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TECHNICAL NOTE 4OOL

SOME CONSIDERATIONS OF HYSTERESIS EFFECTS
ON TIRE MOTION AND WHEEL SHIMMY

By Robert F. Smiley
STVMARY

A theoretical study is made of the influence of tire hysteresis
effects on the rolling motion and wheel shimmy of lending gears. The
results of this study indicate that hysteresis forces and moments have
a noticeaeble secondary influence on the lending-gear rolling behavior.
Comparisons of the available experimentsl dasta with the corresponding
theoretical predictions provide a fair confirmation of the theory.

INTRODUCTION

In reference 1 it was suggested that tire hysteresis effects might
be of some importence for explaining the discrepanciles that exist between
predictions of wheel-shimmy theoriles and experimental observations. Also,
some approximate calculations, based on two different theories of hyster-
esis effects (theories of refs. 1 and 2), were shown to support this sug-
gestlon. However, even though both of these hysteresis theories yilelded
some results in fairly good egreement with the availlable experimental
deta, they are both based, in part, on reasoning that is considered too
crude to inspire confidence in the use of either theory for practicael
purposes. For example, the analysis of reference 1 was based largely
on considerations of the hysteresls properties of a stending tire and
did not teke into account either the rolling velocity or the interaction
between tire lateral distortion and twist. The analysis of reference 2
is of velue mostly as a qualitative study of the hysteresis phenomens;
the finsl equations presented apparently were intended to apply only to
the simplest case of wheel shimmy, end, even for this case, the rational
basis for these equations is not evident.

The purpose of the present paper is to provide an improved repre-
sentation of tire hysteresis forces and moments for use in the analysis
of tire motion problems, particularly for wheel shimmy. Another purpose
is to illustrate the importance of the hysteresis effects for a simple
case of wheel shimmy.
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The present analysis is essentially en extension of the analysis
of reference 1 to take into account the effects of rolling veloclty and
interaction between tire lateral) distortion and twist on the hysteresis
forces and moments. It is based on the same concepts of tire distortion
as were used in the previous paper. These concepis are briefly outlined
in the present paper. TFor a more thorough discussion of these concepts,
see reference 1.

The present paper 1s arranged as follows. Flrst, equatlions are
derived for the hysteresis forces and moments acting on a standing or
rolling tire. Then, in order to establish the importance of the hyster-
esis effects, the hysteresis equations are espplied to two special cases
of wheel motion. One case is for genersal shimmying motion of an untilted
wheel for conditions where the wavelength of any lateral or torsional
oscillation is large in comparison with the tire dimensions, and the
other case is for wheel shimmy where the wheel has only one degree of
freedom, namely, rotation sbout an inclined swivel axis. The equations
of motion and stability conditions for the latter case are developed in
appendix A. For both cases some comparisons between theory and experiment
are shown and these comparisons roughly confirm the theory. In addition,
for the latter case, the results of a few theoretical calculations are
presented to illustrate the influence of hysteresis forces and moments
on the damping required to stabilize the motion of a hypothetical landing
gear.

SYMBOLS
a trail (perpendiculer distence between ground-contact

center point and swivel axis)

change in lateral distence of center of pressure of

c
Y vertical force from XZ-plene per radilsn of lateral

wheel %11t

C)\ change in lateral distence of center of pressure of
vertical force from XZ-plane per unit of Agp

D differential operator with respect to distance, d/dx
or v*lDt

Dy differential operator with respect to time, d/dt
or VD

£ frequency, V/EK
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FosF15Fp

G’l’ G’2,G’3

BBy, B

3135

leteral hysteresis force

lateral hysteresis forces acting on three different
perts of tire

total lateral hysteresis force acting on tire
latersl spring force acting on tire

combined lateral spring and hysteresis force acting on
tire

vertical ground force acting on tire

linear (viscous) demping coefficient of shimmy dsmper
(Damping moment = gbty)

coefficients defined by equations (A7a)

half-length of ground-contact area

coefficients defined by equations (AT7a)

moment of Inertla of swiveling part of a landing gear
ebout swivel axis

horizontal distance forward of wheel axle

horizontel distances of centers of pressure of forces
F1 and Fp from wheel exle

tire constant, Ik|/v2 + i

12
torsional spring constant of a standing tire
effective torsionel spring constant of a rolling tire

lateral tire force due to tilt per radian of tilt angle

lateral spring constant of a standing tire



ZO,Zl,-.-Zn

Mz,h

Mz,s

Mz,q

Mg,M3,Mo

P1,Po

P1,2Po,

tire constants,

NACA TN 40Ol

equivalent viscous damping coefficient of tire per unit
clrcumferential distance

1y = (oL + Ill)hn_l
—n

relaxation length

hysteresis moment about swivel sxis

hysteresis moment about a vertical axis through wheel

center point

spring moment about & vertical saxis through wheel
center point

combined spring and hysteresis moment about a wvertical
axis through wheel center point

hysteresis moments corresponding to hysteresis forces
Fo, Fl’ and Fa

functions defined by equations (A23), (A25), and (A26)
functions defined by equations (A19)

phese angle between lateral deflection and swivel angle
free tire radius

circumferential coordinste on tire (fig. 1)

wavelength, 2n/vq
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X,Y,%

Yo

Mo

time
rolling velocity (assumed to be = constant)

horizontal distance parallel to mean direction of
rolling motion

space-fixed coordinate axes; X-axis 1s horizontal end
parallel to mean direction of rolling motion, Z-axis
is vertlcal, and Y-axis 1s perpendicular to XZ-plane;
XY-plane is ground plane

lateral deflection of tire equator from XZ-plane at
center of ground-contact area

twist in tire, radiens unless otherwlise stated

T]7\K}\h3
3(L + h)anm

tire constant, 1

fore-and-aft hysteresis-force parameter

vertical-hysteresis-force parameter

lateral-hysteresis-force parameter

hysteresis-moment parameter

lateral deflection of center plene of wheel with respect
to XZ-plane, measured in XY-plene gt position cor-
responding to center of ground-contact aresa

angle of rotation of wheel about vertical Z-axis,
radians

inclination of swivel axis, radians (fig. 2)
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A Nos NN lateral distortion of tire equator with respect to
solid parts of wheel; subscript O refers to center
of ground-contact area, subscript 1 refers to fore-
most point of ground-contact area, and subscript 2
refers to rearmost point of ground-contact area

v circuler frequency of shimmy oscillations, radilens
per second, 2n¢f or ViV

path frequency of shimmy oscillations, vv—1

V1
3 tire tilt parameter (0 < £ < 1)
o] spring constant for a linear restoring moment about

swivel axis

P = <a.K7 - aF, + ac)Fy + c,).FZ sin n)si.n K

tan K

1+ ELh
zlr

Q
Il

T tire parameter associated with gyroscopic moment due
to tire latersl distortion (see ref. 1)

-1/2
2
¢ = [l + (LVl) ]
\ § : angle of rotation of wheel about swivel axls, radians
Subscript:

max maximum
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HYSTERESIS FORCES AND MOMENTS FOR A STANDING TIRE

As e preliminary step for the snelyslis of tire hysteresis effects
for a rolling tire, it is convenient to study first the hysteresis forces
and moments acting on & standing tire subjected to cyclic lateral or
torsional loading.

