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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 3178 

CHARACTERISTICS OF TURBULENCE IN A BOUNDARY 

LAYER WITH ZERO PRESSURE GRADIENT 

By P. S. KLebanoff 

SUMMARY. 

The results of an experimental investigation of a turbulent boundary 
layer with zero pressure gradient are presented. Measurements with the 
hot-wire anemometer were made of turbulent energy and turbulent shear 
stress, probability density and flattening factor of u-fluctuation 
(fluctuation in x_direction), spectra of turbulent energy and shear 
stress, and turbulent dissipation. The importance of the region near 
the wall and the inadequacy of the concept of local isotropy are demon-
strated. Attention is given to the energy balance and the intermittent 
character of the outer region of the boundary layer. Also several 
interesting features of the spectral distribution of the turbulent 
motions are discussed.

INTRODUCTION 

The statistical theory of turbulence introduced by Taylor and 
elaborated upon by Krmn, Howarth, and Dryden has played an important 
role in providing a sound basis for the study of turbulence. In the 
main, this advance has been confined to the domain of homogeneous and 
isotropic turbulence. At present turbulent shear flows present diffi-
culties so formidable that statistical theories have made little 
progress. The older semiempirical and phenomenological theories still 
constitute the most tangible theoretical methods. It is now generally 
believed that experiment should be called upon whenever possible to 
furnish information on the actual behavior on the grounds that such 
information is needed to acquire an insight into the turbulence processes 
and to form the basis for a sound theoretical approach. 

Experimental investigations in shear flow have made encouraging 
progress, largely because of the increasing number of statistical prop-
erties that may be measured by improved hot-wire techniques. Measure-
ments have been made in the jet, wake, two-dimensional channel, pipe, 
and boundary layer (e.g., refs. 1 to 8). These have shown that the 
basic assumptions of the phenomenological theories are inconsistent
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with the experimental evidence as to the nature of the turbulent motions. 
The work of Corrsin (ref. 1) revealed the intermittent character of 
turbulent flow near a free boundary. This was later studied in some 
detail by Townsend (ref. 2) and' is now recognized as a phenomenon asso-
ciated with a sharp but irregular' division between turbulent and nontur-
bulent flow. The recent theoretical, contributions of Ko]inogoroff 
(refs. 9 and 10), Heisenberg (ref. U), and others dealing with the 
concept of local isotropy and the spectrum of turbulent energy have 
given added impetus to experimental work in shear turbulence and have 
encouraged the point of view that some of the properties of isotropic 
-turbulence may be applicable. The application of isotropy to shear 
flow has been rather extensively studied in wakes (ref. 3) and found to 
be-useful, but its usefulness in a boundary layer is still questionable, 
especially in the region near the wall. At best, isotropy belongs to 
the final or dissipation stage of shear turbulence and here can throw 
little' light on the mechanisms pertaining to shear flow. Any attempt to 
investigate the turbulence mechanism is hampered by the lack of an 
experimental technique for measurement of the pressure fluctuations. 
However, it is possible to obtain information pertaining to the energy 
balance, the study of which may be considered a proper approach to the 
problem. An important step in this direction in the investigation of 
the boundary layer was made by Townsend (ref. 6). With respect to this 
point of view the present work attempts to provide additional informa-
tion, especially for the region close to the wall, and to obtain a more 
direct measure of the dissipation without relying completely on the 
concept of local isotropy. 

Attention here is given to the boundary layer with zero pressure 
gradient under conditions as favorable as practicable for the use of 
hot-wire technique. The method of obtaining the boundary layer is 
described in reference 8, and the present work may be regarded as a 
continuation of the former work in which use is now made of an artifi-
cially thickened layer as a research tool. While there are many impor-
tant features of boundary-layer turbulence, the present investigation is 
concerned with three major phases: The intermittency and its effects 
at the free boundary, energy balance, and the spectral distribution of 
turbulent energy and shear stress. Since the boundary layer is a complex 
flow combining the effects of a free boundary on the one side and those 
of a solid wall on the other, no one part of the layer could be deempha-
sized. This makes it an interesting subject if not a simple one. 

The present investigation was conducted under the sponsorship and 
with the financial assistance of the National Advisory Committee for 
Aeronautics. The author wishes to express his appreciation to 
Dr. G. B. Shaubauer for his active support and constructive criticism 
and to acknowledge gratefully the assistance of Miss Z. W. Diehl and 
Mr. T. J. Kelly. He also wishes to thank Dr. C. M. Tchen and Dr.. J. 
Laufer for their interest and stimulating discussions.
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Cf	 coefficient of skin friction, T0/ pU12 

