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SUMMARY 

The steady-state diffusion P2 and transport theory P3 solutions 
of several self-shielding problems have been obtained for multiregion 
cells of rectangular and cylindrical geometries. These cells represent 
a given arrangement of moderator, fuel, and cladding; usually considered 
to be homogeneous. The three -region cells studied were of slab geometry 
only and consisted of water) steel, and uranium regions. The two-region 
cells were of identical volumetric proportions and compositions, differ­
ing only in the homogeneous dispersion of uranium in water . The dimen­
sions of the equivalent two regions of the cylindrical cell were chosen 
so that the same homogeneous self - shielding factor of the corresponding 
slab cell was maintained . Additional results were calculated consider­
ing the effects of the chemical binding in water on the flux distribu­
tions and self-shielding factors . 

The neutrons were assumed to be monoenergetic; their distribution 
function assumed to be dependent on but one spatial coordinate, and the 
scattering in the center of mass system assumed to be spherically sym­
metrical. The P2 approximation underestimated the magnitude of self-

shielding effects relative to the P3 approximation for all cases. Con­

sideration of chemical binding in water was unimportant in calculating 
self-shielding factors for the three - region cell but could not be neg­
lected for the two -region cell where the water and fuel were homogene­
ously mixed. An electromechanical differential analyzer was used to 
solve the Pz and P

3 
flux equations. 

INTRODUCTION 

In zero power criticality experiments , it is usual to mock up the 
reactor composition in the most expedient way. A fuel-element moderator 
assembly may be represented by fuel strips temporarily attached to 
plates of cladding material or by solutions of enriched uranium salt in 
liquid moderator. In analyzing these criticality experiments, it is 
important to know how a given fuel -element moderator assembly departs 
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from the homogeneous conditions. Inasmuch as the dimensions of repeti ­
tive cells in an assembly are generally very much less than the average 
mean free path) solutions of higher order than diffusion theory are re ­
quired to evaluate departures from homogeneity . 

The steady-state diffusion -theory solutions and the next higher 
order approximation of several self -shielding problems have been obtained 
for multir egi on cel ls of rectangular and cylindrical geometry . The neu­
trons have been assumed to be monoenergetic ) and their di stribution func ­
tion has been assumed to be dependent on but one spatial coordinate . 
Spherically symmetrical scattering in the center of mass system has also 
been assumed. The solutions of the diffusion theory P2 and the trans -

port theory P3 flux equations were obtained by a differential analyzer. 

(All symbols used herein are defined in appendix A.) 

The cases studi ed for rectangular geometry wer e (a ) a three -region 
cell consisting of water ) steel) and urani um) and (b ) a two-region cell 
consisting of i dentical volumetric propor tions and composit i ons except 
for the homogeneous dispers i on of urani um in water . The cas e studied 
for cylindri cal geometry was a two- regi on cell having the same homogene ­
ous self - shielding factor as that of case (b) . 

Additional results were obtained by approximating the effects of 
molecular binding in the water molecule by a method der ived by A. 
Radkowsky in a classified publi cation . The thermal neutron flux distri ­
butions were used to compute the ratio R of total absorption in uran ­
ium to the total absorption in the cell . 

The detailed deri vation of the flux e quations in the P3 approxi ­
mation in rectangular geometry is given in reference 1 . The equations 
for the P3 approximation of cylindrical geometry are der ived in detail 
in appendix B . These e quations were also obtained by R . R . Haeffner in 
a somewhat different manner and presented in a classified publi cation . 

ANALYSIS 

Neutron Flux Equations and Boundary Conditions 

For Three -Region Slab Cell 

Assuming a constant 
water regi on A) the P3 
equations (ref. 1 ) 

isotr opic source of thermal neutr ons SA for 
appr oximation for thi s region leads to the 
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Flex) + aOFOex) - sA = 0 

FO(x) + 2FZ(x) + 3al Fl (x) = 0 

2Fl(x) + 3F3(x) + 5a
2
F

2
(x) = 

3 

where Fk is the kth (k = 0) 1) 2) 3) coefficient of the Legendre ex­

pansion of the flux function . Physically) FO is the total neutron flux 

and Fl is the net neutron current. The coefficients denoted by ~ 

(k=0)1)2)3) are given by 

where ~ is the number of scattering nuclei per cubic centimeter of 

region A) E is the total macroscopic cross section) and aS k is the 
kth coefficient of the Legendre expanslon of the scattering f~ction. 
The values of as k are calculated for spherically symmetric scattering 

) 

in the center of mass system in appendix C. The value of SA is taken 
as 1 neutron per cubic centimeter per second. Identical sets of equa­
tions hold in regions B and C with the term a replaced by b and 
c) respectively) and with a zero source in these regions. 

Eliminating Fl and F3 from equations (1) and formally integrat­
ing with respect to x 

- 3a
l

l 
Fa + aaJFodx = x + ~ F' 3al 2 

_ (_4_ + _9_\ F' + a2JF2dx = _2_ F' 
15al 35a3 ) 2 15al 0 

(2) 

with a similar set of equations in regions B and C. The equations in 
this form are suitable for solution by a differential analyzer. 
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The boundary conditions are 

F6(0) = 0 (3a) 

F z(o) = 0 (3b) 
at the extreme boundaries 0 and Y 

Fa(Y) = 0 (3c) 

F z(Y) = 0 (3d) 

FOA(ex.) 
} 

= FO}B(ex.) (4a ) 

F2 A(ex.) = F2 B(ex.) 
} } 

(4b ) 

I 

Fa A(ex.) + 2Fz A (ex. )' Fa B(ex.) + 2F
ZlB

(ex.) 
(4c) l } :::1 l at boundary al bl 

ex. 