Latersl Hysteresis Force

Consider first the case of a standing tire the base of which is
sub jected to a periodical
lateral deformation Ag

of the form

A = N0,mex sin vt (1)

(where v and t repre-
sent circuler frequency
and time, respectively)
caused by an applied lat-
eral ground force Fy’y\. |

(see sketch 1.) TUnger
these conditions the lat- Fy
eral ground force is 77L;9: Is
experimentally observed =
to vary with time in the 7\0
menner Iindicated in
sketch 2 so that the cor-
responding variation of

lateral ground force with
lateral tire deformation, shown in sketch 3, appears in the form of a

Sketch 1

FY: A

T

Fy,A\,max ™ Fy,s,max

. AN L

¥y, h,max

Sketch 2 Bketch 3



8 . NACA TN 4oo1

typlcal hysteresis loop. This hysteresis loop arises largely as a con-
sequence of the structural or hysteresls damping forces which oppose the
tire deformstion. (These forces are referred to hereinafter simply as
hysteresis forces.) In the case of metallic structures i1t has been found
that such hysteresis forces (1) appear to be independent of frequency,
(2) have an amplitude usually equel to & small fraction of the amplitude
of the corresponding spring forces, but shifted in phase by 90°, and

(3) can be analytically represented with fair accuracy ass the demping
force genersasted by an equivalent viscous damper whose demping coefficient
is inversely proportionsal to the frequency of oscillation. (See ref. 3,
or any other book on aeroelasticity.) These same concepts are assumed

to be appliceble to the treatment of hysteresis effects in standing tires.

The lateral spring force Fy,s In a tire for purely latersl oscil-
lations is

Fy,s = Kpho (2)

where K; 1is the lateral spring constant. The corresponding hysteresis

damping force, in sccordence with the preceding assumptions, can be
described by the equation

A

1 4

Fy,h = DiAho (3)

where the parsmeter 13 is the ratic of the maximum hysteresis force
Fy,h,max (see sketch 3) to the maximum spring force ¥y, 8,maxs OT, since
the meximum total ground force Fy,k,max and the maximum spring force

are epproximaetely equal,

F.
T = _fy_am_ax_ (%)
¥ A max
The total ground force Fy,R due to tire lateral distortion effects

(exclusive of inertia effects, which are treated separately in ref. 1)
can now be obtained by adding equations (2) and (3) to give
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K
Fy, A = Kado + 7‘77‘ D)o (5)

Before equation (5) can be used with confidence, it is necessary
to investigate whether the hysteresis damping perameter L)Y is inde-

pendent of frequency, as was assumed, and, 1f so, to determine its value.
In this connection, scme experimental hysteresis or damping-coefficient
data sre available from static force-deflection tests (partly published
in refs. 4 and 5) and from dynamic free-vibration tests for lateral fre-
quencies up to sbout 4 cycles per second (ref. 6). The static data are
given in the references in the form of’ force-deflection hysteresis-loop
plots similar to sketch 3 from which m; can be evaluated through use

of equation (4). These data indicate that N lies in the range
0.07 < Ly < 0.18. The dynamic free-vibration date are given in refer-
ence 6 in the form of plots of decrease in amplitude of the latersl oscil-

lation per cycle. These data can be readily converted.to give the cor-
responding velues of 1, by making use of the conversion equations of

reference 3, which are also indiceted in appendix B. The resulting
values of 173 1le In the range 0.08 < ) < 0.19, which is about the

same range as for the static data. Hence, the availasble experimental
data roughly support the assumption that 1, 1is independent of fre-

quency (at least up to 4 cycles per second), or, in more general terms,
these data support the assumption that the amplitudee of hysteresis forces
are independent of the time rate of tire distortion.

Most of the aforementioned experimental data indicate that, to an
accuracy of one significant figure,

Ty, = 0.1 (6)

In view of the limited data, no attempt is mede herein to define this
quentity more precisely.

Hysteresis Moment

The preceding discussion of hysteresis effects assoclated with tire
latersl stiffness obviously applies in an snalogous menner to hysteresis
effects assoclated with tire torsional stiffness. For example, the
twisting-moment equations corresponding to equations (3) and (%) are
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Mz,h = @ Dyt (1)
N = L{—::% (8)
where
Mz,h hysteresis twisting moment on tire due to twist of tire
o twist in tire about a vertical axis, radians
Ky, torsional spring constant of standing tire
T, hysteresis-moment parsmeter analogous to 1) for hysteresis
force
Mz, h,max maximum hysteresis moment

Mz, q,max maximum total twisting moment

In regerd to the megnitude of the hysteresis-moment parameter 1,

little directly pertinent information ls available. However, in order
to obtain a rough estimate of 7,, 1t might be noted that the parame-

ter L7N for tire lateral distortion end the corresponding quantities 174
and 7, for tire fore-and-aft deformation end vertical deformation,

respectively, are each approxjimately equal to each other and are all
approximately equal to O.l. More precisely, the free-vibration data of
ref. 6 indicate that 0.08 < 1, <0.19, 0.10 <7y < 0.15, end

0.06 < N, < 0.17.) Then, since these 1's are similarly defined as

ratios of maximum hysteresls force to maximum total force and since the
corresponding physical processes ere simller, it 1s probably not too
unrealistic to assume that 1, 1is of like megnitude or roughly

Mg = C.1 (9)

As an additionsl check on the reliability of equation (9), several
static moment hysteresis loops were avallable for a Yli-inch-diameter
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type III tire at its rated loeding condition. These loops were teken at
small twist angles to minimize tire skidding (which, according to the data
of ref. 7, is usually important for twist angles greater than 1°); more-
over, for this same purpose the ground-contact surface of the tire was
glued to the ground surface (in this case a steel plate). These tests
gave a value of 15 of 0.1h for a maximum twist angle of 1.5° and a

value of 0.24% for an angle of 4°. These data indicate that the previously
deduced rounded-off velue of 17, = 0.1 1is probably realistic for very

small angles but that 1t mey be low for twilst angles of several degrees
or more.

