
NATIONAL ADVISORY COMMITTEE 

FOR AERONAUTICS 

TECHNICAL NOTE 4002 


INTERACTION OF MOVING SHOCKS AND HOT LAYERS 


By Robert V. Hess 

Langley Aeronautical Laboratory

Langley Field, Va. 

N47 
WasI-dngton


May 1957



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 


TECHNICAL NOTE 14002 


INTERACTION OF MOVING SHOCKS AND HOT LAYERS 


By Robert V. Hess 


SUMMARY 

This paper treats the interaction between hot layers extended along 
the wall and normal or oblique shocks moving over them. Emphasis is on 
the cases of large hot-layer temperatures and strong shock waves for 
which small-perturbation theories are not applicable. A variety of 
possible interaction patterns are described. Of greatest interest are 
the more extreme cases when the hot layer is forced to accumulate in a 
growing bubble-like region bound to the moving shock, and some of the 
cold air above the layer moves around the bubble and interposes a high-
speed forward-moving cold jet between the wall and the bubble. For some 
cases, especially with oblique shocks, this reverse jet may not form. 
Mixing will eventually limit the size of the bubble and make its charac-
teristics more nearly like those of the more familiar separation bubbles. 
The effects of viscosity at the wall remains essentially different, how-
ever, since the shock is moving relative to the wall. 

Many other details and characteristics of the interaction pattern, 
such as the decay of the interaction effects along the hot layer and 
along the hot layer with the interposed cold jet below it and the shape 
of the normal shock far above the main interaction region, are described 
and discussed.

INTRODUCTION 

The interaction of a blast wave with a hot layer covering a wall has 
been given considerable attention within recent years. The major emphasis 
has been on the shock refraction patterns occurring for layers of compara-
tively small excess temperatures. (See, for example, ref. 1.) As pointed 
out in the present paper, however, for layers of large excess temperatures 
and for strong incident shocks, the hot-layer shape undergoes such drastic 
changes that small-perturbation theories become incapable of even sug-
gesting the phenomenon. The reason is that, for the large excess tem-
peratures, the density of the hot layer is so low that the pressure rise 
across the shock is more than sufficient to accelerate the hot layer to 
the speed of the shock itself; accordingly, the hot layer will have to 
accumulate in a growing hot bubble-like region bound to the moving shock.
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Another effect that may be associated with the bubble formation is that 
part of the cold outer air may run under the bubble and interpose itself 
between the wall and the hot layer. The theoretical basis for the forma-
tion of the bubble-like regions in the hot layer was initially outlined 
by the author in an unpublished note to Griffith and Bleakney of Princeton 
University, who subsequently developed an ingenious experimental approach 
which permitted the confirmation of the existence of such regions. (See 
ref. 2.) A large part of this paper deals with this bubble development. 

In contrast with the case of a plane shock, mathematical analysis 
of the interaction pattern produced by a spherical shock meets with many 
difficulties even when the excess temperature of the hot layer is so 
small and the incident shock is so weak (ref. 3) that small-perturbation 
methods can be used. It is evident that the difficulties will be much 
greater when strong shocks and large excess temperatures of the hot 
layer are considered since nonlinear and transonic effects are encountered 
in addition to unsteady effects. Accurate analysis of these strong inter-
actions would most likely require a numerical approach with the attendant 
disadvantage that each interaction case would have to be considered 
separately. 

Accordingly, the analysis of the present paper is based on two basic 
simplificationsr idealizations of the physical problem. First, the 
spherical shock has been replaced with a plane shock, either normal or 
oblique, of constant strength. Second, the hot layer is considered to 
be of uniform thickness and uniform temperature, with a sharp temperature 
discontinuity at the boundary between it and the cold air above It. Both 
simplifications tend to reduce the time-dependent interaction problems 
to steady-flow problems, which are much easier to analyze. (Some discus-
sion of the order of magnitude of the time required for the decay of the 
transient effects is given subsequently.) Even for these simplified 
steady-flow cases, however, the transonic and nonlinear characteristics 
still exist; therefore complete solutions would be very difficult. The 
approach adopted was first to classify the possible interactions into 
several fundamentally different types and to determine the ranges of 
conditions corresponding to each type and then to discuss the major 
characteristics of each type. For this purpose, the patterns of refer-
ence 4, although not concerned with hot layers, offered useful guidance. 
Studies of cavitation flows (for example, ref. 7) were useful in under-
standing the flow over the bubble. 

The analysis Is mainly concerned with the interaction of a hot layer 
with a normal shock. Six different types of interaction are described. 
In four of these types the hot layer experiences bubble formation; in 
the other two types the hot layer is not terminated by a bubble and is 
referred to hereafter as the "throughgoing hot layer." The interaction 
with oblique shocks is discussed and some considerations of spherical 
shocks are included. A large number of interaction types may exist
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because of the great variety of refraction patterns connected with various 
incidence angles of the oblique shock, even for small excess temperatures 
in the hot layer (see ref. 1); however, the discussion is limited only to 
the most significant types of phenomena. The greater part of the paper 
makes use of ideal flow considerations, but the effects of viscosity and 
mixing are included in a brief section. 

Three appendixes have been included in order to study the decay 
of the interaction effects along the directions away from the region of 
the largest concentration of the effects. In this manner, an estimate 
can be made of the size of the region involved in the interaction pattern. 
For an analysis of these asymptotic decay effects a small-disturbance 
approach can be used. Appendix A is a study of the decay of the inter-
action between an infinite supersonic stream and a hot layer. It applies 
to the asy.aptot1c decays upstream of normal shocks and both upstream and 
downstream of oblique shocks interacting with the hot layer. Appendix B 
concerns the asymptotic shape of the deformed normal interacting shock 
above the region of large hot-layer distortion and also discusses the 
asymptotic decay of this hot-layer distortion behind the interaction zone 
where the flow is subsonic. Appendix C treats the asymptotic behavior 
of the cold jet of air which may be forced to move under the bubble of 
the hot layer for some of the interaction types. Some of the problems 
treated in the appendixes have aspects in common with jets embedded in 
moving streams. It is the aim of the appendixes to present the decay 
effects in their simplest niathematical form. Some of the results could 
have been obtained by starting with published small-disturbance calcula-
tions for a complete interaction field and by reducing the results to 
the desired asymptotic decay effects; however, the mathematical simpli-
city of the present treatments should help the reader to attain better 
physical insight into the phenomenon. 

SYMBOLS 

A, A* 

B,B*	 constants 

C,C*,C** 

a	 speed of sound 

M	 Mach number, u/a 

p	 pressure 

decay modulus
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T	 temperature 

t	 time 

u	 horizontal velocity component 

v	 vertical velocity component 

x	 horizontal coordinate 

y	 vertical coordinate 

a.	 Mach angle 

y	 ratio of specific heats. 

0	 small-disturbance potential 

Subscripts: 

c cold 

cr critical 

h hot 

j reverse jet 

o stagnation condition 

1 undisturbed flow 

2 flow behind incident normal shock 

3 flow over bubble boundary

TYPES OF STEADY-FLOW INTERACTIONS WITH NORMAL SHOCK 

Assumptions Underlying Steady Flow in Layer of Constant


Height and Damping of Initial Transient-Flow Effects 

The interaction pattern associated with a moving shock is steady 
with respect to an observer moving with the shock provided that the 
shock does not change strength or shape during its motion. This fact 
is valid for a normal shock moving in a channel of constant cross section. 
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Consider a normal shock moving along a wall and interacting with a hot 
layer that begins somewhere along the wall. (See fig. 1.) As the 
shock hits the hot layer, another shock will move ahead into the hot 
layer. During the initial period in which the front-running shock moves 
through regions of changing height of the hot layer, the shock changes 
its speed and strength; but as it approaches the region where the hot 
layer attains constant height, its speed tends to become uniform. In 
order to establish steady flow relative to the interacting shock, it is 
not enough that the shock moving in the hot layer attains constant speed; 
the shock must also have the same speed as the interacting shock. These 
conditions are made possible because the hot-layer boundary gives way to 
the pressure increase across the shock moving through it and slows the 
shock down to the speed of the main shock. Steady flow relative to the 
interacting normal shock is attained when the change in pressure and 
velocity inside the hot layer produced by the shock and the increasing 
cross section matches the pressure and velocity jump through the inter-
acting normal shock. 

The following section shows that conditions also exist for which the 
steady pressure and velocity changes through the interacting shock are 
matched by an entirely subsonic steady flow having no shock in the hot 
layer. The fact that the buildup of the steady flow requires a front-
running shock, but not the steady flow itself, may appear somewhat strange 
to the blast expert, who makes less use of the steady-flow concepts than 
the aerodynamicist. For purposes of illustration, consider the accelera-
tion of an airfoil to constant speed. During the acceleration, compres-
sion waves or shocks move ahead of the airfoil. These decaying waves and 
their reflections are necessary to establish the steady subsonic flow 
relative to the airfoil; the steady flow itself, however, no longer con-
tains a shock. 

A rough estimate of the time required for the damping of the initial 
transient effects may be of interest. Dimensional reasoning suggests 
that the time to approach steady flow should depend on the ratio of the 
hot-layer height to some speed that indicates the rate of this approach. 
In an unsteady flow buildup, both the downstream waves and the upstream 
waves play a part. The upstream waves traveling at a speed given by the 
absolute difference between the speed of sound a and the average flow 
speed U are the slower ones and thus give a better estimate of the 
speed of approach to steady flow. Consequently, where regions of high 
supersonic steady flow (for example, Mach number 2) or low subsonic flow 
are approached in the interaction pattern, the time for the establishment 
of such flows should be of the order of the hot-layer height divided by 
the speed of sound, whereas the attainment of approximately sonic flow 
would take longer. Note that these estimates refer to the times required 
for the damping of the transient effects to practically negligible values. 
This fact is especially significant in the interpretation of the damping 
time of disturbances in subsonic flow. Since subsonic disturbances can
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move both upstream and downstream, the damping of progressively weakened 
reflected and rereflected waves over a certain length would theoretically 
take infinitely long. For practical purposes, however, the damping occurs 
roughly at a rate U - a. Experience with other starting problems as, for 
example, those that occur in wind-tunnel operation (ref. 7) shows that 

dimensional considerations of this type yield generally adequate results. 

Classification of Steady-Flow Interactions into Six Types 

The approach of steady flow which is the basis of the classification 
is briefly explained. The state before the interaction is given in figure 1. 
For the steady-flow approach it is convenient to use a shock-bound reference 
system. (See fig. 2.) In the steady-flow system moving with the shock, 
the undisturbed regions of the cold air and the hot layer move at the 

same relative speed u1 . The pressure across the hot-layer boundary is 

continuous, and thus the pressures in these two regions are the same. 
The first step in the classification is to differentiate between those 
cases in which the undisturbed hot-layer flow is supersonic and those 
in which it is subsonic, in other words, to differentiate between those 
cases in which the hot layers contain shocks and those cases in which no 
shock exists on the hot layer. Inasmuch as the velocities in the undis-
turbed hot and cold regions are the same but the temperatures differ, the 

Mach numbers

U1 

lh - aTh 

and
U 

M
lc ai 

are related by

2	 2Tlc 
M	 = Mlc 

When Mlh= 1,
Tlh 

Tlc 

This relation thus serves for the desired differentiation and is plotted 

as MlC against - in figure 3 (the curve that goes through the lower 
Tic
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left corner of the diagram). Points below the curve represent subsonic, 
and hence shock-free, hot-layer flows; points above the curve represent 
cases for which the flows in the hot layer involve shocks. 

The next step is to differentiate those cases for which the maximum 
possible pressure rise (to stagnation pressure) in the hot layer is less 
than the pressure rise through the main shock when the flow in the hot 
layer must come to rest and accumulate in a bubble or stagnation region 
at the foot of the shock. For this calculation, one-dimensional-flow 
relations are used for the hot layer. Some oversimplification is thereby 
involved inasmuch as the hot-layer shock must deform somewhat from the 
normal as the boundary is approached because of the deviation of the hot-
layer boundary due to the interaction; furthermore, the subsonic flow in 
the hot layer is modified to varying degrees from the one-dimensional 
relations. 

