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SUMMARY 

Approximate shapes of nonlifting bodies having mlnlmum pressure fore
drag at high supersonic airspeeds are calculated . With the aid of Newton's 
law of resistance, the investigation is carried out for various combina
tions of the conditions of given body length, base diameter, surface area, 
and volume. In general, it is £ound that when body length is fixed, the 
body has a blunt nosej whereas , when the length is not fixed, the body 
has a sharp nose. The additional effect of curvature of the flow over 
the surface is investigated to determine its influen'ce on the shapes for 
minimum drag. The effect is to increase the bluntness of the shapes in 
the region of the nose and the curvature in the region downstream of the 
nose. These shape modifications have, according to calculation, only a 
slight tendency to reduce drag . 

Several bodies of revolution of fineness ratios 3 and 5, including 
the calculated shapes of minimum drag for given length and base diameter 
and for given base diameter and surface area, were tested at Mach numbers 
from 2.73 to 6.28. A comparison of theoretical and experimental foredrag 
coefficients indicates that the calculated minimum- drag bodies are reason
able approximations to the correct shapes . It is verified, for example, 
that the body for a given length and base diameter has as much as 20 per
cent less foredrag than a cone of the same fineness ratio . 

INTRODUCTION 

The shapes of nonlifting bodies of revolution having IDlnlmum pressure 
drag at supersonic speeds have been the subject of numerous theoretical 
investigations. Karman (reference 1) determined the shape of such a body 
(neglecting base drag) with given length and base diameter. Somewhat 

l.Supersedes NACA RM A51K27, "Bodies of Revolution for Minimum Drag at 
High Supersonic Airspeeds," by A. J . Eggers, Jr., David H. Dennis, 
and Meyer M. Resnikoff, 1952, and NACA RM A52D24, "Supplementary Note 
on Modified-Impact-Theory Calculations for Bodies of Revolution Having 
Minimum Drag a t Hypersonic Speeds,1I by Meyer M. Resnikoff, 1952. 
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later Haack (reference 2), Ferrari (reference 3), Lighthill (reference 4), 
and Sears (reference 5) calculated body shapes having minimum pressure 
drag for various other given conditions using methods similar to those 
first employed by Karman. In all these investigations the assumption of 
small perturbation, potential flow was made . It is to be expected, there
fore, that the shapes obtained by these investigators are representative 
of minimum- drag body shapes of practical fineness ratios at low supersonic 
Mach numbers . 

Perhaps the first calculation of the shape of a body having mlnlmum 
drag was made by Newton (reference 6) using a method analogous to the 
present day calculus of variations. Newton was concerned with determining 
the body of given length and base diameter having minimum resistance when 
moving at sufficiently high speeds t o insure that the inertia forces are 
large compared to the elastic forces in the immersing fluid . Thus , as 
shown by Sanger (reference 7) and Epstein (reference 8) , the law of resist
ance adopted by Newton approximates that (neglecting viscous forces ) for 
hypersonic air flows. According to this law, the local resisting pressure 
is proportional to the square of the free - stream velocity component normal 
to the body surface . Legendre (see, e.g., reference 9) further investi
gated Newton ' s problem and concluded that if no restrictions were imposed 
on the variation of slope along the surface , a body having a meridian curve 
composed of jagged lines (sharp edges forward ) could be constructed which, 
with this law of reSistance, would have less drag than Newton's body . It 
may easily be deduced, however, that Newton ' s law of resistance would not 
be satisfied on the surface of Legendre ' s body since gas would be trapped 
in a number of regions along the jagged contour. It may be shown in fact 
t hat when this law of resistance is satisfied at the surface - in which 
case the surface angles must lie between 0 and ~/2 radians - then 
Newton ' s body may be considered the minimum pressure drag body for the 
given conditions . 

It has been undertaken in the present report, using Newton's law of 
resistance and the calcull~s of variations , to determine body shapes having 
minimum pressure drag (neglecting base drag ) at high supersonic speeds for 
various combinations of the conditions of given length, base diameter, 
surface area, and volume . The effect of curvature of the flow over the 
surface is also investigated to determine its influence on the shapes for 
minimum drag . 

Several bodies of revolution, including two of the bodies determined 
from this analysis , were tested at Mach numbers from 2.73 to 6.28 in the 
Ames 10- by 14-inch supersonic wind tunnel . Foredrag data at zero lift 
obtained from these tests are compared with the analytic predictions to 
assess the accuracy of the theoretical considerations . 
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local cross-sectional area of body 

local speed of sound 

drag coefficient ( 4]) 2) 
qort'd 

pressure coefficient (P ~oPo) 
constant of integration 

pressure foredrag 

maximum body diameter 

integrand function 

drag parameter(...1L) 
21!qo 

hypersonic similarity parameter 

body length 

Mach number (~) 
distance measured normal to surface of body 

exponent in equation defining shapes of experimental test bodies 

static pressure 

dynamic pressure 

radius of curvature of streamline in plane containing axis of 
syrmnetry (1. e., meridi an plane) of body 

body surface area 

resultant velocity 

body volume 

coordinates of point on meridian curve of body (origin of coordinate 
system coincides with nose of body, and X axis coincides with 
axis of synnnetry) 
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ratio of specific heat at constant pressure to specific heat at 
constant volume 

angle (in meridian plane) bet'Ween i"ree-stream direction and 
tangent to body surface 