In concluding this discusslon of the hysteresis effects for a standing
tire, it should be kept in mind that the equations derived in this section
Por hysteresis forces and moments contain the implication that the ampli-
tudes of these forces and moments, for a given amplitude of tire distor-
tion, are independent of frequency of distortion. This fact can be easily
seen for the hysteresis force, for example, by inspection of the following
equation obtained by substituting equation (1) into equation (3):

Fy,h = 1Ko, max OB VE (10)

The corresponding amplitude of hysteresis force per unit of distortion

Fy,h
¥,h,max
—_— nXKK is seen to be independent of velocity and frequency.

Ao, mex
This observation regarding distortion frequency is used In the next part

of this paper as & basis for generalizing the Just-derived force and moment
equations to apply to the case of a rolling tire.

HYSTERESIS FORCES AND MOMENTS FOR A ROLLING TIRE

In this part of this paper equations are derived for the hysteresis
forces and moments acting on a rolling tire.

Tire Deformation

This section summerizes the basic assumptions regarding tire lateral
deformation during rolling which are utilized in the present analysis of
hysteresis effects for a rolling tire. These assumptions and some Justi-

fication for their adoption are discussed in more detail in reference 1.
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The usual state of lateral deformetion for a rolling tire is illus-
trated in figure 1, which shows two views of the tire - a side view and
a bottom view taken perpendicular to the wheel axle. The primary factor
of interest 1s the lateral dlstortion A of the tire equator or periph-
eral center line. The actual shape of the equator curve is indicated by
the dashed-line curve in the bottom view of figure 1. In the present
analysis, this actual-shape curve is replaced by the solid-line assumed-
shape curve. This assumed-shepe curve consists of a straight-line segment
for the ground-contact region and of two exponential-curve segments for
the regions outside the ground-contact area.

For the ground-contact ares (along the line 2-0-1 in fig. 1), the
leoteral distortlon for the stralght-line assumed-shape curve is described
by the equation

A=17Ng + sa (-nS$sShn) (11)

where 8 1s the circumferentisl coordinate on the tire.

Along the line 1-5-4 in figure 1, the lateral distortion is repre-
sented by the exponential equation

A= Kle'(s'h)/l' (hgsSnr) (12

where h 1s the half-length of the ground~contact area, Ay 1s the
latersl deformation of the tire equator at the foremost point of the
ground-contact area, and I 1s & tire constant called the relaxation
length. A physical interpretation of this relaxstion length msy be
obtained by noting that it represents the clrcumferential distance s
which must be traversed for the lateral distortion to drop to & frac-

tion l/e of its initial value, or that it represents the length of the
normal projection on the wheel center plane of the line formed by extending
a tengent to the exponential curve from the polnt 1 to the wheel center
plane. (See fig. 1.)

Similarly, the tire-equator distortion off the rearmost edge of the
ground-contact aree is assumed to be given by the equetion

A= 7\2e(s+h)/1' (b § -8 8 nr) (13)

(analogous to eq. (12)) where Ao is the lateral deformation at the
rearmost point of the ground-contact area.

L 4
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In regard to the accuracy of equations (12) and (13), it should be
noted that the laterasl-distortion curves of tires actuaelly appear to obey
exponential relations except possibly close to the leading and trailing
edges of the ground-contact area. (See, for example, ref. 5.) Moreover,
under normel rolling conditions, equation (12) is probably always fairly
realistic even up to the leading edge of the ground-contact region. (See
ref. 1.) However, equation (13) 1s not so accurate since it implies that
a lsrge sharp bend exists in the tire-equator curve at the rearmost ground-
contact point 2. (See fig. 1.) In actuality, the tire cannot sustain
such e sharp bend; therefore, the actual tire curve in this region is
shaped more like the dashed-line curve for this region shown in figure 1
than llke the solid-line assumed curve. Although this discrepancy is
possibly of some importance in influencing the quantitative accuracy of
the subsequent analysis, it will nevertheless be ignored in first
approximation.

It should also be noted that, according to equation (1l), the lateral
deformeations at the foremost and rearmost ground-contact points (Rl and

A2, respectively) can be stated in the form

M=N + ha (1)
A2 =20 - ha (15)

Equations (11) to (15) provide the basic equations of tire-equator
distortion which are used for the subsequent analysis.

Also needed for the subsequent analysis are the time rates of change
of tire laterasl deformation for a given tire particle for reglons 2-0-1,
1-5-4, and 2-6-4 in figure 1. These rates are obtained by differentisting
equations (11), (12), and (13) with respect to time:

For region 2-0-1,
DgA = DgAg + sDga + aDis (16)

for region 1-5-4,

DiA = o~(s-n)/L (Dtkl - % Dts) (17)
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and, for region 2-6-1, R
Ao l
D\ = o(s+h) /L (Dt7\2 = D,Gs> (18)

where Dy denotes the differential operator d/dt. The quantity Dys,

which is the peripherel velocity of tire-equator particles with respect
to the wheel axle, 1s approximately equal to the negative of the rolling
velocity v; hence, equations (16) to (18) may also be written as follows:

For region 2-0-1,

DgA = Dyhg + sDya - Vo (19)
for region 1-5-4,
Dgh = e (s-B)/L (Dtvxl +7 7~1> (20) g
and, for region 2-6-A, l
Dy = ol SH)/L (Dtka -7 7\2) (21)

Equations (19) to (21) provide the basic equations of rate of change
of tire distortion which are used for the subsequent analysis.