FZzA(ex.) FZ B(ex.) 
(4d ) = l 

a3 b 3 

FO B(~) = FO C(~) (5a) 
} } 

F2 B(~) = F2 C(~) (5b) 
} J 

Fa B(~) + 2Fz B(~) Fa C (~) + 2F2zC(~) 
(5c) Z l = Z at boundary ~ bl cl 

FZ B(ex. ) F Z C ( ~) 
(5d) z = l 

b3 c3 

Equations (4) and (5) follow from continuity requirements on the 
Fk at the interfaces ex. and ~ whereas equations (3) follow from the 

J S 
requirement that Fl and F3 vanish at 0 and Y (ref. 1 ). 

By setting F2 = O} equations (2) to (5) reduce to diffusion theory 

with the diffusion and absorption coefficients being given by D = 31 
a l 

and aO} respectively. The specialization of equations (2) to (5) to 

two-region cases follows directly. 

(N 
OJ 
<.D 
-...J 
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Specific slab configurations . - Figure 1 shows the rectangular 
cells studied and gives the specific dimensions used. The neutron cross 
sections are given in figure 2. The volume proportions of the repeated 
slab array used were steel:fuel:steel :water, 26 .7:1:26.7:52.3 leading 
to symmetrical cell volume proportions of fuel : steel : water , 
0.50:26.7:26 .15 . The specific solutions obtained correspond to an en­
riched fuel thickness of 3 mils (1.5 mils in the cell). 

The dimensions and nuclear constants l isted in figures 1 and 2 and 
the values of Os k computed in appendix C were used to calculate the , 
coefficients which were substituted into equations (2) to (5). For 
greater accuracy and convenience the strongly absorptive uranium region 
(~ = 33) was magnified 20 times by means of a linear transformation of 

a 
the independent variable. 

Results for the chemically bound cases were obtained by the use of 
an effective hydrogen mass M and an average hydrogen transport cross 

section at~, the latter having been derived by A. Radkowsky in order 

to approximate the effects of chemical binding of the hydrogen. The 
quantity M is defined by 

at~ = aSH(l - ;M) 
where aSH is the average hydrogen scattering cross section averaged 

over a Maxwellian distribution of neutron flux. 

-H -H The values of M, 0tr' and Os for water at room temperature are 

2.0, 31.4, and 46.7, respectively. For the unbound case, M was taken 

as 1, and O~ as 25.6 barns from which it follows that O~r = 8 .55 
barns. 

From the flux distributions , the self-shielding factors R were 
calculated by 

R = total absorption by uranium 
total absorption in cell 
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where F steel 
o 

uranium region. 
negligible. 
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is the average flux in steel, VU is the volume of the 

The absorption in water is neglected since ~H20 
a is 

The magnitude of self-shielding effects may be measured by devia­
tions in R from the value of RH = 0.712 calculated for the case of 

a constant flux throughout the cell, that is, FOU = F
O

S ' which is equiv­
alent to assuming that all of the constituents of the cell are homo­
geneously mixed. 

Analyzer rocedure for slab solutions. - Equations (2) subject to 
the boundary conditions of equations 3 to (5) are solved by the dif­
ferential analyzer in the following manner: 

The diffusion P2 approximation results by setting F2(x) = O. 

From the boundary conditions, F6(0) must be zero. Since FO(O) is un­
known} it must be guessed in order to begin the solution at the boundary 
O. Using the initial FO(O), the analyzer integrates the FO equation 

until the interface ~ is reached. At the interface, FO is continu­
ous . The discontinuous change of slope Fo,B(~) that must be applied 
to initiate the solution for region B is calculated by equation 4(c) 
with F~ = O. The FO equation of region B is then integrated until 
the interface ~ is reached where the discontinuous change of slope 
Fa c(~) necessary to start the solution in region C is calculated by 

eq~ation 5(c) with F
Z 
= O. The analyzer then proceeds to integrate 

the equations of region C until the outer boundary Y is reached. If 
Fo(Y) turns out 0, then the correct FO(O) has been guessed. If 

Fo (Y) f 0, then another value FO(O) is guessed until this criterion is 
satisfied. The final results are shown graphically in figure 2. 

After obtaining the diffusion answer} equations (2) were set up to 
be solved simultaneously. For the first trial, the diffusion theory 
FO (O) was used, and an initial value of F2 (0) was guessed. The condi-

tions of equations (4) and (5) were used to compute the discontinuous 
changes in the slope at the interfaces. Thereafter, both FO(O) and 

F2(0) were guessed simultaneously until the conditions F6(Y) = 0 and 

FZ (Y) = 0 were met. The total operating time for convergence turned 
out to be 8 to 16 hours for a two-region cell and 16 to 32 hours for a 
three-region cell. 
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Equivalent Two -Region Cylindrical Cell 

As shown in figure 3 ) the radii of the two - region cylindrical cell 
were chosen such that the "J"olume of water plus uranium and the volume of 
steel were equal to those in a square cylindrical cell formed from the 
dimensions used in the previous two - region slab cell . With an outer 
square boundary) the neutron flux will be spatially dependent on an azi ­
muthal angle in the cross section of the cylinder in addition to radial 
dependence . This angular depenuence i s not present when the outer square 
boundary is approximated by a circular one . 