Proceeding, then with the one-dimensional relations, a dividing 

* line may be constructed in the M1c_1i! plane of figure 2 in order 
Tic 

to separate interactions of the throughgoing type from interactions with 
a stagnation region. This dividing line may be expressed through the 
equality of the pressure ratios P2cIpl and Poh/Pl• The pressure 

jUIIIP P2c/Pl through the shock is expressed in terms of the Mach num-

ber Mlc by the following relation (see ref. 8 for this and subsequent 
relations):

2c2y	 2 y - l 
Pi _7+1Mi	 y+l	 (1) 

The expression for the pressure ratio 
oh/l in terms of the Mach num-

ber M1h in the hot layer depends on whether a shock exists in the hot 

layer or not. In the case of a hot layer with shock, 

\ 
( 2 Mm2)71

(2) 

-(2y M 2 - - 
Th y+l)
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whereas for a hot layer without shock,

7


	

oh	 y-1	 2'y-1 
M )	 (15) 

pl 	 2  

Equating P2C/Pl with Poh/Pl from equation (2) for flow with a shock 

in the hot layer yields 

	

= y+l	 2	 m)	 y-1	
() M1	 ____	

Iy+lM 2\7-

2y 27	
2y M 2y_l\9 

	

(y^l	 7+1) 

Equating P2c/l with Poh/Pl from equation (3) for shock-free flow in 

the hot layer gives

-z- 
=	 (1+	 - M 

2\71+7_l	 (5) Mic	

y+l/	

7 1  
lh)	 27 2y\	 2 

where, as previously noted, Mlh2 = Mic2 1S • The plot of equations (4) 
lh 

and (5) is the lower (the one closest to the origin) of the two roughly 
hyperbolic curves of figure 3. In the construction of this dividing 
line, y was assumed to be constant and equal to l.li.. 

The bubble is characteristically wedge shaped, and the foot of the 
main shock becomes an oblique shock and reaches down toward the front 
of the wedge, as indicated in the sketch in figure 3 and as discussed 
in more detail subsequently. The pressure in the bubble is the previously 
derived stagnation pressure of the hot flow, and the cold flow behind 
the oblique shock must have this same pressure; these conditions fix the 
inclination of the oblique shock. Differentiating between the conditions 
for which the flow behind the oblique shock (that is, the cold flow over 
the bubble) is subsonic and the conditions for which it is supersonic 
is the final step in the classification. The boundary curve is determined 
as follows: The pressure jump across an oblique shock is 

2y	 2.2	 y - l	 (6) 

l	
MicS1fl€
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9 

where € is the inclination of the attached oblique shock. For the case 
that M3c, the Mach number behind the oblique shock, is one (ref. 9) 

.2	 1 y+1	 2 3-y 
Slfl€	 Mj	 -	 + 

YMlc2L 

	

\I

3 7 

 

1) ^9 +	 y+l ___  

16	
M1 

+ 16 
Mic)]	 (7) 

Depending on whether Mlh is greater or less than 1 1 that is, on whether 

or not a shock occurs in the hot layer, equation (2) or equation (3) gives 
the rise to stagnation pressure in the hot layer. Equating p 3c/1 from 

equation (6), using sin 2€ from equation (7) with both equations (2) 
and (3), and using y = 1.1 give the third dividing line in figure 2 
(the upper roughly hyperbolic curve). The region to the right of the 
dividing line represents supersonic flow over the bubble. The reason 
is that with increasing temperature the Mach number Mlh in the hot layer 
is reduced and with it the stagnation pressure oh• (See eqs. (2) and 

(3).) As a result, the change in Mach number from the undisturbed flow 
at Mlc to the flow over the bubble at M3C 

is reduced; in other words, 

the flow over the bubble becomes more supersonic. 

In summary, the interaction patterns may be broadly classified into 
those with throughgoing hot layers, those with stagnation bubbles and 
subsonic flow over the bubbles, and those with stagnation bubbles and 
supersonic flow over the bubbles. Since, for each of these three cases, 
there are two subtypes, depending on whether or not the hot layer contains 
a shock, a total of six interaction types have been identified for this 
case of the normal shock. 

THROUGHGOII'TG HOT LAYER 

The classification of interaction patterns graphically presented in 
figure 3 indicates that steady-flow patterns exist with and without shocks 
in the hot layers. As noted previously, the shock in the supersonic hot 
layer is the front-running shock familiar to the blast expert. (See 
fig. ii. .) Inasmuch as the interaction is steady, the shock in the hot 
layer remains at a constant distance from the normal shock moving 
over the hot layer. Since the pressure across the free boundary of the 
hot layer is continuous, the shock in the hot layer causes an oblique
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shock to extend into the cold flow over the layer. This oblique shock 
is referred to as the retransmitted shock by writers on blast effects. 

When the temperature in the hot layer does not differ much from 
that in the cold flow, the shock in the hot layer and also the retrans-
mitted oblique shock will not be much weaker than the interacting normal 
shock. The flow over the hot layer behind the retransmitted shock is 
thus completely subsonic (fig. 4). Shock patterns of this type, having 
slightly elevated hot-layer temperatures, have been calculated by 
Griffith (ref. 6). (Griffith, who permits a continuous temperature 
variation in the hot layer, also points out that the basic outlines of 
the interaction pattern show only slight dependence on the temperature 
profile. This result indicates the feasibility of the present analysis 
in which a uniform temperature is assumed for the hot layer.) 

For hot-layer temperatures differing more from the cold outside 
flow, the shock in the hot layer, is weaker and, as a consequence, the 
retransmitted shock is also weaker. Thus, a region of supersonic isen-
tropic compression waves has to occur behind the retransmitted shock. 
(See fig. 5.) When the hot-layer temperature is high enough to require 
a completely subsonic steady flow in the hot layer for the matching of 
the cold outside flow, no shock exists, of course, in the hot layer; and 
thus there is no retransmitted shock. The supersonic isentropic compres-
sion waves will coalesce some distance above the hot layer and will cause 
an oblique shock to extend from that point to a higher point. (See 
fig. 6.) This shock formed by coalescing of waves may be regarded in a 
broad sense as a retransmitted shock. 

At the intersection of the retransmitted shock, in the restricted 
and the broad sense, with the interacting normal shock (somewhat deformed), 
a reflected shock is likely to occur (fig. 5) which has the task of 
turning the flow partly toward the horizontal. Another part of the 
turning is accomplished in the subsonic flow behind the reflected-shock 
region. In a sense, this reflection pattern has some features in common 
with the triple-shock pattern in a jet exiting against excess pressure 
shown in figure 59 of reference ii-; the Mach reflection would correspond 
thereby to the interacting normal shock, and the retransmitted oblique 
shock would correspond to the first shock of this interaction. The con-
siderable difference between these interaction patterns is that the 
pressure along the free boundary of the jet is constant, whereas the 
free boundary of the hot layer can support a pressure gradient along it. 
Whether this pressure gradient prevents the reflected shock from reaching 
the free boundary is of special interest. 

If the reflected shock were to hit the hot layer, its boundary would 
have a corner, and a stagnation point would occur inside the hot layer. 
It can be shown, however, that the flow over the hot layer at this
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stagnation pressure (of the hot layer) must be subsonic, and this condi-
tion prevents the reflected shock from reaching the hot layer. Since 
this stagnation pressure is the highest pressure in the entire flow 
field (if it were not, one of the four types with a stagnation bubble would 
exist), all that is required for proof is to show that the flow over some 
other hot-layer region lying at lower pressure and higher Mach number is 
subsonic. The most convenient flow region over the hot layer for the 
establishing of such proof is the region far downstream where the hot 
layer approaches the pressure behind the interacting normal shock. Since, 
however, the flow immediately above the hot layer has a different entropy 
from that behind the main shock, proof has to be furnished that it is 
not supersonic at the pressure of the subsonic flow behind the normal 
shock. The necessity for subsonic flow over this hot-layer region can 
be inferred by considering the classification of flows as shown in fig-
ure 3. The region between the two hyperbolic curves corresponds to 
stagnation bubbles having subsonic flow over them. Since any point in 
the throughgoing hot-layer region of figure 3 lies to the left of this 
region, it must correspond to lower temperature ratios and therefore to 
more nearly normal retransmitted shocks. Of course, when the tempera-
ture of the hot layer is only slightly above that of the cold flow, the 
retransmitted shock is nearly identical to the interacting normal shock 
and the flow behind is completely subsonic. 

Two appendixes treat the decay of the interaction effects away from 
the region of largest concentration. Appendix A deals with the upstream 
decay of a concentrated disturbance in an unlimited steady supersonic 
flow interacting with a subsonic flow of finite height (the hot layer). 
These calculations apply to hot layers of sufficiently high temperatures 
to permit establishment of subsonic flow. However, they probably also 
approximate the isentropic supersonic compression behind more or less 
weak retransmitted shocks occurring for lesser hot-layer temperatures. 
For very small temperature differences, the flow behind the retransmitted 
shock is subsonic and the analysis of appendix A no longer applies. The 
calculations made by Griffith (ref. 6) have to be used in this case. 
Appendix B gives the shape of the interacting shock at large heights where 
it approaches the normal. Furthermore, this appendix gives the shape of 
the hot layer downstream of the concentrated-disturbance effects where the 
flow over the hot layer is subsonic (behind the normal shock). 

HOT LAYER WITH STAGNATION BUBBLE 


Quasi-Steady Babble Growth 

Strictly speaking, the bubble flow is not quite a steady flow in 
the same sense that the throughgoing layer was steady. That is, if 
turbulent mixing effects, such as might serve to limit the size of the
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bubble, are neglected, the bubble would simply continue to grow indefi-
nitely as it accumulates more and more stagnation air from the hot layer. 
The limiting steady-flow case, when the bubble has grown to infinite 
dimensions, is of little interest. 

The case considered herein is that in which the bubble is of finite 
size, but nevertheless has grown so large that (1) the air velocities 
within have become mainly too low to produce much variation in pressure 
throughout most of the bubble and (2) the rate of growth of its linear 
dimension (which decreases rapidly as the bubble increases in size) has 
become too small appreciably to affect the pressures in the flow field. 
Essentially, then, the flow about the bubble is considered, in the main, 
to be steady at any instant, although the bubble is actually growing. 
In order to emphasize that the flow pattern is actually slowly changing 
with time, it is referred to as quasi-steady. The effects of mixing, 
which can be expected eventually to halt the growth and thereby produce 
a steady flow, are discussed in a subsequent section. 

It is considered that by the time the bubble has grown to several 
times the hot-layer height the main characteristics of the quasi-steady 
state already apply because the pressure variations in the bubble vary 
as the square of the velocity. The airspeeds in the bubble may still 
differ appreciably from zero (and the height of the bubble is still com-
paratively reasonable) without causing the internal pressures to deviate 
very much from stagnation pressure. Accordingly, it is believed that 
this kind of bubble, in essentially the quasi-steady state, should be 
observable, in many cases, for a period before it has grown to such size 
that further growth is limited by turbulent mixing along the boundary. 

For an analysis of the shape of the quasi-stagnation bubble and the 
flow over it, the front and the rear of the bubble are conveniently 
regarded as separate regions. The flow over the bubble front is assumed 
to be influenced only by the transition pattern from the undisturbed hot 
layer to the bubble front and uninfluenced by the eventual downstream 
adjustment to the high-pressure region behind the normal shock. The 
flow over the rear of the bubble is assumed to be concerned with this 
adjustment. 

