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SUMMARY

The steady-state diffusion P2 and transport theory P3 solutions
of several self-shielding problems have been obtained for multiregion
cells of rectangular and cylindrical geometries. These cells represent
a given arrangement of moderator, fuel, and cladding; usually considered
to be homogeneous. The three-region cells studied were of slab geometry
only and consisted of water, steel, and uranium regions. The two-region
cells were of identical volumetric proportions and compositions, dififer-
ing only in the homogeneous dispersion of uranium in water. The dimen-
sions of the equivalent two regions of the cylindrical cell were chosen
so that the same homogeneous self-shielding factor of the corresponding
slab cell was maintained. Additional results were calculated consider-
ing the effects of the chemical binding in water on the flux distribu-
tions and self-shielding factors.

The neutrons were assumed to be monoenergetic; their distribution
function assumed to be dependent on but one spatial coordinate, and the
scattering in the center of mass system assumed to be spherically sym-
metrical. The P2 approximation underestimated the magnitude of self-

shielding effects relative to the P5 approximation for all cases. Con-

sideration of chemical binding in water was unimportant in calculating
self-shielding factors for the three-region cell but could not be neg-
lected for the two-region cell where the water and fuel were homogene-
ously mixed. An electromechanical differential analyzer was used to

solve the P, and P3 flux equations.

INTRODUCTION

In zero power criticality experiments, it is usual to mock up the
reactor composition in the most expedient way. A fuel-element moderator
assembly may be represented by fuel strips temporarily attached to
plates of cladding material or by solutions of enriched uranium salt in
liquid moderator. In analyzing these criticality experiments, it is
important to know how a given fuel-element moderator assembly departs
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from the homogeneous conditions. Inasmuch as the dimensions of repeti-
tive cells in an assembly are generally very much less than the average
mean free path, solutions of higher order than diffusion theory are re-
quired to evaluate departures from homogeneity.

The steady-state diffusion-theory solutions and the next higher
order approximation of several self-shielding problems have been obtained
for multiregion cells of rectangular and cylindrical geometry. The neu-
trons have been assumed to be monoenergetic, and their distribution func-
tion has been assumed to be dependent on but one spatial coordinate.
Spherically symmetrical scattering in the center of mass system has also
been assumed. The solutions of the diffusion theory Pz and the trans-

port theory P3 flux equations were obtained by a differential analyzer.
(A1l symbols used herein are defined in appendix A.)

The cases studied for rectangular geometry were (a) a three-region
cell consisting of water, steel, and uranium, and (b) a two-region cell
consisting of identical volumetric proportions and compositions except
for the homogeneous dispersion of uranium in water. The case studied
for cylindrical geometry was a two-region cell having the same homogene-
ous self-shielding factor as that of case (b).

Additional results were obtained by approximating the effects of
molecular binding in the water molecule by a method derived by A.
Radkowsky in a classified publication. The thermal neutron flux distri-
butions were used to compute the ratio R of total absorption in uran-
ium to the total absorption in the cell.

The detailed derivation of the flux equations in the P5 approxi-

mation in rectangular geometry is given in reference 1. The equations
for the P3 approximation of cylindrical geometry are derived in detail

in appendix B. These equations were also obtained by R. R. Haeffner in
a somewhat different manner and presented in a classified publication.
ANALYSIS
Neutron Flux Equations and Boundary Conditions
For Three-Region Slab Cell

Assuming a constant isotropic source of thermal néutrons S, for

water region A, the P3 approximation for this region leads to the
equations (ref. 1)

L68¢
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Fl'(x) + aOFO(x) -8, =0 0
1 -
Fo(x) + ZFé(x) + SalFl(x) =0

! ! =
ZFl(x) + 3F5(x) - Saze(x) 0

SFé(x) + 7a3F5(x) = 0 5

where F, 1is the x*® (k = 0, 1, 2, 3) coefficient of the Legendre ex-
pansion of the flux function. Physically, Fo is the total neutron flux
and Fl is the net neutron current. The coefficients denoted by 8

(k=0,1,2,3) are given by
A
x z 'Ng°s,k

where Né is the number of scattering nuclei per cubic centimeter of
region A, £ is the total macroscopic Cross section, and Og 3 is the
)

kPR coefficient of the Legendre expansion of the scattering function.
The values of Og | B8re calculated for spherically symmetric scattering
J

in the center of mass system in appendix C. The value of 8y is taken
as 1 neutron per cubic centimeter per second. Identical sets of equa-
tions hold in regions B and C with the term a replaced by b and
c, respectively, and with a zero source in these regions.

Eliminating Fq and Fz from equations (l) and formally integrat-

ing with respect to x

- _];_ ! = 2 1
Sal FO + ag Fodx = X + EEI F2

oA ST DX LB
g (15al i 35a3) Po difs f Fodx 158, Es

with a similar set of equations in regions B and C. The equations in
this form are suitable for solution by a differential analyzer.

(2)
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The boundary conditions are

F4(0) = o\ a3
Fé(o} B (3p)
FiGr) = 0 > at the extreme boundaries O and 7 -
Bl = o) ‘ : o
Fo,ale) = ¥y pla) e
Fg,ala) = ¥ pla) (i)

F!' () + 27! . F! + 2F!
o Bl ple) T (o) } at boundary o  (4c)

a1 b

2;@ £ Zéi g (4d)
Fo,s(B) = Fy c(p) i (58)
FZ,B(B) = Fz,c(B) (Sb)

Fo p(8) + 2F) 5(8) 3 R o(B) + 2y (p)

1 Sy

} at boundary B (5¢)

Fo,ple) i o(R)

b e (54)
Equations (4) and (5) follow from continuity requirements on the
F at the interfaces o and p whereas equations (3) follow from the

k’s
requirement that F, and F; vanish at O and y (ref. 1).

