffusivity k
of copper are taken as

=
]

- 227(Btu) (£1)/(hr) (sq £t} (F)

b
I

= .41 sq ft/hr

Find the temperature history of both wall surfaces.

Solution: The material properties are usually given in terms of
the hour unit. However, since fast heating conditions may be more
easily understood in terms of seconds, time is referred to in seconds
and is converted to hours for use in the equations. For example, if

then . . . : o

k5 _ (4.h1)(24)2

- 3200 = 0.7056

By using this dimensionless diffusion number, the velues of M in
column 2 of the following table are obtained from table II. The values
of T, are listed in column 4, The value of G is given by the

equation

e = KL

_ 227
ko TEETTE¥EIT = 2.14k7 Btu/(sq £t)(OF)

The value of h =100 Btu/(hr)(sg ft)(°F) is converted to H = 0.00800.
The use of colums 2 and 4 in equations (25) gives the heated-wall tem-
perature in column 5. Using the inside-surface-temperature formulas,
equations (LO), and the vaelues of 6. in column 6 gives the values of
Ty in column 7.
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1 2 3 k 5 6 7
Term Time,| Taws T, 9, Ty,
number M sec Op op OF
0 | —=ceo 0 0 O ———m=——- o}

1 0.75160 1 1,000 11} 0.580382 hy

2 -.35256 2 2,000| 36| -.47h632] 21

3 -.33055 3 3,000} Tk -.087207{ 50

4 -.05648 4 4,000] 124§ -.015291| 91

5 -.00990 5 5,000| 186 | -.002681| 1k

6 -.00L7h 6 6,000 260 | -.000470| 210

7 -.00030 T 7,000| 346 | -.000082( 288

8 -.00005 8 8,000} 443 | -.000015] 377

9 -.00001 g 9,000} 552 | -.000002| 478

10 -.00000} 10 10,000} 673 | -.000000{ 591

The wall-surface-temperature curves of T &and T; are shown in

figure 1(a). For comparison, the results calculated by the theoretically
exact formula (eq. (BLO) of sppendix B) sre shown. This formula is

. _ ”
Tom -z cos(F om)\L - e (1)
aw k £ 2 hi K 2
n=l anu~{1 + ii-+ Ei-an cos dp

where ap represents the positive roots of the auxiliary equation

o ten oy = 2 : - (ka)

Setting b = 3,600,000 °F/hr and setting x =1 and x =0 in equa-
tion (44) result in the values for outside and inside temperatures
plotted as circles and squares in flgure 1. The comparison shows that
accurate results are obtained by the present method, the maximm dif-
ference between methods being about 1°.

Example 1(b).-

Problem: The conditions for exsmple 1(b) are the same as those for
example 1(a), except that the copper wall is 3 inches thick, or
1 = 1/4 foot.
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Solution: Since this wall is so thick, more highly transient condi-
tlons prevall throughout the heating periocd. A velue of & of 1/2 sec-
ond or 1/7200 hour was therefore used. With the same procedure as used
before, the results of the present method are glven as continuous lines
in figure 1(b), while the results from equation (4&4) are given by the
symbols. The agreement 1s evident.

Example 2 . -

Problem: Example 2 lllustrates the principal advantage of the
present method; that is, 1ts capability of handling arbltrary varlations
of Tg,, and h. Neither i1s it necessary to know a mathematical formule-

tion for these variations.

A l/2-inch copper wall which is initlelly at a temperature of zero
is aerodynamically heated on one side and insuleted on the other. The
time histories of T, and h are given at 1/2-second intervals in the

following table:

Time, | Tay: h, Time, | Tauws h,
sec Oor |Btu/(hr)(sq £t)(°F)|| sec OF Btu/(hr)(sq £t)(°F)
o} 0 36 5.5 {5,391 68.4

5 11,365 1.4 6.0 |5,356 66.6
1.0 | 2,485 k5.0 6.5 |5,255 63.9
1.5 | 3,388 48.6 7.0 |5,107 60.0
2.0 | 4,094 52.2 7.5 | 4,831 55.8
2.5 | 4,6B0 55.8 8.0 |4,335 52.2
3.0 } 4,932 60.0 8.5 |3,654 48.6
3.5 15,119 63.9 9.0 |2,769 k5.0
4.0 }5,263 66.6 9.5 |1,658 1.y
4.5 }5,345 68.4 10.0 297.5 36.0
5.0 | 5,387 69.0

Find the temperature history of both wall surfaces.

Solution: The heating conditions are severe and continuously tran-
sient, with the boundary-layer temperature rising and falling over 5,0000
in 10 seconds. A-computing interval & smaller then that used in the
first problem is therefore used. Iet & = 1/2 second = 1/7200 hour. The
resulting wall-surface-temperature curves are drawn in figure 2. The
circles and squares give the surface temperatures computed by a theoreti-
cally exact procedure. Comparison shows the present method to be accurate.
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Exemple 3

Problem: Example 3 is the same as example 2 except that the wall is
5 inches thick and the effective boundary-layer temperatures are slightly
different. The initial value of Tgy 1s O. The subsequent values of

Tgyy are given at 0.5-second intervals by the following time series:

Tew = 1,365, 2,484, 3,386, 4,088, 4,609, 4,915, 5,09%, 5,227, 5,296,

5)325) 5’315) 5)265) 5)]'1!'9’ 4,986, )+J69)+) }'I')181['J 5)1!'895 2’5911 11,4'71, loo'
Find the temperature history of both wall surfaces.