The adjustment of the undisturbed flow to that over the bubble front 
is as follows: Depending on whether or not the hot layLr contains a 
shock, the flow over the hot layer begins with or without a retransmitted 
shock. Behind this retransmitted shock the flow experiences supersonic 
isentropic compression if the flow over the bubble is to be supersonic, 
or both supersonic and subsonic isentropic compressions for subsonic flow 
over the bubble. The isentropic supersonic compression waves coalesce to 
an oblique shock or, if a retransmitted shock already exists, they merely 
reenforce \it. The existence of a subsonic isentropic compression along 
the hot layer ould cause further readjustment of the pressure behind the



NACA TN 4002	 13 

oblique shock. If the influence of the rear of the bubble is neglected, 
a complete adjustment of the pressure behind the oblique shock to the 
stagnation pressure in the bubble can occur. The flow pattern for the 
front of the bubble thus consists of a steady oblique shock at Mach num-
ber Mic with a pressure jump Poh/Pl across it. The stagnation region 

is wedge shaped, the wedge angle corresponding to the oblique shock. 
(The ambiguity or nonexistence of attached shocks associated with given 
solid-wedge angles does not apply to the present case where the pressure 
behind the oblique shock is given.) 

The discussion in the preceding paragraph indicates that the bubble 
grows quasi-steadily within a wedge region. (See fig. 7.) Furthermore, 
the flow pattern around it experiences nearly geometrically similar 
growth. When this geometrically similar growth is considered, special 
attention has to be given to the flow region over the connecting piece 
between the undisturbed hot layer and the bubble wedge. This connecting 
flow region, which includes the retransmitted shock with isentropic 
compression or an isentropic compression alone, produces (in a more or 
less small strip over the bubble wedge) a flow that has entropy and Mach 
number different from those behind the oblique shock. The height of 
this strip remains nearly constant during the bubble growth; consequently, 
it would violate the requirement of geometrically similar growth if it 
were not for the fact that it becomes small compared with the bubble 
size as the steady state is approached. The flow at the entropy and Mach 
number behind the oblique shock thus represents the effective bubble 
boundary to the cold outside flow (in the sense of the classification in 
fig. 3). As the steady state is approached, the length of the connecting 
region between the undisturbed hot-layer region and the bubble wedge, 
becomes small also compared with the bubble dimensions. For the pattern 
growing behind the oblique shock in a wedge-shaped region, the conditions 
for geometrically similar growth are, of course, satisfied. 

The rate of growth of the bubble in the neighborhood of the steady 
stagnation state can be determined as follows: The mass flow into the 
quasi-stagnation bubble is a constant quantity determined by conditions 
in the undisturbed hot-layer region. This constant influx has to equal 
the rate of growth of the bubble mass. Since the bubble density is 
almost constant, the rate of growth of the bubble area dL 2/dt is con-
stant. The rate of growth dL/dt is thus inversely proportional to the 
bubble height L or to the square root of time. 

In view of the novel features involved in the bubble formation and 
growth, possible more exact calculations of the transient-growth effects 
are of interest. Emphasis is given to the fact that special undisturbed 
hot-layer shapes exist which are likely to offer further insight into the 
transient effects with somewhat reduced mathematical effort. For wedge-
shaped hot layers, the interaction pattern grows only in size and can be
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represented by a single picture. The wedge flows are called pseudo-
stationary or conical (in analogy with conical steady flows) in the 
literature. The usefulness of the wedge-shaped layer has been shown 
independently in an interesting paper by JáIm (ref. 1) in connection 
with studies of the refraction patterns of oblique shocks. Especially, 
note that for a wedge angle approaching zero the interaction patterns 
approach those of the steady type discussed in this paper. The inter-
action with hot-layer wedges of various finite wedge angles would offer 
valuable guidance to the study of transient effects for hot layers 
approaching constant height. Complete solutions for the interaction 
of the shock with the hot-layer wedge have not been attained to the 
present to the author's knowledge, even for the throughgoing hot layer, 
because the calculations involved are still rather lengthy. 

Flow Over Rear of Stagnation Bubble 

As the flow moves over the rear of the quasi-steady stagnation 
bubble, it approaches the wall. When the flow is subsonic, the problem 
is similar to that arising in cavitation flows. A discussion of some 
studies in this field is given in reference 5. Moreover, G. Kreisel of 
the British Admiralty Research Laboratory, England, in 1946 discussed 
cavitation flows and presented a physical interpretation of the flow over 
the bubble. Briefly, since, in the flow over the stagnation bubble, the 
pressure increases with height until it reaches the pressure behind the 
normal shock where the streamlines are horizontal, the bubble boundary 
has convex curvature. The bubble cannot meet the wall with a stagnation 
point since the stagnation pressure of the cold outside flow is larger 
than that in the hot bubble, whereas the pressure across the free bound-
ary has to be continuous. The possibility that the bubble boundary meets 
the wall in a concave cusp is ruled out through arguments given by Kreisel. 
As a result, a so-called reverse or reentrant jet has to move under the 
hot-layer bubble as sketched in figures 8(a) and 9. 

The proofs, such as those given by Kreisel for the necessity of 
reverse-jet formation, apply directly to potential flow. For flows 
having variation in total pressures, the establishment of exact require-
ments for existence of a reverse jet would be more difficult. Total-
pressure variations can occur for various reasons: for example, (i) 
from the entropy variation in a comparatively thin flow strip over the 
bubble as discussed in the preceding section (2) from the undisturbed 
hot layer if it had a nonuniform temperature distribution, or (5) in a 
greater degree from laminar or turbulent mixing along the bubble bound-
ary and boundary-layer effects at the wall. The mixing effects are dis-
cussed in the section "Influence of Mixing Inside the Flow and Boundary 
Layer Near Wall." 

For extreme cases of supersonic flow over the bubble, a reverse jet 
may be avoided if the flow Mach number and the slope at which the boundary



NACA TN 4002
	

17 

meets the wall were just proper to permit an attached shock at this 
meeting point. (See fig. 10(a).) An exact analysis is difficult since 
it would require transonic-flow considerations, the flow behind the 
normal shock being subsonic. The nonexistence of a reverse jet is the 
rule rather than the exception when the shock interacting with the hot 
layer is oblique. This case is discussed in the section "Interaction 
With Oblique Shocks." 

Ideal Flow of Reverse Jet Under Hot Layer 

In view of the high pressure behind shock and bubble, the reverse 
jet will move under the bubble and under the throat region toward the 
undisturbed hot-layer region, provided that it is not forced to break 
into the hot layer before it reaches that region. If the reverse jet 
were forced to turn and break into the hot layer and subsequently envelop 
pieces of it, these pieces could be carried downstream to the higher 
pressure region behind the shock. (See fig. 8(b).) The reason for this 
is that, once enveloped, the pieces are isolated from the undisturbed hot-
layer region and the hot-layer throat which transmit the flow to the stag-
nation bubble. Such an ideal flow break-in would serve, in essence, the 
same purpose as turbulent mixing, where small fluid regions can be trans-
ported to higher pressure. 

The problem of break-in of the reverse jet is closely connected with 
that of the change in shape of the nose of the jet during the motion 
under the hot layer. The quasi-steady approach is used again for guidance 
purposes. Through the influence of the high-pressure region behind the 
bubble, the reverse jet moves under the bubble toward the undisturbed 
hot-layer region where it takes on the pressure of the undisturbed flow 
and approaches a constant speed, that is, a constant rate of progress. 
The reverse jet during its initial motion under the bubble was part of 
the bubble pattern which approaches a rate of growth inversely propor-
tional to the square root of time. When constant speed at some distance 
from the bubble is approached, the longitudinal rate of progress of the 
reverse jet nose has thus divorced itself from the bubble. However, the 
vertical rate of progress of the jet boundary is still governed by the 
bubble. The smaller rate of progress of the jet boundary in the vertical 
direction causes the shape of the jet nose to be flattened rather than 
bulged out during its progress under the hot layer, a behavior that is 
certainly opposed to a break-in. To be exact, the height of the reverse 
jet approaches infinite dimensions as the steady state is approached. 
Since, as has been pointed out previously, the quasi-steady bubble growth 
should also apply to bubble heights not too far in excess of the hot-layer 
height, this flattening of the jet nose will not be restricted to the 
extreme cases of infinite jet height and complete penetration under the 
hot layer.
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The nature of the rates of progress in the horizontal and vertical 
directions causes the jet to adopt the shape of a parabola. A break-in 
of the reverse jet into the hot-layer flow is thus not likely to occur 
because of ideal flow reasons (a straight wall being assumed) but because 
of accidental small disturbances causing turbulent mixing along the free 
jet boundaries. A more concise picture of the transient states of the 
reverse jet penetration from the beginning of the interaction could be 
obtained by studying the interaction of a series of hot-layer wedges 
with angles varying from 900 to 00. 

STABILITY OF IDEAL-FLOW PATTERNS 

Since the ideal-flow patterns discussed in the preceding section 
have free boundaries, it is of interest to consider whether such flows 
are stable, even when viscosity is disregarded. A general consideration 
is that the low density in the hot layer has a damping effect on the 
amplification of small disturbances; also, the centrifugal forces in the 
cold flow over the bubble boundary have a stabilizing effect. 

In general, the flow in the reverse jet will be supersonic because 
it returns to the upstream undisturbed pressure. The question now arises 
as to whether two counterfiowing supersonic streams (the unlimited cold 
flow and the reverse cold jet) can exist together, although they are 
separated by a hot layer. Steady disturbance waves are certainly intro-
duced where the reverse jet penetrates under the bubble and proceeds to 
adjust its pressure toward the lower value of the undisturbed air. 
(Compare with the simple case of a supersonic jet issuing into air at 
rest.) Inasmuch as the jet boundary can give way to disturbances, these 
will persist far downstream. (See figs. 9 and 10(b).) Accordingly, in 
order to study the problem, an analysis (appendix C) has been made of 
the three-layer configuration (cold unlimited flow, hot layers, reverse 
jet) in which such steady disturbances are assumed. It must be admitted, 
however, that the problem of existence of three-layer configurations may 
be of primary concern to the theorist, at least with regard to the present 
reverse jet, because the assumed deep penetration of the latter is likely 
to be stopped by mixing effects (except, perhaps, if stability is greatly 
increased by extreme hot-layer temperatures). 

INTERACTION WITH OBLIQUE SHOCKS 

With the introduction of oblique incident shocks, the number of 
possible interaction patterns is very much increased. This variety is 
already great for the better known interaction with the throughgoing hot 
layer. (See, for example, ref. 1.) The inclusion of interactions with 
quasi-stagnation bubbles makes the problems even more involved.
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Oblique-Shock Interaction Having Hot Layer 

With Stagnation Bubble 

The division between cases of throughgoing hot layers and hot layers 
with stagnation bubbles is still given by the criterion that the combined 
pressure jumps through the incident and the reflected shocks have to match 
the rise from the undisturbed pressure to the stagnation pressure in the 
hot layer. No numerical classification of flow patterns for oblique 
shocks, similar to that presented for normal shocks in figure 3, will be 
given, however, in view of their great variety; accordingly, only a few 
interaction types are discussed. When the flow behind the reflected 
oblique shock is subsonic, the flow over the bubble may be subsonic or 
supersonic in a similar manner to the interaction with the normal shock. 
When the flow behind the reflected shock is supersonic, however, the flow 
over the bubble, which has a stagnation pressure that lies below the 
pressure behind the reflected shock, has to be always supersonic. Thus, 
for this case the interaction of the throughgoing hot layer changes 
directly to the flow types V and VI (fig. 3) with supersonic flow over 
the bubble. 

The requirements for existence of an attached shock where the bubble 
boundary meets the wall, instead of a reverse jet, are comparatively 
simple for interactions with oblique shocks inasmuch as the interaction 
pattern consists of shocks and expansion regions more or less delineated 
by straight lines. (See fig. 11.) The slope of the front part of the 
bubble boundary is determined by the oblique shock corresponding to the 
bubble pressure. The incident shock somewhat deviated by this frontal 
shock is reflected from the free bubble boundary as an expansion which 
turns the rear bubble boundary by approximately the same angle as the 
shock. 