From figure 3 ) the volume of steel per unit depth for the rectangu ­
lar cell is 0.32773 cubic centimeters ) and the volume of water plus ur ­
anium is 0 . 32098 cubic centimeters for a total cell volume of 0 . 64871 
cubic centimeters. This means that for the cylindrical cell 

rca2 == 0 . 32773 

or 

a == 0 . 3230 cm 

whi ch is the radius of the steel region) and 

rcb
2 == 0.64871 

b = 0.4544 cm 

the radius of the cell . The self -shielding factor RH then remains the 
same as in the slab cell (0 . 712) for the case of a constant flux through­
out the cell . 

The cylinders are assumed to be· infinitely long and the transport 
flux depends spatially on the radial distance r from the z -axis ) and 
on two angular coordinates u and ~ that determine the direction of 
the neutron velocity vector (see fig . 4 ). The azimuthal angle u of 
the velocity vector is measured from any fixed radial line in the cross 
section of the cyllllder . The polar angle ~ of the velocity vector is 
measured from the z -axis . The transport flux can be written as 
F(r)f.l )u) where f.l = cos ~. 

In appendix B) the transport flux is expanded in spherical harmon ­
ics to give 

00 00 

(B8 ) 



8 NACA TN 366l 

Fr om the or thogonality of spherical harmonics , 

where the OIS are defined as 

m f s m f s 

and 

m = s m = s 

When j =k=O, the right hand side is the transport flux integrated over 
all directions . This is the total flux ~O o Cr ). Hence , 
4b o Cr ) = 2nFO o Cr) . With j =k=l, the right side is the projection of , , 
the vector flux F (r,~ , ~) on the radial axis integrated over all direc ­
tions and is , therefore , the net neutron diffusion current ~l l (r). 
Thus , ~ll (r) = rtFll (r) .. ' , , 

Assuming a constant isotropic source of neutrons in each volume 
element of the water -uranium region, in the P3 approximation (see 

appendix B), the following set of equations is obtained: 

Fl 1 
2b

O
F 280 0 F I + ~ + = 

1 , 1 r 0 , 0 , (B9a) 

F F 
Fl 3 + ~ - Fll .J:.z.l + 10b2FO 2 = 0 , r , r , (B9b ) 

2F 1 1 F ' 
F2 2 

3bl Fl 1 0 2F6 0 o 2+"2 2 2 + ~+ = 
) ) , r , (B9c ) 

1 F' F2 2 
7b3F 1 3 = 0 12F 0,2 - -~+ 

222 r , , (B9d ) 

F3,3 + 3 F:;:3 + 12 (Fl,l ~ F1;1) ~ 2 (Fl,3 ~ F:;:3) + lObl2,2 ~ 0 

(Bge) 

(B9f) 

- I 
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where b is defined in terms of nuclear constants by 

bk = Ncr - NScrS k 
) 

k = 0, 1 , 2,3 

Transforming to fluxes <P. k and the neutron sour ce So 0 by J , 

<P 0 k = 2reFo k , , 
<P. k = reF . k J , J, 

and after eliminating Fl l' Fl 3' and , , 
formally integr at i ng with respect to r 

, 
k = 0,2 

j = 1 ,2, 3 

F3)3 from equations (B9 ) and 
yields 

9 

(6) 

The first of equations (6) will hereafter be called the <Po 0 equation. , 
The second will be called the <P O 2 
equation . ' 

equat i on and the thi rd the <P2 2 , 

An identical set of equations holds in r egion A (see fig. 3 ), ex ­
cept that SO l O = 0 and the terms containing b ar e replaced by terms 
containing a . 

Boundary conditions . - Referring again to figure 3 the following 
boundary conditions must hold : 

F (b , ~ ) a ) = F(b) - ~,a+re) 

~(a,~)a) = ~(a)~ ) a ) 

at r = b 

at r = a 

(7a ) 

(7b ) 
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at r = 0 C7c) 

cx,l and arbitrary 
finite 

Equation C7a ) is a statement of the fact that no net flow of neu­
trons occurs across the outer boundary of the cell in any arbitrary 
direct i on . Though this condition is strictly true for cylindrical cells 
with square outer boundaries } it can only be approximately true for 
cells with circular outer boundaries. 

Equation (7b ) states that the transport flux in an arbitrary direc ­
tion at the interface must be continuous across that interface . 

Equation (7c ) is necessary because at 
angle the flux must be independent of cx, . 
ditions on the Fm n Cr) as the requirement 

} 

r = 0 for a given polar 
This leads to the same con­
F(O}~}cx,) be finite . 

Equations (7a ) to (7c ) lead to the conditions 

which imply 

<Po 0 = 
} 

cP 0 2 
} 

<PZ 2 = 
} 

- 5CPO 2 
} 

1 <P2 2 
-~ 
3 b 

2CP2 2 
} 

b 

at r = b (outer boundary ) 

+ ~ (1 
3a 

(Sa ) 

(Sb ) 

(Sc) 

(9a ) 

(9b ) 
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- A 
CPo 2 ::: , q,~ 2 , 
",A . B 
'±' 2 2 = CP2 2 , , 

q,o 0 == 0 , 

4> ~ 2 == 0 , 
<P ' 

2, 2 
::: 0 

::: 0 

11 

( 9c) 

at r ::: a (interface) ( 9d) 

( ge) 

(9f) 

(lOa) 

( lOb) 

at r ::: 0 (origin) 
(lOc) 

(lOd) 

Differential analyzer procedure for solving cylindrical flux 

equations . - A neutron source of So 0 == 1 neutr onJC cubiC centimeter) , 
( second) is chosen in region B with a zero source in region A. First 

'1> 0 2 and q, 2 2 are set equal to zero in equations (6) to (9), and the 
, , 

resulting cylindrical diffusion equation is solved for q,0 O. , 

The diffusion equation for region A and t he one for region Bare 

solved in a manner similar to that described in the section Analyzer 

Procedure for Slab Solutions . This procedure gives the graphical P2 

diffusion theory answer . 