By setting F, = O, equations (2) to (5) reduce to diffusion theory

with the diffusion and absorption coefficients being given by D = Ei_

and ag, respectively. The specialization of equations (2) to (5) to
two-region cases follows directly.

L68S
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Specific slab configurations. - Figure 1 shows the rectangular
cells studied and gives the specific dimensions used. The neutron cross
sections are given in figure 2. The volume proportions of the repeated
slab array used were steel:fuel:steel:water, 26.7:1:26.7:52.3 leading
to symmetrical cell volume proportions of fuel:steel:water,
0.50:26.7:26.15. The specific solutions obtained correspond to an en-
riched fuel thickness of 3 mils (1.5 mils in the cell).

The dimensions and nuclear constants listed in figures 1 and 2 and
the values of Og k computed in appendix C were used to calculate the
2

coefficients which were substituted into equations (2) to (5). For
greater accuracy and convenience the strongly absorptive uranium region
(Za = 33) was magnified 20 times by means of a linear transformation of

the independent variable.

Results for the chemically bound cases were obtained by the use of
an effective hydrogen mass M and an average hydrogen transport cross

section Etg’ the latter having been derived by A. Radkowsky in order
to approximate the effects of chemical binding of the hydrogen. The

quantity M is defined by
= H - 2
Utr i 0SH<J' i Sﬁ)

where ESH is the average hydrogen scattering cross section averaged

over a Maxwellian distribution of neutron flux.

The values of M, Etg’ and ESH for water at room temperature are
2.0, 31.4, and 46.7, respectively. For the unbound case, M was taken
as 1, and oL as 25.6 barns from which it follows that o, = 8.55
barns.

From the flux distributions, the self-shielding factors R were
calculated by

total absorption by uranium
total absorption in cell

U u
f gl ek
uranium
L/f‘ Fg(x)zgdx 2 L//1 theelcx)zzteeldx
uranium steel

LI
FOUZaV

- 3 Teel
7 UZUVU e steelzsteelvs ee
O &g 0 a

R =

=
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where FbSteel is the average flux in steel, Wi the volume of the

uranium region. The absorption in water is neglected since Zgzo is
negligible.

The magnitude of self-shielding effects may be measured by devia-
tions in R from the value of RH = 0.712 calculated for the case of

a constant flux throughout the cell, that is, fOU = fos, which is equiv-

alent to assuming that all of the constituents of the cell are homo -
geneously mixed.

Analyzer procedure for slab solutions. - Equations (2) subject to
the boundary conditions of equations (3) to (5) are solved by the dif-
ferential analyzer in the following manner:

The diffusion PZ approximation results by setting Fz(x) = (0

From the boundary conditions, Fé(o) must be zero. Since FO(O) is un-

known, it must be guessed in order to begin the solution at the boundary
0. Usding the initial FO(O), the analyzer integrates the FO equation

until the interface o 1is reached. At the interface, F; is continu-
ous. The discontinuous change of slope Fé B(a) that must be applied

2
to initiate the solution for region B is calculated by equation 4(c)
with Fé =10 The FO equation of region B is then integrated until

the interface B 1is reached where the discontinuous change of slope
F' (B) necessary to start the solution in region C is calculated by

eqhation 5(c) with F, = 0. The analyzer then proceeds to integrate

the equations of region C until the outer boundary y is reached. If
Fé(r) turns out O, then the correct Fo(O) has been guessed. If

Fé(y) % 0, then another value FO(O) is guessed until this criterion is
satisfied. The final results are shown graphically in figure 2.

After obtaining the diffusion answer, equations (2) were set up to
be solved simultaneously. For the first trial, the diffusion theory
Fo(0) was used, and an initial value of F5(0) was guessed. The condi-

tions of equations (4) and (5) were used to compute the discontinuous
changes in the slope at the interfaces. Thereafter, both FO(O) and

F5(0) were guessed simultaneously until the conditions Fé(r) =0 and
Fé(r) = 0 were met. The total operating time for convergence turned

out to be 8 to 16 hours for a two-region cell and 16 to 32 hours for a
three-region cell.

LEBS
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Equivalent Two-Region Cylindrical Cell

As shown in figure 3, the radii of the two-region eylindrical el
were chosen such that the volume of water plus uranium and the volume of
steel were equal to those in a square cylindrical cell formed from the
dimensions used in the previous two-region slab cell. With an outer
square boundary, the neutron flux will be spatially dependent on an azi-
muthal angle in the cross section of the cylinder in addition to radial
dependence. This angular dependence is not present when the outer. square
boundary is approximated by a eireular one.

From figure 3, the volume of steel per unit depth for the rectangu-
lar cell is 0.32773 cubic centimeters, and the volume of water plus ur-
anium is 0.32098 cubic centimeters for a total cell volume of 0.64871
cubic centimeters. This means that for the cylindrical cell

el = 0.32773

or

a = 0.3230 cm

which is the radius of the steel region, and
2 .
wb™ = 0.64871
b = 0.4544 cm

the radius of the cell. The self-shielding factor RH then remains the
same as in the slab cell (0.712) for the case of a constant flux through-
out the cell.

The cylinders are assumed to be infinitely long and the transport
flux depends spatially on the radial distance r from the z-axis, and
on two angular coordinates o and & that determine the direction of
the neutron velocity vector (see fig. 4). The azimuthal angle «a of
the velocity vector is measured from any fixed radial line in the cross
section of the cylinder. The polar angle & of the velocity vector is
measured from the z-axis. The transport flux can be written as

F(r,u,a) where W = cos E&.

