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SUMMARY

A theoretical study is made of the influence of tire hysteresis
effects on the rolling motion and wheel shimmy of landing gears. The
results of this study indicate that hysteresis forces and moments have
a noticeable secondary influence on the lan&lng-gear rolling behavior.
CompsJ?isonsof the available experimental data with the corresponding
theoretical predictions provide a fair confirmation of the theory.

INTRODUCI!ION

*

In reference 1 it was suggested that tire hysteresis effects might
be of some importance for explaining the discrepancies that exist between

u
predictions of wheel-shimmy theories and experimental observations. Also,
some approximate calculations, based on two different theories of hyster-
esis effects (theories of refs. 1 and 2), were showm to support this sug-
gestion. However, even though both of these hysteresis theories yielded
some results in fairly good agreement with the available expertiental
data, they are both bssed, h part, on reasoning that is considered too
crude to inspire confidence in the use of either theory for practical
purposes. For exsmple, the analysis of reference 1 wss based largely
on considerations of the hysteresis properties of a standing tire end
did not take into account either the rolling velocity or the interaction
between tire lateral distortion end twist. The anslysis of reference 2
is of vslue mostly as a qualitative study of the hysteresis phenomena;
the final equations presented apparently were intended to apply only to
the stiplest case of wheel shimmy, and, even for this case, the rational
basis for these equations is not evident.

The purpose of the present paper is to provide an improved repre-
sentation of tire hysteresis forces and mcments for use in the snalysis
of tire motion problems, psrticulsr3y for wheel shimmy. Another purpose

u is to ilhstrate the importance of the hysteresis effects for a simple
case of wheel shimny.
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The present snalysis is essentially sm extension of the analysis b
of reference 1 to take into account the effects of rolling velocity and
interaction between tire lateral distortion snd twist on the hysteresis
forces snd moments.

*
It is based on the same concepts of tire distortion

as were used h the previous paper. These concepts are briefly outltied
in the present paper. For a more thorough discussion of these concepts,
see reference 1.

The present paper is srrsmged as follows. First, eq~tions a?e
derived for the hysteresis forces and moments acting on a standing or
rolling tire. Then, in order to establish the hportance of the hyster-
esis effects, the hysteresis equations are appli&L to two special cases
of wheel motion. One case is for general shimmying motion of an untilted
wheel for conditions where the wavelength of any lateral or torsionsl
oscillation is large in comparison with the tire dimensions, and the
other case is for wheel shimmy where the wheel has only one degree of
freedom, name=, rotation about an inclined swivel exis. The equations
of motion and stability conditions for the latter case are developed in
appendix A. For both cases some comparisons between theory and experhmn.t
sre shown ad these comparisons roughly confirm the theory. In addition,
for the latter case, the results of a few theoretical calculations we
presented to illustrate the influence of hysteresis forces and moments
on the dsmping required to stabilize the motion of a hypothetical land3ng

a

C7

gear.

smIs

trail (perpendicular distance between
center point and swivel axis)

%

f

ground-contact

change in lateral distance of center of pressure of
vertical force from XZ-phne per radian of lateral
wheel tilt

change in lateral distance of center of pressure of
vertical force from XZ-p~e per unit of ~

differential operator with respect to

or rlDt

differential operator with respect to
or VD

frequency, v/&

distance, d/dx

time, d/dt
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Fy,h

Fy,B

Fy,~

Fz

g

K

%

%,r

lateral hysteresis force

lateral hysteresis forces acting on three different
psrts of tire

total lateral hysteresis force acting on tire

lateral sprhg force acting on tire

combtied lateral spring and hysteresis force acting on
tire

vertical ground force acting on tire

Mnesr (viscous) demp~ coefficient of S- dsmper
(Damping moment = ~~)

coefficients defined by equations (ATa)

half-length of ground-contact area

coefficients defined by equations (A7a)

moment of inertia of swiveling part of a landing gear
about swivel axis

horizontal distsnce forward of wheel axle

horizontal distsnces of centers of pressure of forces
F1 and F2 from wheel We

r

V-2the constsnt, L& V2 + —
~2

torsi~nal spring constant of a standing tire

effective torsional spring constant of a roU3ng tire

lateral the force due to tilt per radian of tilt angle

lateral.spring constant of a stsnding tire
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k equivalent.viscous demphg coefficient of tire per unit %

circumferential distsnce
k

20,21,...2n

L

Mh

Mz,h

Mz,s

Mz,a

(~ + ~)hn-l
tire constants, Zn =

—nl

relaxation length

hysteresis mcment about swivel sxis

~steresis moment about a vertical axis through wheel
center point

spring moment about a vertical axis through wheel
center point

combined spring snd hysteresis moment about a vertical
axis through wheel center point b>

hysteresis moments corresponding
FO, Fl, and F2

to hysteresis forces
k

—

Pl>P2 functions defined by equations (A23), (A2~), and (A26)

P~)P~ “ functions defined by equations (A19)

q phase angle between

r free tire radius

laterel deflection and swivel angle

s circumferential coordinate on tire (fig. 1)

s wavelength, a/v~

k’
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t

v

x

X,Y,Z

Yo

a

0

time

rolling velocity (assumed to be a constant)

horizontal distsnce psrallel to mesn direction of
rolling motion

space-fixed coordinate axes; X-sxis is horizontal and
psrallel to mean direction of rolling motion, Z-axis
is vertical, and Y-axis is perpendicular to XZ-plane;
KY-plane is ground plane

lateral.deflection of tire eq,tor from XZ-plane at
center of ground-contact area

twist in tire,

tire constsnt,

radiens unless otherwise stated

fore-and-aft hysteresis-force parsmeter

vertical-hysteresis-force parsmeter

lateral-hysteresis-forceparsmeter

hysteresis-moment psmmeter

lateral deflection of center plane of wheel with respect
to XZ-plsne, meesured in KY-plane at position cor-
respond= to center of ground-contact mea

angle of rotation of wheel about vertical
rsdians

inclination of swivel sxis, radisns (fig.