If an attached shock is to exist at the end of the bubble, the 
deviation between the rear bubble boundary and the wall has to be less 
than the maximum deviation for an oblique shock. (This requirement 
corresponds closely to that of supersonic flow behind the oblique shock.) 
The likelihood of attached shocks at the bubble end for supersonic flow 
behind the reflected oblique shock can be seen from the following approxi-
mate reasoning: Assume for the sake of simplicity that the layer is very 
hot and that the stagnation pressure does not differ much from the undis-
turbed pressure. As a result, the oblique shock at the beginning of the 
bubble is weak and the front part of the bubble boundary is nearly hori-
zontal. The incident shock and the reflected expansion turn the bubble 
boundary approximately twice the deviation through the incident shock 
(but their combined effect on the Mach number of the flow over the rear 
of the bubble is small). Since the bubble front is nearly horizontal, 
the deviation between the bubble end and the horizontal wall at the 
bubble end must also be about twice the deviation; but the incident and 
the reflected shocks also turn the flow through approximately twice the
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deviation through the incident shock. As a consequence of these about 
equal deviations, an attached shock, having a supersonic-flow Mach num-
ber behind it nearly equal to that behind the reflected shock, is likely 
to occur at the bubble end. 

Oblique Shock Interaction With Throughgoing Hot Layer 


Having Subsonic Flow 

If the temperature of the hot layer is lowered, the interaction with 
a stagnation bubble (fig. 11) changes to one type of the throughgoing 
hot layer (fig. 12). A few aspects based on. steady-flow concepts, which 
generally do not appear in the analysis of blast phenomena, is discussed. 
This interaction has certain aspects in common with results by Tsien 
(ref. 10) for the interaction of weak oblique shocks with subsonic layers 
based on small-disturbance calculations. (See also "Subsonic Flow in Hot 
Layer," appendix A.) 

Whether or not an oblique shock interacting with a throughgoing hot 
layer with subsonic flow can hit the boundary of the layer appears to be 
also an interesting problem. The reasoning is similar to that for the 
interaction with a normal shock; however, the result is different. It 
is assumed that the flow along the hot layer where it approaches the 
pressure behind the oblique reflected shock is supersonic. If the oblique 
shock is incident on the hot-layer boundary, a corner is formed with a 
resulting stagnation point inside the hot layer. The pressure along the 
hot layer corresponding to stagnation is larger than the pressure behind 
the reflected shock. (Otherwise, a stagnation bubble would occur.) Thus, 
depending on the magnitude of the supersonic Mach number along the hot 
layer behind the reflected shock and of the stagnation pressure in the 
hot layer, the cold flow over the stagnation point may be supersonic or 
subsonic. The interacting supersonic oblique shock can thus be incident 
on the hot layer in contrast to the normal-shock interaction, but need 
not always be. The small-disturbance approach, of course, cannot bring 
out this alternative. A more detailed study of such problems would require 
quantitative classification of the interaction patterns similar to that 
performed for the normal-shock interaction. High hot-layer temperature 
favoring supersonic flow along the throughgoing hot layer will also tend 
to produce a change in flow type similar to that obtained with stagna-
tion bubbles. On the other hand, a comparatively low temperature will 
produce purely supersonic flow in the hot layer which no longer requires 
stagnation points where corners occur in the boundary. 

The flow pattern having strong shocks in figure 12 differs in other 
aspects from that with weak shocks in reference 10. As compression waves 
coalesce to form a shock or as expansion waves impinge on the reflected 
shock, reflected waves are formed. These reflections constitute new
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incident disturbances on the hot layer and produce new interaction 
patterns. They are, however, so weak that they should not seriously 
affect the approach to the horizontal of the flow behind the reflected 
shock. The decay of the interaction effects at more or less large 
distances from the concentrated effects of shock incidence is discussed 
in appendix A. 

Oblique Shock Interaction With Throughgoing Hot Layer 


Having Supersonic Flow 

As the temperature in the hot layer approaches that of the cold flow, 
a purely supersonic reflection pattern occurs in the hot layer. (See 
fig. 13.) The patterns have features in common with those for a super-
sonic free jet embedded in a supersonic stream. (See the analysis in 
refs. 11 and 12 and in "Supersonic Flow in Hot Layer" of appendix A of 
this paper.) Briefly, weak shocks are reflected as shocks or expansions 

according to whether or not the impedance M2/JM2 - 1 of the hot layer 
is larger or smaller than that of the cold flow. The word "impedance" 
is used in analogy with the acoustic tern' (ref. 13). For strong shocks 
the impedance is of a more complicated nature. (See ref. 1.) For equal 
impedances of the two flows, the. incident shock is refracted into the hot 
layer without reflection (fig. 13(b)) while inclined at the complementary 

angle. The following proof of this fact is given: Since 1 = sin a, 

\1M2 j = sin 2a. 

M2	 2 

Also, sin 2a. = sin(ic - 2ct); therefore a. or 7 - a. corresponds to the 

same value of the impedance. For equal impedance, of course, the addi-
tional trivial solution of equal temperatures and Mach numbers in the 
hot and cold flows also occur. 

A great variety of intermediate interaction patterns exist between 
those with purely subsonic flow in the hot layer (for example, fig. 12) 
and those with purely supersonic flow. (See fig. 13.) These intermediate 
interaction patterns have received special attention in blast studies. 
In these studies an additional classification is introduced into regular 
and irregular refraction patterns in analogy with acoustic and optical 
usage. (See, for example, ref. 1.) A regular refraction pattern is 
characterized by the fact that it can be determined completely by matching 
conditions at the point of incidence of the shock on the hot-layer bound-
ary. For irregular refractions subsonic-flow regions occur which no 
longer permit matching of the pattern at a single point; thus,
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transonic-flow considerations are frequently involved. The normal-shock 
interactions previously discussed in this paper are, of course, of this 
irregular type. In the studies of irregular refractions the formation 
of the front-running shock (which is herein the shock in the hot layer.) 
is studied in some detail. A feature not covered so far in this paper 
is the formation of the Mach stems. Since Mach stems are formed pre-
dominantly for interactions with spherical shocks, they are discussed 
in this connection. 

INTERACTIONS WITH MACH STEMS FOR OBLIQUE


AND SPHERICAL SHOCKS 

General Remarks 

If an oblique shock interacting with a wall has an angle of incidence 
larger than a certain critical value, an oblique reflected shock which 
turns the flow back parallel to the wall can no longer be found. Dimen-
sional reasoning indicates that for the existence of a Mach stem, that is, 
a nearly normal shock of finite dimension, some other characteristic 
finite dimension has to exist for the flow. For example, the distance 
from a corner in the wall where an interaction begins may serve as the 
characteristic dimension. A finite length is also introduced without 
deformation of the wall, but rather by deformation of the plane incident 
oblique shock into a curved one, in particular, into a spherical shock. 
Such shocks have a finite dimension at any given time and have their own 
beginning under the explosion center. The presence of a hot layer with 
finite height or with a finite wedge angle also introduces a dimension 
and thus makes the occurrence of a Mach stem possible. Of course, the 
presence of any finite height is not enough for the occurrence of a Mach 
stem. Since the pressure behind the nearly normal Mach stem must be 
higher than the pressure behind the oblique reflected shock, an expansion 
region has to exist in the flow behind the Mach stem. This region may be 
supersonic or subsonic or a combination of both. (For Mach stems in, for 
example, steady jet flows of finite height, see figs. 39 and 76 of ref. 14.) 

An intermediate pattern between cases of purely subsonic and purely 
supersonic flow in the hot layer (figs. 12 and 13) can be imagined, 
a Mach stem occurring next to the wall in the hot layer (fig. lii-). The 
existence of interaction patterns with Mach stems over the hot layer due 
to an oblique incident shock has been observed in the experiments of 
reference 1, where plausibility considerations are also presented in 
support of the patterns. An exact analysis of the Mach stem patterns 
would be difficult even for the present steady-flow interaction with a 
layer of constant height, since the deformations of the hot-layer boundary 
presents an added difficulty.
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In almost all blast phenomena the occurrence of a Mach stem over 
the hot layer is primarily due to the fact that the interacting shock 
is a spherical shock instead of a plane oblique shock. As previously 
noted, such a curved shock has a finite dimension of its own and thus 
does not need the hot layer to introduce a characteristic dimension. 
In the present blast case the interacting shocks are spherical and the 
Mach stem will be partly due to the finite extent of the spherical shock 
and the finite height of the hot layer. A composite picture of these 
effects is shown in figure 17 which shows results of experiments with 
cylindrical shocks by Varwig and Zemel at the Naval Ordnance Laboratory 
in 1955. Cylindrical shocks have many features in common with the 
spherical shocks occurring in blasts but permit simple analysis and 
experimental observation since their motion occurs in a plane. In 
the subsequent section the Mach stem formation observed by Varwig and 
Zemal is discussed in somewhat greater detail. 

Quasi-Steady Interactions With Mach Stems for 


Spherical or Cylindrical Shocks 

A curved shock having a finite dimension does not need the finite 
hot-layer height to produce a Mach stem. The basic nature of the curva-
ture influence can thus be brought out for interaction of the shock with 
the wall alone; the actual Mach stem is, of course, a composite of shock-
curvature and hot-layer influence. Since the mathematical analysis of 
the transient interaction with spherical or cylindrical shocks is already 
very involved when the shocks are weak (ref. 3), it is again desirable 
to look to the cases of quasi-steady flow for guidance. A steady state 
is approached for the interaction of a spherical or a cylindrical shock 
with a wall when the changes in incidence and shock strength as the shock 
moves along the wall are small compared with the distance traveled along 
the wall; in other words, when the radial distance to the explosion center 
is far from the section of the wall being considered, the shock strength, 
incidence angle at the wall, and curvature change so slowly that at any 
instant the flow pattern may be taken as quasi-steady. An exactly steady 
state, however, cannot be of interest for the present discussion because 
it would imply an infinite shock radius for which there could be no 
Mach stem. 

The curvature of the incident shock is produced by quasi-steady 
supersonic expansion waves behind the shock (fig. 15). Note that spher-
ical or cylindrical shocks produce expansion regions behind them as their 
surface increases; a slow increase produces a quasi-steady supersonic 
expansion region. (This supersonic expansion, in turn, influences the 
reflected shock so that it can bring about the pressure reduction behind 
the Mach stem which is necessary for its finite height.) The effect of 
the Mach stem on the hot layer is similar to that of a normal shock shown



22
	 NACA TN I.O02 

in figures 4 and 5. Accordingly, near the hot-layer boundary the Mach 
stem is diffused into isentropic compression waves. The flow behind the 
diffused compression as well as behind the reflected shock is assumed 
herein to be completely subsonic; the region behind the reflected shock 
could also, of course, be supersonic without violating the broad principles 
in the present discussion. The deformation of the hot layer can also pro-
duce expansions which, together with the expansions responsible for the 
curvature of the incident shock, yield the dimensions of the Mach stem. 

A tentative ideal-flow interaction of a cylindrical shock and a hot 
layer with bubble formation is given in figure 16. For reasons discussed 
previously, this interaction is, of course, only an approximate composite 
of the interaction patterns with oblique shocks of various incidences. 