D -.--	 v(u2 +	 + w2 + Pi) 
P 

E(k)	 three-dimensional spectral function associated with .k 

e	 voltage fluctuation 

e1	 signal produced by u-component 

e2	 signal produced by v-component 

F	 flattening factor	 - 

Fu(ki)	 percent of turbulent energy U2 associated with k1 

f (k1)	 turbulent energy u2 associated with 

f(k1)	 turbulent shear stress 1IV associated with k1 

f (ki)	 turbulent energy v2 associated with k1 

k	 three-dimensional wave number 
1 2'	 \l/ 

= 3X e/8v3J 

k1	 one-dimensional wave number 

n	 frequency 

P(u)	 probability density of u 	 - 

P(u/u')	 probability density of u/u' 

(Pr)
dy
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p	 mean static pressure 

PO	 mean static pressure at x = 10.5 feet 

Pi	 instantaneous pressure fluctuation 

qO 	 reference dynamic pressure ahead of plate 

RX	 longitudinal space correlation coefficient of 
u-fluctuation 

R, RZ	 lateral space correlation coefficients of u-fluctuation 

S	 skewness factor 

t	 time 

U	 x-component of mean velocity 

UT 

U1	 mean velocity in free stream 

U, v, w	 instantaneous turbulent velocity fluctuations in x-, 
y-, and z-directions, respectively 

u', v', w'	 root-mean-square values of u, v, and w 

T2 I T2,	 mean-square. values of u, v, and 'w 

uv	 turbulent shearing stress 

V	 y-component of mean velocity 

W4 _v(dU 2 

Wi 
yaju ^ ;+ 

U13 dY2^	 2

VP
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x	 distance along surface from leading edge of plate 

x', y', z'	 Intervals in x-, y-, and z-directions 

x0	 distance along surface from virtual origin of boundary 
layer 

y	 distance normal to surface measured from surface 

y*=I 

z	 direction perpendicular to xy-plane 

.7	 intermittency factor 

boundary-layer thickness 

Be	 boundary-layer energy thickness, f -	 I dy
 

0 U1 

€	 dissipation of turbulent energy in Isotropic turbulence 

[(Y18) - 0.78] 

8	 angle between velocity vector and normal to wire 

longitudinal microscale 

V	 kinematic viscosity 

P	 density of air 

a	 standard deviation 

10	 shearing stress at wall
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X	 absolute constant 

x-component of vorticity 

mean value 

PROCEDURE AND RESULTS 

Experimental Arrangement 

The present investigation was conducted at the National Bureau of 

Standards in the . 4-1- - foot wind tunnel shown in figure 1. The turbulence 

level of the tunnel was 0.02 percent at 30 feet per second and 0.04 per-
cent at 100 feet per second. The low level of turbulence was obtained 
by damping screens • placed in the settling-chamber.' The boundary layer 
was developed on a smooth, flat, aluminum plate 12 feet long, 4. feet 

wide, and inch thick with a symmetrical and pointed leading edge. The 

plate was mounted vertically and centrally in the test, section of the 
tunnel.	 .	 . 

The scheme of artificially thickening of turbulent boundary layers 
developed in reference 8 was applied here in order to realize the 
advantages of a thick boundary layer, namely, the larger scales of mean 
and fluctuating flow fields which decrease errors due to the finite size 
of the hot-wire probe and the limited upper-frequency response of the 
equipment. In addition high Reynolds numbers are afforded without high 
speeds. The thickening was achieved by covering the first 2 feet of the 
plate with sand roughness consisting of No. 16 floor-sanding paper. At 

the working station l0 feet from the leading edge the boundary layer 

was 3 inches thick. All of the measurements were made at this position. 
The free-stream speed was 50 feet per second. The elaborate tests 
described in reference 8 showed that the bouxidary- layer was the fully 
developed, smooth-wan type, having an apparent development length of 
14.2 feet of smooth surface. The corresponding length Reynolds number 
based on values of x measured from the virtual origin was 11.2 x 106. 

In order to obtain a condition of zero pressure gradient along the 
plate, the passage between the tunnel wall and the plate was made suf-
ficiently divergent to offset the natural fall in pressure due to 
boundary-layer growth. This was accomplished by a flexible side wall 
which could be positioned by screws threaded into the tunnel wall. The 
final pressure distribution is shown in figure 2; From 2 feet on down-
stream the pressure is seen to be constant on the average with variations
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about 1/2 percent of q about the mean. These variations were asso-
ciated with the Inherent waviness of the surface and could 'not be-
removed by the adjustable wall. 

Instrument Mounting and Traversing 

The positioning and moving of an instrument from point to point 
was always done in the manner that best suited the instrument and the 
purpose. For example, the pressure distribution along the plate was 
determined by means of a static tube mounted from a carriage that could 
be moved and positioned by remote control. Since all other types of 
measurements were made at the 10. 5-foot station, the various measuring 
probes were supported on rods extending through the plate to a micrometer-
screw traversing device on the opposite side. This provided adequate 
rigidity and negligible interference and permitted movement by known 
amounts to and from the surface. Initial distance from the surface was 
obtained by using a prism to reflect the images of the surface and the 
probe on the calibrated scale of a microscope. 

In special cases such as the measurements of theRy and R 
correlations, small manually operated traversing units that could be 
mounted to the rods were employed. In all cases adequate rigidity and 
freedom from interference rather than convenience of operation dictated 
the arrangement. 