In appendix B, the transport flux is expanded in spherical harmon-
qCE |60 glve

-m) ! 2ntl i
F(r,u,a) = ZE: %%1%%7 né rm’n(r)cos m a Pﬁ(p) (B8)
n=0 m=0
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From the orthogonality of spherical harmonics,

e i3
: Iy - TR
(21(83)0 + “Sjiéo)Fj,k(r) = ‘/_1: L F(r,u,a)cos ja P,/ (k)dn da

where the ©O's are defined as
o) = and 6745
S

When j=k=0, the right hand side is the transport flux integrated over
all directions. This is the total flux &, ,(r). Hence
J

éb’o(r) = 2nFo,o(r). With j=k=1, the right side is the projection of

the vector flux F(r,u,a) on the radial axis integrated over all direc-
tions and is, therefore, the net neutron diffusion current @l l(r).
2

Thus, @l’l(r) = ﬂFl,l(r)‘

Assuming a constant isotropic source of neutrons in each volume
element of the water-uranium region, in the Pz approximation (see

appendix B), the following set of equations is obtained:

s e 25 (B9a)
;3 R 808" 0,0
F F
1z T
1 = 1 A =
Fl,S e ——-’—r Fl,l ——Z—r o5 lObZFO,Z 0 (Bob)
1 Fo,2
1 = = i L =
2FG o 2 ot 3 By ot SblFl,l 0 (B9c)
Bl b Baf i o (B94)
%Al 1 R 9.5
F F F
5.8 1,1 4 2x
s ST e T NP T R
Ll e (Fl,l v ) (1,3 ) B

| F2 T2,z 7 (Bof)
s o el S0

ARRS- e
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where b dis defined in terms of nuclear constants by

By e~ NSOS - k=0,1,2,5

Transforming to fluxes &, and the neutron source s by
J,k 0,0

S W K = 0,2
B -
1k = Fy g T
k = 1,2,3
S =
0,0 ZT(SO,O

and after eliminating Fy 1, Fy 3, and Fz 3 from equations (B9) and
formally integrating with respect to r yilelds

i
o ___l._ = S
Sb[oof ]*bofq’oo o 3b[q’6,2 —""'—’_* f—’“]
- = - - ___J_
7b[02 f—’—j]‘“Sb 4’02 80,0 T boL/"‘i’o,o 14b3|:' +3f :I
2
_l;b +-7_b;}|}" f_L+4 (—)]+10b2f¢2,2

il

a® da®
=-l2__+i &' - 02+._4_ P! - _9).9_
Tbs ~ b||70,2 T b, |%0,0 T

The first of equations (6) will hereafter be called the @O o €dquation.
J

The second will be called the @O 2 equation and the third the @2 2
equation. §

An identical set of equations holds in region A (see fig. 3), ex-
cept that 80,0 = = 0 and the terms containing b are replaced by terms

containing a.

Boundary conditions. - Referring again to figure 3 the following
boundary conditions must hold:

(72)

(7o)

Lo}
I
o'

F(b,p,a) = F(b, -p,osta) at

FA(a,p.,a,) = FB(a,u,a,) at r

Il
o
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F(O,p,al) = F(O,u,az) at r =20 (7¢)

a and arbitra,
a1 O Ty
F(O,u,a) finite

Equation (7a) is a statement of the fact that no net flow of neu-
trons occurs across the outer boundary of the cell in any arbitrary
direction. Though this condition is strictly true for cylindrical cells
with square outer boundaries, it can only be approximately true for
cells with circular outer boundaries.

Equation (7b) states that the transport flux in an arbitrary direc-
tion at the interface must be continuous across that interface.

Equation (70) 1s necessary because at r = 0 for a given polar
angle the flux must be independent of «. This leads to the same con-
ditions on the Fm’n(r) as the requirement F(O,u,a) be finite.

Equations (7a) to (7c) lead to the conditions

Fl,l(b) = Fl)s(b) = F, 5(b) = 0

J
B
| Fﬁ’n(a) = Fm,n(a) m,n=0,1,2,3
| F1,100) = By 5(0) = F, ((0) = F, ,(0) =0

which imply

1 s 1
@o,o = -5¢ 2 (8a)
dilien il szE at r =1b (outer boundary) (8b)
0,23 8. 7h J
2%
22
TR 2 8
®2,2 b (8c)
a a a\/®: 3a 2a
| e A I (i ) | PR Y3 P E S 5o Sl
0,0,A = b; ¥0,0,B b, D 2 G522 3a \ by bz B, 2.8
(9a)

‘ 83 L 1]
! ! = — ¢! —_ - — 9b
4)O,Z)A b3 QO,Z,B & 3a (l b3 QZJZJB ( )

1

L68S
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P! =§¢' +_2_ l_?_zzq, (9)
2 A T By Seye,B e B ) 22,8 &
g, = b at r = a (interface) 9
0,0 0,0 = erface (9d)
SAR
B4~ %0,2 (9e)
A B
¥52 = ¥ 2 (of)
@6)0 =0 (10a)
TRy =O
¥o,2 (10b)
, at r=0 (origin)
¢ =5 10)
2,2 (10¢c)
=0
@2’2 (104)

Differential analyzer procedure for solving cylindrical flux
equations. - A neutron source of sp0 = 1 neutron/(cubic centimeter)
(second) is chosen in region B with a zero source in region A. First
by p and ¢, , are set equal to zero in equations (6) to (9), and the

J %

resulting cylindrical diffusion equation is solved for @O 0
J

The diffusion equation for region A and the one for region B are
solved in a manner similar to that described in the section Analyzer
Procedure for Slab Solutions. This procedure gives the graphical P2

diffusion theory answer.

Having the PZ solution, the procedure is to successively solve
the ‘bO,Z’ éz’z, QO,O’ QO,Z’ @2’2, @o 0’ and so forth, equations by using
the boundary conditions, equations (75 to (9), for the &, , equation,
7

the third conditions for the @2 2 equation, and the first condition
2

for the @O)O equation.