INFLUENCE OF MIXING INSIDE THE FLOW AND BOUNDARY


LAYER NEAR WALL 

Experimental studies of interactions with tbroughgoing hot layers 
show that the mixing along the boundary has only small influence on the 
ideal-flow patterns. This fact can be explained as follows: The laminar 
or turbulent mixing along the free hot-layer boundary is essentially due 
to the difference in .velocities along this boundary created through dis-
turbance of the hot layer by the incident shock. The importance of the 
mixing effects compared with the potential-flow effects can be estimated 
through a Reynolds number pLsU l/i. The length 7. is the distance of 
that section of the hot-layer boundary along which the effects of steady 
ideal flow cause the dominant deviations from the horizontal. Dimensional 
reasoning and small-disturbance calculations in appendixes A and B 
indicate that for the throughgoing hot layer this distance is of the 
order of the hot-layer height upstream and downstream of the incident 
shock. For interactions with bubble formation the length 7. represents 
the characteristic linear bubble dimension. (Mixing extends, of course, 
infinitely far downstream of the incident shock, but for the present 
purposes its effects on the region of dominant deformation of the ideal-
flow pattern are of primary concern.) The velocity factor AU is the 
average velocity difference along the length 7.. The density p and the 

viscosity .i are averaged values of the hot and cold flows. For through-
going hot layers of comparatively small height, 7. is small and thus 
the Reynolds number is small; therefore, the ideal-flow pattern , should not 
be seriously affected by mixing. For interactions of hot layers of small 
height with bubble formation, 7. is larger; however, these interactions 
also correspond to higher temperatures. As a consequence, p is reduced, 
i is increased-, and each of these changes reduces the , Reynolds number and 
thus the effect of mixing. In accordance with these expectations, the inter-
ferograms of interactions with hot layers of small height (refs. 2 and 6)
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match the present ideal-flow approximations fairly closely. Note espe-
cially that the criterion of shock strength and hot-layer temperature 
found to be necessary for bubble formation (ref. 9) is not far removed 
from that given in the present classification of flow patterns. 

For hot layers of larger height than those produced in the laboratory, 
the Reynolds number becomes larger; thus, the mixing effects should become 
more important for corresponding states of development of the interaction. 
In view of the more important mixing effects, the bubble growth for layers 
of large height may deviate to some extent from the quasi-steady law. 
The stronger influence of mixing, however, does not rule out the bubble 
formation and formation of reverse jets as shown subsequently. 

The mixing reduces the bubble growth by entraining and removing mass 
from the bubble. A steady-flow pattern with mixing is ultimately attained 
(figs. 17 and 18) when this loss in mass equals that supplied by the hot-
layer flow into the bubble. It has certain aspects in common with the 
pattern of the separation bubble because of the reattachment of steady 
boundary-layer flows. Some important differences are discussed 
subsequently. 

The steady mixing-flow pattern, in view of its permanence, is inde-
pendent of the manner in which it is built up. A dividing streamline 
can be defined between the circulatory flow inside the bubble and the 
flow over it along which the turbulent mass exchange of hot and cold air 
is in the mean zero. The circulatory flow, having in the mean no mass 
additon, is maintained by momentum and energy exchange with the flow 
around the bubble. Part of the circulatory flow has a direction opposed 
to the cold outside flow. This reverse flow which contains in the mean 
no mass addition from the outside flow has to be carefully distinguished 
from the ideal-flow reverse jet which contains mass from the outside flow. 

Important differences exist between the present separation bubble 
and the better known separation bubble occurring in steady boundary-layer 
flow over wings and in diffusers. The present separation bubble is part 
of the steady flow relative to the moving shock, whereas in the usual 
boundary-layer case the flow is steady with respect to the wall. In the 
steady-flow system moving with the shock, the wall "pulls" the fluid along. 
Such behavior is in direct contrast to the customary boundary layer which 
is retarded by the wall; it is, however, related to the boundary layer in 
shock tubes. (For example, see refs. 14, 15, and 16.) in other words, 
because of the high speed of the wall (in the steady flow relative to the 
moving shock), the flow regions near the wall will have a higher total 
pressure than those away from the wall. Thus, the flow will not separate 
from the wall as is the case with usual boundary layers; rather, it will 
"separate" from the inside of the hot layer and reattach itself again 
inside, further downstream. Since momentum and energy can be imparted 
now from two sides, from the moving wall in addition to the cold flow 
over the hot layer, the separation bubble will be divided into two
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circulatory flows. The establishment of a criterion to distinguish 
between mixing patterns of the throughgoing hot layer and those with 
separation bubble is, of course, far more difficult than that for ideal 
flow. Since mixing increases the total pressure of the hot air near 
the boundary, it will require higher temperature ratios for bubble forma-
tion than ideal flow does. 

Amore detailed discussion of figures 17 and 18 may be useful. A 
mean dividing streamline separates the bubble from the flow around it. 
Since a double circulation occurs inside the separation bubble, it is 
also divided by a streamline. Another streamline divides the cold out-
side region from the flow around the separation bubble; the wall is the 
dividing streamline of the boundary-layer flow. The wavy lines indicate 
approximate boundaries along which the spreading of the mixing regions 
and the boundary-layer regions occur. The heavily drawn spiral is a 
reminder of the fact that the separation bubble of the hot layer is 
cooled by the intermixing of the cold outside flow. Since the mixed 
flow permits transverse Mach number gradients, - it- can reflect oblique 
shocks as compressions as well as expansions (see fig. 18) in contrast 
to the ideal-flow interaction in figure 11. Figure 16.49 in reference 17 
was used as a guide for sketching the outside flow in figure 18. 

Finally, it may be of interest to note that such steady separation 
bubbles with double-circulation patterns would appear also to be possible 
for the interaction of shocks with certain turbulent wake regions behind 
bodies or combustion zones, which also have high total pressures near 
their boundaries.

CONCLUSIONS 

The following conclusions have been reached from a study of the inter-
action between hot layers extended along a wall and normal or oblique shocks 
moving over them: 

1. For normal and oblique shocks interacting with a hot layer of 
constant height, the transient-interaction effects decay and the inter-
action can be considered to be steady relative to the moving shock. 

2. For the steady flow relative to the normal shock, a classification 
into six types of interaction patterns is possible. The main division is 
based on the fact that for very high temperatures the stagnation pressure 
of the hot-layer flow lies below the pressure behind the normal shock. 
As a consequence, the hot-layer flow can no longer approach this high-
pressure region as it does fOr lower temperatures and has to accumulate 
in a bubble-like region. The interaction pattern with a bubble may be 
divided again into two cases, depending on whether the flow in the hot 
layer is supersonic (contains a shock) or is subsonic.
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3. Useful information about the bubble growth is obtained from quasi-
steady-flow considerations. It is shown that the quasi-steady growth 
occurs in a wedge-shaped region. When the flow over the bubble is sub-
sonic, it may divide as it moves over the rear of the bubble toward the 
wall and force a jet of cold air to move under the bubble. A supersonic 
flow over the bubble can meet the wall with a shock. 

4. Under the influence of mixing, the bubble stops growing and 
becomes part of a steady separated flow pattern. The separation bubble 
differs importantly from that occurring in steady boundary-layer flows 
because it is bound to the moving shock. Consequently, momentum is not 
only imparted by the cold flow but also by the wall, which pulls the 
flow along rather than retarding it. The separation bubble will contain 
two circulatory flows instead of one. The pattern of flow separation 
has aspects in common with those produced by shocks with wakes behind 
bodies or combustion zones where momentum is imparted also from both 
boundaries. 

5. For interaction with an oblique shock the hot-layer flow accumu-
lates in a bubble when its stagnation pressure can no longer match the 
pressure behind the combined incident and reflected shocks. The flow 
over the bubble is predominantly supersonic and, in most cases, meets the 
wall with a shock; thus, a jet of cold air need not move under the bubble. 

6. As in the interaction with a normal shock, the alternatives of 
hot-layer flows with and without shocks exist. In contrast, the hot-
layer flow can now contain oblique shocks with a great variety of reflec-
tion patterns. Some of these patterns are very closely related to those 
encountered for supersonic jets embedded in supersonic streams. 

1. The interaction of spherical or cylindrical shocks with hot layers 
can be treated in some cases with a quasi-steady approach. This approach 
also yields some information concerning the nature of triple-shock patterns 
with Mach stems over the hot layer. 

Langley Aeronautical Laboratory, 
National Advisory Committee for Aeronautics, 

Langley Field, Va., February 26, 1951.
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APPENDIX A 

DECAY OF STEADY INTERACTION EFFECTS OF UNLIMITED SUPERSONIC 


FLOW WITH HOT LAYER OF FINITE HEIGHT 

Subsonic Flow in Hot Layer 

Decay effect for interaction. - The dominant effects of the more 
or less concentrated disturbance produced by the incident shock will 
decay to vanishingly small values at sufficient distances upstream and 
downstream of the shock. The final or asymptotic decay of these dis-
turbance effects can be treated by a small-disturbance approach, regard-
less of whether the incident shock is strong or weak. These decay cal-
culations in this appendix apply only to regions where the flow over the 
hot layer is supersonic; thus, they . apply to the hot-layer regions down-
stream as well as upstream of the incident shock if the flow downstream 
of the latter is supersonic. This is the case for many interactions of 
oblique shocks; however, for a normal shock interacting with a subsonic 
hot layer only the flow upstream of the shock is supersonic. The asymp-
totic decay for the hot-layer regions under the subsonic flow behind the 
normal shock is analyzed in appendix B. The asymptotic decay applies, 
of course, only where no new disturbance occurs, such as a shock in the 
hot layer; that is, it applies to isentropic-flow interactions. (See 
fig.. 6.) For comparatively weak shocks in the hot layer, however, the 
present asymptotic decay effects should apply to the isentropic region 
upstream of the incident shock and behind the shock in the hot layer. 

The small-disturbance approach was used in reference 10 to calculate 
the complete-flow pattern even in the neighborhood of the (oblique) inci-
dent shock which was assumed to be of small strength; the results were 
conveniently developed with the aid of Fourier integral transforms. For 
the present case, where only the asymptotic decay of (possibly large) 
disturbances is treated, it is more convenient to . study the disturbance 
effects in terms of elementary functions, similar to the method described 
in reference 8 for the flow over a wavy wall. However, the method is 
used herein for the decay of disturbances. The decay upstream of the 
concentrated disturbances is treated first. 

The small-disturbance potential of the supersonic flow above the 
hot layer of height 1h' in terms of the elementary decay function, is 

i(x_yM12_l) 
= u1Ae	 (ylh <y < oo)	 (Al)
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Since the supersonic flow over the hot layer is unlimited, only one 
family of Mach waves is required. The Mach waves designated in equa-
tion (Al) correspond to a flow In the positive x-direction. From a 
broader viewpoint, the selection of only one group of Mach waves has the 
purpose of satisfying the boundary conditions of the cold supersonic flow 
at infinite height over the hot layer. When the problem is solved in 
terms of elementary functions, the problem of satisfying the boundary 
conditions at the concentrated disturbance does not arise. The concen-
trated disturbance has to be accounted for by superimposing a variety 
of elementary disturbances; this problem, however, is not treated herein. 
Since the flow in the hot layer is subsonic, the factor representing the 
y-component of the small-disturbance potential must be represented by an 
elementary function of the following sinusoidal form: 

Oh

	

	
x/s 1y U -	 2)	 (o <y <Ylh) (A2) = u1A*e cos_Vl M 

The term cos( ) in equation (A2) is chosen in order to satisfy the


	

boundary condition that the normal velocity	 /y be zero at the wall. 

The quantity s is the decay modulus of the exponential decay and is 
representative of the distance required for the decay of the essential 
part of the disturbance effects. Positive values of s correspond to 
disturbances decaying in the upstream direction, that is, in the nega-
tive x-direction; whereas negative values of s correspond to downstream 
decay. The quantity s in equations (Al) and (A2) is the unknown which 
is to be determined by matching slopes and pressures of the hot and cold 
flows at the hot-layer boundary. 