Having the P2 solution, the 

the q, 0 2' cp 2 2 J cp 0 0 ' q, 0 2 J q, 2 2 ' , , , , , 
the boundary conditions , equations 

the third conditions for the ¢2 2 

for the q, 0 0 equation . ' , 

procedur e is to successively solve 

q,0 0 ' and so for th, equations by using 

(7) t o (9 ), for the q,0 2 equation, , 
~quation , and the first condition 

Unlike the rectangular case , inhomogeneous boundary conditions occur 

at r::: b J but the solution is still initiated by guessing q, (b ). The 

discontinuous change in slope at the interface is calculated by the cor ­

responding cP equation of equation (8 ). As in the rectangular case, 

homogeneous conditions on the slopes of the terms q, occur at r == O. 

However, the additional requirement q, 2 2 (0) == 0 must also be met . , 

J 
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For the cylindrical case , it was not possible to set the three 
equations of equation (6) into the analyzer at the same time . There­
fore , the following procedure was used : 

(1 ) <P2 2 is set == o. , The f <P 0 Odr obtained from the diffusion , 
the <PO 2 equation at the proper time . A equation is fed into <Po 0 , , (1) 

first approximation <P 0 2 denoted by <PO 2 is obtained when the value , , 
assumed for <PO 2(b) leads to <PO 2(0) ~ O. , , 

(2) The functions (<PO,2 _Jd<P~'2) obtained from <p~~~, and 

( <1>0,0 -J d<l>~ , 0
) obtained from the diffus ion <I> 0 ,0 were fed in to the 

<P2,2 equation. A <P~~~ is obtained when the <P 2,2(b) assumed leads 

to <P2 2 (0) = 0, and <P2 2(0) = O. , , 

(3 ) The functions (<pI +Jd<PO,2) obtained from <p( l ) and 

) 

0,2 r 0,2' 

(<1>2, 2 + 3 f d <1>;,2 obtained from <I>~~ f were fed into the <1>0,0 equat ion. 

Equation <p(10) is obtained when the <Po O(b) assumed leads to 
0, , 

<PO 0(0) = O. , 

( 4 ) The funct ions (<p I + 3J d<P 2,2) obtained from <P (1
2
) and 

2 J 2 r 2, 

f<po Odr obtained from <p~l; were fed into the <P 0 2 equation . The 
, (2) , , 

term <PO,2 is obtained when the <PO,2 (b ) assumed leads to <PO,2(0) = O. 

Steps 2, 3, and 4 were repeated until the <PO 0 equation solution pro -, 
duced a neutron conservation of approximately one percent . In solving 

for <p~ 2~ and successive values of <P2 2 ' interpolation of the function 

(<1>0, 2 -:r d <I> ~ , 2) appearing in the . <1>2, 2' equation was neees s ary . The 

curve to be used for this function had the same shape but it was inter-

( f d<PO 2)(1) ( f d<p )(2) 
mediate between <PO,2 - ~ and <PO,2 - ~,2 , and between 

(<1>o,2 _fd<l>~' 2y2) and (<1>0,2 _f d<l>~ , 2 f3
) , and so forth . The amount 

--~----~-.--.- -



NACA TN 3661 13 

of interpolation of the function (~O'2 ~d~~, ~) decreased as the error 

in conservation of the ~O 0 equation decreased} until the last curve 
} 

of this function used was practically that obtained from the pr eceeding 
~O 2 equation . For the two cylindrical problems solved, this procedure 

} 

required about 40 hours each . 

RESULTS AND DI SCUSSI ON 

Rectangular Case 

The flux distributions for the slab cells studied are shown in fig ­
ure 2, and table I presents the numerical values of the self - shielding 
factors. The P2 approximation differs from the P3 approximation in 

calculating self-shielding effects for the examples presented. 

The magnitude of self -shielding effects are measured by deviations 
in R from the value for RH of 0.712 calculated by assuming a constant 
flux throughout the cell . For the two - region 
RH was 0.0107 and 0.0150} respectively} for 

0.0048 and 0.0080 for P2, unbound and bound. 

cell, the deviation .. fr0Ill 
P3) unbound and bound, and 

For the three - region cell, 
the deviations were -0.0225 and -0 .0224 for P3, unbound and bound, and 
-0.0121 for P2, unbound and bound . 

The deviations are positive for the two - region cell because the 
presence of the source term in the water-uranium region leads to a higher 
flux and, consequently, more absorption in uranium relative to the case 
where the flux was constant throughout the slab cell . In the three ­
region cell, the neutron flux is considerably attenuated by transition 
through the water and steel regions before absorptions occur in uranium . 
Hence} a negative deviation from RH is obtained . 