z-axis,

2)
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lateral distortion of tire equator with respect to
solid parts of wheel; subscript O refers to center
of ground-contact area, subscript 1 refers to fore-
most point of ground-contact mea, and subscript 2
refers to reaxmost point of groumd-contact srea

circulsr frequency of shimmy oscillations, radisns
per second, af or Vlv

path frequency of shiwy oscillations, W1

tire tilt parameter (O < ~ Cl)

spring constant for a linesr restoring moment about

T tire parameter associated with gyroscopic moment due
to tire lateral distortion (see ref. 1)

@ = [1+(w)q-1’2
angle of rotation of wheel about swivel axis, radians

Subscript:

max maximum
J

v
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HYSTERESIS

a prel~ary

7

FORCES AND MCMENTS FOR A STANDING TIRE

step for the analysis of tire hysteresis effects
for a rolling tire, it is convenient to-stwly first the hysteresis forces
smd moments &ting- on a standing tire subjected to cyclic-lateral or
torsiond. loading.

Lateral E@teresis Force

Consider first the case of a standimg tire the base of which is
subJetted to a periodical
lateral deformation ~

of the form

I

b=k, msxstiti (1) -

(where v and t repre-
sent circular frequency //

/

and the, respectively) /
/

caused by an applied lat- /

ersl ground force FY,A.

(See sketch 1.) Under
these conditions the lat- 1

\
~y,~

ersl ground force is m Q c)

e~eriment ally observed
////. ‘/ [/////

to vary with time in the %
manner tidicated in
sketch 2 so that the cor-
respondhg variation of Sketch 1

latersd.ground force with
lateral tire deformation, shown in sketch 3, mars in the form of a

d sketch2 sketch3

—
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typical hysteresis loop. This hysteresis loop arises lsrgely as a con-
.

sequence of the structural or hysteresis damping forces which oppose the
tire deformation. (These forces me referred to hereinafter simply as

—
k

hysteresis forces.) In the case of metallic structures it has been found
that such hysteresis forces (1) appear to be independent of frequency,
(2) have sn smplitude usually equslto a small fraction of the amplitude
of the corresponding spring forces, but shifted in phase by 90°, and
(3) can be analytically represented with fair accuracy as the damping

—

force generated by u equivalent viscous dsmper whose damping coefficient
is inversely proportional to the frequency of oscillation. (See ref. 3,
or any other book on aeroelasticity.) These same concepts are assumed
to be applicable to the treatment of hysteresis effects in stand5ng tires.

The lateral spring force Fy,S in a tire for purely lateral oscil-

lations is

(2)

where K~ is the latersl spring constsnt. The corresponding hysteresis

damping force, in accordance with the preceding assumptions, can be
described by the equation

Fy,h

where the psrsmeter VA is the

Fy,h,m (see sketch 3) to the

the maximum total ground force

me approximately equal,

T~

The total ground force ‘Y>

(3)

ratio of the maximum hysteresis force

meximum spring force Fy,s,llmv or, since

Fy,h,max and the maximm spring force

Fy,h,max

= Fy,A,max
(4)

~ due to tire lateral distortion effects

(exclusive of inertia effects, whichsre treated separately in ref. 1)
-w

can now be obtained by adding equations (2) and (3) to give

u
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(5)

Before equation (5] csn be used with confidence, it is necessq
to investigate whether the hysteresis _@ p~~eter 7X iS ~de-

pendent of frequency, as was assumed.,and, if so, to determine its value.
b this connection, some experimental hysteresis or dsmping-coefficient
data are available from static force-deflection tests (psrtly published
in refs. 4 and ~) snd from dynamic free-vibration tests for lateral fre-
quencies up to about 4 cycles per second (ref. 6). The static data sre
given in the references b the form of-force-deflection hysteresis-loop
plots similsr to sketch 3 frm which q~ Ca be ev~~tedt~o- we

of equation (4). These data indicate that q~ lfes in the r-e

0.07< Tic 0.180 The dynsmic free-vibration data me given in refer-

ence 6 in the form of plots of decrease in smplitude of the lateral oscil-
lation per cycle. These data can be resdily converted.to give the cor-
responding values of qh by making use of the conversion equations of

reference 3, which sre also inticated in appendix B. The resulting
values of qh lie in the range 0.08< VA <0.19, which is about the

ssme range as for the static data. Hence, the available experimental
data roughly support the assumption that q~ iS tidep~dent of fre-

quency (at least up to 4 cycles per second), or, in more general terms,
these data support the assumption that the amplitudes of hysteresis forces
sre independent of the time rate of tire distortion.

Most of the aforementioned experimental data indicate that, to an
accuracy of one significant figure,

(6)

In view of the limited data, no attempt is msiieherein to define this
quantity more precisely.

Hysteresis Moment

9 The preceding discussion of ~steresis effects associated with tire
lateral stiffness obviously applies in an analogous manner to hysteresis
effects associated with tire torsional stiffness. For exsmple, the

> twisting-moment equations corresponding to equations (3) snd (4) sre
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(7)

(8)

where

hiz,h hysteresis twisting moment on tire due to twist of tire

a twist in tire about a vertical sxis, rsdisns

Ku torsional spring constant of standing tire

Vu hysteresis-moment paremeter analogous to 7A for hysteresis

force

Mz,h,msx ‘b

Mz,a,max H-

hysteresis moment

total twisting moment

In regard to the magnitude of the hysteresis-moment perameter ~a,

little directly pertinent information is available. However, in order
to obtain a rough estimate of qw it might be noted that the pareme-

ter VA for tire lateral distortion and the corresponding quantities qx

- 72 for tire fore-snd-sf’tdeformation and vertical deformation,

respectively, sxe each approx

r

tely equal to each other and are all
approximately eqyal to 0.1. More precisely, the free-vibration data of
ref. 6 indicate that 0.08 < VA < 0.19, 0.10 <qx<O.l~, snd

0.06 < qz < 0.17.) Then, since these q’s are similarly defined as

ratios of maximum hysteresis force to maximum total.force end since the
corresponding physical processes are similar, it is probably not too
unrealistic to assume that ~a

As an additional check on
static moment hysteresis loops

is of like msgnitude or roughly

Vu = 0.1 (9)

the reliability of equation (9), several
were atilable for a hli--inch-dismeter

!7

v
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type III tire at its rated loading condition. These
small twist angles to minimize tire skidding (which,

IL

loops were taken at
according to the data

● of ref. T, is iumally important for twist aigies greater thsn-lo); more-
over, for this same purpose the ground-contact surface of the tire was
gluedto the ground surface (in this case a steel plate). These tests
gave a value of ~a of 0.14 for a maximum twist engle of l.~” and a

value of 0.24 for an angle of 4°. These data indicate that the previously
deduced romded-off value of qa= 0.1 is probably realistic for very

smaU augles but that it may be low for twist angles of several degrees
or more.