Unlike the rectangular case, inhomogeneous boundary conditions occur
at r = b, but the solution is still initiated by guessing & (b). The
dmcmmhmmm<mw@einshmeattMEﬂmmfam:m calculated by the cor-
responding ¢ equation of equation (8). As in the rectangular case,

homogeneous conditions on the slopes of the terms & occur at T = Ol

However, the additional requirement &, ,(0) = 0 must also be met.
J
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For the cylindrical case, it was not possible to set the three
equations of equation (6) into the analyzer at the same time. There- E
fore, the following procedure was used:

(1) @2,2 is set =0. The J‘@O,Odr obtained from the diffusion
éo o €quation is fed into the @O 2 equation at the proper time. A
) J

(1)

first approximation @O o denoted by @O 2 is obtained when the value
2 2

o
assumed for @O’z(b) leads to ¢6)2(O) = 0. g
45 2 (1)
(2) The functions (&' . -, | —22) obtained from & , and
& 0,2 i Ol 2
d
d! -L/w——ng obtained from the diffusion @ were fed into the
0,0 T 0,0

$ equation. A é(l) is obtained when the &, _(b) assumed leads
2:2 a0 2,2
1 = =0
to @2,2(0) = 0, and éz,z(o) 0

; ; d% 2 ; (1)
(3) The functions + | —=2=] obtained from @O 5 8nd
2 J

a® X
21 | (1) : :
s
(@é,z-kS = ) obtained from @2,2 were fed into the QO,O equation.
Equation @élg is obtained when the @O O(b) assumed leads to
J J
@O,O(o) = 0.
A%, 2 1)
(4) The functions (@é a3 ——;i—> obtained from @é 5 and
J
all
J"@O}Odr obtained from Qé,g were fed into the ®, 5 equation. The
J

term &, > 1is obtained when the éojz(b) assumed leads to @6)2(0) = 0.

Steps 2, 3, and 4 were repeated until the @O 0 equation solution pro-
J

duced a neutron conservation of approximately one percent. In solving
for @2 o and successive values of @2 o, interpolation of the function
J d_ﬂb 2
; 0,2 : : : .
0 - appearing in the & equation was necessary. The
)2 r 25
curve to be used for this function had the same shape but it was inter-

ag, \(1 FPRREN
mediate between Boin - ——;L— and \&j , - o 2) , and between
J J g

ag, ,\(2) ag, 5\(3)
@l 5] —= and (&' - | —=2= , and so forth. The amount 3
0,2 T 0,2 5
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da®
of interpolation of the function (@6 2 IJ/W——%Lé> decreased as the error
J
in conservation of the @O o equation decreased, until the last curve
J

of this function used was practically that obtained from the preceeding
@O,z equation. For the two cylindrical problems solved, this procedure

required about 40 hours each.

RESULTS AND DISCUSSION
Rectangular Case

The flux distributions for the slab cells studied are shown in fig-
ure 2, and table I presents the numerical values of the self-shielding
factors.»8 The P2 approximation differs from the P5 approximation in

calculating self-shielding effects for the examples presented.

The magnitude of self-shielding effects are measured by deviations
in R from the value for RH of 0.712 calculated by assuming a constant

flux throughout the cell. For the two-region cell, the deviation from
Ry was 0.0107 and 0.0150, respectively, for Pz, unbound and bound, and

0.0048 and 0.0080 for P, unbound and bound. For the three-region cell,

the deviations were -0.0225 and -0.0224 for Pz, unbound and bound, and
-0.0121 for Py, unbound and bound.

The deviations are positive for the two-region cell because the
presence of the source term in the water-uranium region leads to a higher
flux and, conseguently, more absorption in uranium relative to the case
where the flux was constant throughout the slab cell. .. In the three-
region cell, the neutron flux is considerably attenuated by transition
through the water and steel regions before absorptions occur in uranium.
Hence, a negative deviation from Ry 1is obtained.

A consideration of chemical binding does not affect values of R
for the three-region cell despite an increased flux in water resulting
from larger average hydrogen scattering cross sections for the bound
cases. The flux is higher in the water region for the bound cases be-
cause neutrons undergo more scattering collisions per second which tends
to confine them there and build up the flux. This effect is enhanced to
some extent by the larger mass number M for the bound case which tends
to produce more nearly isotropic scattering that attenuates the stream-
ing of neutrons toward the steel region. Thus a higher R dsiGorbe eax=
pected for the bound cases. In the two-region cell, chemical binding
leads to a larger value of R Dy virtue of the increased flux in the
water-uranium region relative to the unbound case.
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Because the total neutron flux is symmetrical about the extreme
boundaries of the cell, no leakage occurs from the cell. Thus, for
steady state, the total number of neutrons absorbed per second in the
cell must equal the total number produced per second. This criterion
was applied to each of the flux curves of figure 2 as a check on the
accuracy of the analyzer solutions. As can be seen from table I, con-
servation of neutrons in the slab case is satisfied within sbout 2 per-
cent for the three-region case and a 1/2 bercent for the two-region
case; the value of R was found to be insensitive to such small devia-
tions in conservation.

Cylindrical Case

Unbound. - The P5 approximation ‘bO o c¢curve and the diffusion
T e o e J
®p,0 curve shown in figure 5 resulted from solving equations (6) to (9)
2

for the equivalent unbound two-region cylindrical cell problem. The
cylindrical Ps‘io o compares with the P5 approximation flux Fo(x)
J

for the slab cell in the following manner:

The values of éo o &t the outer boundary, interface, and origin
J

are 1.184, 1.111, and 1.023, respectively, for the cylindrical cell.
The corresponding values of FO amer] (O{L," 173105, and, 1. 160, “The Rl

in the steel region of the cylinder is lower implying a higher flux in
the water-uranium region to satisfy conservation.

Table II gives the results for the cylindrical cell. Unlike table
I, the average production and absorption are taken per cubic centimeter-

second of material. The average absorption per cubic éentimeter—second
of region A, for example, is calculated by

a
f 25 or)av
r=0 x 3 =
A

g >
\//\ av : riAri
r=0 al,

After calculating the average absorption per cubic centimeter-second in
region B, it follows that R = 0.7198 for the P2 approximation and

Z %0,0,1(rydrsor; | I,

Al

R = 0.7356 for the P3 approximation. Thus, more absorption occurs

in the water-uranium region of the cylindrical cell than in the same
regionfiefisthe slabtcell .