A Lagrange multiplier 

p density 

Subscripts 

o free-stream conditions 

~ values at nose point of meridian curve 

2 values at base point of minimizing curve 

+ righ~and limiting value of quantity at corner on minimizing curve 

left-hand limiting value of quantity at corner on minimizing curve 

B values along meridian curve 

c cone values 

THEORY 

The investigation undertaken here is concerned 'With the shapes of 
nonlifting bodies of revolution having minimum pressure foredrag at 
high supersonic airspeeds, Difficulties inherent in the calculation of 
these shapes make it desirable to simplify the drag equation insofar as 
is practicable, consistent with retaining the salient features of the 
dependence of drag on body shape and fr8e-stream conditions, Likewise, 
in view of the several conditions to be treated (viz" given length, 
base diameter, volume, and surface area), it is convenient to set up a 
procedure of analysis to fit the general problem at hand, These funda
mental considerations will be discussed prior to the determination of 
specific minimum.-drag shapes, 

,. 
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Fundamental Considerations 

Simplified drag theory.- As pointed out in the introduction, 
Newton's law of resistance applies approximately to bodies traveling 
at high supersonic airspeeds. This observation has basis in the fact 
that at such speeds the inertia forces predominate over the elastic 
forces in the disturbed air. Thus, oblique shock flows approach the 
corpuscular-type flows treated by Newton as the Mach number of the free 
stream becomes large compared to 1. If it is further assumed that 
1 of the disturbed fluid approaches 1,2 the shock~ave angle approaches 
the flow-deflection angle (see sketch). In this case the pressure 

Body surface 

coefficient at a point just downstream of the wave is given by the 
simple expression (reference 8) 

Cp = 2 sin2 5 (1) 

This equation is recognized, of course, as being (aside from the can
stant multiplier) a mathematical statement of Newton's law of resist
ance for corpuscular or impact-type flow. 

When the curvature of the body, and hence of the disturbed flow, 
is small in the stream direction, equation (1) should also predict the 
pressure coefficients at the surface of a body since, in this case, the 
centrifugal forces in the thin layer of air (sometimes referred to as 
the hypersonic boundary layer) between the shock and the surface shcmld 
not appreciably alter the impact pressures. When the curvature of the 
body is large in the stream direction, centrifugal forces in the fluid 
between the shock and the surface may alter the pressures at the surface 

2This assumption was perhaps first suggested by Epstein (reference 8). 
It has the advantage of simplifying the impact force analysis without 
significantly influencing its accuracy. In other words, these forces 
in flows about axially symmetric bodies are relatively insensitive to 
changes in 1 from 1.4 to 1. Interestingly enough, present indica
tions are that disturbed air flows in flight at extremely high Mach 
numbers will be characterized by values of 1 below 1.4 (see ref
erences 10 and 11). 

----- - ~-
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from those just downstream of the shock. Busemann (reference 12) 
investigated this problem and found that the pressure coefficient at 
a point on the surface of a body curved in the stream direction is 
given by the relation 

Cp = 2 (sin2 
0 + sin 

in the limit as M ~ 00 and'r --;;. 1. 

A 

o do J 
dA 

o 
cos 0 dA ) (2 ) 

In order to assess the accuracy with which the preceding equations 
may be expected to provide the pressure distributions, and thus pres
sure drags, on bodies operating at high supersonic airspeeds, the pre
dictions of these equations are compared in figure 1 with t~ose of the 
method of characteristics (obtained from reference 13) for an ogive 
operating at a value of the hypersonic similarity parameter K (ratio 
of free-stream Mach number to slenderness ratio) equal to 2, corre
sponding to a free-stream Mach number of 6 . It is evident that the 
theory of Busemann (equation (2)) yields far too low pressures down
stream of the nose, while the simple impact theory (equation (1)) is in 
reasonably good over-all agreement with the method of characteristics. s 
The relatively poor predictions of the Busemann theory are associated 
with the fact that it strongly overestimates centrifugal-force effects 
at free-stream Mach numbers which are large compared to 1, but for which 
r of the air flow downstream of the bow shock is closer to 1.4 than 1 
(i.e" at flow conditions of principal interest in this paper). This 
matter will be discussed in greater detail later in the paper. Agree
ment comparable to that just discussed is obtained with the other 
results presented in reference 13 for K = 2. For lower values of K 
the agreement of the impact theory with the method of characteristics is 
somewhat poorer, as would be expected; however, it does not become 
unacceptably poor except for values of K below 1 (e.g., the pressure 
coefficients differ by from 0 to 35 percent for a K of 1/2). It is 
therefore concluded that for values of K greater than 1, equation (1) 
may be used with acceptable accuracy for the purposes of this paper to 
predict the pressure distributions and thus pressure drags on bodies. 4 

3 The characteristics solutions of reference 13 were carried out for 
r = 1.4. Free flight at the larger values of K considered in this 
report would produce values of r downstream of the bow shock slightly 
less than 1.4; however, the small decreases in 1 would not signifi
cantly alter the results presented. 

4rrhe approximate theory of reference 14 might also be employed in an 
analysis of this type - this theory is, in fact, more accurate than 
those discussed, so long as the flow is everywhere supersonic. How
ever, the theories considered here have the advantage, as will be 
apparent later, of predicting approximately correct values of surface 
pressures for arbitrarily large surface slopes. 