~ concluding this discussion of the hysteresis effects for a standing
tire, it should be kept in mind that the equations derived in this section
for hysteresis forces W moments contain the implication that the ampli-
tudes of these forces and moments, for a given amplitude of tire distor-
tion, are tidependent of fre~ency of distortion. This fact can be easily
seen for the hysteresis force, for example, by inspection of the following
equation obtained

The corresponding

by substituting equation (1) into equation (3):

Fy,h = ~7@0,max Cos Vt (lo)

smplitude of hysteresis force per unit of distortion
● ‘y,h,max

= qAKh is seen to be independent of velocity end

k,max
This observation regsrding distortion frequency is used in
of this paper as a basis for generalizing the just-derived
equations to apply to

HYSTERESIS

In this pert of this
forces andmcments acting

the case of a rolling tire.

FORCES AND MCMENTS FOR AROliLINGTIRE

frequency.

the next psrt
force and moment

paper equations sre
on a rolling tire.

derived for the hysteresis

Tire Deformation

This section sumnerizes the basic assumptions regerding tire lateral
deformation during rolling which are utilized in the present analysis of

* hysteresis effects for a~olling ttie. These assumptions and some justi-

fication for their sdoption sre discussed in more detail in reference 1.

●
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The usual state of lateral deformation for a rolling tire is illus-
.

trated in figure 1, which shows two views of the the - a side view and
a bottom view taken perpendicular to the wheel axle. The primary factor #
of interest is the lateral distortion h of the tire equator or periphe-
ral center line. The actual shape of the equator curve is indicated by
the dashed-ltie curve h the bottom view of figure 1. In the present
analysis, this actual-shape curve is replaced by the solid-line aasumed-
shape curve. This assumed-shape curve consists of a straight-line segment
for the ground-contact region and of two exponential-curve segments for
the regions outside the ground-contact exea.

For the ground-contact area (along the lAne 2-O-1 in fig. 1), the
lateral distortion for the straight-line assumed-shape curve is described
by the equation

i=

where s is the circumferential

~+sa

coordinate on the

Along the line 1-5-4 in figure 1, the lateral
sented by the exponential equation

where h is the half-length of the ground-contact

(-h ~ S ~ h) (~)

tire.

distortion is repre-

(h ~ s S fir) (12)

area, Al is the

lateral deformation of the tire equator at the foremost petit of the
ground-contact area, snd L is a tire constant called the relaxation
length. A physicaL interpretation of this relaxation length may be
obtained by not= that it represents the circumferential distance s
which must be traversed for the lateral distortion to drop to a frac-
tion l/e of its initial value, or that it represents the length of the
normal projection on the wheel center plane of the line formed by extending
a tangent to the exponential curve from the poiut 1 to the wheel center
plane. (See fig. 1.)

Shilarly, the tire-equator distortion off the rearmost
ground-contac~-area is ass&ned to be given by the

(analogous to eq. (12)) where h2 is the lateral

resrmost point of the ground-contact area.

equation
edge of the

(h ~ -s ~ fir)

deformation at

(13)

the

f

b
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In regard to the accuracy of equations (12) and (13), it should be
noted that the lateral-distortion curves of tires actually appear to obey
exponential relations except possibly close to the lesding and traillng
edges of the ground-contact srea. (See, for example, ref. 5.) Moreover,
under normal roll@ conditions, equation (12) is probably slways fairly
realistic even up to the lead.imgedge of the ground-contact region. (See
ref. 1.) However, equation (13) is not so accurate since it implies that
a large sharp bend exists in the tire-equator curve at the resrmost ground-
contact point 2. (See fig. 1.) In actuslity, the tire cannot sustati
such a sharp bend; therefore, the actual tire curve in this region is
shaped more like the dashed-line curve for this region shown in figure 1
thsn like the solid-line assumed curve. Although this discrepancy is
possibly of some importance in influenchg the quantitative accuracy of
the subsequent analysis, it will nevertheless be ignored in first
approximation.

It should also be noted that, according to equation (n), the lateral
deformations at the foremost and resrmost ground-contact points (Xl end

A2, respectively) can be stated tithe form

hl=~+ha (14)

Equations (U) to (15) provide the basic equations of tire-equator
distortion which are used for the subsequent snalysis.

Also needed for the subsequent analysis me the time rates of change
of tire lateral deformation for a given tire particle for regions 2-O-1,
1-5-4, =3 2-6-4 in figure 1. These rates are obtained by differentiating
equations (U), (12), snd (13) with respect to time:

For region 2-O-1,

4

d

.

for region 1-5-4,

DtA = e
-(s-h)’LFA.fi+Dtl

(17)
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and, for region 2-6-4,

DtX = e(s+h)/L

where ~ denotes the differential

which is the peripheral velocity of

NACA TN 4001

.

“

(18)

operator dldt. The qusntity Ms,

tire-equator particles with respect
equal to the negative of the rollingto the wheel ‘tie, is approximately _

velocity v; hence, equations (16) to (18) may also-be written as follows:

For region 2-O-1,

(19)

for region 1-5-4,

-(s-h)+’+v)D@= e,

and, for region 2-6-4,

‘t’=e(s+h)’L@2-@

(20)

(a)

Equations (19) to (21) provide the basic eqmtions of rate of change
.

of tire distortion which are used for the subsequent analysis.