Solution (a) - thiek-wall solution: The value of © was taken as
1/2 second. By following standard procedure, the wall-surface-
temperature curves shown in figure 3 were obtained. Again the symbols
glve the results of exact theory.

It should be noted that the "exsct solution" for examples 2 and 3
is not actually an alternate method of solution for any practical prob-
lem but gives & solution to the particular problems only. The "solution"
was obtained by working in reverse; that is, a heat flow was assumed and
the corresponding boundary-layer characteristicse were computed. A truly
alternate method of soclution is now considered, however.

Solution (b) - infinitely thick-wall solution: Since the thermal
lag of a 3-inch copper wall 1s so great when subjected to the rapld
heating specified by this problem, it gppeers reasonable to cbtain the
heated-surface temperature by assuming that the wall is infinitely thick.
The memory coefficients are the same for all infinitely thick walls and
are given by equation (31). The same temperature formules, the same
velues of T,.., and the same values of h are used as before, but the

values of H, are given by equation (29). The results calculated by
this method are listed along with those from the thick-wall solution (a).

T, °F, calculated by -
Time,
sec Thick-wall %Eﬁiﬁig:i{
solution solution
1 12.8 12.8
2 35.3 35.3
3 61.3 61.3
L 87.0 87.0
5 109.1 109.1
6 124.8 124.8
7 132.3 132.%
8 130.6 130.6
9 119.5 119.4
10 100.0 99.8




28 NACA TN k105

The consistency of the alternate methods for a thermally thick wall is
evident. The reason for the close agreement mey be found in figure 3,
wh%ch shows that the unheated surface of the 3-lnch wall rose to only
4 r., - ' ' '

Example 4

Problem: The most severe test of the present method would occur
if there were a large instantaneous lncrease of Tg,. While this condi-

tion could herdly happen in flight, it might happen if a research model
were suddenly immersed in & high-stagnation-temperature jet. Iet a
l/2—inch copper wall, inltially at a temperature of zero, be Instantly
subjected to an effective boundary-layer temperature of 5,000o F on one
surface while no heat transfer occurs on the other surface. The heat-
trensfer coefficient is 100 Btu/(hr)(sq £t)(CPF). Solve for the tempera-
ture history of both wall surfaces for 10 seconds.

Solution: In this case not only 1s there a very high transient-
temperature conditlon initially but the instantaneous increase in Tgy

does not lend itself to approximation by the unit triangle. The
simplest procedure is to take small steps for the first few seconds to
minimize the errors introduced. In order to help circumvent the 4iffi-
culty of calculation, an excellent method of epproximating the wall
surface temperature for the first or first few small steps is to use

the following formulas from page 109 of reference 4, which gives the tem-
perature on the surface of an infinitely thick wall ‘for & constent flow
of heat at the surface:

2hT,
v - o fich (45)

The velues of & used were & = 1/8 second for 2 seconds, then
& = 1/2 second for 8 seconds. Since the use of an equation based on &n
infinite wall is permissible for a l/2-inch copper wall for at least
1/4 second, the values of T were computed by equation (45) for the
first two l/8-second'steps, then by the usual equations. The results are
presented in figure 4. Since the inside temperature Ty depends on the
outslde temperature T and not directly on Ty, there 1s no particular

difficulty of approximation in obtaining T4y. Accordingly, in obtaining

Ty, l/8-second steps were teken for 1. second to define the highly transient
part of the curve, then l/2—second steps for the remaining 9 seconds.

A theoretically exact solution to this problem was obtained by equa-
tion (B7) of appendix B. The results of spplying this equation are given
by the symbols in figure L4, which shows that agreement was obtained.
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Exemple 5

Problem: A l/lG-inch Inconel wall 1ls heated by a high-temperature
Jet. If Tgy = 5,000° F and h = 50 Btu/(hr)(sq £t)(°F), determine the

skin-temperature history for 15 seconds. Neglect radiation.

Solution: The heat capaclity of a l/l6-inch Inconel wall was assumed
to be G = 0.3229 Btu/(sq ft)(°F). The exemple was worked three times
with values of & of 1, 2, and 5 seconds to show how sensitive the "thin
wall" formuls is to step size. Substituting the glven constants into
equation (34) yielded the results given by the symbols in figure 5. For
thie exemple the exsct theory is shown by the solid line. ZEvidently,
coarse steps are permissible with this formula.

Exsmple 6

Example 6(a).-

Problem: The temperature history of the heated surface of a l/2-inch
copper wall initially at zero temperature is given by the following time
series in which the temperatures are separated by 1/2 gsecond: T = 4.8,
13.2, 25.2, 40.2, 58.2, 77.9, 99.4%, 122.6, 146.3, 169.8, 193.0, 214.8,
235.3, 253.2, 268.8, 281.5, 290.8, 296.7, 298.0, 297.5. The ingide sur-
face is insulated. Determine the history of heat flow into the heated
surface from the glven surface-tempersture history.