Hysteresis Forces and Moments

Basic considerations.- In order to obtain en expression for the
hysteresis forces and moments acting on a rolling tire, it is convenient
to consider separately the three regions of the tire corresponding to
equations (11) to (13) for tire-equator lateral deformation, that is,
the regions 2-0-1, 1-5-4, and 2-6-4 indiceted in figure 1. The resultent
lateral hysteresis forces for these three regions are denoted, respectively, -
as Fg, Fq, snd Fp. In each of these regions, the hysteresis forces

.
1 4



NACA TN hLOO1 15

will obviously act in such a direction as to oppose relative motion or
distortion of these regions. In other words, these hysteresis forces
ere qualitatively similer to the forces which would be generated by a
geries of linear viscous damper units located around the tire periphery,
wvhich laterally connect the tire equator with the rigid wheel, as indi-
cated in the following sketch:

Wheel center plane
é 8 >

e ] l l I I &L T
v
D e b N
Tire equator

L%l

L=
v
dr
as

If this viscous-damper analogy is adopted, then the hysteresis force per
unit circumferentiael distance (dF/ds) cen be expressed by the equation
for the damping force of a viscous damper as

= KD¢A (22)

B |&

where k is the equivalent viscous damping coefficient of the tire per
wmlt circumferentisl distance.

The total hysteresis force Fp for the region 2-0-1 is obtained by
inserting equation (19) for DiA into equation (22) and integrating.
Thus,.

h h
F0=f kD-Q\dS:kf (Dghg + 8Dga - va)ds = Zhk(DgAg - va)
s==h

s=-h

(23)

The totel hysteresis force F, for the region 1-5-4 is obtained
by inserting equation (20) for DiA into equation (22). Thus,
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F1=fmnrd_F—£ds =fﬁﬁr KDiA ds = f“:tr k.e-(s_h)/Ld_s (D‘b-)\l+%7\l)

g=h @8 s=h g=h
(24)

Evaluation of the integral, after replacing the upper limit by infinity
for simplification of the result (which introduces no significant error
because of the rapidly decaying exponential function involved), yields
the final expression

Fq = Lk(m-)\l + % 7\1) (25)

Similerly, the following equatlon is obtained for the hysteresis
force Fp in the region 2-6-4 through the use of equations (21) end (22):

~nr =y )
Fp = . kDgh d(-8) = f( ge~(-5-B) /1 d(-s) (Dtkz - F ?\2)

-8= -S)=h

(26)

which, after replacing the upper limit of integration by infinity and
integrating, gives

Fo = Ik(D-b')\e - % 7\2) (27)

Sinusoidal motion.- In the present anelysis, attention is restricted
to problems where the tire-distortion parameters A3 and Ap vary sinus-

0idally with time at the circuler frequency v. For such cases, A1 can
be expressed as

M = M ,mex sin vt
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Thus, equation (25) for the force Fy 1in the region 1-5-4 can be expressed
as

Fy = kal,max(v cos vt + % sin vt)
or

F1 = LEA] max v o+ ﬁg sin(vt + A)
L

A = tan~1(vL/v)

The corresponding amplitude of hysteresis force per unit amplitude of
lateral distortion is then

i 2
LmEX i [v@ ¢ X2 (28)
7\1,1118.}( L2 .

From e similar consideration of the force Fo in the region 2-6-4, the
following equation is obtained:

E
K2,max 12

During the earlier discussion of hysteresis effects on a standling
tire, some evidence was offered to support the assumption that the ampli-
tudes of lateral hysteresis forces in a tire for s given amplitude of
laterel distortion asre independent of the frequency of distortion. In
order to apply this result to the rolling-tire case, it should first be
recognized that the rate or effective frequency of distortion for the
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individusl particles in a rolling tire depends not only on shimmy fre-
gquency Vv but also on the rolling velocity v. (For example, if the

shimmy frequency approaches zero but the rolling veloclty is finite, then
the individuael tire elements will obviocusly experience periodicael lateral
distortions at the frequency of rotation of the tire (Nv/r)) Consequently,
if hysteresis forces are independent of shimmy frequency for the rolling-
tire case, as is suggested by the previously discussed deta for the stending-
tire case, then they are also necessarily independent of rolling wveloc-

ity wv. In view of this reasoning, the amplitude of the hysteresis force

2
per unit smplitude of latersl distortion, which is equal to Ik\[v@ + iE

according to both equations (28) and (29), is assumed hereinafter to be
independent of both shimmy frequency and rolling velocity and, consequently,
could be evaluated, for example, from teste of a standing tire. This

quantity Ik v2 & v_z_ will be abbreviated as XK or, in other words,

L

ke —0— (30)

Tt should be kept in mind that K 1is independent of frequency and
velocity.
Next consider the total lateral hysteresis force Fy p = Fo + Fy + Fo.

By use of equations (23), (25), (27), and (30), this force can be
expressed in the form

Fy,h = ——K-—v—2- Zh(D’tM - vu.) + L(Dt?\l + %7\1) + L(D-b7\2 - % 7\2)
L V2 + —2

L
(31)

By substitution for A, and A, according to equations (14) and (15),
equation (31) reduces to the following form:
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L= 2(L + h)X Diho (32)

L v2+-vf
L2

FY:

Next consider the hysteresis moments Mp, M;, and Mp about &
vertical axls through the wheel center point, where Mp, M3, and Mp
correspond to the regions 2-0-1, 1-5-%, and 2-6-k4 in figure 1, respectively.

For the region 2-0-1 this moment is given by the equation

h
ar
= — 5 ds (35)
Mo L__h ds

and by use of equations (19), (22), and (30) this integral yields the
result

My = . lﬂ)tksds=kfh_h(nt7\o+snta.-m)sds=

s8=-h

i o
B

£
]

W R

S
3
¥

The moments could also be obtained for the other two regions 1-5-1
and 2-6-4 by integrations similsr to the integration for the region 2-0-1.
However, for reasons to be discussed subsequently, the following approach
for these moments is more convenient.

For the regions 1-5-4 and 2-6-4, the moments My, &and Mp can be
expressed as the product of the corresponding forces F, &and Fp (see

egs. (25) and (27), respectively) and their center-of-pressure distances,
J1 &nd Jo as :

My = Fqdp = LkJ:L(DtM + % 7\1) (35)
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Mp = -Fpjlo = -LkJ2<Dt7\2. - % 7\2) (36)

Moreover, since the force per unit clrcumferentlal distance (d.F/d.s) has
been taken to be linearly dependent on the lateral deformation A (see
eq. (22)) and since A has the same shape of exponentisl variation

with s for the two regions, the two center-of-pressure distances Jp

and Jjo evidently must be equal:
J1= Jo (37)

The totel hysteresls twisting moment Mz n can now be obtained
from the relation Mg p = Mo + My + Mp by use of equations (34) to (3T)
and (30) as

Mgz,h =

W[
g
R
F
f
+
&
‘_l
=
F
>/
|.-l
'
>
\ll)/
+
>
}-J
+
>
o
Lo

or, after also applying equations (1k) end (15), as

2 | jv
My h = ——e [y + o |HDpe + (38)
. 2 3L, L
Ve + —

L2

Equations (32) and (38) provide two equations for the hysteresis
force and moment acting on a rolling (or standing) tire; however, these
equations contaln two as yet unevaluated parsmeters, namely, K and J;.