Hysteresis Forces and Moments

*

Basic considerations.-In order to obtain an expression for the
hysteresis forces and moments acting on arollhg tire, it is convenient
to consider separately the three regions of the tire corresponding to
equations (U.) to (13) for tire-equator lateral deformation, that is,
the regions 2-O-1, 1-5-4, anti2-6-4 indicated in figure 1. The resultsnt
lateral hysteresis forces for these three regions sz’edenoted, respectively, .
as Fo, Fl, and F2. Ih each of these regions, the hysteresis forces
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will obviously act in such a direction as to oppose relative motion or
distortion of”these regions. In other words,
are qualitatively similar to the forces which
series of linesr viscous dsmper units located
which laterslly connect the tire equator with
cated in the following sketch:

these hysteresis forces
would be generated by a
around the tire periphery,
the rigid wheel, as i.ndi-

~Wheel center plane

I S+ds
I t

2

If this viscous-dsmper aualogy is adopted, then the hysteresis force per
unit circumferential distance (dF/ds) can be expressed by the equation
for the dsmphg force of a viscous dszgperas

( 22)

where k is the equivalent viscous damping coefficient of the tire per
unit circumferential distance.

The total hysteresis force FO for the region 2-O-1 is obtained

inserting equation (19) for DtA into equation (22) and integrating.

Thus,,

,o=~h kD@ds=k /’h (D@O + SD.L.- ..)ds = 2hk@@.o - VU)

by

d “-h d ~-h

Q The total.hysteresis force F1 for the region 1-5-4

by inserting equation (20) for D@ into equation (22).

4

(23)

is obtained

Thus,
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.

b

(24)

Evaluatim of the integral, titer replacing the upper limit by infinity
for simplification of the result (which introduces no significant error
because of the rapidly decaying exponential function involved), yields
the final expression

(25)

Shnilarly, the following equation
force F2 in the region 2-6-4 through

J’
-r

F2 = WA d(-s) =
[l-

ke
-s=h (-s)=h

-(-s-h],Ld(-s)]@ -~x2)

is obtained for the hysteresis
the use of equations (21) and (22):

‘7

(26)

which, after replacing the upper limit of titegration by h.ftiity end
integrating, gives

F2=’U$X2+X2) (27)

Sinusoidal motiono- ti the present analysis, attention is restricted
to problems where the tire-distoz%ionparameters Al and A2 vw sinus-
oidaUy with time at the cticulsz frequency v. For such cases, Al can

be expressed as
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.
Thus, equation (25) for the force F1 h the region 1-5-4 can be expressed .-

as
.

F1

( )
=LkXl, HVCOSVt+; Sin vt

or

Fl

r

G
= IkAl,m V2+ —sin(vt + A)

L2

where

A= tszl-1(vI1/v)

1

The corresponding smplitude of hysteresis force per unit amplitude of
lateral distortion is then

.

%,max
i

V2
—= Lk @+—
~Qlsx ~2

(28)

1?% a similar consideration of the force F2 h the region 2-6-4, the

following equation is obtained:

‘2,max .

A2,-
r

Lk %+~ (29)
L2

During the earlier discussion of hysteresis effects on a stsnding
tire, some evidence was offered to support the assumption that the az@i-

i tudes of lateral hysteresis forces in a tire for a given amplitude of
lateral distortion are independent of the frequency of distortion. In
order to apply this result to the rolling-tire case, it should first be

. recognized that the rate or effectin frequency of distortion for the
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individual
quency v
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particles in a rolling tire depends not only on shimmy fre-
.

but @ho on the rolling velocity v. (For exsmple, if the
shimmy frequency approaches zero but the rolling velocity is finite, then
the individual tire elements wXU obviously experience periodical lateral

.

distortions at the frequency of rotation of the tire (W/r).) Consequently,
if hysteresis forces sxe tidependent of shimmy frequency for the rolling-
tire case, as is suggested by the previously discussed data for the stsnding-
tire case, then they are also necessarily independent of rolling veloc-
ity v. In view of this reasordng, the amplitude of the hysteresis force

r
per unit mnplitude of lateral distortion, which is equsl to Lk V2 + —~2

L2

according to both equations (28) and (2g), is assumed hereinafter to be
independent of both shimy freq&ncy &d rolling
could be evaluated, for exsmple, from tests of a

quantity

It should
velocity.

Next

By use of
expressed

—

rLk v2+e wilL be abbreviated as K
L2

velocity snd, consequently,
stsnding tire. This

or, in other wrmds,

k=
K

f

+
L V2i——

L2

be kept in mind that K is independent of frequency and

consider the total lateral hysteresis

equations (23), (25)~ (2’7)s~d (X)>
in the form

By substitution for 11 and A2 according to

equation (31) reduces to the foUowing form:

fOrCf5 Fy,h= FO +

this force can be

.

(30)

F1 + F2.

(3U

equations (14) snd (15),

r—

.

.
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(32)

Next consider the hysteresis mcments Mo, Mb and M2 about a
vertical axis through the wheel center point, where Mo, Ml, and M2
correspond to the regions 2-o-1, 1-5-4, snd 2-6-4 b figure 1, respectively.

For the region 2-O-1 this

m=

moment is given

r

hw
~sds

by the equation

(33)

and by use of equations (19), (22), smd (~) this integral yields the
L result

.

The moments could also be obtained for the other two regions 2-5-4
and 2-6-4 by integrations similsr to the integration for the region 2-O-1. - .
However, for reasons to be discussed subsequently, the following approach
for these moments is more cmvenient.