Solution: If the time intervael used is sufficlently small, the
average rate of heat flow over the interval is a good approximation to
the rate of heat flow at the center of the interval. Equation (42), which
gives the average rate of heat flow over the interval ending et + = md,
mey be used. For a value of & of 1/2 second, the values of M are
given in table IT. Substituting in equation (42) gives the rate of heat
flow plotted as circles in figure 6. The solid curve gives the theoreti-
cally exact instentaneous rate of heat flow for comparison. The results
from equation (42) are seen to be precise. The system ylelding instan-
taneous heat flow, mentioned previously, would seem to be a natural one
for the present problem; however, the results obtained by that system
were found to be inferior to those presented,

Example 6(b).-

Problem: The corresponding inside-surface-tempersture history of
the same wall is glven by the followlng time series in which the tempere-
tures are separated by 1/2 second: Ty = 0.8, k.k, 11.7, 22.4, 36.0, 52.6,
71.6, 92.3, 114.2, 137.4, 160.6, 183.7, 205.%, 226.k%, 245.3, 261.6, 275.2,
285.6, 292.4, 296.3. Determine the history of heat flow into the outer
surface by using only the glven 1lnside temperatures.
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Solution: Equations (43) mey be used to determine the outside-
surface-temperature history from the inside-temperature history. Then,
the rate of heat flow at any time is determined as in the solution for
example 6(a). The factor 1/(1 - 81) in equations (43) may be thought of
a8 & magnification factor. Large values of this factor tend to cause an
ingtability in the computed temperatures. In this example, if & is
teken as 1/2 second or 1/7200 hour, the value of k5/12 is 0.3528, 67

is 0.80478, and the megnification factor is 5.1. On substitution in
equations (43), en oscillation of period 25 builds up in the values of
T, very slowly at first and to elther side of the correct answer as &
mean value, but in a divergent manner so that by 4 seconds the amplitude
is 6°. For a value of & of 1 second, the value of k5/12 is 0.7056,
81 1s 0.58038, and the megnification factor is 2.4. In this instance,
an oscillation in' T of period 285 and maximum amplitude of 1.5°
occurred. Substituting these values of T, without falring, into equa-
tion (42) gives the results shown by the square symbols in figure 6. If
8 larger value of 8 were used, the oscillation would be damped out but
the accuracy would suffer becauge of a lack of definition of the rapidly
varying heating rate, The particular case demonstrated 1ls therefore a
merginael ocne for the determination of heat flow from the temperatures of
the inside surface. The instability is found to disappear for thermally
thinner wealls and conversgely to increase rapidly for thicker wealls.

CONCLUDING REMARKS

Formulas to facilitate the determination of the transient surface
temperatures of thick walls from an arbitrary variation of adiebatic-
wall temperature and heat-transfer coefficient have been developed.
Formulas to faclilitete the determination of heat flow from an arbitrary
variation of wall surface tempersture were also obtained. The numerlcal
applications given demonstrate a high degree of accuracy for the present
nmethod. ’

Langley Aeronautical Laboratory,
National Advisory Commititee for Aeromautilces,
Langley Field, Va., June 18, 1957.
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APPENDIX A

REVIEW OF SUPERPOSITION AND TIME SERIES

TIME SERTES

A time series may be defined as a serilies of numbers or quantities
which represent the values of a function of time at successive equal
intervals of time. According to the notation of Tustin (ref. 3), each
quantity js separated from the others by a comma since the values corre-
sponding to different times are not added together. The quantity at zero
time 1s zero. The first quantity recorded represents the value of the
function at the end of the first time interval. The time Interval used
is arbitrary and its size is selected to obtain the accuracy required in
the solution of & specific problem. The symbol for the time intervel is
8. Thus, the series y = Y15 Yoo yj, SR represents the values of

the function y at the times &, 25, 35, . . . mB.

THE UNIT TRIANGLE

A unit triangle 1s an isosceles triaengle which has an altitude of
unit megnitude and a base of 28, or two time intervals. Since & 1is an
arbitrary time intervel, the unit trlangle is accordingly erbitrary. A
plot of & unit triangle centered at +t = & 1is shown in sketch 1, vwhere
y represents megnitude or altitude.

i
7 N
D
3% .7
1+ » =% o
§y% 0
0 P
0 > t
l-(__s_a-l ™
Vs
\d-/.

Sketch 1.



32 NACA TN 4105

The slopes of the sides of the triangle depend on the value of & and

are equal to tl/B. Three lines may be superimposed to represent the unit
triangle. The equations of the three lines which may be added to repre- .
sent the unit triangle are y = (1/8)t, y = ~(2/8)(t - &), and

y = (1/8)(+t - 25). Although the triangle terminates at t = 25, the

velues of t i1n the equations for y can go on to infinity since the

values of y add to O beyond t = 28.

The Functlon Corresponding to a Reference Line

Let F(x,t) be the solution to a boundary-value problem specified
by a linear partisl differentisl equation and the linear boundary condi-
tion y = (1/8)t, where y is the value of F or one of its derivatives
or integrals at some flxed value of x. Because of the linearity of the
problem, the magnitude of the solution is directly proportional to the i
magnltude of the slope 1/6 of .the boundary condition. For example, if h
¥y = (z/S)t, the corresponding functlon representing the solution is
2F(x,t). Again, if y = -(2/8)t, the corresponding function is -2F(x,t).

The slope of the line y = (1/8)t can thus be used as a reference magni-
tude. This slope 1ls the same as that of the left side of the unit
triangle.