A consideration of chemical binding does not affect values of R 
for the three-region cell despite an increased flux in water r esulting 
from larger average hydrogen scattering cross sections for the bound 
cases. The flux is higher in the water region for the bound cases be ­
cause neutrons undergo more scattering collisions per second which tends 
to confine them there and build up the flux . This effect is enhanced to 
some extent by the larger mass number M for the bound case which tends 
to produce more nearly isotropic scattering that attenuates the stream­
ing of neutrons toward the steel region. Thus a higher R is to be ex ­
pected for the bound cases. In the two - region cell, chemical binding 
leads to a larger value of R by virtue of the increased flux in the 
water-uranium region relative to the unbound case . 
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Because the total neutron flux is symmetrical about the extreme 
boundaries of the cell, no leakage occurs from the cell . Thus, for 
steady state, the total number of neutrons absorbed per second in the 
cell must equal the total number produced per second. This criterion 
was applied to each of the flux curves of figure 2 as a check on the 
accuracy of the analyzer solutions. As can be seen from table I, con ­
servation of neutrons in the slab case is satisfied within about 2 per ­
cent for the three-region case and a 1/2 percent for the two - region 
case ; the value of R was found to be insensitive to such small devia­
tions in conservation. 

<P o 0 , 

Cylindrical Case 

Unbound. - The P3 approximation <PO 0 curve and the diffusion , 
curve shown in figure 5 resulted from solving equations (6) to (9) 

for the equivalent unbound two -region cylindrical cell problem . 
cylindrical P3 <P 0,0 compares with the P3 approximation flux 

for the slab cell in the following manner : 

The values of <PO 0 at the outer boundary, interface, and orlglll , 
are 1.184, 1.111, and 1 .023, respectively, for the cylindrical cell. 
The corresponding values of Fo are 1.071, 1.105} and 1 .160. The flux 

in the steel region of the cylinder is lower implying a higher flux in 
the water-uranium region to satisfy conservation . 

Table II gives the results for the cylindrical cell. Unlike table 
I, the average production and absorption are taken per cubic centimeter­
second of material. The average absorption per cubic ~entimeter -second 
of region A, for example, is calculated by 

a 
·r <PO oCr ) dV 

Jr=O ' 
a r dV 

Jr=O 

x L.A 

(r 4>O, o , i(ri )ri "'"i 

After calculating the average absorption per cubic centimeter-second in 
region B, it fol lows that R = 0.7198 for the P2 approximation and 
R = 0.7336 for the P3 approximation. Thus) more absorption occurs 
in the water -uranium region of the cylindrical cell than in the same 
region of the slab cell . 

• 
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As in the slab-cell case} conservation of neutrons must be satis­

fied. The diffusion ~O}O and the P3 ~O}O were approximately 2.0 and 

1.2 percent} respectively, too small conservation wise . As for the rec­

tangular case, values of R were found to be insensitive to small devia­

tions in conservation. 

Bound case. - The P2 and P3 curves for the bound case are shown 

in figure 6. As was explained for slab cells} a higher flux in the water­

uranium region, J.eading to a larger value of R relative to the unbound 

case is to be expected when the effects of molecular binding in water are 

considered. This is verified from table I I, where R = 0 . 7213 for P2 

and R = 0.7355 for P3 . Conservation is 2 percent and 0. 7 percent lack­

ing for these curves. 

Values of ~o 0 at the outer boundary} interface , and origin are 
} 

1.200, 1.111, and 1.018, respectively. The corresponding values for 

FOCx) in the P3 approximation for the rectangular cell are 1 .060, 

1.092, and 1.180} respectively. 

CONCLUDING REMARKS 

This study shows that the P3 approximation of transport theory as 

compared with the diffusion theory approximation gives significant dif­

ferences for the flux distributions and self-shielding factors of multi­

region cells of rectangular and cylindrical geometry. The diffus ion 

approximation underestimated the magnitude of self-shielding effects rela­

tive to the P3 approximation for all cases. 

Also, the chemical binding of the hydrogen in the water molecule was 

found to be important for the two-region cells which considered the ur­

anium to be homogeneously mixed with the water; both the flux distribu­

tion and the self-shielding factor were affected. For the three-region 

cell where the uranium was considered to be a region, the chemical bind­

ing effect did not change the self-shielding factor but did alter the 

flux distributions somewhat. 

An electromechanical differential analyzer was found to be suitable 

for solving the P2 and P3 flux equations. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland} Ohio} January 17, 1956 
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APPENDIX A 

SYMBOLS 

used as either subscripts or superscripts to denote the var ­
ious regions of a cell 

radii of the cylindrical cell 

defined as the difference (~ - NS Os k ) 
) 

the neutron diffusion coefficient defined by D = 

the coefficients of the expansion of the flux function in 
cylindrical geometry 

the kth coefficient of the Legendre expans i on of the flux 
function in rectangular geometry 

definition of ·the transport flux in cylindrical geometry 

chemical symbol for hydrogen 

unit vectors along x )y ) z -axes 

atomic mass 

number of scattering nuclei per cubic centimeter of a region 

the associated Legendre polynomial of indices n )m 

self - shielding factor defined as the ratio of absorptions in 
urani um to the total number of absorptions in a cell 

homogeneous self -shielding factor ) RH = 0 . 7120 

radial distance from the z -axis 

unit radial vector 

s constant isotropic source of thermal neutrons ) 2n 

chemical symbol for uranium 
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v 