For the regions 1-5-4 and 2-6-4, the moments Ml and M2 can be

expressed as the product of the corresponding forces F1 snd F2 (see

eqs. (25) and (~), respectively) snd their center-of-pres”suredistsnces,
jl and j2 as

(35)
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M2 = -F2J2 = -W2(%X2-:A) (36)

Moreover, since the force per unit circumferential distance (dF/ds) has
been taken to be linesrly dependent on the lateral deformation A (see
eq. (22)) and since X has the ssme shape of exponenti.sllvsriation
with S

and j2

The

from the

-d (x)

Mz,h

for the two regions, the two center-of-pressuredistances jl

evidently must be equal:

total hysteresis

relatiOn ~,h =

&s

J1 = da

twisting moment

MO+ M1+M2 by

hfz,h can now be

use of equaticxns

(37)

obtained

(34) to (37) -

or, after also applying equations (14) end (15), as

Mz,h,,,=-[l+:)-+%q— J

(38)

! L’

Equations (32) and (38) provide two
force and mcment acting on a roll- (or
equations contain two as yet unevaluated

equations for the hysteresis
standing) tire; however, these
psrsmeters, namely, K W ill.

In order to express these parameters in terms of some measurable tire
properties, these two eqpations may be compared with the previously
derived equaticms for hysteresis force and moment on a standing tire.
(See eqs. (3) and (7)). For a standing tire (v= O), equations (32)
and (38), respectively, reduce to the followm relations:

●

✎

.
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Comparison of

l?y,h=

hfz,h

equations (3) and (~) yields the relation

(39)

(40)

L
k= TIhKA (41)

2(L + h)

and comparison of equations (7) snd (kC)),with the use of eqpation (41)
to eliminate K, yields

(L + h)- h2
Jl = .— (42)

Lh~AKA z

In connection with the above determinantion of the center-of-pressure
parameter J1 in terms of the hysteresis parsmeter qa, it might be

recalled that it was not necesssry to treat this quantity in the theory
as an unknown parsmeter since jl could have been obtatied directly by

imbegration from the following equation:

where J
However,

9- snd (38)

is the moment srm of the incremental force dF. (See fig. 1.)
only one unlmown parsmeter would be involved in equations (32)
if this procedure were followed, nsmely, K; consequently, no

choice of this parsmeter K could in general satisfy both of the two
end-point (zero-velocity) conditions prescribed by equations (3) and (7).

. For the present problem it was considered more realistic to satisfy both
equations (3) and (7) rather then to satisfy only one of them together
with equation (45).
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After substitution of
tion of equations (41) and
tions result:

NACATN 4001

equation (41) into equution (32) and substitu-
(42) into equation (38), the following equn-

(44)

(45)

where

g=l -
qAKhh3

3(L + h)~~

FinaUy, by use of the relations

h=+

(46)

(47)

(48)

“

.

where vl is called the path frequency, equations (44) and (45) csn be

expressed in the foU_owing convenient forms:
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.

.

(49)

(x)

Equations (49) and (~) sre the final equations for the hysteresis
force and moment acting on a rolling tire the base of which is experi-
encing a sinusoidal disturbanceat some circular frequency v.

IMPORTANCE OF HYSTERESIS EOEFECXS

In order to assess the importance of the hysteresis force and moment
terms given by equations (49) and (~), these equations sre now applied
to two simple cases of wheel motion. One case is for general shimmybg
motion at lsrge shimmy wavelengths (inclu the limiting condition of
steady yawed rolling) and the other case is for wheel sha where the
wheel has only one degree of freedom, nsmely, rotation about an inclined
swivel axis.
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Large-Wavelength Roll@

Theoretical considerations.- Consider first
untilted wheel rollti in such a manner that the

NACA TN 4001

.+

the special case of an w
wavelength of any lateral

or torsional oscillation (S = Zhv/v) is extremely large in comparison with
the tire characteristicdimensions (for exsmple, L and h). These con-
ditions me satisfied for some high-speed rolling cases and for the
special case of steady yawed rolling; they are not satisfied for some
medium-speed cases and are rarely satisfied for very-low-speed shimmy
oscillations.

For the conditions just mentioned,

gible; hence, this ratio, the quantity

the ratio Lv/v becomes negli-

$ Dt~
(
whose amplitude is equal

to Lv
)

.

~ ~,mm for SfnUSOfM oscillations , ad the qusntity $ Dta can

be set equalto zero in equations (49) end-(w). Also, the following
equation, relating tire lateral deformation end twist for these condi-
tions, is valid (see approximation C2 of ref. 1):

k= -Zla (51)
i

where

21 = L+h (52)

Application of these simplificationsto equations (49) snd (70) yields

Fy,h= O (53)

Equation (53) indicates that, to a first approximation,the net
resultant lateral hysteresis force, for the considered rollhg condi-
tions, is zero. (The incremental internsl.hysteresis forces are, of
course, still as large as for any other rolling condition, but since
some of them act in opposite directions, itis possible for the result-
ant force to become zero.)
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The hysteresis moment, according to equation (54), is, however,
finite. ~ order to appreciate better the quszrbitativeimportance of

* this moment, it is convenient to consider the totsl spring snd hysteresis
moment acting on the tire. This total moment Mz,a is the sm of the

elastic moment Mz,s, where

Mz,s =- (55)

and of the hysteresis mcment (eq. (~)); that is,

Mz,a = Mz,s +Mz,h=

It csm be readily seen
the essential action of the

K.a-w+=(l-h+.$x (56,

from the final form of equation (56) that
hysteresis moment is >0 reduce effectively .,

the torsional spring constsnt for a rollti tire defined as ~,r
( = Mz,alu)

below the corresponding static spring constant ~ by the factor

‘ (1- ,q%~); that fs,

.

(57)

With the aid of equation (57), the present hysteresis analysis can
now be partly assessed both by exsmining the msgnitude of the calculated
hysteresis effects sndby comparing calculated results with corresponding
expertiental data.