The value of t in F(x,t) is always identical with the value of
t in the boundary condition y = (l/S)t. Thus, if the origin is shifted
so that y = (1/8)(t - 28), then the corresponding function is F(x,t-28).
Particular solutions of a linear differentiel equation can always be
added in linear comblnetions to satisfy more general boundary conditions.
If a and b are constants, and aF(x,t) corresponds to the boundary
condition y; = (a/8)t, and bF(x,t-8) corresponds to yp = (b/8)(t - &),

then the function corresponding to the sum of the two lines Y=y + Yo

is F = aF(x,t) + bP(x,t-8). Let an sdditional property of F, as well as
of ¥y, be that it assumes the value O for any time less than 0. The
range of time of interest 1is therefore from O to «,

The Function Corresponding to a Triangle

Now congider a function EA(t) dependent on the lines of the unit

triengle in sketch 1 for its value just as F(t) 1is related to the line

Yy = (l/a)t. In consideration of the three lines by which the unit triangle
may be replaced, y = (1/8)t, y = -(2/8)(t - 8), and y = (1/3)(t - 25),
the three corresponding solutlons or functions of time are F(t),

-2F(t - 8), and F(t - 25). Because of the additive nature of solutions,
the solution corresponding to the complete triengle may be defined as the
sum of the solutions for the lines which compose it:
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FA(t) = F(t) - 2F(t - 8) + F(t - 28) (A1)

In equation (Al) each term has a value of zero for negative values of
its argument.

Representation of a General Curve by Triangles

The curve A-B in sketch 2(a) is any arbitrary continuous function
in the plane y,t which can be faired through its ordinate values O,
Y1, Yo, 8nd Y35 The curve may be well epproximsted by & series of

chords such as a, b, and ¢ if a sultable spacing & is used.

vy} _ v
37 / 31
2r B 24
; i3 f\ y§ \h
1t A4 2 1t Yzf/ \
1 /
| L' \ \
0 > 0 . - ——
0 5 25 35 0t 0 3 25 ols] t
(a) The curve A-B (b) The synthesis of A-B
Sketch 2.

Draw the lines d, e, £, g, and h of sketch 2(b) to form the isos-
celes triangles with sides a and d, e and £, and g and h. Since the sum
of two stralght lines is a straight line, it is clear that, if the letters
which designated the lines are now used to designate the equation of the
line, then d+ e =b and £+ g =c., Of course, the line & 1s the first
half of the filrst triangle as well as the first chord of the curve A-B.

In designating the ordinates Yy;, ¥yo, Y35 + « « ¥ms the altitudes of three

triangles whose sides add up to the chords of the curve A-B are simul-ta-
neously designeted. The ordinate series Yy, ¥o, Y35 + « » Ypys with
spacing 9, is a time-series approximstion of the curve A-B. In this
case, as well as elsewhere in tThis report, each ordinate of a series is
understood to represent the altitude of an isosceles triangle with a
base width of 285.
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Arbitrary Control Functions

Suppose that the curve A-B, or y(t), is to serve as an arbitrary
reference or control function for a corresponding function Fy(t). It

is desired to determine Fy(t) -in terms of functions corresponding to
unit triangles, such as Fa(t), given by equation (Al). The func-

tion FA(t) is a function corresponding to e unit triangle centered

at t =9%. If FA(t) is multiplied by Yi» there results the function

corresponding to the triangle with sides & and 4 of sketeh 2(b). By
superposition, the function corresponding to the three triangles centered
at B, 28, and 35 is

Fy(t) = y1FA(t) + yoFA(t - 8) + ysFa(t - 25) (A2)

Then, since the three triengles add up to the chords of the curve A-B,
this 1s the function, in ordinary elgebraic form, corresponding exactly
to the chords of the general reference curve y =y, Y25 Y35 ¢+« o Yy

In order to put equation (A2) in time-series form, let Fp(t) = a3, ao,
83, « . « 8y, With spacing 8. Substituting in (A2) and placing terms
for the same time In columns and adding yleld

ylEA(t) = ¥y89, Y185, Y183, . e .
YQFA("; -8) = 0, ¥o8q o R ..
Yjﬁa(t -28) = 0, o, ¥381 5 e
Fy(t) = ¥181, (ylaz + yéal), (y135 + Yoo + y3él), e (43)

The result shown by equation (A3} is obviously that which is obtained
by formel algebreic multiplication of 815 85 a3, « « o« Dby Y10 Yoo

Yz5 « .+« 8B follows:
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FA(‘l'») = &y, 8y) 8z . ..
Y(t) = le ! y2’ Y3) e
Y1875 Y180 Y183, s v -
Y281 IoBoo T
y3al’
Fy(t) = ¥187., (yla.2 + y28.l), (yla.3 + y'25-2 + yBal), . e . (A.ll-)
Therefore,
Fy(t)g = [Ea(t)g] [5(t)g) (a5)

where the subscript s denobtes time-series form.

Equation (A5) states a simple theorem which was first given in
reference 1. It was developed with y(t) having a value of O at
t =0 and FA(t) 8lso having a value of O at t = O. If either or

both of the series had values at t = O, multiplication as in equa-~

tion (A5) would not be sufficient to obtain Fy.
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APPENDIX B

SUMMARY OF ANALYTICAL TEMPERATURE FORMULAS FOR THICK WALLS

CONSTANT FLUID TEMPERATURES

Consider an infinite wall of thickness 1 and an initlal tempera-
ture of zero. (See sketch %.) Let the wall be suddenly contacted at
the face x =1 by a fluld of temperature Tgy whlile the face at x = O

‘ |

’ | Tay
r |
l |
| [
| |
I i

nh th

| !
! 1
' I
! _ o

Olf Initiel temp. = O |! _
0 ( x

Sketech 3

remeins exposed to a fluld of zero temperature. Let the heat-transfer
coefficient at the face x =1 have the value h and the heat-transfer
coefficient at the face x = O have the value mnh. Let the wall have
uniform physical properties which are invarient with time.