In order to express these parameters in terms of some measurable tire
properties, these two equations mey be compared with the previously
derived equations for hysteresis force and moment on a standing tire.
(see eqs. (3) and (7)). For a standing tire (v = 0), equations (32)
and (38), respectively, reduce to the following relations:
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_ 2(L + h)K

Fy,h To— Dtho (39)
2hK h2
Mz,h = T(Jl + ?—L')Dtd, ()'FO)

Comparison of equations (3) and (39) yields the relation

(k1)

L
K= ———— 1K
2(L + h) A

and comparison of equations (7) and (40), with the use of equation (41)
to eliminate K, ylelds

- (L + B)naKa 12 (52)

In connection with the above determination of the center-of-pressure
parsmeter Jj; in terms of the hysteresis parameter 1, it might be

recalled that it was not necessary to treat this quantity in the theory
as an unknown perameter since J; could have been obtained directly by

integration from the following equation:

Ji = (43)

where j 1is the moment srm of the incremental force d4F. (See fig. 1.)
However, only one unknown parameter would be involved in equations (32)
end (38) if this procedure were followed, nemely, K; consequently, no
choice of this parameter K could in general satisfy both of the two
end-point (zero-velocity) conditions prescribed by equations (3) and (7).
For the present problem it was considered more realistic to satisfy both
equations (3) end (7) rather than to satisfy only one of them together
with equation (L43).
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After substitution of equation (41) into equution (32) and substitu-
tion of equations (41) and (42) into equation (38), the following equu-
tions result:

LN
Fy,n = —==== Dt} (1)
w2
1.2
[
Mz,h = ——na'—Ka—-.\Dtoc + -& Ao (45)
2y Y2
12
where
HEK h’
£=1-—NN (46)
3(L + h)nXy
Finally, by use of the relatilons
-4 _d&xd _ .4 4
RExtma T ? (k1)
v
'Vl = "\-r' (11-8)

where vy 1is called the path frequency, equations (44) and (45) can be
expressed in the following convenlent forms:
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L (i)

; (50)

MZ,h = Tla'Ka' . G[.:DQ’. + % 7\0)

‘ 1+ (Lvl)a

Equations (49) and (50) are the final equations for the hysteresis
force and moment acting on a rolling tire the base of which is experi-
encing a sinusoldal disturbance 'at some circular frequency v.

IMPORTANCE OF HYSTERESIS EFFECTS

In order to assess the importance of the hysteresis force and moment
terms given by equations (49) and (50), these equations are now applied
to two simple cases of wheel motion. One case is for general shimmying
motion at large shimmy wavelengths (including the limiting condition of
steady yawed rolling) and the other cese 1s for wheel shimmy where the
wheel has only one degree of freedom, namely, rotation sbout an inclined
swivel axis.
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Large-Wavelength Rolling

Theoretical considerations.- Consider first the special case of an
untilted wheel rolling in such & manner that the wavelength of any lateral
or torsional oscillation (S = 2nv/v) is extremely large in comparison with
the tire cheracteristic dimensions (for example, L and h). These con~
ditions are satisfied for some high-speed rolling ceses and for the
special case of steady yawed rolling; they are not satisfied for some
medium-speed cases and are rarely satisfied for very-low-speed shimmy
oscillations.

For the conditions Jjust mentioned, the ratio Lv/v becomes negli-
gible; hence, this ratio, the gquantity %-Dtxo (whose amplitude is equal

o L?V No,max Tor sinusoidel oscillations), and the quantity %Dta cen

be set equal to zero in equations (49) and (50). Also, the following
equation, relating tire lateral deformation and twist for these condi-
tions, is valid (see approximastion C2 of ref. 1):

7\0 = -7.1(1. (51)
where
13 =L+h (52)

Application of these simplificatlons to equations (49) and (50) yilelds

Fyp=0 (53)
[
Ma,h = $iaKa T o = ~LnoKa 7 o (54)

Equation (53) indicates that, to a first approximation, the net
resultant latersl hysteresis force, for the considered rolling condi-
tions, is zero. (The incrementsl internel hysteresls forces are, of
course, still as large as for any other rolling condition, but since
some of them act in opposite directions, it is possible for the result-

ant force to become zero.)
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The hysteresls moment, according to equation (54%), is, however,
finite. In order to appreciate better the quantitative importance of
this moment, it is convenient to consider the total spring and hysteresis
moment acting on the tire. This total moment Mz, o 1s the sum of the

elastic moment Mgz,g, where

Mz’s = Kaﬂv (55)

and of the hysteresis moment (eq. (54)); that is,

1 A
Mz, = Mz,s + Mz,h = Ko - EnaKa El' a= <l - 8N —hJ—')chﬂ- (56)

Tt can be readily seen from the final form of equation (56) that
the essentlial action of the hysteresis moment is }o reduce effectively
the torsional spring constant for a rolling tire (defined as Kg,r = Mz ,or./@)

below the corresponding static spring comnstant X, by the factor

1
(1 - tng, -hl); that is,

Koyr = (l - Eng %)Ka (57)

With the aid of equation (57) 5 The present hysteresis anaslysis can
now be partly assessed both by examining the magnitude of the calculated
hysteresis effects and by comparing calculated results with corresponding

experimental data.

In regard to the magnitude of the effective reduction of torsional
stiffness, for some possible sizes of tire constants, equation (57) gives
an effective stiffness reduction of as much as 28 percent (see subsequent
calculations) if N 1s teken as 0.1. (1 Nq 1s taken as 0.2, this

percentsge is approximately doubled.) Thus, it appears that hysteresis
effects may be of some importance for analyzing the rolling behavior of
tires, at least for conditions where tire torsional stiffness 1s involved.