(@)
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As in the slab-cell case, conservation of neutrons must be satis-
fied. The diffusion QO,O and the P3 @o o were approximately 2.0 and
J
1.2 percent, respectively, too small conservation wise. As for the rec-
tangular case, values of R were found to be insensitive to small devia-
tions in conservation.

Bound case. - The P, and P3 curves for the bound case are shown

in figure 6. As was explained for slab cells, a higher flux in the water-
uranium region, leading to a larger value of R relative to the unbound
case is to be expected when the effects of molecular binding in water are
considered. This is verified from table II, where R = 0.7213 for Py

and R = 0.7355 for Ps. Conservation is 2 percent and 0.7 percent lack-

ing for these curves.

Values of %g at the outer boundary, interface, and origin are
J

1,200, 1.111, and 1.018, respectively. The corresponding values for
Fo(x) in the P, approximation for the rectangular cell are 1.060,

1.092, and 1.180, respectively.

CONCLUDING REMARKS

This study shows that the P3 approximation of transport theory as

compared with the diffusion theory approximation gives significant dif-
ferences for the flux distributions and self-shielding factors of multi-
region cells of rectangular and cylindrical geometry. The diffusion
approximation underestimated the magnitude of self-shielding effects rela-
tive to the P3 approximation for all cases.

Also, the chemical binding of the hydrogen in the water molecule was
found to be important for the two-region cells which considered the ur-
anium to be homogeneously mixed with the water; both the flux distribu-
tion and the self-shielding factor were affected. For the three-region
cell where the uranium was considered to be a region, the chemical bind-
ing effect did not change the self-shielding factor but did alter the

flux distributions somewhat.

An electromechanical differential analyzer was found to be suitable
for solving the P2 and P5 flux equations.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, January 17, 1956
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APPENDIX A
SYMBOLS
A,B,C used as either subscripts or superscripts to denote the var-
ious regions of a cell

a,b radii of the cylindrical cell , &
. 98]
2

P ;¢  defined as the difference (I - Ng "s,k)

D the neutron diffusion coefficient defined by D = San
i
B the coefficients of the expansion of the flux function in
Jrk 2 Z
cylindrical geometry
Fk the kB coefficient of the Legendre expansion of the flux

function in rectangular geometry

F(r,u,a) definition of “the transport flux in cylindrical geometry

H chemical symbol for hydrogen

{,E,E unit vectors along g,y,z-axes

k U5l 2,5

M atomic mass

NS number of scattering nuclei per cubic centimeter of a region
Pﬁ the associated Legendre polynomial of indices n,m

R self-shielding factor defined as the ratio of absorptions in

uranium to the total number of absorptions in a cell

RH homogeneous self-shielding factor, RH = QL EL20

T radial distance from the z-axis

; unit radial vector

S constant isotropic source of thermal neutrons, é%

U chemical symbol for uranium
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volume
variable distance used for the rectangular cell

values of x at the various boundaries of the rectangular
celil

azimuthal angle of the velocity vector measured from the
z-axis

symbol for the Kronecker delta
scattering angle in the laboratofy frame of reference
scattering angle in the center of mass system

cos &

Il

defined by p

Il

defined by V cos QC

polar angle of velocity vector measured from the z-axis
the total macroscopic neutron cross section
macroscopic neutron absorption Cross section
macroscopic neutron scattering cross section

microscopic neutron scattering cross section

the kﬁh coefficient of the Legendre expansion of the scatter-
ing function

microscopic neutron transport cross section in the laboratory
frame of reference

transport flux
angle between radius vector T and x-axis

azimuthal angle made by a neutron direction after collision
with the neutron direction before collision

unit vector in the direction of neutron velocity
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APPENDIX B

THE P5 APPROXIMATION FOR CYLINDRICAL GEOMETRY

The general steady-state monoenergetic Boltzman transport equation

?tating)the conservation of neutron flux F for an element of volume is
refs 2

3w (2,2) + 1e@)(r,3) = U[NSGS@,*,)F(;@)@ « 838 (pi)
o
% unit vector in the direction of neutron velocity
d§3 element of solid angle about direction 5'
N number of nuclei per cubic centimeter
NS number of scattering nuclei per cubic centimeter ' i
a total microscopic neutron cross section ‘

- >
NSGS(Q,Q') probability per centimeter that a neutron traveling in the

-
direction &K' undergoes at ; a scatte;}ng collision
into a unit solid angle about direction &

The first term represents the net number of neutrons with direction
= -
8 at r leaking out through the faces peErculyie cenpimeter per second.
_)

The second term is the loss of neutrons of direction % at r per cubic
centimeter per second due to absorption or scattering collisions. The
third term is the number of neutrons per cubic centimeter per second

traveling in the diysction *§' that undergoes a scattering collision

into the direction % at r. The last term is the number of negprons
-

produced per cubic centimeter per second with direction  at r.

The following simplifying assumptions are made:

(1) The neutron flux has cylindrical symmetry, that is, F is in-
dependent of @ and =z, the spatial azimuthal and axial coordinates for

-2
directions of R are fixed relative to the direction of ';.

-3
(2) The medium is isotropic, which implies o(R) = o, a constant,
and the scattering is a function only of the angle between the initial
direction of the neutron velocity and the final direction.

L68¢S
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(3) The scattering is spherically symmetrical in the center of mass
system.