The flow of heat within the wall is governed by Fourier's equation

for transient heat flow, which states that the rate of increase of
temperature ls proportional to the rate of change of temperature gradient:

Sk (BL)
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The constant of proportionality, called the diffusion coefficient, 1s
equal to the ratio of the conductivity of the material to the heat
capaclity as represented by the product of specific heat and welght density
as follows: '

The boundary equation for the wall at x =1 is obtalined by equating the
heat transfer bpetween the fluid at temperature T,, end the wall at tem-

perature T to the rate of heat transfer in the wall at x = 1:
_ wfoT
IlCQMJ - Tx:l) = K(g;) _ (B2)

A simllar boundery equation is written for the wall x = O.

=k B_T>
MhTx—0 K‘\ax o (B3)

The initial condition is a statement that the initial temperature of the
wall 1s zero:

The simultaneous solution of partisl differential equations (Bl) to
(B4) is an infinite series.

Bk

hx X . hl X 1

14 qkx A B gy ]

T'Tawq.—ﬂxhl‘ﬂavz [eou(fqn)*-an-rsr(ralge (85)
teraray nsll;%anz"ll-lxl-i(l+ﬂﬂcosan+[(:-—5+1+n)an-2%h?ﬂsinan

The parameters a, &re angles which are the positive roots of the
equation
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ol +m)
tan an = B . B (B5a)
hi K

Two dimensionless numbers of physical significance are present in
equetion (B5): the diffusion number kt/12, and the conductance or
Nusselt number hZ/K. ‘The first term of equation (B5) gives the steady-
state solutlion or equilibrium condition.

Special Case 1 =0

The speclal case of e plate that is heated by convectlion on one
face while the heat transfer on the other face is so small as to be
negligible is important. 8Setiing the heat-transfer coefficient at the
unheated face equal to zero corresponds to meking the assumption that
the plate is perfectly insulated at that face. If the plate is per-
fectly insulated at the face x = O, substitute 1 =0 in equations (B5)
and (B5a) and utilize the following relation to eliminate sin ap,

(BS)

ol

an’ ten op =

where a, represents the positive roots of the equation. These substi-
tutions yield the following expression for temperature:

Kb, 2
X 12 D
B COSQT an)e
" ?aw i 2an n=1 (1 + Bl 4+ K o Z\cos (®7)
< K hzah) r

Equations (B6) and (BT7) may be found on page 100 of reference l.

Speclal Case 1 =0 and h = w

The special case in which 7 =0 and h = «» corresponds physi-

cally to perfect insulation on one face end e known initiel temperature
on the cther face. This case is developed by setting h = « in equa-

tions (B6) and (B7). Equation (B6) becomes
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ap tan ap =
tan Ay =

5 %, %, and so forth,

Equation (B7) reduces to

] -(en-1)2 & -,+- -§

=T - X Ty i (I-ll)n-l cos EZn - 1)L X

x t4m 21 (28)

Equation (B8) mey be found in standard references (ref. L, page 196,
problem 6, for example). In this equation, T, 1is the step in wall-

surface temperature used in place of Tgy.

VARIABLE FLUID TEMPERATURE

Arbitrary Variation of Taw

Equation (B7) is an exact solution of a thick-wall boundary-layer
heating problem which is suitable for checking the accuracy of the
present method of computing wall temperatures. Another method, which
is more general, can be obtained by letting the adiabatic-wall tempera-
ture vary in a known manner, Tg, = F(t). Let V(x,t) be the variation

of wall temperature due .to & 1° step in adisbatic-wall temperature. If
the initlal wall temperature is zero, the wall temperature is given by
Duhamel's formule as

t
T(x,t) =:f Frr)V(x,t-T)ar (B9)
0

where F' 1is the derivative of F with respect to t and T 1is a
durmy time variable.
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Linear Variation of Taw

In the linear variation of Tg,, Tg, = bt, or, in the notation of

Duhemel's formule, F =Dbt and F' = Db, Substituting T from equa-
tion (B7), with Ty, = 1, into equation (B9) and performing the integre-

tion give -
kt o 2
——E Q‘n
2 cos(£ an)<; el )
T(x,t) = bt - 821 i l

k 2 hi K
n=1 a, (l + 3€'+ " ana)cos iy

(BLO)

Equation (B6) is used to obtain o.

Linear Variation of Wall Surface Temperature

One of the fundamental equations on which is based the time-series
development of surfsce-temperature equations 1ls one expressing the
transient wall temperature due to an increase of 1© in temperature of
one wall surface during each intervel of time 8. The assumptions
are made that the initiel temperature is zero and that one wall is
insulated. From these conslderations, F 1in Duhamel's formuwla is
F=1t/5 and F' = 1/5. Substituting this derivative and T from equa-
tion (B8), with T; = 1, into equation (B9) and performing the integra-

tion give the following equation for the temperature at any plane due to
a surface temperature rise of 1° in the Interval &:

2 x
o (-1)2"L cos Ean -1)E X -(2n-1)2 Z- E4
7t 1612 az]l-e b a2) ()
S 3 KB a1 (en - 1)2

The heat flow at any point within the wall due to 1° rise of wall
surface temperature in the time & 1s obtalined by multiplying the con-
ductivity by the temperature gradient. Differentiating equation (Bll)
with respect to x and multiplying by K yleld

- 2 x2 k
8 xS (-1)21 gin Ezn - l)’é -’ic-] L e-(2n-l) “T;é.