The slopes (Ø/y)/ui of the streamlines in the cold outside flow 

and in the hot layer are, respectively, 

--	 = -A !F
mic

2 - ee_c2	
(A3)
u1  

and

- - _A*\[l - M2 ex/5sin(i - MTh2)	 (AI) 
U1 y -	 S



and

Ylh 

e A* - ic 

A	 2 
Mlh

cos( i i - MTh2) 
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The respective pressure increments relative to the undisturbed pressure, 

1M12&i 711112() 

pl	 U1 -	 U1 

are given as

A7M2 1 
e - $1lc2_l 
—e	 (A5) 

U1	 S 

and

yMlh2 Øh
= A*yM2 1 ex/scos(	 - Mlh2)	 (A6) 

Equating the slopes and pressures at the hot-layer boundary ylh 

yields, respectively, the following two ratios of the coefficients: 

1h 
•=	 - 1 e	

51c 
A*	 Mic 
A	

-
	

sin (a i - M1h2) 

Equating the two ratios and solving for the decay modulus s at the hot-
layer boundary give

1 - 

rmic^

7)

t

s	
Ylh	

(A=

________ ± nt _l (Mm
	 - 

Mlc2\ji M 2 
- lh /



N&CA TN 4002
	

NE 

The appearance of the term tan-( ) in equation (A7) indicates 
that the values for the decay modulus s are multivalued, and each 
corresponds to an elementary solution. The multivaluedness introduces 
negative as well as positive values, which describe the upstream and the 
downstream decay, respectively. Since adding and subtracting nt from 

a fixed value of tan( ) gives different absolute values of s, the 
upstream and downstream decays are asymmetric. 

It still remains to single out those elementary solutions which 
represent the asymptotic decay. The asymptotic decay corresponds to the 
solutions with the largest positive or negative values of s representing 
upstream or downstream decay ) respectively. The largest positive s, or 
the smallest denominator in equation (A7), corresponds to n = 0. The 
largest negative value of s, however, occurs for n = 1. The values of 
the asymptotic decay modulus depend, of course, on the hot-layer height, 
the Mach number of the supersonic flow over the hot layer Mlc) and the 
Mach number of the subsonic flow in the hot layer Mlh. 

Comparison with Fourier integral method. - The results obtained by 
the Fourier integral method in reference 10 can be reduced to the present 
results which are in terms of elementary functions. The comparison will 
be made first for positive values of s corresponding to upstream decay. 
In reference 10, the decay modulus is not given directly, but the devia-
tion n of the interface from the horizontal (eq. (44) with	 < 0) and 
the slope d71/dx (eq. (43) with	 < 0) are found. The decay modulus s 
is equivalent to . the subtangent of the decay, and is thus obtained by 

dividing	 by the slope d1/dx; in the present symbols s = ________ 
CLLY 

(See fig. 5.) Note that the expressions for 71 and th/dx in refer-
ence 10 are sums over the elementary functions for various values of n. 
For a comparison with the present results in terms of elementary functions, 
the values of s are thus obtained by division of the expressions under 
the summation signs rather than the sums. Substituting the present 
values ylh and Mlh for the thickness b and the Mach number M2 In 
reference 10 gives

AY 5 = _______ = 
2yfj__  Mlh2 =	 - Mlh2 lh

d/y/dx	 It (2n+1_)	 11 -+n1r
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The quantity 0/2 is expressed by equation (24) of reference 10 as 

M1h2 KT, 

:':':7 0 = Mi2	 =	
M12	 - 

I Mm2 JMic	 - 2 - 1\ IMlh1_M1h2 
	 +1 

Mic	 Mic2 - 1	 i2 . -
 f---M-

1h21 

-1	 b = cos  

where

b - M1h2 
F-2

 - 1 

- Mi2  fl - Mlh 

Since - 0 - - cos-1 b = sin b -'tan-lb, the decay 

b2 +1	 b2+1 

modulus s may be written in the form

- Mlh 2 
s=

1 M
lh2 M1c2 - 1 

tan	 +n3t


M1c2 !1 - M1h2

(A8) 

Equation (A8) is the same as that in equation (A7) with a posi-

tive nrc. For a comparison of equation (A8) with equation (AT) with a 
negative nit, TI. from equation (41.) with	 > 0 (ref. 10) has to be 

divided by dTI/dx from equation ( 11.3) with	 > 0 (ref. 10). This 
 division results (in present terminology) i 	 . 

= -. Y1h - lh + (Sum ofconstants)	
1	 (A9) 

+ flit	 ._[n+1+.e/it)] k I
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The last term which is introduced through equation (I4) for the 
height of the hot layer indicates that, far downstream from the shock, 
the hot layer approaches a greater constant height than it has in the 
undisturbed region. Specifically, the approach of the denominator to 
zero as E—)oo means that s-, that is, an approach of the hot layer 
to zero boundary slope or constant height. The first term represents 
a perturbation of the downstream hot-layer region of greater height; 
this term is to be identified with equation (A7) by using a negative nt 
in the denominator. In order to show this identity the denominator of 
equation (AT) is written in the form i/2 - 0/2 - nc and the minus sign 
of equation (A9) is taken into the denominator; the result is -ir12 - 0/2 - 
nv = /2 - 0/2 - (n + l).rt. The two denominators are thus identical if n 
is replaced by n - 1. 

Decay with one-dimensional channel-flow approximation in hot layer. - 
Since in the classification of interaction types use was made of channel-
flow approximation, it is of interest to apply the small-disturbance 
approach also to this case. The simple calculations also represent a 
further check of the previous calculations. The relative pressure rise 
in the subsonic hot layer is (ref. 8) 

=_7Mlh 2= yM1
	 (Alo) 

P1	
ul 1_M1h2Ylh 

The relative pressure rise for the unlimited supersonic flow over the 
hot layer is

- yM 2 dAy 

P1 F-2c -1 

The decay modulus s is 

= LW = Ml 2 (l - M1h2) 

r/dx M
lh2 Mlc2 -	

lh d 

(All) 

(Al2) 

Equation (A7) with n = 0 in the denominator reduces to equa-




tion (Al2) based on the channel-flow approximation in the hot layer for 

small values of M 2 Mic2 - 1/MlC2 1 - M1h2, where tan( ) can be 

replaced by its.argument. Note that the decay modulus s in equa-
tion (Al2) can take on only positive values in contrast to s in
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equation (A7) which can be positive or negative. The use of the 
channel-

flow approximation in combination with the present small-disturbance 

approach would thus yield partly misleading results. For the classifi-
cation of flow patterns given in the body of the report based on matching 
the complete pressure rise in the hot layer with that through the shock 
(or shocks) in the cold outer flow, however, the channel-flow approxima-

tion is very useful.

Supersonic Flow in Hot Layer 

The present small-disturbance calculations apply to reflection 

patterns of the type shown in figure 13. The following small-disturbance 
potential of the unlimited cold supersonic flow is the same as that 
given in equation (Al):

= u1Be  
x -Y K-C ^^,)  (Ylh < r < oo) (A13) 

The supersonic flow in the hot layer of finite height includes both 
families of Mach waves and thus has to include the sum of two exponentials, 

with both(x + y2 - 1) and (x -	 -	 as exponents. The bound- 

ary condition at the wall requires the sum of the two terms to be of the 

form

= cosh -	 (o <y <ym) (Al) F11h

Solving again for the decay modulus s by matching the slopes and 
pressures at the hot-layer boundary results in 

Ylh
	 1


tanh 
M1h22 - 

1 ± inic 

Mlc2 h2 - 1 

and

YlhFlh 2 -	
0 

s= -  -

(Al5) 

(A16) 

± tanh-
Mlc2 

M1h2 
^M_Jc2

i(n+)



NA.CA TN li.002

M 2/M 2 - 

where equations ( A15) and (A16) hold for values of ic lh
	 smaller 

Mlh2 Pic 2 - 1 

or larger than unity, respectively; for simplicity this ratio is designated 
by K. The basic reason for the difference in form is that the function 

tani-(K) has no real values for K> 1, whereas for K < 1 it has both 
real and complex values. The real values for K < 1 are obtained by 

setting n = 0 in equation (P15) . Letting k = tanh-(K) ± mit for 
K<l gives

k =	 loge : ± mit 

'l 
= I loge -i n:n K)±  

K 

and

k = tan1	 ± ++
 2) 

Equation (A15) is of the same structure as (A7) except that tanh( ) 

appears in the denominator instead of tan( ). Note that the tan1i( ) 
has its multivaluedness in the complex domain. Equations (A15) and (A16) 
also indicate, as expected, that for supersonic flow in the hot layer only 
negative decay moduli s can exist; these moduli correspond to a down-
stream decay. Equations (A15) and (A16) could have been obtained directly 
from equation (A7) by formal manipulation. For Mlh> 1, that is, super-

sonic flow in the hot layer, , and for tanh( ) = I tan-i( ), equa-
tion (A7) is transformed into equation (A15) or (A16). 

The complex values of s correspond to a complex exponential decay 

function of the form AeX/S where I = ± iw. The real exponential 
s	 CT 

decay mQdulus is thus a and the wavelength ? is 21t/w. The elementary 
functions for the interaction of the unlimited supersonic stream with a 
finite supersonic hot layer are thus generally exponentially decaying 
harmonic oscillations. The only exception is the case in which n = 0 
in equation (A15) when' s is real, and the exponential decay is non-
oscillatory. Before discussing the superposition of these elementary 
disturbances to concentrated Mach wave disturbances, certain physical
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features of the interaction are examined with the aid of the elementary 
functions. The values of a and A corresponding to equation (A15) 
for K<1 are

1	 1hlh - 

	

- R(..)	 tanh-K 

O FMlh
2

 2it	 1h 
A=Itf:\\= 

\s) 

and those corresponding to equation (A16) for K> 1 are 

1	 Y1h2_hl 

	

R()	 tanh 11 

A-

 

21t	 2yThh2_1. 

	

I(!)	 n+
2	 3

(A17)

(A18) 

The different behavior of the complex decay for K < 1 and K> 1, 
appearing in essence in the wavelengths A in equations (A17)_and (A18), 

is now given a physical interpretation. For that purpose,i h2 - 1 is 

expressed as cot a,, where a is the Mach angle. The wavelength A 
corresponding to equation (A17) for K < 1 becomes 

- 2Ylh cot a, 

n 

whereas A corresponding to equation (A18) for K> 1 becomes 

A = 2lh cot a 

The significance of these different expressions for A is best shown 
by using definite values for the integers n. For n = 1, A = 	 cot a 

with K < 1 whereas for K> 1 1 A = L ylhcot a. These expressions
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are best illustrated by representative sketches. The wavelength 
= 2y cot a. shows a harmonic disturbance that is repeated as 

follows:

K<l 

The wavelength 7 = y cot a. shows a different repetition 

K> 1 

The sketches show that for K < 1, a harmonic disturbance is repeated 
in its original form after reflection of the first Yjach wave has hit the 
hot-layer boundary. For K> 1 the opposite, that is, the negative of 
the initial disturbance, is reflected from the hot-layer boundary. For 
example, for K < 1 compressions are reflected as compressions whereas 
for K> 1 compressions are reflected as expansions. 

Furthermore, a real decay modulus exists only for n = 0 with K < 1; 
the nonoscillatory type of exponential decay is the exception for this 

purely supersonic interaction. Note also that the impedance M2/M2 - 1 

has a minimum at M = 2; this fact may be useful In determining whether 
K is larger or smaller than one. (For example, if M lh is close to 

one but Mic is close to 	 K will be larger than one.) 

Consider the values of a and ? for the special cases that K -+l 

and Mlh - 1. As K -, 1, cr -4 0 while the wavelength ? remains finite. 

As Mm -+ 1, K -, oo or 1/K -4 0 and equation (A18) applies. In the case 

that Mlh __*l from the supersonic side, a . 4 	 - 1/Mlc2 whereas 

This result is of importance to the analysis In appendix C. In 

contrast, when Mjh -41 from the subsonic side (eq. (AT)), the decay 

modulus becomes zero. The discontinuity of the decay modulus at Mlh = 1
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is due to linearization of the flow equations. For K - 1 in equa-
tions (Ar?) and (A18) no discontinuity in a occurs because the lin-
earization is physically meaningful. 