x 

5 

e 

e 
c 

v 

volume 

variable distance used for the rectangular cell 

values of x at the various boundaries of the rectangular 

cell 

azimuthal angle of the velocity vector measured from the 

z -axis 

symbol for the Kronecker delta 

scattering angle in the laboratory frame of reference 

scattering angle in the center of mass system 

defined by I-l :; cos S 

defined by v = cos e c 

polar angle of velocity vector measured from the z -axis 

the total macroscopic neutron cross section 

macroscopic neutron absorption cross section 

macroscopic neutron scattering cross section 

microscopic neutron scattering cross section 

the kth coefficient of the Legendre expans ion of the scatter-

ing function 

microscopic neutron transport cross section in the laboratory 

frame of reference 

transport flux 

angle between radius vector r and x-axis 

azimuthal angle made by a neutron direction after collision 

with the neutron direction before collision 

unit vector in the direction of neutron velocity 
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APPENDIX B 

THE P 3 APPROXIMATION FOR CYLINDRI CAL GEOMETRY 

The general steady-state monoenergetic Boltzman transport equation 
stating the conservation of neutron flux F for an element of volume is 
(ref. 2) 

N 

a 

at 

unit vector in the dir ection of neut~on velocity 

-+ 
element of solid angle about direction 2 ' 

number of nuclei per cubic centimeter 

number of scat tering nuclei per cubic centimeter 

total mi cr oscopic neutron cross section 

(Bl ) 

probab i lit y per centimeter that a neutr on traveling in the 
-+ -+ 

direction 2 1 undergoes at r a scattering collision 
-+ 

into a unit soli d angle about direction 2 

The first term represents the net number of neutrons with direction 
-+ 
r leaking out through the faces per cubic centimeter per second . 

-+ -+ 
The second term is the loss of neutrons of direction 2 at r per cubic 
centimeter per second due to absorption or scattering collisions. The 
third term is the number of neutrons per cubic centimeter per second 
traveling in the direction QI that undergoes a s cattering collision 

-+ -+ 
into the direction Q at r. The last term is the number of neutrons 

-+ -+ 
pr oduced per cubic centimeter per second with direction Q at r. 

The following simplifying assumptions are made: 

(1 ) The neutron flux has cylindrical symmetry, that is, F is in ­
dependent of ~ and z, the spatial azimuthal and axial coordinates for 

-+ -+ 
directions of Q are fixed relative to the direction of r . 

-+ 
(2 ) The medium is isotropic , which implies a(Q) = a, a constant, 

and the scattering is a function only of the angle between the initial 
direction of the neutron velocity and the final direction. 
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(3) The scattering is spherically symmetrical in the center of mass 
system. 

Referring to f igure 4 in which the direction of the neutron veloc­
ity vector at r is given by polar angle ~ and an azimuthal angle ~ 
in the plane of the cross section, 

where .., 
to r 

-+ -+ -+ -+ 
~ = i sin ~ cos(~ + ~) + j sin ~ sin(~ + ~) + k cos ~ 

v .., -+ 
= r s in ~ cos ~ + <P s in ~ s in ~ + k cos ~ (B2) 

V J 

r is a unit radial vector and ~ 

in the plane of the cross section. 
is a unit vector perpendicular 
Then 

( 
v ~ -+ (J dF ~ dF -+ dF\ = r sin ~ cos ~ + <p sin ~ sin ~ + k cos ~) . r dr + r dP + k dz) 

d 1 d = sin ~ cos ~ dr F(r,~ , ~) + r sin ~ sin ~ d<P F(r,~.,~) + 

In comput ing 
-+ 

changes. (With Q 

sin ~r sin ~ iP F(r , ~,~), 52 must be held fixed as <!! 

held fixed, ~ and ~ do not vary with r, or z, 
alone is changed.) This requires that ~ and ~ 
despite no explicit dependence of F on <po 

as e ither variable 
be functions of <p 

Therefore 

-+ ~ 1 
Q·W = sin ~ cos ~ dr + r sin ~ sin 

since 
d 

cos ~ dz F = O. 

-+ 

{
d d~ d dc:"\ ~ ~F(r'~J~) ~ + di F(r,~,~) ~~ 

(B3) 

The condition that Q remain fixed as <p changes requires that ~ 
-+ 

and <p + ~, the angles made by Q and the fixed z- and x-direction, 
respectively, be constant so that 

(B4) 
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Lett i ng ~ = cos ~) subst i tuting (B4 ) into (B3 ) and not i ng that 
assumpt ion (2 ) implies 

-+-.. 
~O = cos (Q)Q ' ) = cos ~ cos ~ ' + sin ~ sin ~ ' cos (~ _ ~ 1) 

equat i on (Bl ) becomes 

CB5) 

as (~o) is expanded in a series of Legendre polynomi als to gi ve 
co 

where 

I t is to be noted that as 0 is the total scatte~ing cross section and 
) 

ac 1 is the total scattering cross section times the average cosine of 
u ) 

the scattering angle . 

By the addition theorem for Legendre polynomi als ) 



• 
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which gives the variation of the scattering function in terms of the 

desired variables. Equation (B5) becomes 

(1 - ~2)lj2 itos ~~ _ s~ ~~}+ No F(r,~,~) = S(r,~,~) + 

~~1111{ Fcr'iJ.1,a.I){t 2;H 0S,lPl(~)Pl(~') + 

-1 -1{ 1-0 

Symmetry demands that 

21 

F(r,iJ.,a.) 

F(r,iJ.,a.) 