------- - ----
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For this reason, and because of its simplicity, it is employed through
out the subsequent analysis. 

If the manner in which the pressure coef'ficien-c varies over the 
surface is known, it is a simple matter, of course, to evaluate the 
pressure drag of a body. Neglecting the base-drag contribution, we 
have then 

C q 1!d
2 f 1-

D = D 0 = 21! qo Cpyy1dx 
4 0 

where y' denotes the derivative dy/dx. This equation may be 
expressed in a form more convenient for use here 

(4) 

If Cp in this expression is replaced by its value given in equation 
,2 

(noting that sin2 5 = Y 2)' there is then obtained the relation 
l+y' 

f 1- 2yy'S 
ID = 2 d.x 

o l+y' 

(1) 

It remains now to consider the procedure for employing this expression 
in combination with the methods of the variational calculus in order to 
determine the desired mini~rag body shapes. 

Procedure for Calculating MinilIIUlD:-Drag Bodies 

The calculation of mini~rag body shapes of interest here is 
equivalent to determining the form of the function y = y(x) which 
minimizes the integral defined in equation (5) for the various given 
conditions. In considering the procedure for carrying out this calcu
lation, however, it is convenient, for reasons that will be apparent 
later, to write equatton (5) in a form which effectively yields the 
total drag as the sum of the drag on any finite region of infinite slope 
at the nose plus the drag on the surface downstream of the nose. Thus 
we have 

(6) 
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where the variable limit X2 is introduced to permit variations in 
body length. The conditions of given volume or given surface area are 
fixed by the auxiliary requirements that, respectively, 

2 Y dx = const. 

or (neglecting base area) 

(8) 

When the length and base diameter are given, the problem is simply 
to minimize the function ID given by equation (6). However, according 
to the isoperimetric rule of the calculus of variations (see, e.g., 
reference 15), the problem of minimizing the function ID, subject to 
the auxiliary condition given by equation (7) or (8), is equivalent to 
minimizing the new function JD, where 

or 

S 
JD = ID + )..-

21t 
(10) 

depending on vhether the volume or surface area is given. The paramet.er 
A is a constant, sometimes called the Lagrange EUltiplier. 

Wi th the aid of equations (6) through (10), the integrand functions 
to be minimized can be immediately written. These functions are as 
follovs: 

case a, given length and base diameter 

2yy,3 
f = 2 

l+y' 

case b, given volume and length or base diameter 

2 1 3 2 
f = IT + 'Ay 

1+y'2 

(11) 

(12 ) 

• 
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case c, given surface area and length or base di run.eter 

2 ,3 j 
f = YY + AY 1 + y,2 

2 
l+y' 

9 

(13) 

Now any function y = y(x) which minimize s equation (6), (9), or 
(10) must, irrespective of the given conditions, satisfy the Euler 
equation (for zero first variation of ID or JD with small changes in 
the function y(x» 

(14) 

where fy' and fy denote the partial deri vati ves df and. df, respec-
dY' dY 

tively. Since the integrand functions g1 ven above are free of the 
independent variable, the first integral of the ~Jler equation for 
these functions follows immediately, namely, 

y' fy, - f = const. (15) 

Substituting, successively, equations (11), (12), and (13) into this 
equation there are then obtained the expressions 

const. (16) 

canst. 

and 

(18) 

for cases a, b, and c, respectively. Solutions to these differential 
equations satisfying the terminal conditions on the bodies are minimiz
ing curves for the given conditions. 

When the end points of a minimizing curve are not fixed, other 
terminal conditions must be imposed on the function y = y(x). Thus, 
to determine the ordinate at the nose, it is required that (see ref-

• erence 16) 
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= 0 (19) 

for cases a and b, while 

)..y' -(2+)..) ] = 0 
Jl+y ,2 Y=Yl 

(20) 

for case c. Similarly, when the length is not given it is necessary 
that 

(21) 

and when the base diameter is not given it is required that 

(22 ) 

In addition to the above described conditions, two checks must be 
made to determine completely the shape of a minimizing curve. The first 
of these checks entails ascertaining whether there are an:y corners 
(between the end points) on the curve. This is accomplished by deter
mining whether the f'unction y = y(x) can satisfy the requirement that 
(see reference 15) 

f = f , 
y'+ y-

(23 ) 

at a point of discontinuity in y'. If this equation is not satisfied, 
no corners exist. The second check requires that the Legendre condition 
(for a positive second variation), 

f > 0 ytyt - (24 ) 

be satisfied everywhere on the curve. With the aid of these checks, the 
minimizing curves for various combinations of the conditions of given 
length, base diameter, volume, and surface area can be uniquely defined. 
The calculation of these curves for several such combinations is now 
undertaken. 
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Calculation of Minimum-Drag Bodies 

Given length and base diameter.- Equations (16) and (19) give the 
first integral to Euler's equation and the terminal condition at the 
nose, respectively, for these given conditions. It is evident upon 
examining these equations that the minimizing curve cannot, in general, 
pass through both the points (0,0) and (X2,Y2), but must, in fact, have 
its forward termination point at (0,Y1) with Y1' = 1. With this infor
mation, the minimizing curve can be represented in parametric form, 
namely, 

2 
Y1 (1 + y,2) 

Y = - :3 
4 y' 

x = Y1 (_3_ + ~ _ I + "Zn Y') 
4 4yI4 yI2 4 

(25 ) 

It is easily shown with the solution to the Euler equation and equa
tion (23) that there are no corners on the minimizing curvej5 thus the 
variation of Y with x is readily determined with the relations of 
equation (25) for a given "Z and d (corresponding to a given X2 and Y2) 
of a body. These relations for a body of given fineness ratio can be 
shown to be equivalent to those originally developed by Newton (see ref
erence 6). 