2 kb n=1 (21’1 - 1)2

q_:
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In order to eliminate k 1in the coefficient, substitute for k its
definition k = K/pc. Then 1K/k® = pci/5. The product pcl is the
heat capacity of the wall per unit area per degree and is represented
by the symbol G. In order to obtain the heat flow at the heated sur-
face, where the heat balance is to be made, let x = 1. BHence, the
instantanecus heat flow due to a uniformly increasing surface tempera-
ture of 1° per unit of time 5 is simplified to

2 ki

sy e ) T

Q= =< (BL2)
%28 T=1 (2n - 1)2

In order to find the average flow of heat over the interval &,
equation (Bl2) is integrated with respect to time between the limits
(t - 8) and t. This integration glves the total heat flow through the
surface during the interval. On dividing by ©&, the average rate of
flow for the interval is obtained. The result is

2
NERILE S TR ILE <F 108
- 8 @ }f: 1 e e
q = e - + -
72 & =1 -1)2 2k L 2 k L
£ 5(en - 1) 2= £ s(on - 1)
L 32 b o,2

(B13)

1

n=1 (2n - 1)2
working with time series only integral increments of time (3, 25,

35, . . . md) are used. In equation (BLl3), therefore, + may have any
value md, where m 1s an integer. For convenience, and to systematize
results, the following ldentities are defined:

The summstion is a constant with the value =2/8. In
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Ag = 122 1 | 1
#2x8 =1 (2n - 1)*

2

~(2n-1)2 2= K5
1!-22
A = 122 e
%2k 7=l (2n - 1)%
2
-2(2n-1)2 1= Xg
b 22

_ 32 }ft.e

A2=
728 o=l  (zn - 1)¥ 4 (B14)
2 x2 k
-m(2n-1)= E— L5
5 k32
.AmElI.Z e
%2k8 ‘=l (2n - 1)*
~(m-1)(en-1)2 12 K¢
me 5 e - b f
fm-l =52 n
7°kd n=1 (en - 1)
Equation (Bl3) then becomes
§m=_8_§1£+Am_Am (B15)
-2 B\8 -

for the time interval ending at +t = md. Equation (Bl5) 1s used in
forming the heat balance at the heated wall surface in the derivation of
wall temperature formulas.
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APPENDIX C

ANAT.YTTCAL TEMPERATURE DISTRIBUTION

Equations (40) are the formules most convenient for determining
the temperature of the inside surface or of any plane within the surface.
For the determination of the temperature of planes within the wall, equa-
tions (36a) are ordinarily evaluated numerically to obtain 6 for a
given kt/22 and x/l. However, it mey be necessary to obtain the tem-
perature distribution through the wall at some instant of time due to an
arbltrary surface-temperature history in a form that is analytical with
respect to x and which can be differentiated or integrated with respect
to x (for example, in the derivation of a general formula for the thermsl
stress distribution or maximum stress). This temperature distribution is
obtained by substituting equations (36e) into equations (39), substituting
equations (39) into equations (40), and collecting terms. The results are

2
-(2n-1)2 2 k
: n-1 2
Ty 1=T - 16 12 Ty G0 el cos EQn - l)%-% 1 -e o
’ %2 ¥8 T 3I1 (en - 1)7
16 12 {-1)2-Lcog [(zn - l)% 9{-
Tie=T2 -3 iE 29 —=rila - TL +
i n=1 (2n - ]_)3
~(2n-1)2 2 k8 -2(2n-1)2 %2 k8
(2Ty - Tp)e T a2 _ T e 53
16 12 & (-1)2-Lleos [(En - l)’ei 31’5
Ti’3=T5-—EgZ LolTs - T, 4
x> K8 p3 (2n - 1)3
2 2
-(2n-13)2 k3 —2(n-13)2 k
(en-1) ’{r =3 2(n-1) f%
(-T; + 2T - Tl)e + (aTl - T2)e -

2 52 Jits)
-3 (2n—l) n 12
Tle
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(-l)nflcos Ezn - l)%-%]

_p _1612F _
Ti,m - Tm T[3 kS ; (2n _ 1)5 Tm %—l +
—(2n-l)2 72 kb
T8
(-Tp + 2Ty - Typ)e +
-2(2n-1)2 ’-‘f— l€<§ + . +
(-Tpy + 2T 5 - Tm—3)e
-(m-1)(2n-1)2 %? 5% -m(2n-1)2 %? k8
(le - Tz)e L - 'I‘le l

Note that Ty ,15 "T1,2, Ty,5, end Ty , can be computed independently.