Referring to figure 4 in which the direction of the neutron veloc-
ity vector at r 1s given by polar angle & and an azimuthal angle «
in the plane of the cross section,

-$’2=-i’sin5cos(on+¢)+-55in€sin(a,+¢)+§cos€

v v =
=1 sin & cos a + ® sin & sin a + k cos & (B2)

wherg ¥ is a unit radial vector and 55 is a unit vector perpendicular
to r in the plane of the cross section. Then

v
-S)Z'VF=(fsi.n€ cosa+$sin€sina+zcos£) ( L %%+K%§—)

= gin & cos ougar— Fr,&,a) + % sin & sin a B%F(I‘;E';CL) i

cos & B% F(r,E,a)

In computing _1n__€r_s_£_a_4 . Ple,E,0); ® must be held fixed as @

changes. (With ® held fixed, E and o do not vary with r, or 2,
as either variable alone is changed ) This requires that & and o
be functions of @ despite no explicit dependence of 1 @ e

Therefore
_)

Q-VF = sin £ cos %g + -i— sin & sin oc{gé F(r,2,a) gff+ % F(r,z,a) %%}

(B3)

since cos E%F = (0]

-
The condition that & remain fixed as @ changes requires that &

-
and @ + o, the angles made by & and the fixed z- and x-direction,
respectively, be constant so that

ok
=5 =0

o
e

(B4)
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Letting p = cos &, substituting (B4) into (B3) and noting that

assumption (2) implies

-+ - i
05(9:9') = P GS(HO)

+> >
By = cos(R,R') = cos £ cos E' + sin £ sin E' cos(a - a')

equation (Bl) becomes

172 <
AR {%os @ gg - §3§—9 gg + No F(r,u,a) =

ik I(NS
U/I ‘J/\ e 0g(o)F(r,n', 0t )da'du’ + S(r,u,a) (B5)
- -1

US(uO) is expanded in a series of Legendre polynomials to give

21+1
og{kg) = ZE; B Py (k)

where

=

1
OS,Z =ﬁ Us(uo)PZ(uo)dHO

It is to be noted that

95 0 is the total scattering cross section and
J

Og 1 is the total scattering cross section times the average cosine of
>

the scattering angle.

By the addition theorem for Legendre polynomials,

[
Ngog

N
Pl e 0D

1

1=0 M=

T2

21+l

_2—— Gs) IPZ(“)PZ(M') aF

t

E %_:_I\D:I[g : (21+l)cs, lPl;’{(p)Pb{[(u 1 )COS M(CL . )

v

LB8E
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which gives the variation of the scattering function in terms of the
desired variables. Equation (BS) becomes

1/2 :
(1 - p%) {cos a%;: - Sl? a%%}+ No F(r,u,a) = S(r,p,a) +

oo

L e
N
'E%\//\ \//1 F(r,p',a') zz: E%Fi US,ZPl(“)PZ(“') +
-1 -7 1=0
A
EE: j{: {%i%%% (21+l)GS,ZP%(u)P%(p')cos M(a - o')yda’ ap'  (B6)

1=0 M=1

Symmetry demands that

F(r,p,a) = F(r,u,-a)
(B7)
F(r;u:@) = F(r)'UJ@)
The transport flux is expanded in a set of spherical harmonics to
give

-m)! 2n+l o
F(r,p,a) = :E: ZE:'%%;E%T —%;— F n(r)cos ma, Pi(p) Fm,n =0 (B8)
n=0 m=0 g

m>n

Harmonic terms containing sin o do not appear in (B8) because of the
first of conditions (B7). The second of conditions (B7) implies that
F, ,{r) = 0 for either subscript even and the other odd since
b g
Pﬂ(-u) Sy Pi(u). In the Pz approximation, Fm.n(r) is neglected
4

when n> 3. The function S(r,p,a) is likewise expanded in spherical
harmonics (for isotropic sources only the m = O terms are present) .

Multiplying both sides of equation (B8) by cos Jja PiJ)(u)du do

and integrating over all W and o gives

7 il 5
(Zn SJ’O + 7 63%6)Fj,k(r) = UZ: k/(l F(r,u,a)cos Ja PﬁJ)(u)du do
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J,k =1,2,3 in the P3 approximation. The ordinary Kronecker delta

Sm,S is defined as

. s il
where Sm%s is defined  as
e o m.f S
0 for m= S
This relation follows from the orthogonality properties

0 m #

E
joo dov = O : . = =
L//“ cos ma cos Jo do m,J(f 6J#O + 2n Bj,é) n% s idie .

C..

-
2I = =)

i
\/-: PI(IJ)(p)Pl({J)(M)dH = Hﬁj ; Eri—l B

As is explained in the ANALYSIS section, the total neutron flux

(r) = @O (r); the net neutron current ﬁFl l(r) = Ql l(r), and

the total source strength ZnSO = SO 0"

Substituting equation (B8) into (B6), multiplying (B6) by

cos Jo Pk(p) do du  and integrating over o from -m to = and then

integrating over p from -1 to 1 (over all directions) and after
dividing through by 2=

In this appendix, it is particularly convenient to introduce s
"modified" delta function notation defined in this way .
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Z Z :24-3%' 2n+l\f (l g (J)(u P(m)(u) m n(r)
n=0 m=0
b

G

cos o cos ma cos Jja da + ——L————r

L

-5t
No F,  (r)[® By =8, (x)5, .+
Jrk J,0 2 3740 J,k J,0

Ngog x Fj’k(r)(ﬁj,o +3 8, )

Performing the integration over o, the leakage term in the Pz
approximation can be written