Comparison with experiment.- Some rough experimental confirmation
of the present theory can be obtained by comparison of the predictions
of equation (57) with the experimentsl dats of references 8 and 5 for
the case of steady yawed rolling in a straight-line path.
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Experimental detae from reference 8 for a 10-inch-dismeter tail-wheel
tire, together with the corresponding theoretical calculation according
to equation (57) (with T\ and 1 teken as O.l), are as follows:

L’ CllL o o o . & e & & v & e 9 & o e e s o o o o o " e &« o @ lo

h, Cll ¢« ¢ ¢ s ¢ 5 &« s s & ¢ & & & » *® ¢ & ® 8 * e ° T o s o .« o o 5!2

Ky k@-cm/radial v o v ¢ 4 o o o o o o o s s s o 0 s o s s s o o 3,040

Ky,rs kg-cm/radien:
Experimental . . . .....................2,270
Celculated (eq. (57)) e~ L= o)

Feir sgreement is indiceted between celculated and experimental wvalues
of rolling torsional stiffness Ky r.

A similar comparison for a pair of current 26-inch-dilsmeter, 26 x 6.6,
12-ply-rating, type VII aircraft tires, based on data from reference 5
(for a verticel tire deflection of 2 inches snd an inflation pressure of
142 pounds per square inch) with 17 and 7y taken as 0.1, is given as

follows:

i.,ij;.............................'.5’629
e e & e e o * * & & & ¢ & " P & ¢ & 9 s & " @ & & 9 = & 2w o Ql
K')\,lb/m............................1,950

I((I', lb"‘m./deg e & @ & & ® o ¢ ° & s ® 8 8 ¢ ® # & & & & o s 1,)4'20

Kq,r» 1o-in./deg:
merimenta]- . -* - - L) L] L) L ] - L[] L ] L] L L . L] L ] - » L ] L] L ] - L] L] 1,050
Calculated (eq. (57)) e o s s o s o s e« o e o s 1,180 to 1,090

In spite of the large amount of doubt regarding the msgnitude of the
relaxation length 1. for these latter data, the agreement between the
experimental and celculated values of Kg r 1s still seen to be good

enough to furnish at least a rough confirmation of the present theory.

Wheel Shimmy

A second indicetion of the effects of hysteresis may be obtalned
by considering the problem of shimmy for an idealized landing geexr the
wheel of which has only one degree of freedom, aside from coupled lateral
and torsional tire distortion, namely, rotation about an inclined swivel
axis. (See fig. 2.) The equations of motion and conditions for stable
motion for this simplified case are derived in appendix A according to
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the summary theory of reference 1, as modified to take into accowmt the
effects of hysteresis on the lateral force and twisting moment as given
by equations (49) and (50). The final equations for the stability con-
ditions correlsting landing-gear trail a, rolling velocity v, and mini-
mum viscous shimmy demper constent g (damper moment gD¢¥) required for

steble motion are given by equations (A22) to (A24) of appendix A. In
eddition, the corresponding stability-boundary conditions for a simpli-
fied version of the summary theory, designated as approximation B in
reference 1, are given by equations (A22), (A24), and (A26).

Comparisons with experiment.- For this case, experimentel stability-

boundary and shimmy-frequency date for a small model landing gear (10-inch-
diameter tire) are available in references 2 and 9 and are reproduced in
figures 3 and U4 together with the corresponding predictions of the summary
theory and approximation B to the summery theory, both with and without
consideration of hysteresis effects. (The tire constants used for these
calculations, as taken from refs. 2 emd 8, are listed in appendix C.l)
In regard to the significance of approximstion B, 1t might be noted that
this simplified version of the summery theory is almost the same as the
more advanced of the two theories proposed by Bourcier de Carbon in ref-
erence 10,

By comparison of the theoretical curves in figures 3 and 4 with the
corresponding experimental data it is seen that, for both the summary
theory and espproximation B, the theoretical curves with hysteresis con-
sidered are much closer to the experimental data than the theoretical
curves with hysteresis not considered, both in regard to shepe of curves
and quantitative agreement with experiment. Hence, these experimental
data appear to substantiete partly the reliability of the present analysis
of hysteresis effects.

It might also be noted that approximetion B appears to give better
agreement with experiment than the summary theory to which it is an
approximation. This result is probably a colncidence; in any event, it
is of little significance since the differences between these two theories
for these test conditions correspond to smell high-order terms in the
surmary theory and there is little reason to believe that these high-
order terms are described sufficlently accurately by the summary theory
to insure thet it is any more accurate than approximation B.

lIt might be noted that the theoretical cwrves of figures 3 and L
for the condition with hysteresis not considered differ slightly from the
corresponding theoretical curves in reference 1. This difference results
from the fact that the present theoretical curves were based on the experi-
mentally determined value of footprint length whereas the curves of ref-
erence 1 were based on an effective value of footprint length which was
indirectly calculated from the cornering power of the tire.
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Sample calculations of damping required for stability.- As a final
point of possible interest, some theoretical calculations were mede of
the minimum damping required to stabilize the motion of & hypothetical
landing gear having the relative dimensions and properties 1 = 0.&r,
h=0.5r, Ky=0.52r%K), k=0, and T = o.11ﬁ;~2 for the following

two values of trail: a = 0.5r and a = 0, The required minimum demping,
calculeted according to spproximation B (see egs. (A22), (A24), and (A26)),
is shown as a function of rolling velocity in figure 5. Three types of

calculations are shown in this figure. The solid-line curves represent
solutions with complete neglect of hysteresis effects (nm = Ny = 03. The

short-dashed-line curves represent solutions with hysteresis effects
included in detail ("17\ = Tg = O.1). The third set of curves (short-
dash—long~dash), designated as approximete hysteresis solution, repre-
gsents solutlons made under the assumption that the wavelength of the
shimmy motion is large enough to allow the general hysteresis force and
mome?thiq.uations (49) end (50) to be replaced by the simpler equations (53)
and (54).

Comparlison of the solid- and dashed-line curves in figure 5 indlicates
that the hysteresis effects act in such s manner that the demping required
to stabilize the landing-gear motion is apprecisbly reduced, and especially
go at very low speeds and for the small-trail (zero) case. The maximm
damping requlrement is seen to be reduced by about 40 percent for the
zero-trail condition end 20 percent for the large-trail (a = 0.5r)
condition.