The use of these equations involves considerable labor, however, because
all terms in the summation must be summed in unison.
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TABIE I.- VALUBSCF M AND 6%
15 /12
0.01 0.02 0.05 0.1 0.5 1.0 2.0 5.0
n
K
1 0.09281491 | 0.13125147 | 0.20752122 | 0.2934TT4€ | 0.6472821T | 0.85683729 | 1.0295k122 1.15145k22
2 -.0159%278 | -.022%52780 | ~.03560872 | -.0505207= | -.22817193 | ~.511k20%3 | -.826820879 | -1.06920825
3 -.026B2329 | -.0379u25% | ~.06002358 | -.08T22726 | -.30052435 | -.31662008 | -.200275%% | - oeaat;ssg
} -.00957530 | - 0135L153 ~.02166582 | -.03696504€ | -.08L05219 | -.0263k648 | -.00142616 ~ 00000036
5 -.00553800 | -.007826 ~.02320028 | -.02628367 | -.o2klT70h | -.00223431 | -.00001026 = . 00000000
6 -.00573390 | - 005281;88 ~.00983262 | -.02025361 | -.00712803 | -.00018948 j -.0000000T
T 00274216 | -.00380295 | ~ -.0157961¢ | -.00207577 | -.0000!
8 -.00212389 | -.00%04410 | ~.0069559% | -.0223%887 | -.00060449 -.oooo%xi‘gz
9 -.00170888 | ~.o024g269 | ~.00608368 -.oogsaggu -.00012760% | -.00000032
10 -.00141h15 -.00211866 | ~.00535620 | -.0075525% | -.0C005126 | -.00000001
11 -.00119613 | -.00185%%L | ~.004T2Th9 | -.0058855G | -.00001k93
12 ~.00103005 | -.00166301 | ~.00417648 | -.00459860 | -.00000L35
13 -.0 ~.00150704 | ~.00369098 | -.00359306 | -.
14 -.00075666 | -.oo1bkoL73 | -.0032623h | -.00280Th3 | -.00000037
15 ~.000T1651 | -.001%0718 | -.00288362 | -.00219357 | -.000000LL
16 -.00064%T69 | -.00122688 | -.00254890 | -.00LTL395 | -.00000003
7 «.00069289 | ~.0011%66L | ~.00225306 | -.00133917 | -.0Q000001
18 -.00054T2h | - ,00009%85 | -.00099156 | -.00104635
19 -.00050882 | -.0010%656 | -.00LT6041 | -.00081756
20 . -.00047652 | -.,00098373 | -.00135610 | -.00063880
21 -.000k4898 | -.00093449 | -.00237849 | ~.0004g9912
22 ~.00042534 -.00088826 | -.0012158% | -.00038998
23 -.000LOLTY ~.0008u473 | -.00107473 | -.000304TL
b -.000%8678 | =-.0008035T | -.00094999 | -.00023809
25 -.00037081 | =-.C0076453 | -.00083973 | -.00018602
26 -.000%35655 ~.00072755 | ~.0007h227 ]| -.0001k33%
27 -.00035370 | -.00069238 | -.00065612 | -.000113%7
28 -.00033195 | =-.0006589% | -.0005799T7 | ~.00008874
29 -.00032118 -.0006;?.6 -.0005126% | -. 3
30 -.00031123 | -.00059693% | -.00045315 | -.00005417
8
1 1.00000000 | 0.99999990 | 0.$9956261 | 0.9887310T | 0.69945338 | 0.4562%848 | 0.2U81443T | 0.09995955
2 -.00000019 | -.000192k2 | -.02166158 | -.12553131 | -.k86%2965 | -.41618822 | -.24630212 -.09999908
3 -.00002493 | -.003%3067 | -.06963678 | -~.17636952 | -.15098863 | -.03665380 | -.00182500 [ -.000000HS
4 -.00033480 | -.01195026 | -.09012000 | -.148829%9 | -~.04396967 | -.003208%2 | -.00001315 | -.00000000
5 -.00044190 | -~.02167827 | -.08988005 | -.117hS06T | ~.O 54 | -.00026361 | -.00000009
6 -.0038427h | - 0290l -.08284990 | -.09193126 | -.00372883 | -.00002236 | -.0000Q0000
i T -.0059560k | -.0%3361672 | -.OTu35643 | -.OT. -.00108589 | -.00000190
8 -.00854572 | ~.0%5996 -.06609621 | -.05613647 | -.00031622 | -.00000018
9 -.01092536 | -~.036877h5 | -.0585h6TL | -.08386205 | -.00009209 | -.000CCOX
10 -.01296009 | ~.0%679%326 | -.05LT9LTL | -.0342T135 | -.00002682 | -.0000000Q
1 -.0146145h | ..03611078 | -.C45T938L | ~.026TTTT7L | -.00000781
12 ~.01590635 j ~.03307182 | -.0k048318 | -. -
1% - 0168767 | ~.05383251 | -.03578599 | --OL634TTH | -.00000066
S - 0157368 | ~.032h91k8 | -.03163302 | ~.01277320 | -.00000019
15 -.01804k2h | -.03111188 --ozrgﬁrrh -.0099602¢6 | -.00000006
15 -.01833036 | -.02973243 02k TL6LY -.oog;meoz -.00000002
by -.018 «.028571688 | - oalah'rso - 9293 | - .0Q0000000
18 _ | -.01848810 | ..0270%9%0 | -.01931206 | -.COWTEO6T
19 -.01841482 | . oo578770 | -.0L70TOS: | -.003TL9TE
20 -.01826876 | -.o02i -.01508936 | -.00290636
21 -.01806620 | ~.02339609 | -.01333804 | -.00227088
22 -.0L78204) | ~.02227782 ~-.01178998 | -.00LTTh3%
az ~. 01754197 | -.021210k2 | -.00042159 | -.00138637
2! ~.0L723931 | -.02019254 | -.00921203 | - 00108323
25 -.016591916 | -.019222kk | -.0081k285 | -.00084638
26 -.01658696 | -.01829829 | -.00719776 | -.000661%1
27 -.01624686 | -.01741809 -.006362%6 -.00051671.
28 -.01590228 | -.01658000 | -.00562392 | -.000%0%373
29 -.01555%88 | -.0157820% -.00497119 | -.00031545
30 -.01520973 | -.01502235 | -.00L39422 | -.0002u6k5

®For edditionsl valus of, k6/i?