Given len~h and volume.- For these given conditions, the terminal 
conditions (equations (19) and (22» require the slopes at the nose and 
at the base to be, respectively, Y1' = 1 and Y2' = O. The first inte
gral to the Euler expression (equation (17» then leads to the following 
parametric representation of the minimizing curve: 

y 

x = r d.y 
~ y' Yl 

1 
r 

J 

(26 ) 

5Similarly, it can be shown that there are no corners between (0,Y1) 
and (X2,Y2) on any of the minimizing curves to be treated here. 

- -- -------
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From the relations of equation (26) it is clear, again, that the mini
mizing curve cannot pass through (0,0), the condition Yl' = 1 deter
mining a value Yl >0. These relations, together with the volume 
condition (equation (7)) and the given length condition, serve to 
determine Yl and A and thus, of course, the shape of the entire body. 
As the length approaches 0, A becomes infinitely negative; while, as 
the length becomes infinitely large, ~ approaches O. (In the latter 
case the body shape approaches the miniIlIl.lID--<lrag shape for the given 
length and diameter condition, Lid ->~.) Intermediate negative values 
of A correspond to intermediate values of length for a given volume. 

Gi ven length and surface area.- In this case a first integral to 
the Euler equation is given by equation (18), and the parametric repre
sentation of the 'minimizing curve may be written immediately in the 
form 

2 
= const. (1+y,2) 

y :3 2 3/2 

4yl - A(l+y' ) 

x = f d~ 
Yl Y 

(27) 

Upon examination of this equation and equations (20) and (22), it 
becomes apparent that, again, the minimizing curve cannot go through 
the point (0,0). The latter equations determine uniquely, however, the 
values of Yl' (Yl '< 1), and Y2' (0< Y2' <Yl'), in terms of the param
eter A. Similarly, the length and surface-a.rea comi tion in combill&
tion with the above equations determines tb.a value of A.. Thus 1 t 1s 
easily shown that the practical range of A is from -e to ° (corre
sponding to body lengths of from zero to infinity for a given surface 
area - in the latter case the Newton body is again ootained). 

Given base diameter and volume.- With these given conditions, the 
first integral to the Euler relation is given by equation (17), while 
the terminal conditions at the fore-and-aft ends of the body are fixed 
by equations (19) and (21), respectively. It is evident that the mini
mizing curve must, in general, pass through the origin in order to 
satisfy all these equations in addition to the Legendre condition 
(equation (24)). The shape of the minimizing curve may thus be defined 
parametrically as follows: 

--~-- -- ---- ----
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y 

(28 ) 

where Yl' = O. Combining this expression with equation (7), there is 
then obtained for the volume of the body 

(29 ) 

The range of A for which t hese results are applicable6 is from 

zero to 3~/4Y2' corr esponding to a volume range from infinity to 

1f Y2 S ./3/5. For a given Y2 and a given V>1f. Y2
3 ./3/5 (corresponding 

to ~ > J312), equation (29) has two solutions in Y2'. One solution 
yields values of Y2' greater than J3, which result violates the 
Legendre condition (see equation (24)), while the other yields permis
sible values less than .fj. When Y2 and Y2' are known, A may then be 
determined from the first relation of equation (28), namely, 

The determination of y and x follows directly, of course, from 
equation (28). 

(30) 

Given base diameter and surface area.- In this case equations (18), 
(20), and (21) determine the shape of the minimizing curve as being 
simply a straight line 

y x 

2/3 
(A/4 ) (31) 

where the parameter A is given by the equation 

6 The solution given here is not applicable to bodies of extremely small 

fineness ratios (viz., ~<f) as can be easily deduced from 
equation (28). 
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(32 ) 

Thus, the minimum-drag body for given base diameter and surface area is 
a cone. 

Comparison of Minimum-Drag Body Shapes 

The previous calculation of minimum-drag bodies reveals two 
general characteristics of their shapes; namely, when the length is 
given (fixed) the bodies assume blunt noses, whereas, when the length 
is not given (i.e., is free), the bodies assume sharp noses. The 
former characteristic may be traced to the fact that with the length 
restricted, the net drag is reduced by accepting higher pressures on a 
relatively small area of large slope near the nose, thus achieving 
lower pressures on a relatively large area of small slope near the base. 
On the other hand, when the length is not restricted it is evident that 
a sharp rather than a blunt nose will obtain for minimum drag, since 
the drag of any blunt-nosed body can be reduced by simply relaxing the 
requirement on length, thereby allowing the body to be made sharp nosed 
and generally more slender. 