The relation of the present results to those for incidence of a 
concentrated single Mach wave disturbance is now briefly discussed. 
For two-dimensional flow, considered herein, the results of the super-
position of elementary waves (as used in refs. II and 12) could be 
obtained simply by graphical construction of the Mach wave pattern. 
From this construction the oscillatory nature is immediately clear since 
for small deviations of the hot-layer boundary the Mach waves must be 
reflected at equal intervals. The simple reason for the exponential 
decay is as follows: For small disturbances the Mach numbers of the 
cold and hot flows are the same throughout and with them the proportionate 
amounts of reflection and refraction. Exponential decay results from the 
fact that for each repeated reflection (inside the hot layer) these pro-
portionate amounts remain the same. The one-dimensional channel-flow 
approximation is also of interest. Reference to the previously derived 
equation for one-dimensional flow is a subsonic hot layer (eqs. (AlO) to 
(Al2)) shows that the derivation applies equally well to a supersonic 
hot layer. For supersonic flow in the hot layer, however, only downstream 
disturbances are possible; therefore equation (Al2) for subsonic flow 
changes to

2C 2 1 
= - 

Mlc Th -
	 ylh	 (A19) 

Mlh2 MlQ2 - 1 

In the channel-flow approximation an oscillatory decay can, of course, 
not exist. The possibility of oscillatory effects are of considerable 
importance to the problem of reverse jet flows discussed in appendix C.



NACA TN 4002
	

37


APPENDDC B


DEFORMATION OF NORMAL SHOCK AT LARGE HEIGHTS D INFLUENCE ON


SHAPE OF THROUGHGOING LAYER BEHIND SHOCK 

The asymptotic deformation of the normal shock at a large height 
above the hot layer is calculated by a Small-disturbance approach without 
regard to the strength of the shock and the excess temperature in the 
hot layer. The reason for the applicability of this approach is, as 
becomes apparent subsequently, that the strong deformations of the inter-
action pattern near the hot layer decrease to small values at large 
heights. The asymptotic deviation of the tbroughgoing hot layer as it 
approaches the increased thickness far behind the region of major defor-
mation is also studied by use of the assumption of small disturbances. 
Griffith (ref. 6) has performed calculations for the case that the hot-
layer temperature is only slightly elevated, a condition for which the 
small-disturbance approach applies to the complete interaction field. 
The present asymptotic deviation effects can, however, be singled out 
in such a simple fashion that their separate presentation seems worth-
while. The analysis is especially interesting because the simplicity 
of the approach also permits an estimate of the effect of a stagnation 
bubble on the shock deformation. 

Shape of Shock at Large Heights 

The disturbance effects influencing the normal shock at large heights 
can be separated into the supersonic type before the shock and the sub-
sonic type behind it. Supersonic disturbances need not always exist at 
large heights inasmuch as the hot-layer flow may begin with a shock 
which, in turn, causes an oblique shock to be retransmitted into the 
flow ahead of the normal shock. The flow ahead of the shock in the hot 
layer and above the resulting oblique shock in the cold flow will experi -
ence no disturbance effects. If the flow in the hot layer is, however, 
completely subsonic, isentropic waves extend from the hot layer to an 
infinite distance ahead of the normal shock. At large heights above the 
hot layer, almost all isentropic waves will have merged into an oblique 
shock, but some residual waves always remain which influence the flow 
ahead of the shock. The decay of the supersonic disturbances at large 
heights ahead of the shock is determined by the decay of the disturbances 
in the hot layer at a large distance upstream of the shock. Since the 
latter decay effects are exponential, the decay with height of the super-
sonic disturbances before the shock is also exponential. (See fig. 19.)
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The disturbance of the subsonic flow behind the normal shock is, 

essentially, due to an increasein thickness of the hot layer. As a 
consequence, it would seem proper to consider it produced by a source 
on the wall at the location of the dominant thickness increase; the 
effects of higher order singularities are negligible at large heights. 
Since in the present case the decay of the supersonic disturbances before 
the shock is of the exponential.type, they can be neglected compared 
with the subsonic source effects behind the shock. Note that the use 
of potential (source) flow behind the shock is based on the assumption 
that the flow ahead of the normal shock can be considered undisturbed. 
The reason for this condition is very conveniently illustrated with the 
aid of the shock-polar diagram containing constant entropy lines (ref. 18) 
fig. 62). It is indicated that, for undisturbed flow ahead of the normal 
shock, the entropy lines (total-pressure lines) are tangent to the shock 
polars at locations presenting conditions behind the normal shock. The 
existence of small perturbations in the subsonic flow behind the normal 
shock thus produces no first-order entropy variation. The same result 
is presented in analytical form in reference 6. 

The disturbance potential of the source flow is 

q 
øsource =
	

log 	 + f3y2	 (Bl) 

where 3 = 1 - M2 2. The source strength q remains unspecified in 

the present estimate since it depends not only on the thickness increase 
of the hot layer but also on the distortion of the nonlinear flow field 
above it. The disturbance velocities in the x- and y-directions are, 
respectively,

AU- 
0source -	

x	
(B2) 

-.	 - 23(o x2 + 

and

=	 source = ._	 i3	 (B) 
2tx2+2y2 

For large heights, y >> x, the following approximations can be used: 

-	 bx	 ,bx	 (B4)

U(x2 + P 
2 y 2\32 ) 

and

	

b3y	 b	
(B5) 

X2	 22y
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where b = q/2it. The disturbance velocity Au 2 is of the order 

of iv22 and is thus negligibly small compared with Av in the first-

order approximation used in this development. 

While a source placed along the wall will evidently satisfy the 
boundary condition downstream along the wall, it still has to be shown 
that the source flow satisfies the boundary conditions behind the shock 
at large heights, where the deviation from the normal is small. Since 
the strength of the source is not specified, only the relation between 
the components Au2 and Av2 has to be matched behind the shock. In 
other words, for the first-order approach, it is necessary to check 
whether &i is negligible compared with tv behind a shock slightly 
deviating from the normal. For an oblique shock the velocity components 
U2 and V2 behind the shock are related (ref. 9) as follows: 

2 
Ucr 

v22(ul
	 \2	 u1	

(B6) =	 u2)	 2 
/ U	 2 cr +	 u -u 

	

U1	 y+ll	 2 

If Lv2 and &12 are designated as deviations from the components 0 
and U2,fl behind a normal shock (n refers to the normal shock), equa-

tion (36) becomes

2 
ucr 

(A72) 
2	 /	 \12	 U2+U2u1 

	

 = [u1 - ( u2 ,n + u2)j ucr2
	 2	

(By) 

	

U1	 Y 2 + 1 l - (u2,. + u2) 

Since for the normal shock u2,n = cr U1, equation (B7) shows that Au2 

is of the order of Lv2 . The velocity increment Au is thus negligibly 

small compared with Av behind the shock, as is the case for source 
flow; therefore, the flow field of a single source also satisfies this 
second boundary condition behind the shock to the first-order approxi-
mation. No higher order singularity that satisfies the boundary condi-
tion along the wall has Au of higher order than iv; furthermore, as 
already noted, the effects of higher order singularities become negli-
gible relative to source flow at sufficiently large heights. In contrast 
to reference 6 (where the complete shock shape is analyzed with a small-
disturbance approach), the present first-order approximation of the shock 
shape at large heights above the hot layer does not make it necessary 
to arrange a source distribution along the shock to satisfy the boundary 
conditions behind it.



1lo
	 NACA TN 4oO2 

The shape of the shock at large height above the hot layer is 
obtained by integrating the shock slope by use of the approximation 

for Lv2 shown in equation (B5): 

dYu2+2_ul(u2_ul)	 (B8) 
dx	 AV2 

Integration yields a logaritbniic shape for the asymptotic shock 

x=D loge y+E	 (B9) 

when D and E are constants. The logarithmic shape of the shock 
as it approaches the normal at large heights above the hot layer is 
contained in equation (29) of reference 6. 

Shape of Hot Layer Approaching Constant


Height Behind Normal Shock 

It was previously noted that at large heights above the hot layer 
the effect of its thickness increase on the normal shock can be repre-
sented by a single source since the influence of. the higher order singu-
larities are negligible at this large height. The question arises con-
cerning the usefulness of the source in predicting the shape of the hot 
layer at a large distance behind the shock. For the use of such an 
approach, additional proof would have to be furnished that the shape of 
the hot layer at a large distance behind the shock is independent of the 
detailed nature of the dominant disturbance effects produced by the shock. 
(This discussion has nothing in common with that concerning the disturb-
ance effects at large heights above the hot layer, these effects being 
independent of the detailed nature of the dominant disturbances.) 

The independence of the hot-layer shape far behind the dominant 
disturbance region is plausible in view of the fact that the hot layer 
has a free boundary (in contrast to the fixed boundary of a solid body). 
This free boundary should be able to adjust itself to the hot-layer region 
of constant height far behind the shock, more or less independently of 
the detailed nature of the dominant disturbance region. Support for this 
plausibility consideration can be gained from the fact that the shape of 
the free boundary of a dead-air region far behind a body is independent 
of the body shape. (See ref. 5, p. 51.) In that case, where the free 
boundary covers a dead-air region, the asymptotic shape is a parabola. 
In the present case, where a source flow exists inside the (hot layer) 
boundary, the latter approaches the asymptotic shape of a half-body 
produced by a single source, the shape being a hyperbola. This can be 
shown in the following manner: The slope of the hot layer for small 
perturbations of a parallel flow is given by 

dx Ui
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The component Lv of the source flow is, according to equation (B5), 

/v
q  

=
^3_1 X2 

+ 

As x>> y and the hot layer approaches a constant value of y, Lv and 

with it the slope &y/ax become proportional to 1/x2 . The asymptotic 
body shape is thus given by y m l/x which is a hyperbola. 

This asymptotic shape of the half-body can also be obtained by 
applying considerations of asymptotic behavior to the small-perturbation 
calculations of the complete interaction field in reference 6. In ref-

erence 6, the shape of the hot-layer boundary is not determined; however, 
an expression for the pressure distribution is given in equation (31) 
or (32 ) of that reference. The asymptotic behavior of these equations 
for comparatively large values of x yields a pressure variation pro-
portional to l/x. This result agrees with that obtained from the asymp-
totic small-disturbance approach for the pressure coefficient cpcc iU/U. 
According to equation (B2)

u2 =	 2 

As x >> y, Au and cp become proportional to i/x. 

Estimation of Effect of Bubble on Shock Deformation 

at Large Height 

The simplicity of representation of the shock shape at large heights 
by means of a single source for the case of the throughgoing hot layer 
encourages an estimation of the effect of a stagnation bubble on the 
shock shape. Attempts to represent the effect of the bubble as a doublet 
must fail since the relation between the velocity components u and v 
is not that required by the boundary conditions behind the shock. A 
distribution of sources and sinks should, however, offer a means of sat-
isfying both the bubble shape and the boundary conditions behind the shock 
at large height. In this connection, it should be noted that, depending 
on whether the source or the sink effects predominate, the logarithmic 
shock shape should approach large heights with either positive or nega-
tive distances from the bubble. The argument could be advanced, of 
course, that since the bubble is terminated at a finite distance, the 
sources and sinks would have to compensate exactly, the result being 
that the shock at large heights would be over the bubble. The fact that 
the bubble is growing, however, suggests that the source distribution
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should be predominant. When a reverse jet exists under the bubble, how-
ever, a significant sink effect is introduced and the shock at large 
heights may be forced to extend to negative logarithmic infinity. In 
other words, the shock may have to pull the layer along rather than push 
it as is the case when it extends to positive infinity.
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APPENDIX C 

QUASI-STEADY FLOW STABILITY OF COUNTEBFLOWING REVERSE 

JET MOVING UNDER HOT LAYER 

When the reverse jet is permitted to extend fully under the hot 
layer, it has to match the pressure of the undisturbed state; and, as 
a result, the jet approaches the supersonic Mach number of the cold 
flow if constant entropy is assumed. The question arises as to whether 
this counterflowing supersonic reverse jet can exist in the presence of 
the supersonic unlimited flow separated from it by the hot layer. The 
existence of this quasi-steady triple-layer pattern is tested by studying 
its stability to small steady disturbances. (See figs. 9 and 10(b).) 