In regard to the magnitude of the effectiw reduction of torsional
stiffness, for some possible sizes of tire constants, equation (57) gives
an effecti= stiffhess reduction of as much as 28 percent (see subsequent
calculations) if qa is taken as 0.1. (If ~a iS taken u 0.2, this

percentage is approximately doubled.) Thus, it appears that hysteresis
effects may be of some importance for snalyzing the roll.innbehatior of
tires, at least for conditions where tire torsional stiffness is involved.

i
Comparisen with experiment.- Some rough expertiental confirmation

of the present theory csn be obtained by comparison of the predictions
of equation (57) with the experimental data of references 8 and 5 for
the case of steady yawed rolling in a straight-line path.
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Experimental.data from reference 8 for a 10-inch-dismeter tail-wheel “
tire, together with the corresponding theoretical calculation according
to equakion (57) (with q~ end qa taken as 0.1), are as follows: *

L,cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
h,cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2
K~,lsg/cm. . . . . . . . . . . . . . . . . . . /. . . . . . . . 45
~kg-cm/re&Ssn . . . . . . . . . . . . . . . . . . . . . . . .3,040

%,rs Q-a/r&m:

Experimental . . . . . . . . . . . . . . . . . . . . . . . . .2,270
Calculated (eq.(57)). . . . . . . . . . . . . . . . . . ...2.190

Fair agreement is tidlcated between calculated end experimental values
of rolling torsiwlal stiffness K&r.

A similar comparison for a pair of current 26-inch-diemeter, 26 x 6.6,
12-ply-rating, type VII aircraft tires, based on data from reference ~
(for a vertical tire deflection of 2 inches and en inflation pressure of
142 pounds per squsre inch) with ‘rIAand qa taken ae 0.1, is given aa

fOllows: a

La in. . . . . . . . . . . . . . . . . . . . . . . . . . . ..”. 5t09
h, in. . . . . . . . . . . . . . . . . . . . . . . . . ...9.6.1
KX, lb/in. . . . . . . . . . . . . . . . . . . . . . . . . . . .1,950

+

K&lb-in. /deg . . . . . . . . . . . . . . . . . . . . . . ...1.420

%,r> ~-tis/deg:
Experimental . . . . . . . . . . . . . . . . . . . . . . . ..l.O~
Calculated (eq. (57)) . . . . . . . . . . . . . . . 1,180 to l,ogo

In spite of the lsxge amount of doubt regarding the magnitude of the
relaxation length L for these latter data, the agreement between the
experimental and calculated values of &,r is still seen to be good

enough to furnish at least a rough confirmation of the present theory.

Wheel Shimmy

A second indication of the effects of hysteresis may be obtained
by considering the problem of shimtuyfor en idealized lending gesx the
wheel of which has only one degree of freEdom, aside from coupled lateral f
and torsional tire distortion, namely, rotation about an inclined swivel
axis. (See fig. 2.) The equations of motion end conditions for stable
motion for this simplified case are derived in appendix A according to
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the smmary theory of reference 1, as modified to take into account the
effects of hysteresis on the lateral force end twisting moment as given
by equations (49) snd (~). The final equations for the stability con-*
ditions correlating landing-gear trail a, rolldng velocity v, and mini-
mum viscous shimny damper constant g (damper moment *w) required for

stable motion sre given by equations (A22) to (A2k) of appendix A. In
addition, the corresponding stability-boundary conditions for a simpli-
fied version of the sumsry theory, designated as approximation B @
reference 1, sre given by equatims (A22), (A24), and (A%).

mmparisons with experiment,- For this case, experimental stability-
boundsry snd shimmy-frequency data for a small model lsnding gear (lO-inch-
dismeter tire) are available in references 2 and 9 and we reproduced in
figures 3 and 4 together with the corresponding predictions of the smmsry
theory snd approximation B to the summary theory, both with end without
consideration of hysteresis effects. (The tire constants used for these
calculations, as tshn frcm refs. 2 snd 8, sze Listed in appendix C.l)
In regsrd to the significance of approximation B, it might be noted that
this simplified version of the summsry theory is almost the ssme as the
more advanced of the two theories proposed by Bourcier de Csrbon in ref-
erence 10.

● By comparison of the theoretical curves in figures 3 sndh with the
corresponding experimental data it is seen that, for both the summary
theory and approximation B, the theoretical curves with hysteresis con-

- sidered are much closer to the expertiental data than the theoretical
curves with hysteresis not considerd, both in regard to shape of curves
and quantitative agreement wtth e~eriment. Hencej these expertiental
data appear to substantiate partly the reliability of the present aualysis
of hysteresis effects.

It might also be noted that approximation B appesrs to give better
agreement with experiment than the summary theory to which it is an
approximation. This result is probably a coincidence; ti any event, it
is of little significance since the differences between these two theories
for these test conditions correspond to smald.high-order terms in the
sumsry theory and there is little reason to believe that these high-
order terms sre described sufficiently accurately by the summary theory
to insure that it is any more accurate than approximation B.

lIt might be noted that the theoretical curves of figures 3 and 4
for the condition with hysteresis not considered differ slightly from the
corresponding theoretical curves in reference 1. This difference results
from the fact that the present theoretical curves were based on the experi-

1 mentalllydetermined value of footprint length where- the curves of’ref-
erence 1 were based on an effective value of footprint length which was
indirectly calculated from the cornering power of the tire.
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sample calculations of dsmping required for stability.- As a final
.

point of possible interest, some theoretical calculations were msileof
the minim& demping requir&d to stabilize the motion of a hypothetical
lsnding gear havhg the relative dimensions snd properties L = 0.8r,

*

h= 0.5r, ~= 0.52r%A, tc= O, and T= 0.11~/r2 for the following

two values of trail: a = 0.5r end a= O. The-required minimm damping,
calculated according to approximation B (see eqs. (A22), (A24), snd (A26)),
is shown as a function of rolling velocity in figure 5. Three types of
calculations are shown in this figure. The solid-line curves repr sent

( !solutions with complete neglect of hysteresis effects 7A = qa = O . The

short-dashed-line curves represent solutions with .hysteresiseffects

( )
included in detail ~~= qa= 0.1 . The third set of curves (short-
dash-long-dash), designated as approximate hysteresis solution, repre-
sents solutions made under the assumption that the wavelength of the
shimmy motion is lsxge enough to sUow the general hysteresis force end
m5~4qpations (49) and (~) to be replacedby the simpler equations (53)

.