(B7) 

The transport flux is expanded in a set of spherical harmonics to 

give 
... CX) 

= \' \' tn-mj; 2n+l F (r) cos rna, ytl(iJ.) 
D L n+m. 2 m,n n 
n=O m=O 

F == 0 m,n (BS) 

m >n 

Harmonic terms containing sin a. do not appear in (BS) because of the 

first of conditions (B7). The second of conditions (B7) implies that 

F nCr) == 0 for either subscript even and the other odd since 
m, 

pffi(-iJ.) = (_l)n+m pm(iJ.). In the P3 
n n 

approximation, F (r) is neglected 
m,n 

when n> 3. The function S(r,iJ. , a.) is likewise 

harmonics (for isotropic sources only the m = 0 
expanded in spherical 

terms are present). 

Multiplying both sides of equation (BS ) by cos ja. p~j)(iJ.)diJ. da. 

and integrating over all iJ. and a. gives 
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j )k = 1)2) 3 in the P3 approximation . The ordinary Kronecker delta 

D m)S 

where 

is def ined as 

5 S E {O m f. S 

m) 1 m :::; S 

Dmf.S is defined
l 

as 

5mrS E t for m f. S 

for m :::; S 

This relation follows from the orthogonality properties 

m f j 

m :::; j f 0 

m :::; j :::; 0 

As is explained in the ANALYSIS section) the total neutron flux 

2nFo )0(r) :::; ~O ) o (r ); the net neutron current nFl)l (r ):::; ~l ) l(r) ; and 
the total source strength 2nSO 0 = So O· 

) ) 

Substituting equat i on (BS ) into (B6 ) ) multiplying (B6 ) by 

cos j~ P~ ( ~ ) d~ d~ and integrating over ~ from -n to n and then 

integrating over ~ from -1 to 1 (over all directions ) and after 
dividing through by 2n 

1m this appendix) it is particularly convenient to introduce a 
"modified" delta function notation defined in this way . 

---~ ~-~~- - -~~- -~--~----~ 

. I 
• 
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f( 

1 cos ~ cos rna cos j~ d~ + m~n 
mF (r)l 

sin ~ sin rna cos j~ d~ + 

- f( 

No FjJk(r) ( OjJ O + ~ OjfoJ = Sj Jk (r )(Oj JO + ~ Ojf O) + 

NSOSJk Fj Jk (r )(OjJ O + % Ojfo) 

Performing the integration over ~J the leakage term in the P3 
approximation can be written 

or 

( ) 

mF 
o + 0 F' + mJn 

j Jp - l j JP+l mJn r 

1 

L 
p=O 

o O. 1 mJp J J - p + 

00+ 
mJp j Jl -p 

co 3 1 

~ ~ tn-p~; 2n+1 ! (1 _ \12)1/2 p(P+1)(\1)p (P ) (\1)d~ ~ ' _ P FpJn} ~ 5. 

L L n+p. 2 k n PJn r 4 JJp+l 

n"'O p=O -1 

where j has positive values only . 
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After evaluating the remall1ll1g integrals in the leakage term (ref . 
3, pp . 102 to 104 ) the Boltzman equation can finally be written 

~~"""'" [F' - F' 1 5 + 1 rF , + F1,k+l _ F' _ F1 , k - l l 5 + 
O,k- l O,k+1J j,l 4(2k+l) [ l,k+l r l,k- l r J j,O 

~ 1 r' + pFp,k+l - F' - PFp , k _l] 5 + 
~ 4(2k+l) p,k+l r p,k-l r j,p-l 
p=l 

_ PFp , k _l ) _ (k-P+l)(k-P) (F' _ PFp ' k+l)~ 5, + 
r p,k+l r ~ J,p+l 

In the P3 approximation, a set of six simultaneous equations in 

terms of F ( r ) are generated by letting j and k independently 
m, n 

take on the values 0 , 1 , 2, 3 

F (r ) == 0 for m, n 

m or n < 0 

m or n > 3 

m > n 

either subscr ipt even and the other odd 

As suming a constant isotropi c sour ce of neutrons , the following 
set of s imultaneous equat i ons are gener at ed : 

Fl 1 
2bO

FO 0 Fl 1 + --=-z.:::::. + = 280 0 , r , , (B9a ) 

Fl 3 
F' 

Fl 1 
10b l o, 2 Fl 3 

+~ --=-z.:::::. + = 0 
r 1 , 1 r , (B9b ) 

F 
2F6 0 - 2FO,2 + ~ FZ 2 +~ + 3bl Fl 1 = 0 , 2 , r , (B9c ) 
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1 F2 2 
F' -~ + 7b F 0 

22,2 r 31,3= (B9d) 12FO,2 

F3' 3 + 3F3J3 + 12(F' - F1J l ) - 2(F' - F1J3) '+ 10b-1i'2 2 = 0 
, r \ 1,1 r 1,3 r G , 

15~2,2 - 2F;,2) + 7b3F3,3 = a 

where bk = Ncr - NSOS,k; k = 0 , 1, 2, 3 . 