In order to permit a quantitative comparison of the shapes of the 
calculated minimum-drag bodies, typical meridian curves for these bodies 
are shown in figure 2. For simplicity the bodies are compared on the 
basis of the same fineness ratio - ordinates have been plotted to an 
expanded scale to better indicate the relative shapes. The maximum 
bluntness is evidently obtained when the drag is minimized for a given 
length and surface area, while the maximum sharpness (a cusp nose) is 
obtained when the base diameter and volume are given. It is apparent 
from figure 2 that the flat-nosed portions of the meridian curves for 
the given length bodies are in all cases very small. For example, 
y l equals O. 0050y E for the body of gi ven length and volume. On the bas is 
of several calculations it is indicated, as might be expected, that the 
degree of bluntness will increase with decreasing fineness ratio. 

It is also of interest to compare minimum-drag body shapes deter
mined with the aid of the linear theory (see, e.g., reference 2) with 
those found using the impact theory, that is, bodies especially suited 
for flight at low and high supersonic speeds, respectively. Such a 
comparison is shown in figure 3 for the case of given length and base 
diameter. It is seen that qualitatively the shapes are similar although 
the mini~rag body for low supersonic speeds is generally the fatter 

1 

__ ~ ___ ~~_J 
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of the two.7 Comparisons of the results of this paper with those of 
reference 2 for other given conditions also indicate qualitative agree
ment as to general body shapes despite the marked difference in the laws 
governing the surface pressures. 

All the preceding analysis has been predicated on the assumption 
that the flow of air at high supersonic speeds may, insofar as pressure 
forces are concerned, be approximated by a Newtonian-type flow. It 
remains now to test the accuracy of this assumption and other aspects 
of the analysis by experiment. 

EXPERIMENT 

It has been undertaken to obtain a partial check on the findings of 
the preceding theoretical analysis by determining experimentally the fore
drags on a family of bodies of given fineness ratios at Mach numbers from 
2.73 to 6 .28. The analysis .may be expected to apply, at least approxi
mately, in this range since for the bodies tested the corresponding values 
of the hypersonic similarity parameter K were, for the most part, greater 
than 1. A brief description of these tests is now presented. 

Apparatus and Tests 

The tests were conducted in the Ames 10- by 14-inch supersonic wind 
tunnel, which is of the continuous-flow nonreturn type and operates with a 
nominal supply pressure of 6 atmospheres. The Mach number in the test 
section may be varied from approximately 2.7 to 6.3 by changing the rela
tive positions of the symmetrical top and bottom walls of the wind tunnel. 
During operation at the higher Mach numbers, the supply air is heated 
before it enters the wind tunnel to prevent condensation of the air. A 
detailed description of the wind tunnel and its associated equipment and 
of the characteristics of the flow in the test section may be found in 
reference 17. 

Aerodynamic drag forces were measured with a strain-gage balance. 
Tare forces on the sting supports were essentially eliminated by shrouds 
that extended to within 0.040 inch of the model base . Axial forces on the 
bases of the models were determined from measured base pressures and from 

7Part of this difference in shapes stems from the fact that the body 
derived using linear theory was required to have zero slope at the base. 
Also, as will be shown later, the true minimum-drag shape at high super
sonic airspeeds may be somewhat fatter than that obtained using impact 
theory, due to the fact that centrifugal forces are neglected in this 
theory. 
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free-stream static pressures and were subtract ed from measured total drag 
forces ; thus) the data presented do not include the forces acting on the 
bases of the test bodies . 

were: 
Reynolds numbers based on the maximum diameter of the test bodies 

Mach number 

2 .75 
3· 50 
4.00 
5·05 
6 .28 

Reynolds number ) 
million 

0 .70 
. 95 
. 72 
. 35 
.15 

Reynolds numbers based on model length may be obtained by multiplying the 
above values by model fineness r atio . 

Models 

Five models of fineness ratio 3) and three models of fineness ratio 5 
were tested . With the exception of an Lid = 3 tangent ogive (thi s shape 
was included as being typical of those in common usage) ) all models had 
meridian section shapes given by the equation 

where n was given values of 1) 3/4) 1/2 ) and 1/4 . When n = 3/4, the 
body shapes defined by the above expression closely approximate the 
minimum- drag shapes for given length and base diameter (equation (25))8 
for Lid = 3 and 5 (see fig. 4) . 

When n = 1, the cone is) of course ) obtained which is the illlnlmum
drag body for a given base diameter and surface area . Mini mum-drag shapes 
for two different given conditions are thus included among the bodies 
tested. 

Photographs of the eight models tested are shown in figure 5 . The 
Lid = 3 bodies (fig. 5 (a)) are ) from left to right in the photograph , 
the cone , 3/4-power body, 1/2- power (parabolic) body, Ij4- power body) 
and t he tangent ogive which has a profile section radius of curvature 
of 9 . 25 body diameters . From left to right in figure 5(b) are the 
Lid = 5 cone ) 3/4-power body, and 1/2- power body . The base diameter of 
all models was 1 inch . 
BThe accuracy of this approximation increases with increasing values of 

Z/ d as can easily be seen upon examination of equation (25). 

--- - --- ~- --- --- - - - - - -----
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Accuracy of Test Results 

The accuracy of the foredrag coefficients is effected by uncertain
ties in the measurements of the following quantities: stagnation pres
sures, free-stream static pressures, base pressures, and the forces on 
the models as measured by the strain- gage balance. 