Comparison of the solid- and dashed-line curves in figure 5 indicates
that the hysteresis effects act in such a m&nner that the damping required
to stabilize the landing-gear motion is appreciably reduced, and especially
so at very low speeti and for the smaU-trail (zero) case. The maximum
-ti requtiement is seento be reducedby about 40 percent for the

9

zero-trail condition sad 20 percent for the lsrge-trail (a = 0.7r)
condition. -

By examination of the curves in figure 5 for the approximate hyster-
esis solution, the approximate hysteresis solution is seen to give results
which usually lie somewhere between the solution with hysteresis effects
included in detail and the solution with hysteresis effects completely
neglected. This fact indicates that taking the hysteresis effects into
account by the approximate method is better than not taking them into
account at all. This last point is of some importance for a~lication
of the present hysteresis theory to complex lsnding-gear configurations
inasmuch as the detailed hysteresis solution might present some mathe-
matical difficulties, whereas the approximate solution never involves
any more work than the solution wblch completely neglects hysteresis
effects.

Even though the approximate hysteresis solutions in figure 5 are
better than solutions with no consideration of hysteresis effects at
all, they are seen to be completely tiadequate to represent the detailed
hysteresis solution at low speeds, particularly for the small-trail con-
dition. Moreover, not even for the highest speed condition shown b
the two solutions coincide cmpletely; thus, at least for this particular

t

landing-gesr configuration, the high-speed range where the approxhate
hysteresis solution might be expectedto be valid either lies beyond the .-”
speed range of practical interest (that is, the rsnge where positive
dsmping is required) or does not exist at &U_.

—.
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CONCLUDING HEMARKS

This paper has presented a approximate theoretical analysis of the
hysteresis forces and moments acting on a rolling tire snd has shown some
limited experimental confirmation of the results of the analysis. Although
this analysis cannot be said to give an etiremely accurate answer to the
tire-hysteresis problem, it is believed that the essential features of
the hysteresis phenomena have been considered in a more realistic manner
than in previous analyse~.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Vs., Februsxy 21, 1957.
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“

EQUATIONS OF MOTION AND

FOR A SIMPLE CASE

STABILITY CONDITIONS

OF WHEEL SHIMMY

This appendix presents a derivation of the equations of motion for
one of the simplest cases of wheel shimqy, where the rolling wheel has
only one degree of freedom aside from tire distortion, namely, rotation
about an inclined swivel axis by an amgle ~. (See fig. 2.) The rota-
tion of the wheel about the swivel axis is assumed to be opposed by a
linear torsion spring of moment p~ W a viscous shimqy damper of
moment gDt$. This derivation is made by modi@ing the pertinent equa-

tions for the sumnary theory of reference 1 to take into account the
hysteresis force and ?mment according to equations (49) and (50).

Derivation of Equtions of I@tion

The important geometric parameters involved for this case, which
is the same as case T in reference 1, are ifiustrated b figure 2. They
include the wheel trail a, the angle of rotation about the swivel axis

e

$, the swivel-sxis inclhtion angle IC,the angle of rotation of the
wheel about a vertical Z-axis 0, the tire-twist angle a, the lateral
deflection of the tire equator from the XZ-plane at the center of the

.

ground-contact area YO, and the lateral ground deflection of the wheel

Vo = y. - ~ (lateral distance between XZ-plane of undisturbed mtion

and intersection of wheel center plane and ground plane below wheel axle).

First consider the moment ~ of the ground force about the swivel

axis due to hysteresis effects (see fig. 2):

~ = ~,h cos ~ - ay,h

where Fy,h and ~,h are given by eqymtions (49)

convenient form of equation (Al) can be obtained by
following geometric relations:

e=~cosK

%*
= -a

.—

(Al)

and (50). A more

~we of the

(M) ~

(A3) .
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(Eq. (A5)) implies no
of equations (49) and

skidding between tire and ground.)

31

(A4)

(A5)

Substitiztion
(50) ti~ ewtion (Al) and then substitution of

equations (Ah) and (A5) into this equation gives

1-

=/- 1 ha%%J$p%oCOB K - v/qJ=Yo +--jy y. Cos K -

2

(A6)

which expresses the hysteresis mment as a function of yO and ~.

Other mn.ientsacting about the swivel axis are the spring moments
due to tire lateral.distortion and twist, the mment of the vertical
ground force Fz due to wheel swiveling and tilting and to tire lateral
deformation, the moment due to tire-distortion gyroscopic effects, the
spring restoring and viscous damper moments, and the inertia-reaction
moment (l@t%) ● (See ref. 1 for a discussion of these various mments. )

The sum of these other mments, in a form convenient for present
use, is set eq~ to zero in equation (J15a) of reference 1. In order
to madify this equation to include the present hysteresis terms, it 1s
necessary only to subtract the term ~, as given by equation (A6), from
the left-hand side of equation (n>) of reference 1. This procedure
gives

(A7)

.
.
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.
where

G-p I.#

G2 = )s.~cos ~ + gv i-@(~K& cos2tc+ qAKAa2

!X%%L
G3 = a2KA + ~ COS21C+ p + p~ -—costc

h

‘=(+
P~ = (%

- aFz + achFz + Cpz sin

where @ & themanent of inertia of the wheel

swivel axis, Fz is the vertical ground force,

“

(A7a)

(A8) ,

●

)Itsintt (A9)

structure about the

CA is the lateral

shift of vertical-force center of pressure per unit of lateral tire
distortion, CY is the lateral shift of vertical-force center of pres-

sure per radism of wheel lateral tilt, ~ is the lateral elastic force

per radian of M&r&l wheel tilt, and T is a tire parameter associated
with gyroscopic moments due to tire lateral distortion. (See eqs. (33) “
and (~) of ref. 1 for defidtions of T.)

Equation (A7) gives one relation between wheel rotation V and
lateral deflection of the ground-contactarea Yo. A seco~ eq?-@ion

relating these two variables is furnished by the following kinematic
eqwtion (117) of reference 1:

●

●
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●

where

(L721Cos K -.)V-l Q%O=O
r.l=o

2n =
(nL + h)hn-l

nl
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(A1.o)

(All)

(A12)
.

where r is the tire radius and ~ is a nuuiberassociated with tire
tilt (see ref. 1) which is smaller than unity and probably close to zero.