.

vetween 0.1 and 1.0, see teble II.
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TABLE IT.- VALUES OF M AND 6

USED IN ILIUSTRATIVE EXAMPIES

k5 /12
n 0.00980 0.08820 0.17640 0.35280 0.70560
M

1 0.091882 0.275619 0.389750 0.549116 0.751602
2 -.015782 - O4T357 -.071018 - Akk143 -.352559
3 -.026554 -.080945 -.133036 - 2lohhl -.330551
4 -.009479 -.032753 -.065871 - . 0okkTh -.056482
5 -.0054T8 -.022958 -.0k2292 -.039558 -.009904
6 -.00%696 -.01799% -.027361 -.016565 -.001737
T -.00271% -.014k08 -. 017705 -.006936 -.000305
8 -.002103 -.011580 -.012457 -.002905 - .000053
9 -.001692 -.00931h « ,00Th1L -.001216 - .000009

10 -.001400 -.007493 -.00L798 - 000509 -.000002

1 -.001184 -.006027 -.003105 -.000213

12 -.001019 -.00h848 -.002009 - .000089

13 -.000891 ~.003900 - .001300 ~-.000037

1 -.000789 -.003137 -.0008k1 -.000016

15 ~-.000707 -.00252k - . 0005k -.000007

16 -.000640 -.002030 -.000%52 - .000003

17 -.000585 -.001633 -.000228 ~.000001

18 -.000539 -.001314 -.000148 -.000000

19 -.000501 -.001057 -.000095

20 -.000469 -.000850 -.000062

8

1 0.999992 0.992899 0.943645 0.804T7T9 0.580382
2 . 000008 -.098507 -. 277751 -. kb 8794 - h632
3 -.000021 -.157664 -.233674 -.206910 -.087207
4 -.000290 -.141628 -.152510 -.086651 -.015291
5 ~.001288 -.116097 -.0987T15 -.032684 -.002681
6 -.003146 -.093525 -.063879 ~-.015194 -.000kT70
T -.005529 -.075429 - 041337 -.006362 -.000082
8 -.008028 -. 060636 -.026749 -.002664 -.000015
9 -.010355 -.048778 -.017309 -.001116 -.000002

10 -.012371 ~-.03923%9 -.011201 -.000467 -.000000

11 -.014028 -.031565 -.007248 -.000196

12 -.015340 -.02539]. -.004690 -.000082

13 -.016338 -.020426 -.003035 -. 000034

ik -.017068 -.016431 -.001964 -.000014

15 - 01757 -.013217 -.001271 - . 000006

16 -.017897 -.010632 -.000822 -.000003

17 -.018070 -.008553 -.000532 - .00000L

18 -.01812k -.006880 ~ 0003k} --000000

19 -.018081 -.005535 -.000223

20 - .0L7966 -.00Lh52 -.0001k4
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Figure 1l.- Example 1.
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Outer surface) Present method;

——— nner surface) § = | sec

O OQuter surface

Exact theory

0 Inner surface

T

P
B} 2 4 6 8 10
Time, sec
(a) 1/2-inch-thick wall.
Temperatures of copper-wall surfaces. Adiabatic-

wall temperature varies linearly :E'rom'__C)O to 10,000° in 10 seconds;
n = 100 Btu/(hr)(sq £t)(OF).
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“ Outer surface) Present method ;
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O OQuter surf_cnce}EXCK:f theory
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(b} 3-inch-thick wall.

Figure 1.- Concluded.
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Figure 2.- Example 2. Temperatures of l/2-inch copper wall heated

according to ass

1gned history of h and

Tnre
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Outer surface \ Present method;
— — — Inner surface § §=1/2 sec
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140 g
(20
H
100
80
Wall
surface
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°op 210)
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:E_‘ ﬁn
0 2 4 6 8 {0

Time, sec

Figure 3.- Example 3. Temperatures of 3-inch copper wall heated
according to assigned history of h and Tanr e
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52
Present method
Outer surface {3:1/8 sec for 2 séc;
S5=1/2 sec thereafter <
8=1/8 sec for | sec;
—————— Inner surface 1 §:i/2 sec thereafter
O Outer surface
O Inner surfuce} Exact theory
700 pemmee 3
600 B2k
: H i
_'rr ot Hid]
500 e Siges:
ol o
WGH - - " __L‘ -
surface I ol
femp'a : TI‘ +t
°F 300 Bt 2
e
200 T S z
I- ” = - : i_
100 pEs :
e H
R ] E
0 2 4 6 8 10
Time, sec

Temperatures of l/2:inch copper wall after applica-
b = 100 Btu/(br)(sq £t)(°F).

Figure 4.- Example k. :
tion of 5,000 °F jump in ges temperature.
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Exact theory for infinite conductivity
O =1 sec
O S=2sec ; Present method; equation (i3)
TAN 8=5 sec
2400
2,000
1600
Wall
surface
temp,,
°F 1200 5
800 :
400
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Figure 5.- Example 5. Temperatures of l/lG-inch Inconel wall,

Taw= 5,000 °F; h = 50 Btu/(hr)(sq £t)(°F).
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Figure 6.- Example 6. Rate of heat flow into heated (outer) gsurface
of l/2-inch copper wall computed from tempersture history of outer
surface and from temperature history of inner surface.
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