Both static and free- stream dynamic pressures were determined from 
wind-tunnel calibration data and stagnation-pressure readings. The latter 
measurements were accurate to within ±l/2 percent, thus static and dynamic 
pressures are uncertain by this amount plus possible calibration errors 
of ±l percent over the Mach number r ange of the tests. The uncertainty 
in foredrags due to inaccuracies in the determination of base pressures 
does not exceed ±l percento 

Because of the small drag forces measured, the source of greatest 
error was the strain-gage balance system. The uncertainty in drag due 
to zero shifts, thermal effects, and friction varied from approximately 
±2 percent at the lower Mach numbers to ±6 percent at the highest Mach 
numbers. 

The combined effects of all the sources of error result in probable 
uncertainties in measured foredrag coefficients of from ±O.OOI at the low 
Mach numbers to ±0.005 at a Mach number of 6.28 . In order to reduce this 
error in the data presented here, particularly at the higher Mach numbers, 
several measurements were made at each Mach number and the average values 
of foredrag coefficients were employed. 

RESULTS AND DISCUSSION 

The variations with Mach number of the measured foredrag coefficients 
are shown in figure 6. It is evident that the 3/4-power bodies do, as 
predicted, have the minimum fore drags of all the test bodies with the same 
fineness ratio, the drag of the 3/4-power body being as much as 20 percent 
less than that of the cone of the same fineness ratio. The general 
increase in foredrag at Mach numbers in the neighborhood of 5 and greater 
can be traced to an increase in friction drag. This latter increase is, 
in turn, caused by the relatively large decrease in Reynolds number with 
increasing Mach number in this range (see section on Apparatus and Tests). 

A check on the over-all accuracy with which the optimum shapes are 
predicted by the analysis is obtained by comparing theoretical and experi
mental values of the relative foredrag coefficients of the test bodies. 
Such a comparison is given in figure 7 where the ratios of the foredrag 
coefficients of a test body to the corresponding coefficients of the cone 
of the same fineness ratio are shown as a function of the exponent n in 
equation (33) which defines the shapes of the test bodies. The theoretical 
predictions of the impact theory appear to be in good agreement with the 
experimental results at the higher values of n (approximately n > 0.6) . 
Thus it is suggested that the 3/4-power body is a reasonable approximation 

--~ -- - ---- - --------~~~ 
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to t he correct minimum-foredrag shape of given fineness ratio. At the 
lower values of n, however, it is indicated that the relative drag is 
significantly overestimated by this theory. This result is not entirely 
surprising since the theory neglects centrifugal-force effects in the 
disturbed flow, and these effects must appreciably alter the pressures 
over the highly curved noses of the blunter bodies. 

As discussed earlier, the Busemann theory for infinitely high Mach 
numbers overestimates these effects at the Mach numbers of interest here. 
It has therefore been undertaken in Appendix A of this paper to obtain a 
better estimate of centrifugal forces by accounting approximately for the 
decrease in these forces (at finite but high Mach numbers) associated with 
the increase in the lateral extent of the distrubed flow field with 
increasing distance downstream from the nose of the body . The predictions 
of the modified impact theory shown in figure 7 were obtained with the 
aid of this estimated centrifugal-force effect (see equation (A9)) in 
combination with equations (1) and (3). It is indicated that this theory 
is markedly superior to the impact theory at the lower values of n, cor
responding to the blunter bodies, over the test Mach number range . The 
estimate of the centrifugal forces would thus appear t o be in fair agree
ment with the actual magnitude of these forces . 

It is also indicated in figure 7 that at the higher test Mach numbers 
(hence higher values of K),9 the modified theory is generally somewhat 
superior to the impact theory. This result suggests that improved approxi
mations to the correct minimum- foredrag shapes for values of K appreci
ably greater than 1 may be obtained by using this theory rather than the 
simple impact theory. Accordingly, calculations of minimum- drag shapes 
have been made using the modified impact theory in the manner discussed 
in Appendix B. The body shapes obtained (see Appendix B) are for the same 
given geometric conditions as those previously determined using impact 
theory . The resulting shape for given length and diameter is shown i n 
figure 8 . Newton's body of the same fineness ratio is also shown for 
comparison . The body shape determined by the modified theory is somewhat 
more blunt in the region of the nose and has more curvature in the region 
downstream of the nose than Newton's body. A similar comparison is shown 
in figure 9 for the bodies of given base diameter and surface area. In 
this case both bodies have pointed noses because the length is not fixed, 
but, in the same manner as for the bodies of given fineness ratiO, the 
shape calculated with the modified theory has more curvature in the region 
aft of the nose than does the body calculated with the impact theory. 
This result is not surprising in view of the pressure relieving effect 
of centrifugal forces. 

Calculation of the drag of these bodies i ndicates that those obtained 
using Newtonian theory will as expected have the higher drag at hypersonic 
speeds, although not by more than a few percent. This result suggests 

SThe highest value of K in the present tests was 2.1. 
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that consideration of centrifugal forces will , in the practical case, 
principally influence the shape and not the drag of minimum drag bodies o 

CONCLUDING REMARKS 

It has been undertaken i n this report to determi~ approximately 
the shapes of several bodies having minimum pressure foredrag at high 
supersonic a irspeeds. With the aid of Newton ' s law of res i stance and 
the calculus of variations, an investigation was carried out for various 
combinations of the conditions of given body length, base diameter, sur
face area, and volume. In gener al , it was found that when the length is 
fixed, the body has a blunt nose (i.e., a finite area of infinite slope 
at the nose) as in the classical problem considered by Newton; whereas 
when the length is not fixed the body has a sharp nose. 