(Bge) 

(B9f) 

By sett ing FO,2 and F2,2 == 0 in (B9c), equations (B9a) and 

(B9c) reduce to the ordinary cylindrical diffusion equat ion when they 
are transformed by 

21t FO k =4>0 k , , 



26 NACA TN 3661 

APPENDIX C 

CALCUlATION OF COEFFICIENTS IN P3 APPROXIMATION 

NEUTRON FLUX EQUATIONS 

The term ak appearing in equations (1) is given by 

where the superscripts (which will hereafter be dropped) refer to region 
A. The as k appearing in CC1) is the coefficient of the kth Legendre , 
polynomial in the series expansion of the scattering function, that is -
By the orthogonality of Legendre polynomials 

1 

as,k = J as(~O)pk(~O)~O 
-1 

(C2) 

The physical meaning of 
following considerations: 

and as 1 can be deduced from the 
} 

-+-+ 
The term NSaSCQ,Q ' ) is the probability per centimeter that a neu-

-+ -+ 
tron traveling in the direction QI is scattered ipto the direction Q 
from following sketch . Scattering is assumed to depend only on the 

, 
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-. -. 
angle e (or its cosine ) where QI.Q = cos e = ~o' Then a quantity 

NSaS(~o)d~o can be defined as the probability per centimeter of a 
neutron being scattered from QI into an elemental ring of area 
2~ ~o with direction cosines between ~o and ~o + d~O' Then 

or 

NSd"O 12

• "seit,S;, )d ,y = NS"S ("O)d"O 
1jr=O 

27 

For k = 0, the right s i de of equation (C2) is the scattering 
function integrated over all velocity directions so that as 0 is the , 
total microscopic cross section for scatteri ng . 

For k = 1, Pl(~O) = ~O sO that as,l is 
cosine ~O of the scattering angle . 

Now 

as 0 times the average , 

where as,O is the probability that a neutron is scattered and 

p(~O)d~O is the probability that the scattered neutron has the direc ­

tion cosine ~O between ~O and ~O + d~O' This probability must be 
independent of the coordinate system, therefore 

p(~O)d~O = p (v)dV 

where p(V)dV is the probab i lity of scattering 
2~ d (cos ec ) in the center of mass system where 

angle in the center of mass system and v = cos 

the angle 
is the scattering 

Assumption of spherically symmetrical scattering in the center of 
mass system implies 

2~dv 1 
P (v ) dv = ~ = "2 d v 

Therefore, 
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Applying the laws of conservation of energy and momentum for elas ­
tic collision of a neutron with a stationary nucleus of mass M, yields 

~O = 1/2 
(M2 + 2Mv + 1) 

(C3 ) 

which relates the cosine of the scattering angle in the laboratory sys­
tem to that of the center of mass system. Equation (C2) can then be 
written 

Equation (C3) enables the integral in (C4) to be evaluated for 
k=O,l,2,3 in a straightforward manner with the results 

2 
°S,l = 3M °S,O 

"8,2 = "8,0 {~ - ~ - 3~ (M2 - 1/ In (~ ~ iY} 

(C4) 

(C5) 

The special case of an infinite atomic mass A~ (often assumed for 

heavy nuclei) gives Os 1 = Os 2 = Os 3 = 0 which follows from equation 
, , J 

(C5). Scattering is then isotropic in the laboratory system of reference, 
as well. For light atomic nuclei, the scattering is predominantly for­
ward in the laboratory system. 

Equations (C5) enable the calculation of Os k for the P3 approx-, 
imation of transport theory. In particular, the values obtained were 
used to calculate ak -Ceq. (Cl) L bk, and ck appearing in the flux 

equations for the regions A, B, and C. Only the hydrogen nuclei of the 
water region were assumed to have a finite mass number. 
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TABLE I. - RECTANGULAR GEOMETRY 

[Homogeneous value of Rn == 0.712.J 

Total 'rotal Total fuel R R - 0 . 712 
production absorption absorption 

Self-shielding factors for two-region cells 

Transport theory, P3 

Unbound 0.1993 0.1987 0.1436 0.7227 0.0107 

Bound .1993 .1993 .1449 .7270 .0150 

Diffusion theory, P2 

Unbound .1993 .2006 .1438 .7163 .0048 

Bound .1993 .1989 .1432 . 7200 .0080 

Self-shielding factors for three -region cells 

Transport theory, P3 

Unbound 0.1993 0.2029 0.1399 0.6895 -0.0225 

Bound .1993 .2039 .1406 .6896 -.0224 

Diffusion theory, P2 

Unbound .1993 .2006 .1404 .6999 -.0121 

Bound .1993 .2026 .1418 .6999 -.0121 

I 

~ 

_ _ __ .-1 
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TABLE II. - CYLJNDRICAL GEOMETRY 

[RH = 0.712] 

Production Absorption Fuel R R - 0.712 
per per absorption 

(cc }(sec) (cc)(sec) per 
(cc)(sec) 

Self-shielding factors for two-region cell 

Transport theory, P3 

Unbound 1.000 0.9880 0.7248 0.7336 0.0216 

Bound 1.000 .9932 .7305 .7355 .0235 

Diffusion theory, P2 

Unbound 1.000 .9790 . 7047 .7198 .0078 

Bound 1.000 .9802 .7070 .7213 .0093 
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Figure 2 . - Concluded . Neutron flux distribution . 
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Water + 
uranium 

0 .19926 
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(a) Used to obtain equivalent two ­
region cylindrical cell . 

r = b = 0 .4544 cm 

(b) Equivalent two - region cylin­
drical. cell. 

. "\. 

Figure 3. ~ The cylindrical cell . 
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Figure 4 . - Cylindrical coordinate system . 
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Figure 5 . - The unbound two-region cylindrical cell having same homogeneous self-shielding factor as slab 
cell (0.712). 
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