1

=5
% J'?lo)+

23

sin o sin mo cos Jja do +

1
(J)(u) ) (e F Z B S

l}?nm'2n+l (l—
4 mtn)! 2
3 1
5 + 5, F' o+ "m,n B8
m,p l +1 il
; ’p JsP Lo r m,p J,L-P
p=0 p=
2 m Fm 5
5 5, e
m,P\ "Jj,p-1 J,p+l 'y
=
O
o ik 1
n-p)! 2n+l l-p) , pF 1
Z Z ntp)! 2 f (- PIE_ (u)PE (1 )dn {E‘p’n +—RBAZ 5,
n=0 p=0 =i
® 3 all :
n-p)! 2n+l 1
Z z n+p)! 2 f (1 - e (p )(H)P(p)(u)du {FI') D —PI{E} % Byl
n=0 p=0 -1
-p)! 2n+l 2 i
P e f (- e e uay {.r : p—%ﬁ}ﬁ il
n=0 p=0 il
where j has positive values only.
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After evaluating the remaining integrals in the leakage term (ref.
3, pp. 102 to 104) the Boltzman equation can finally be written

k(ke1) |, 1 F1, k1 T3 et
- F o) + 2 + == - F!' - =213 +
4(2k+1 [O,k-l O,k+]] 3,1 Z(2kL) l:l,k+l 5 1,k-1 = 3,0
3

i 4 i pFEzk-l-l -5 o pFEzk"l 5 3
4(2k+1) | p,k+l T py,k-1 e d5p-1
p=1

PF

2
pF
1 ; " k-1) o _ K - LD,
ZE: ) [Ek+p+l)(k+p)(Fp,k_l ——Igr——) (k-p+1) (x p)<fp’k+l - j] B
p=0

1 2 al
F. Bk S = N_.o B 5. L + = B, + 8, IS + =95
el J)k(r)( J,0 2 J?éo) 55,k J:k(r) [:J)O 2 J?éo:] J:k( ) (J;O 2 Jiéo)

In the P5 approximation, a set of six simultaneous equations in

terms of Fm n(r) are generated by letting j and k independently
J
take on the wvalues 0,1,2,3

(

m er n<0

I Sors N> 3
F (r)= 0 for
m,n ﬁm>n

\.either subscript even and the other odd

Assuming a constant isotropic source of neutrons , the following
set of simultaneous equations are generated:

Easi
B 1t o+ BT o 255 o (B92)
F F
1,3 1,1

' —2° _F' - =22 10bF. . = 9
Fl,:’) § T ; 0 3 T < o 0,2 : (Bp)
R T O g =0 (B9c)

0,0 oF SRl R e o il
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~le o ThE o =0 (B9d)

3F F F
S, et T8
! __2._. ! e B B! B e s =
(B9e)

lS(F' - >+ 7b F (Bof)

where b, = No - NSSS,k’ ko= 0, 1L, 2y 5

By setting FO,Z and F, 5= 0 in (B9c), equations (B9a) and
2
(B9c) reduce to the ordinary cylindrical diffusion equation when they
are transformed by

an Fo x =%0,k

7t Fj,k. = q’J’k

an SO,O = SO,O
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APPENDIX C

CALCULATION OF COEFFICIENTS IN Pz APPROXIMATION

.

NEUTRON FLUX EQUATIONS

The term &) appearing in equations (l) is given by

L68E

g & 2% - Ngoé‘,k k=0,1,2,3 (c1)

where the superscripts (which will hereafter be dropped) refer to region
A. The Og x @appearing in (Cl) is the coefficient of the kbh Legendre
J

polynomial in the series expansion of the scattering function, that is

21+1
Gs(uo) - :E: —??—'Gssz(“O)
1=0 -

By the orthogonality of Legendre polynomials
il

g e = f oo By (o) (c2)

-1

The physical meaning of Og o &and Og 1 can be deduced from the
following considerations: g 7

The term NSGS(§;§') is the probability per centimeter that a neu-

- =
tron traveling in the direction Q' is scattered into the direction &

from following sketch. Scattering is assumed to depend only on the
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angle 6 (or its cosine) where 2.8 = cos 6 = Mo Then a quantity
Nsos(po)duo can be defined as the probability per centimeter of a

neutron being scattered from 5' into an elemental ring of area
2t duy with direction cosines between u, and Ho + duo. Then

210
N > > »
Sd-l-"o GS(SB)Q )ay = NSUS(HO)duO
V=0

or
Ng

-> >
NSUS(Q:Q') = e US(HO)

For k = 0, the right side of equation (C2) is the scattering
function integrated over all velocity directions so that 95 0 ig the
J

total microscopic cross section for scattering.

Fo?_ k=1, Pl(po) =Ky 80 that OS,l is OS’O times the average
cosine Ho of the scattering angle.

Now
og(gldng = pluglarg o o

where GS,O is the probability that a neutron is scattered and
p(uo)duo is the probability that the scattered neutron has the direc-
tion cosine Ko between W and Hg + dpo. This probability must be
independent of the coordinate system, therefore

p(ppldny = p(v)d
where p(v)dv is the probability of scattering into the angle

2x d(cos GC) in the center of mass system where 6, is the scattering

angle in the center of mass system and V= cos 0.

Assumption of spherically symmetrical scattering in the center of
mass system implies

2ndy 1
p(V )d\’ ik i 360 E dv

Therefore,
g
5,0
GS(Ho)dHO = —2L_ av
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Applying the laws of conservation of energy and momentum for elas-
tic collision of a neutron with a stationary nucleus of mass M, yields

Mv+l

i * 7z (c3)

1
(M% + 2Mv + 1)

which relates the cosine of the scattering angle in the laboratory sys-
tem to that of the center of mass system. Equation (C2) can then be

written
3
9,0
93, x =f —z?—Pk(uo)dv (ca)
-l

Equation (C3) enables the integral in (C4) to be evaluated for
k=0,1,2,3 in a straightforward manner with the results

> {C5)
.
c’s,2="s,o{% ‘%‘2‘ '3‘%4 (2 - 1)° ln(ﬁJr i)}

The special case of an infinite atomic mass A, (often assumed for
heavy nuclei) gives o = 0 =0 = 0 which follows from equation
vy ) & 8,1~ 8,8 °5,3 d

(CS). Scattering is then isotropic in the laboratory system of Hefierences
as well. For light atomic nuclei, the scattering is predominantly for-
ward in the laboratory system.