By examination of the curves in figure 5 for the approximste hyster-
esls solution, the approximste hysteresis solution is seen to give results
which usually lie somewhere between the solution with hysteresis effects
included in detail and the solutlon with hysteresls effects completely
neglected. This fact indlicates that taking the hysteresis effects into
sccount by the epproximaete method is better thsn not taking them Into
account at all. This last point is of some importence for aspplication
of the present hysteresis theory to complex lending-gear configurations
inasmuch as the detailed hysteresis solution might present some mathe-
matical difficultles, whereas the approximate solution never involves
any more work than the solution which completely neglects hysteresis
effects. .

Even though the approximate hysteresis solutions in figure 5 are
better than solutions with no consideration of hysteresls effects at
all, they are seen to be completely inadequate to represent the detailed
hysteresis solution at low speeds, particulerly for the small-trail con-
dition. Moreover, not even for the highest speed condition shown do
the two solutions coincide completely; thus, at least for this particular
landing-gear configuration, the high-speed range where the approximate
hysteresis solution might be expected to be valid either lies beyond the
gpeed range of practical interest (that 1s, the range where positive
damping is required) or does not exist at all.
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CONCLUDING REMARKS

This paper has presented an approximate theoretical anslysis of the
hysteresis forces and moments acting on a rolling tire and has shown some
limited experimental confirmation of the results of the anslysis. Although
this analysis cannot be said to give an extremely accurate answer to the
tire-hysteresis problem, it.is believed that the essential features of
the hysteresis phenomene have been considered in a more realistic manner

than in previous analyses.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., February 21, 1957.
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APPENDIX A

EQUATIONS OF MOTION AND STABILITY CONDITIONS

FOR A SIMPLE CASE OF WHEEL SHIMMY

This appendix presente a derivation of the equations of motion for
one of the simplest cases of wheel shimmy, where the rolling wheel has
only one degree of freedom aslde from tire distortion, namely, rotation
about an inclined swivel axis by an angle V. (See fig. 2.) The rota-
tion of the wheel about the swivel axis is assumed to be opposed by a
linear torsion spring of moment p¥ and a viscous shimmy demper of
moment thw. This derivation is made by modifying the pertinent eque-

tions for the sumary theory of reference 1 to teke into account the
hysteresis force and moment according to equations (49) and (50).

Derivation of Equations of Motion

The important geometric parameters involved for this case, which
is the same as case I in reference 1, are illustrated in figure 2. They
include the wheel treill a, the angle of rotatlon about the swivel axls
Y, the swivel-axis inclinatlon angle k, the angle of rotation of the
wheel about a vertical Z-axis O, the tire~twist angle o, the lateral
deflection of the tire equetor from the XZ-plane at the center of the
ground-contact area yg, and the lateral ground deflection of the wheel

o = ¥o - %O (lateral distance between XZ-plene of undisturbed motion
and intersection of wheel center plane and ground plane below wheel axle).

First consider the moment M, of the ground force about the swivel
axls due to hysteresis effects (see fig. 2):

My = M,y cos k - aFy,h (A1)

where Fyy end M,y are given by equations (49)Y and (50). A more

convenient form of equation (Al) can be obtained by making use of the
following geometric relations:

8 =V cos k (A2)

Mg = -8¥ (43)
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A =Yg = My =¥+ ar (ak)
@ =Dy, -8 =Dyy - ¥ cos k (a5)

(Eq. (A5)) implies no skidding between tire and ground.) Substitution
of equations (49) and (50) into equation (A1) and then substitution of
equations (A4) and (A5) into this equation gives

M, = __.__3;____.Gh§a;Dm cos ® - MKaLaDA, + §ﬂ:5m Ay cos %)
1+ (Lvl)2
= qaga;Dzyo cos8 Kk - nxgi;abyb + §ﬂ§$h,yb co8 K =
1+ (L'Vl)2

¥ cos k (46)

(ﬂaﬁﬁ cos®k + n*&&f%lD# + EaZ?Km

vhich expresses the hysteresis moment as a function of Yo and .

Other moments acting about the swivel axls are the spring moments
due to tire lateral distortion and twist, the moment of the vertical
ground force F, due to wheel swiveling and tilting and to tire lateral
deformation, the moment due to tire-distortion gyroscopic effects, the
spring restoring and viscous damper moments, and the inertia-reaction
moment (Ithew). (See ref. 1 for a discussion of these verious moments.)

The sum of these other moments, in a form convenient for present
-use, is set equal to zerc in equation (115a) of reference 1. In order
to modify this equation to include the present hysteresls terms, it is
necessary only to subtract the term M,, as given by equation (A6), from
the left-hand side of equation (115a) of reference 1. This procedure
glves :

G1D%¥ + GoD¥ + Ga¥ + EyDPy, + EoDyg + Hzyg = O (A7)
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where

G = Lv°
Go = aTvecos k + gv + ¢L(W£Km cos®k + nXK%aeb
Gz = asz + K, cos®k + p + Pr = ggf%égﬁ cos K
f (ATa)
By = ~PngK,L cos k
Ho = K, cos Rk + Tvecos K + ¢nXKXDa
Bz = aK) + c)F; 8ln k - gE%%EQ cos K
J
1
g = (a8)
/1 + (Lvl)2
P = Gﬂiy - aF, + 8cyF, + c,F, sin n)sin K (A9)

where IW is the moment of inertia of the wheel structure about the

swivel axis, F, is the vertical ground force, c¢; 1s the lateral

shift of vertical-force center of pressure per unit of lateral tire
distortion, cq 1s the lateral shift of vertical-force center of pres-
gsure per redian of wheel lateral tilt, K7 is the laterel elastic force

per radian of lateral wheel tilt, and T 1is & tire parameter associated
with gyroscopic moments due to tire lateral distortion. (See egs. (33)
and (50) of ref. 1 for definitions of T.)

Equetion (A7) glves one relation between wheel rotation V and
lateral deflection of the ground-contact ares yg. A second equation

relating these two variables is furnished by the following kinematic
equation (117) of reference 1:
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o
(01q cos « - a)\lr - Z 1, D% = O (A10)
n=0
where
n-1
1, = (oL + h)n (A11)
nl
=1+ ton x (A12)
r?,l

where r 18 the tire redius and £ 1g a number associated with tire
tilt (see ref. 1) which is smaller than unity and probably close to zero.

Equations (A7) and (Al0) are the basic egquations of motion for the
present case of shimmy with one degree of wheel freedom, according %o
the summsry theory of reference 1, ag modified to include the present
hysteresis effects.