Several bodies of revolution of fineness ratios 3 and 5, including 
the calculated minimum- drag bodies for given length and base diameter 
and for given base diameter and surface area, were tested at Mach num
bers from 2.73 to 6 .28 in the Ames 10- by 14-inch supersonic wind tunnel . 
A comparison of the relative theoretical and experimental foredrag coef
ficients indicated that the calculated minimum-drag bodies were reasonable 
approximations to the correct shapes. It was verified, for example , that 
the minimum-drag body for a given length and base diameter has as much as 
20 percent less foredrag than a cone of the same fineness ratio. The cone 
is, however, the calculated minimum- drag body for a given base diameter 
and surface area . 

The comparison between theory and experiment also indicated that the 
centrifugal forces in the flow about bodies curved in the stream direction 
may influence their drag. The relative extent of this influence was found 
to be predictable, particularly at the higher Mach numbers, with a simple 
modification to the impact theory of Newton . It was therefore suggested 
that improved approximations to minimum foredrag shapes at high supersonic 
airspeeds (for which the hypersonic similarity parameter has a value 
appreciably greater than 1) may be calculated with the aid of the modified 
impact theory. Such a calculation was carried out for bodies with the 
same given conditions as those calculated with the Newtonian theory. In 
general, the resulting shapes were found to be somewhat blunter in the 
region of the nose , to have more curvature in the region downstream of 
the nose, and to have slightly lower drag than the corresponding shapes 
obtained using the simple impact theory. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Dec . 14, 1955 
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APPENTIIX A 

ESTIMATED EFFECT OF CENTRIFUGAL FORCES 

ON SURF ACE PRESSURE COEFFICIENTS 

An estimate of the effect of centrifugal forces on the pressures 
at the surface of a body operating at high but finite Mach numbers may 
be obtained by comparing the disturbance flow fields at these Mach 
numbers with that associated with infinitely large Mach number. 

At high Mach numbers the disturbed air flows in a relatively thin 
region (sometimes termed the hypersonic' boundary layer) between the bow 
shock wave and the surface of the body (see sketch). 

U 
y Streamline 

Body surface 

~ ______________________ ~____________________ x 

The change in pressure from the surface to the shock due to centrifugal 
forces in the fluid is given by the equation 

assuming the directions of the normals to the streamlines between the 
surface and the shock do not differ appreciably from the direction of 
the normal to the surface. This expression is more conveniently written 
in the form 

N 

b.p = g J P UdN 
R 0 

(Al) 

where IT and R are mean values of the velocity and radius, respec
tively, in the interval N. Now the mass m of air between the surface 
and the shock flowing (in unit time) by a point on the body is given by 
the relati on 

N 

m ~ 21ty J P UdN ~ 1f.y2 Po Uo 
o 

(A2 ) 
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Combining equations (Al) and (A2) there is then obtained for the pres
sure change 

or in coefficient form 

_ bp _ Y U 
~Cp - go - ~ U

o 
(A3 ) 

Now in the limit as the Mach number approaches infinity and 7 of the 
disturbed fluid approaches 1, the thickness of the layer becomes infini
tesi~ and hence 

(A4) 

Similarly, it is easily shown (e.g., vith the compatibility equations 
applying along characteristic lines in axially symmetric supersonic 
flaw) that 

dU = 0 

along any streamline downstream of the bow shock, and thus that 

y 

U = 2U~ 1 y cos D dy 
y 0 

(A5 ) 

Hence, in this limiting case, equation (A3) takes on a form equivalent 
to that first deduced by Busemann (see second term on right of equa
tion (2», and later derived in reference 18, namely, 

vhere 

bCp - 2 f Y Y cos 5 dy 
RBy 0 

...1.... = sin D dD 
~ dy 

(A6) 

On the other hand vhen the Mach number is finite, but high, and I 
of the disturbed fluid is closer to 1.4 than 1, the preceding evalua
tions of R and U are in considerable error since the hypersonic 
boundary layer, although thin, is no longer of infinitesimal thickness. 
This change in the boundary layer results from the fact that the bov 
shock is detached (except perhaps at the nose) from the surface of the 
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body, the lateral distance from the surface to the shock increasing 
with increasing distance downstream from the nose (see sketch). Thus, 
for example, B would be expected to approach RB only near the nose, • 
while with increasing distance downstream of the nose it would be 
expected to become larger than RE. From the pressure distributions 
presented in reference 13 it is indicated, in fact, that for K>l (the 
range of K's of interest in this paper) R»RE near the maximum 
ordinate of the body. (This indication follows from the small values 
of the pressure coefficients near the maximum ordinate.) It is sug-
gested, therefore, that at the high supersonic speeds under consider-
ation, an approximation to R is given by the relation 

Similarly, in the case of U it no longer follows that the magni
tude of the velocity must be constant along streamlines downstream of 
the bow shock since pressure disturbances can now be transmitted across 
streamlines. Thus a better first approximation to U than that given 
by equation (A5) :may be obtained from the simple corpuscular or impact 

1.0 theory, namely, 

u = Uo cos 5 (AS) 

Combining equations (A3), (A7), and (A8), the estimated change in pres
sure coefficient at the surface of a body due to centrifugal forces in 
high supersonic speed flow is obtained in the form 

~Cp =L (1 - L) cos 5 
BB Y2 

or 

~Cp = l.. (1 - L) ..L (sin2 5) 
2 Y2 dy 

T~i th this theory, acceleration of the flow along a streamline is 
qualitatively accounted for. 