Equations (C5) enable the calculation of 05y for the P, approx-
&

imation of transport theory. In particular, the values obtained were
used to calculate a, (eq. (C1)), by, and ¢, appearing in the flux

equations for the regions A, B, and C. Only the hydrogen nuclei of the
water region were assumed to have a finite mass number.

L68S

-




3897

NACA TN 3661 29

REFERENCES

1. Weinberg, Alvin M., and Noderer, L. C.: Theory of Neutron Chain
Reactions. AECD-3471, Oak Ridge Nat. Lab., United States Atomic

Energy Comm., May 15, 1931.

2. Glasstone, S., and Edlund, M.: The Elements of Nuclear Reactor
Theory. D. Van Nostrand Co., Inc., 1952.

3. Margenau, Henry, and Murphy, George Moseley: Mathematics of Physics
and Chemistry. D. Van Nostrand Co., Inc., 1943.




30 NACA TN 3661 ‘

TABLE I. - RECTANGULAR GEOMETRY

[Homogeneous value of Ry = 0.712.]

Total Total Total fuel| R RSO 72
production|absorption| absorption
Self-shielding factors for two-region cells

Transport theory, P3

Unbound OR883 0.1987 0.1436 |0.7227| 0.0107

Bound L1993 SILERES .1449 1270 .0150
Diffusion theory, P2

Unbound <1993 .2006 .1438 W L65 .0048

Bound 995 SEO8Y 1432 .7200 .0080

Self-shielding factors for three-region cells

Transport theory, P3

Unbound OLiI993 0.2029 0.1399 |0.6895 |-0.0225

Bound 211995 . 2038 .1406 .6896 | -.0224
Diffusion theory, Py

Unbound SRS .2006 .1404 <6999 =012l

Bound L9935 .2026 .1418 S 69989 =R 0!
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TABLE II. - CYLINDRICAL GEOMETRY

| i [Rg = 0.712]
\
-« Production|Absorption| Fuel R |R - 0.712

per per absorption

(cc)(sec)| (cc)(sec)| per
(ce)(sec)

Self-shielding factors for two-region cell

Transport theory, P3

Unbound

Bound

‘ Diffusion theory, P,
‘ j Unbound

\ * Bound

1.000

1.000

1.000

1.000

0.9880

L9852

.9790

.9802

0.7248

.7305

. 7047

.7070

0.7336

.7355

<7198

.7213

0.0216

.0235

.0078

.0093




NACA TN 3661
(actual dimension)

=)
O
=
[eo]
58]
o
o
o

7

ﬁ N
Steel

N\

K
i 15 3
+
« o o g < P o & . Y
£ @ > -, © o B
T N — g = & o o
- . 13 o 2k o =
|MW o ® ‘ 80 %
s e s, b s, s sl s . v e S e . N e s e i s B -
(=) 1 o a_y %
@ Q I e 2
+ g 5 H
= o W ~ P m
[ S Q -
% @9 < < P
D@ . P G ol
T N ¥ ~ = o —
= 3 &
o
g
o
B

7

LLAL,

B
Steel

_

O

/

22NN ZZ TZEZ] TAITIHHT

32




3897

CG=5

NACA TN 3661

Flux, Fq

1.19
1.18
1407

1.16

1.14
1.13

1.12
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1.08
1.07
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b 0.1993 cm
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M = 1.0
Sy =1 neutron/(cc) (sec) Y
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P. (Transport theory)
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( fusion i
theory)
.005
Fo, Py
(0]
-.005
F P
"2 el -0.010
0 ol .2 = W,

Variable distance, x, cm
(a) Two-region cell. Molecular binding effects neglected.

Figure 2. - Neutron flux distribution.
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Water + uranium
Zs = 3.2465
= 0.63095; T = 3.8775
1.19 Zg . .020
M = 2.0
1.18 Sp=1 neutron/(cc)(sec)
i M = 0.0668x10%* atoms/cc
1.17| (Transport 015
theory Fz
1416 hm
1.156 PZ .010 *é
(Diffusion -
FoTA: theory) a
)
o
11T S .005 <
E
—
112 &
b
b 51 B (0] E.
g
j i (o) =
Fo, Pp
1.09 -.005
1.08
1.0 F? 010
O/ FO} Ps .
l.Ouo %) "3 - o

Variable distance, x, cm
(b) Two-region cell. Molecular binding effects of water approximated.

Figure 2. - Continued. Neutron flux distribution.
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Transport flux coefficient, F2
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[Pz (Transport theory) HEH f
Ty e
S
i
: B
FP, (Diffusion theory) : %
FO ‘ i
1 11 2
i o S g 3 4 :

Variable distance, x, cm

(c) Three-region cell. Molecular binding effects neglected; uranium region shown
magnified 20 times.

Figure 2. - Continued. Neutron flux distribution.
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/ BT, G s e
B e 7 B
T ; A /‘\\ A §
g Water +F sreel 7N gree1 ) Water
¥ uranlunlé;/ \\\:: uranium
0.80542 0.20345\ 0.19926
cm om \\\ cm
: 0.80542/A \ >
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RN\
! (a) Used to obtain equivalent two-
region cylindrical cell.

Region B,
water + uranium

‘ r =b = 0.4544 cm

(b) Equivalent two-region cylin-
‘ drical cell.

| Figure 3. < The cylindrical cell.
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Figure 4. - Cylindrical coordinate system.
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Flux, @0,0

Q
T : 5=
i Region B o
Water - uranium 8?,
SO,O = 1 neutron/(cc) (sec) e
0.5230 0.1314
3L,
P, (Diffusion theory)
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Radial distance from Z-axis, r, cm

Figure 5. - The unbound two-region cylindrical cell having same homogeneous self-shielding factor as slab
cell (0:-712)%
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Figure 6. - The bound two
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