Conditions for Stable Motion

Among the most importent characteristics of the wheel motion corre-
sponding to equations (A7) and (410) are the conditions governing steady-
state motion of the wheel and the minimum demping required for stable
motion. These conditions are found by the usual procedure of assuming
that the two variables V¥ and y, are purely oscillatory functions of

distance rolled according to relations of the form
ivqx
1][ = ‘tb'maxe L (Al3)

i +
Yo = Yo,max® (va2+a) (A1k)

where *max’ Yo, max’ and q are constants.
2
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Substitution of equations (Al3) and (Alk) into equations (A7) and

(A10), division by eile, and separation of real and imeginary parts
of each resulting equatlon provides the following four relstions:

From equation (A7),

(G5 - G1V12>’l’ma.x + (H5 - Hlvlz>(yo,max cos q) - szl(yo,ma.x sin q) =0
(415)

Govy¥, . + Hovy (yo, max COB q) + (H3 - Hlvle) (yo,max sin q) =0 (a16)

and, from equation (A10),

(czl cos Kk - a)xlrmax - Ploo(yo,ma.x cos q) + paw(yo’m sin q) =0 (AL7)

P2oo(y0,max cos q) + Ploo(yo,max sin q_) =0 (418)

where (see egs. (80) of ref. 1)

- 2 4
'Pl = l —12Vl + Z)_l.vl - e e @

00

cos vlh - Lvl sin vlh
% (A19)

pam = 7‘11’1 - 13\115 + Z5Vl5 - . e &

sin v.h + Lv:L cos vlh

1

For nonzero values of the three quantities V.., (yo,ma.x cos q),

and (yo' —_— sin q) , the determinants of their coefficients must vanish
L4

for each group of three of the four equations (A15) to (A18). TFor
example, from equations (A15), (Al7), and (A18),
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2 2
G5 - Gy B - Byvy “Hpvy

oly cos &k - & P10 Pow | = O (420)

0 Pow Pio

and, from equations (A16), (A17), and (A18),

G’2Vl HQVl H3 - H1V12

Gly cos k - a P Pog =0 (a21)
0 Pog Pie

Equations (A20) and (A21) cen be expressed in a more convenient
form by multiplying out the two determinants and substituting the values
for the coefficients G and H from equation (ATa). Then, solving the
resulting form of equation (A20) for v gives

#'(tztaogeuzsi-p-rp‘-m:““wi l)(rl2+y22)+ Eu&hi-cl!,linx-ﬂﬁmn-bhe mk)pl-(tumcx-hxku)vpg](dllmn-‘)
1‘,12(»12+'522)--n1y2ﬂlm:-nm:

{rz2)
where, for the summary theory,
Py =P, = cos vlh - Lvl sin vlh
(A23)
Py = Py, = sin vlh + Lvl cos vlh

and solving the resulting form of equation (A21) for g gives

fad x -
T R > PRI
rir(e® + 52) :

(a2k)
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Equation (A22) glves the rolling velocity v as a function of shimmy
path frequency v,, and equation (A24) furnishes the required minimum

damping constant g for stable motion as a function of velocity and
peth freguency. ‘

The preceding equations (A22) to (A24) give the characteristics of
the wheel motion corresponding to the modlfied summary theory of refer-
ence 1. The corresponding equations for two simplified versions of this
summary theory (epproximations A and B of ref. 1) are obtained by replacing
equstions (A23) by the following equations:

For approximation A,

p = 1 - lovy®

3 (425)
Py = Zlvl - ljvl
and, for approximstion B,
pl =1 - 7;21’12
(A26)
Pa= "

Although other even more simplified versions of the summery theory are
possible (see approximations Cl, C2, D1, D2, and D3 of ref. 1), these
other verslons sre too crude to be of much value for low-speed shimmy
conditions, which are the conditions where hysteresis effects would be
expected to be most limportant.
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APPENDIX B

DETERMINATION OF HYSTERESIS CONSTANTS

FROM FREE-VIBRATION TESTS

This appendix dlscusses a procedure for determlining the lateral-
hysteresis-force parameter ™ (see eq. (4)) from informstion gained

by free-vibration tests of a two-wheel cart of the type described in
reference 6. Such a cart can be spproximstely represented by the linear
mass-spring-damper system illustrated in the following sketch:

/] /
/ /
24—V VNV —] om —'——/\/\/\/\/\/—_Z
7 1 1] 4
/] V
/ —>2No v

where the springs represent the two tire stiffnesses, the dempers repre-
sent the hysteresis damping, and 2m represents the mass of the cart.
The spring and damping forces are given by equations (2) and (3) and the
corresponding differential equation for the system for free oscillgtions
is

armt%+233vﬁbt7\o+af<ﬂ\o=0

The solution of this equation is of the form
SN
Mo = ¢pe 2vm sin(v‘b. + cpa) (B1)

vhere @ and Qo are constants and

2 P -
K K K K
v =i - ('2'7\17-@@‘7\‘) = %( - ?mvak) (B2)
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2
NN
5

Inasmuch as << 1 for conventional tires, equation (B2) can almost

by
always be replaced by the simpler expression

K
v =2 (3)
and, thus, equation (B1) can be reduced to the form

N = o0 2N st (b + 05) (34)

The decrease 1n amplitude of the lateral oscillation per cycle (of period
T=1-=2£)isthen
£ v

Molt +T) ~ZTAVE

— &7
—7\—0(%‘5— = =e A (B5)

Since this ratio can be directly measured in free-vibration tests, equa-
tion (B5) provides the necessary relation for determining the parame-
ter m, from such test date. Also equation (B3) gives the necessary

equation for determinlng the lateral spring constant in terms of the
experimental frequency and the cart mass.
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APPENDIX C

CONSTANTS FOR CALCULATIONS

Most of the tire constants used for the calculations in figures 3
and 4 were obtained from references 2 and 8 and sre as follows:

h=5.2cm
L=10cm
3 =L+h=15.2

Ky = 45 kg/em

Ky = 3,040 cm-kg/radian

Iy ~ 0.53 + 0.0025a€ cm-kg-sec?

Both 1, and 17, were taken equal to 0.1. 1In addition to these rela-

tions, the parameter T, representing a gyroscopic moment due to tire
lateral distortion (see ref. 1) , was assumed to be equal to zero.
Although a rough value of T could perhaps have been estimated, such
an estimate 41id not appear necessary because the effect of this param-
eter, according to any reasonable estimate of T, would be of little
impoitance in the velocity range of the experimental data in figures 3
and 4,
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