E~tions (A7) and (AIO) are the basic equations of motion for the
present case of shimqy with one degree of wheel freedom, according to

. the summary theory of reference 1, as nmdified to include the present
hysteresis effects.

.
Conditions for Stable Motion

Among the most important characteristics of the wheel motion corre-
sponding to eqpations (A7) sad (AIO) are the conditions governing steady-
state motion of the wheel and the minimum damping required for stable
motion. These conditions sre found by the usual procedure of assuming
that the two variables W and yO are purely oscillatory flmctions of

distance rolled according to relations of the form

(A13)

i(v~x+q)
Yo,maxe (Alk)

are constants.
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Substitution of equations (A13) and (A14) into equations (A7) and

(AIO), division by eivlx,
of each resulting equation

From equation (A7),

and separation of real
provides the follotig

and imaginary parts
four relations:

(Gj - qh’)if= + (H3 - %’)(yo,=

( )(~’vlifm + H2V1Y0,= Cos q + ~3 -

and, from equation (AIO),

Cos q)- %@o,max ‘in+= 0

(JQ5)

)(Hlvl’
)YO,H sin q = O (A16)

(p20aYo,msx ‘Os q) + %hmax ‘in + = 0

where (see eqs. (80) of ref. 1)

1- 12v12+ 24V14- . ● ●

COS vlh - Lvl sin vlh

I

21V1 3+25v15 -.. .- 23v~

SiIlv.h + Lv7 C.OSv~h

(Alg)

For nonzero values of the three qusxhities v-, Yo,m cos q ,

( )

( )
d Yo,msx sin q , the determinants of their coefficients must vanish

for each group of three of the four eq~tions (A15) to (AI.8). Ibr
example, from equations (A15), (AI-7),a (A18),

“

.
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~ - Gp12 H3 - H1V12

w

Cf21 Cos K. - a -Plm

o P2m ‘lm

and, from equations (u6 ), (UT), and (u8),

G2V1 %Vl H5 - H1V12

rZ1 cos ~ - a -Plm P2m

o P2m %m

(A20)

(A21)

Equations (A20) and (A21) can be expressed in a more convenient.
form by nnzltiplyingout the two determir&nts and substituting the values
for the coefficients G and H from equation (A7a). Then, solving the

●
resulting form of equation (A20) for v gives

where, for the sumary theory,

‘1
= plm = Cos

p2 = p2m = sin

and solving the resulting form of

vh1 - Lvl sin vlh

vlh + LV1 COS vlh
}

equation (A21) for g gives

(A23)
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Equation (A22)
path frequency

gives the ro13.ing
Vl, and equation

NAC!ATN 4001

velocity v as a function of shimqy
(A24) furnishes the required minhum

dampingconstant g for stable motion as a function of velocity and
path frequency.

The preceding equations (A22) to (A24) give the characteristics of
the wheel ?mtion corresponding to the nmdified swmary theory of refer-
ence 1. The corresponding equations for two simplified versions of this
sumary theo~ (approximationsA and B of ref. 1) are obtained lw replacing
equations (A2>) by the

For approximation A,

and, for

Although
possible

approximation

following equations:
.- —

PI =1- 12V12

P2 = 3
21”1 - Z3vl

)

B,

-.

(JQ5)

(A26)
P1 =1- 22V12

Pa ‘ tlv~
1

other even nmre simplified versions of the summary theory are
(see approxhations Cl, C2, Dl, D2, and D3 of ref. 1), these

other versions are too crude to be of much value for low-speed shim

.

.

contitionsj which are the conditions where hysteresis effe&s would ~e
expected to be mmst important.

.

.
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APPENDIX B

~ION OF HYSTERESIS CONSTANTS

mm IR?IE-VIBRATIONTESTS

This appendix discusses a procedure for determining the lateral-
hysteresis-force parsmeter ~ (see eq. (k)) fran information gained

by free-vibration tests of a two-wheel cut of the type described in
reference 6. Such
mass-spring-dsmper

a cart can be approximately represented by the linear
system illustrated in the following sketch:

where the springs represent the two tire stiffnesses, the dsmpers repre-
sent the lqpteresis damping, and 2M represents the mass of the csrt.
The spring and dsmping forces are given by eqpations (2) and (3) and the
corresponding differential eqwtion for the system for free oscillations
is

The solution of this equation is of the form

~AKA+-— .

~ = (pIe2m - sin(vt’+

where ~ and q2 are constants and

(Bl)

@+) (B2)
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TIA2KA *
Inasmuch as — <<1 for conventional tires, equation (B2) can almost

k%

always be replaced-by the simpler expression .

and, thus, eqpation (Bl) can be reduced to the form

(B3)

(B4)

The decrease h smplitude of the lateral oscillation per cycle of perial

)
* iS then

(
T =-=

;

Since this ratio csm be directly measured in free-vibration tests, equa-
tion (B7) provides the necesssz’yrelation for determining the parame-
ter ~ from such test data. Also equation (B3) gives the necessary

eqution for determining the lateral spring constsnt in terms of the
experimental frequency and the cart mass.
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APPENDIX C

.

.

CONSTANTS FOR CMICULATIONS

Most of the tire constants used for the calculations in figures 3
and k were obtained frcm references 2 and 8 and are as follows:

K =p. g.()

h =5.2 ~

L=1OCM

Zl=L+h=13.2cm

KX =45 kg/cm

J& = 3,040 cm-kg/radism

~ = 0.53 + 0.0025a2 cm-kg-sec2

Both qh and & were taken equal to 0.1. In addition to these rela-

tions, the parsmeter T, representing a gyroscopic mommt due to tire
lateral distortion (see ref. 1), was assumed to & equal to zero.
Although ,arough value of T could perhaps have been estimated, such
an estimate did not appear necessary because the effeet of this param-
eter, according to any reasonable esthate of T, would be of little
importance in the velocity range of the experimental data in figures 3
and 4.

.

.
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