(A9) 
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APPENDIX B 

CALCULATION OF MINIMUM-DRAG BODIES, WITH 

CONSIDERATION OF CENTRIFUGAL FORCES 

IN THE DISTURBED FLOW FIELD 

Given Length and Base Diameter 

For the purpose of this calculation, equations (1) and (A9) for 
the pressure coefficient are combined with equation (4) to yield the 
drag parameter in the form 

23 

X2 

ID = Y1
2 

+CP (Yl) + J [2 sin
2 

0 + ~ (1_ ~) ty sin
2 

0] yy'dx (Bl) 
o 

2 
The term Yl represents the drag on any finite region of infinite 
slope at the nose, while the function CP(Yl), given byll 

2 
Yl 

= ---
2 

(1 _ Yl) 
Y2 

represents a "leading-edge thrust" due to the acceleration of the air 
flow about a corner (if it exists) at (O,Yl). 

The expression (Bl) may be put in the form 

,2 
whereupon (recalling sin2 0 = y 2) the integrand simplifies to a 

l+y' 
function f given by the relation 

l~his function may be obtained by evaluating 

Yl+E 

lim J y2 (1 - yY ) ~y (sin2 o)dy 
E~O 2 2' u.y 

Yl-E 
along the body-surface streamline about the corner at (O,Yl)' 
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f = yy ' 2 _ 2' -::;;. ~ 1 + 3 Y) 
1 + y t 2 

With the aid of this expression and equations (15) and (19 ) the para
metric r epresentation of the mi ni mizing curve can be obtained in the 
following form : 

15Y2 t3 2 

Y 
Y2 -1 + 1 + 

(1 + y t 2 ) 
= -

3 (1 + Y2 t 2 )2 yt3 
(B2) 

x = jY d~ 
Yl. Y 

where 

Yl t 1 

and, in general, 

Yl > 0 

The minimizing curve given by these relations, similar to the curve 
obtained from the impact pressure treatment, does not have a corner 
between the points (0, Yl) and (X2, Y2 )' The minimum-drag shape defined 
by equation (B2) is compared in figure 8 with that determined earlier by 
considering impact pressures only. 

The equations defining the minimizing curves for -the other given 
geo.metric conditions are obtained in a similar manner. 

Given Length and Volume 

_y t3 + y r6 + c(l + y t 2 ) 2-_ 2[3 t3 
Y2 

A(l + y t2 )2] 

Y 
3y, 3 

_ A(l + y t2 )2 (B3) 
Y2 

X = jYdy 
y t 

Yl. 
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with Y1' = 1 and Y2 ' = 0.274 and a range of A from -co to 0 correspond
ing to the r ange 0 to 00 for l. 

Numerical integration of equation (B3) is accomplished by first 
evaluating the f irst integral to the Euler equation at the base of the 
body and solving for C/Y2 in terms of Y2A. Letting ~ (Y', Y2A) repre
sent the resulting function of y' and Y2A , equation (B3) becomes 

l
Y2 dy 1 °·274 ~ 

y ' = Y2 y f 
Y1 y l =1 

and the volume is given by 

v f 0 .274 2 dcp 
~ = Y23 ~ Y' = 

y f =1 

The values of the functions A and r are obtained by numerical integra
tion for various values of Y2A to enable interpolation for that value 
of Y2A which .makes r/A3 = V/nl 3

• The set (Y2A, A, r ) so determined 
sati sfies the given volume and length requirements and yields a val ue of 
the base ordinate , Y2 = l/A. 

Given Length and Surface Area 

Y 6~S { [,(1 + y ,2 )S/2 - 2y ' S}z ± 

x 

[,(1 + y ,z)"/2 _ 2y,S J Y22 + 12cy,S(1 + y'2)ZY2 } (B4) 

I
y 

dy 
y l 

o 

with a range of A given b y 

-0.64 < A < 2(1 + 3Y1) 
2Y2 

The procedure used to integrate equations (B4 ) is similar t o that employed 
to integrate equations (B3) above . 
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Given Base Diameter and Volume 

2Y2 
Y == 

AY2(1 + y t2 )2 
- 3 

y t3 
(B5) 

x == JY dy 
y t 

Yl. 

where 

3/ 2 2-AY2 == 5Y2 t (1 + Y2 t ) 

For 1/d r atios greater than 1/2, Yl. == 0, Yl. t 

Y2 f and A are 
0 , and the ranges of 

Given Base Diameter and Surf ace Area 

x 

with Yl 0 and 
(B6) 

The minimizing curve given by equations (B6) is compared in figure 9 with 
that determined earlier (the cone) by considering impact pressures only . 
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Figure 1.- Comparison of approximate and exact pressure distributions 
over a tangent ogive of fineness ratio 3 operating ot a Mach 
number of 6 (K=2). 
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