The disturbance potential of the supersonic unlimited flow over 
the hot layer is, as in equations (Al) and (A13), 

0c 
= ulCe5(lC)	

(Y + ylh < y <	 (a) 

The Mach number of the flow is Mis, and the heights of the reverse jet 

and the hot layer Ycj and Ylh, respectively. The eqtiation for the 

hot-layer flow, however, differs slightly from equations (P2) or (Alli.) 
for subsonic or supersonic hot-layer flow. (The subsonic case is used 
as an example.) The reason for this difference is that the lower hot-
layer boundary is no longer the wall, but the upper boundary of the 
reverse jet. As a consequence, from the formal viewpoint it would seem 
to be necessary to express the potential øh in two terms as 

= uiFe 5cos(	 Mlh2) + uiGe 5sin(	 - MTh2)
s J

where the second term enables a matching of the flows at the now free 
lower boundary of the hot layer. However, it is more convenient to 
combine the two terms by introducing a phase shift 0 in the first
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term, since 13 can be made to drop out in the final analysis. The 
disturbance potential of the hot-layer flow is thus expressed in the 
form

Xs 
Oh = UiC*e / cos(lM̂' + 13)	 (Ycj < y <Ycj +Ylh (C2) 

The following disturbance potential of the supersonic reverse jet 
flow is of the same form as that of a supersonic hot-layer flow moving 
in the same direction as the unlimited supersonic flow (eq. (A14)): 

øcj 
=	 -	 (o < y < Ycj)	 (0) 

The independence of the flow direction can be most conveniently seen in 
equation (C12) for the triple-layer interaction where the constants have 
been eliminated. The flow direction in that equation appears only in 
the Mach number Mcj which, however, occurs only as a squared term. 

The slopes of the streamlines of the three flows are 

1- -c \Jic - 1 ee	
M 2 

IC)

lcl	 (c') 

løh - - C*	 - Mlh2 e / Sin(	 M2 + 13)eX/5	 (CD) — 6y

i(øc 
= C	 x/5 

iM
j - i esin(Mcj2 -
	

(p6) 
y) 

The respective pressure increments are 

7M1c2f'øc\	 2 

U1	 = CYM1c2 .i eSe s ic	 07)
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7MTh2/ Øh\ (y 	 — - 
1	

= C*7MTh2 I eX/Scos \jl -	
+	

( c8) 

Ui 
\xJ = CMcj2eX/Scosh(MCj2 -
	 (c9) 

Equating the respective slopes and pressures at the upper and lower 
hot-layer boundaries (y = y + y and y =ycj and equating the 

resulting ratios of coefficients yield two equations: 

+ Ycj	 h	
- M1h2 = tan'	

M 	 -lc
	 (cio) 

Mi2 \J l - M2 

Ycj+ 	 l -	
= _tan_hIMTh2_Mcj2 - 1	

- 
1)1 (cii)


LMC j 2 l - Mm2 

Elimination of the phase shift 0 by subtraction yields: 

l Th =tan 2_1Th1  + tan1 Th _M	
- 1 

M1c2 l - Mm2	 IM 2 \J1 - Mm2
Lc 

( s FMcj -
	

(c12) 

Equation (C12) reduces to equation ( A7) for the interaction with a 
single subsonic hot layer if the thickness y cj of the reverse jet is set 

equal to zero. The results for the interaction with a single supersonic 
hot layer (eqs. (A15) and (A16)) are obtained by setting the thick-
ness Ylhof the subsonic hot layer equal to zero and by replacing 

Mci with Mm.
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Since equation (C12) is of the complex transcendental type in the 
unknown complex decay modulus s, its direct solution cannot be obtained 
without performing lengthy calculations. Physical reasoning, combined 
with inspection of equation (C12), however, permits gaining sufficient 
understanding of the solutions for the present exploratory purpose. 

It is noted in the body of the paper that the reverse jet, being 
part of the flow pattern around the bubble, has to experience the same 
quasi-steady growth of its height. The undisturbed hot-layer region 
under which the reverse jet flows, however, does not participate in this 
growth. Thus, after some time of quasi-steady growth the height of the 

undisturbed hot-layer region ylh will be small compared with the 

height of the reverse jet y. As a matter of fact, the quasi-steady 

state of this study is better satisfied as larger values of y 	 are 

compared with y lh In view of this nature of the limiting quasi-steady 

state, it appears permissible to consider the actual triple-layer steady 
stability problem as a double-layer stability problem with a few appro-

priate corrections. 

If the hot layer is neglected then for the moment, the simple 
problem of the stability of a supersonic jet or layer of finite height 
moving counter to the unlimited supersonic flow adjacent to it can be 
considered. It was previously noted that the equations do not change 
when the flow direction in the jet is changed. However, since the 
direction of the jet flow is opposite to the direction of the unlimited 
flow, a decrease in the deviation from the horizontal of its boundary 
in the direction of the unlimited flow will mean an increase of this 
same deviation in the direction of the reverse jet flow. (The fact 
that for the interaction of an unlimited supersonic flow with one of 
finite height the disturbances can decay only in the downstream direc-
tion - only negative values of s exist - of the unlimited flow has 
already been established in appendix A). The supersonic reverse jet is 
thus not stable in the steady sense to small . disturbatlCes for the 

limiting case of the negligibly thin hot layer; that is, the two opposed 
supersonic flows cannot exist together if small disturbances are super-
imposed. The hot layer between the two counterf lowing streams will 
produce some damping of the disturbances; however, in view of its com- 
paratively small height, these effects are not likely to be large enough 
to prevent instability of the steady reverse-jet flow. Any damping in 
the reverse jet will then, most probably, be of the nonlinear type; 
that is, it must result from the entropy increase through shocks of 
finite strength. That such damping should eventually occur appears 
likely because the disturbances are predominantly of the oscillatory 
type, as indicated by the previous solution for the limiting case of 
the interaction where the hot layer is negligibly thin. An oscillatory 
flow in the reverse jet includes a large number of concave boundary
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sections which cause shock formations and damping of the large amplitude 
deviations through entropy increase. The entropy increase causes the 
Mach number in the reverse jet to approach 1. Since the amplitudes, of 
the oscillations become small as a Mach number of 1 is approached, the 
small-disturbance approach may be used again. 

In the' limiting case of the negligibly thin hot layer, the analysis 
in appendix A applies where the interaction of a finite and an unlimited 
supersonic stream is considered. (Mm in appendix A has to be replaced 

by Mcj•) Appendix A shows that, as Mcj approaches 1, the decay 

modulus a approaches a finite negative value whereas the wavelength ? 
approaches zero. Setting Mcj = 1 in equation (c12), which includes 

the effect of the hot layer, however, cancels the term due to reverse-
jet influence; this fact means that the reverse jet is no longer a 
destabilizing influence. To be precise, if the ratio Ycj/ S does not 

approach infinity as M2 - 1 approaches zero, the second right-hand 
term in equation (c12) is zero. 'A detailed study of the problem lies, 
however, beyond the scope of this paper, especially since it would 
require more knowledge about the nonlinear damping effects. 

Finally, a check of equation (C12) is made, based on the one-
dimensional channel-flow approach. (This check will again indicate the 
restrictive nature of this simple approach.) The relative pressure 
change in the subsonic hot layer is 

	

= 7M ivlh	
(c13) 

P1 1 - Mlh 1h 

The pressure decrease of the supersonic reverse jet with increasing 
cross section is

= - 
7M	 y0 j	 (ci1) 

Pi	 Mcj - 1 Ycj 

The relative pressure increase6p/p, may be expressed in terms 

of the cross-sectional variation of the combined layers by using the 

fact that, if	 = , the ratios are also equal to . + C. Thus, 

=	 7Mm2M2 (	 + (cl5) 
1	 (i - Mm2 )Mcj2 -	 (Mc. - 1)M2
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The relative pressure increase for the unlimited supersonic flow over the 

hot layer is

	

= 7mic	
d(Lrlh + rj)
	 016) 

pl 	 d.x 

Equating (c15) and (c16) gives 

a(Aylh
 + cj	 M12 - 1
	 Mlh2Mcj2(Ym +	

017) 
dx M12
	

Ylh -	 - Ycj 	 - 

Then, for the subtangent or the decay modulus s 

Aylh + y c j 

= 
d (Ay + Ayc lh 

= y(l - M1h2)Mcj2 - ycj(Mcj2 - 1)M2 Mic:	
(ci8)

Mcj 
M	 \TMic - 1 

Equation(C12) for the two-dimensional interaction problem reduces to 

equation (c18) under the conditions that the tanh( ) and the 

tan-l( ) terms can be replaced by their arguments. The substitution 

yields

	

Ylh 1- MTh2 = M
2	 + M 2 j 

which can be rearranged to agree with equation 018). It is indicated, 
as presumed, that the one-dimensional channel-flow approximation applies 
only to large values of the decay modulus s. Thus, while it is tempting 
to look for a simple one-dimensional' criterion for the steady stability
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problem in equation (c18), based on the predominance of the positive or 
the negative term, it has to be resisted inasmuch as small values of s 
no longer belong to the one-dimensional channel-flow approximation. 
Also, the stability test of the reverse-jet flow involves largely 
oscillatory amplifications, which certainly cannot be represented by 
the channel-flow approximation.
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Figure 1.- Hot layer and shock before interaction. 

Shock 

I	 2c 

u1 relative, p1 

Tlc, M1c

Interaction pattern to be determined 
u1 relative, p1 

T, MTh 

Known: Strength of shock expressed through relative Mic = U1 
ale 

Tlh 
Temperature ratio., - 

Ti 

Relative	 2 = Mic - Tlh 

Figure 2.- Flow system relative to shock for analysis of interaction 

patterns.
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Figure 4.- Througbgoing hot layer with subsonic compression behind 

retransmitted shock. 

Figure 5 . - Throughgoing hot layer with supersonic and subsonic



compressions behind retransmitted shock.
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U1 , 
M --W Y1h	 U1 - tti No	 1h + 

Figure 6.- upstream decay of compression effects. 

Figure 7.- Hot layer terminated by stagnation bubble with quasi-steady 
growth. Rise to stagnation pressure in hot layer is less than jump 
of pressure through shock.
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(a) Reverse jet does not break into bubble. 

Shock 

(b) picture of what would happen if reverse jet broke into stagnation

bubble without waiting for influence of real-flow effects. 

Figure 8.- Progress of reverse jet under bubble.
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(a) With shock attached at base.

Region of entropy increase 	 keverse jet	 stagnation point 

(b) With reverse jet. 

Figure 10.- Tentative supersonic flow over bubble.
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Reflected shock 

Figure 11.- Oblique-shock interaction with bubble formation. 

Reflected shock 

/ 

Figure 12.- Oblique-shock interaction with throughgoing subsonic hot layer.
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/ Reflected shock 

(a) showing repeated. reflection.

(b) Showing single reflection. 

Figure 13.- Oblique-shock interaction pattern with supersonic flow in


hot layer.
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Reflected shock 

Trit'1nt Rh()Ck

Sonic line 

Figure 11._ Oblique-shock interaction pattern with Mach stem followed by 
repeated reflections in hot layer. 

Supersonic expansion _______ I I 
region	 I ii 

gIncident shock 

Reflected shock	 I

Mach stem 

Figure 15.- Cylindrical-shock interaction with Mach stem over hot layer.
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Figure 16.- Tentative interaction pattern of cylindrical shock and hot


layer with bubble formation.
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Boundary layer	 of wall	 Separation bubble with 
double circulation 

Figure 17 . - Tentative mixed-flow pattern with subsonic flow over separa-
tion bubble.
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/Reflected shock 

Boundary layer	 Relative motion	 oeparuIiuLi 
of wall	 double circulation 

Figure 18.- Tentative mixed-flow pattern with supersonic flow over separa-
tion bubble.
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Figure 19 . - Calculation of asymptotic shock shape. 

ACA - Langley Field, Va.
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