-	 Measurement of Pressure and Mean Velocity 

Nickel tubing 0.04 inch in diameter and 0.003 inch in wall thick-
ness was used for the impact and static-pressure tubes. The static-
pressure tube was made according to the conventional design for such a 
tube, and the pressure distribution was measured by traversing longitu-
dinally at a distance 1/4 inch from the surface. The Impact tube was 
flattened at the end to form a rectangular opening 0.014 inch wide and, 
together with a static tube similar to that used for the pressure 
distribution, was used to measure the mean-velocity distribution. 
Velocity distributions were also measured at 10 inches above and below 
the center line. These agreed well with the distribution at the center 
line and thus confirmed the two-dimensional nature of the flow. No 
correction was made for the effect of turbulence on the measured values 
nor for the effective geometric center of the impact tube. 

Close to the wall, 0 <y <0.05 inch, the mean velocity was 
measured with a hot-wire. Platinum wire 0.0003 inch in diameter and 
approximately 1/2 inch long was used and operated at low-temperature 
loadings in order to minimize the influence of the wall on the heat-
loss characteristics of the wire. A correction was made for the effect



8	 NACATN3178 

of the turbulence level on the measured hot-wire values. This was done 
by a graphical method using the mean-velocity-voltage calibration curve 
and the measured root mean square of the voltage fluctuations. The 
corrected mean velocity was higher than the observed, with a maximum 
correction of about 10 percent. The hot-wire values were in good agree-
ment with the pitot-static--tube values. 

The velocity distribution is shown in figure 3. The dashed line 
denoting the velocity gradient at the wall was computed from the shear 
at the wall and is in satisfactory agreement with the measured values. 

Turbulence Intensities and Shearing Stress 

The hot-wire equipment used is described in detail in reference 12. 
The frequency response of the uncompensated amplifier was flat from 
2 to 70,000 cycles and was down 17 percent at 70,000 cycles. A number 
of cut-off.filters were provided to cut out frequencies above the range 
needed in a particular measurement so that unnecessary noise was elimi-
nated. By this expedient the input noise level was held down to the 
order of 2 to i-i- microvolts. Compensation for the time lag of the wire 
was determined by the square-wave method and was accomplished by a 
resistance-capacitance network in the amplifier. Platinum and platinum-
rhodium (90 percent platinum and 10 percent rhodium) wires 0.0001 inch 
in diameter and 1/2 millimeter long having a time constant of approxi-
mately 0.27 millisecond were generally used. In cases where the signal-
to-noise level presented some difficulty, 0.00005-inch-diajneter wire was 
used. This was wire drawn by the Wollaston process and the method of 
attaching the wire was to etch away the silver and to soft-solder the 
wire to the supporting prongs. Fine sewing needles were used as the 
prongs for the u-holder and fine jeweler's broaches were used as prongs 
for the x-wires. No wire-length corrections were applied to any of the 
data. The method of measuring the turbulence intensities u', v', and 
W1 Is described in reference 13. The u', v', and w' distributions 
are shown in figure 4. The value of u' was obtained as close to the 
wall as QQI- inch, but because of the comparatively larger size of the 
probes necessary for the measurement of v' and w' it was not possible 
to measure these closer than about 0.0 145 inch. The extrapolated values 
of V t and w' were obtained by comparing the boundary-layer values 
with those obtained in a pipe (ref. 7) on a basis of UT against y*. 
Good agreement existed within the measured range and consequently the 
pipe data which contained values corresponding to distances closer to 
the wan (because of the lower Reynolds number) were used as a basis for 
extrapolation. 

The measurement of liv was made by the conventional x-wire method 
described in reference 13. Use was made of the experimental data for
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the angle response found by Newman and Leary (ref. 111 ) , namely, 
(cos e)057 rather than the customary (cos e)l/2 where 0 is the 
angle between the velocity vector and the normal to the wire. The 
signals to be dealt with are e1 and e2 produced by the u- and 

v-components, respectively. In principle, one wire of an x-wire probe 

contributes the output (e 1 + e2 )2 and the other contributes (e 1 - e2)2. 
The difference between these two outputs gives e 1e2 from which UV 
may be calculated by employing the experimentally determined factors of 
proportionality. 

The results are shown in figure 5. Since the viscous shearing 
stress reached only 2 percent of the total at the point nearest the 
wall, the turbulent shearing stress liv shows the characteristics of 
the total. It approaches the wall with zero slope as it must when the 
pressure gradient is zero and is in excellent agreement with the value 
at the wall calculated by the method of Squire and Young (ref. 15). 

Spectra of u2, v2, and V 

The mean-square values of the u-fluctuation between frequencies xi 
and n + dii were obtained by feeding the signal from the compensated 
amplifier into a General Radio wave analyzer having a frequency range 
from 10 to 16,000 cps and a fixed band pass. The signal from the 
analyzer was then fed into a thermocouple circuit for measuring the 
mean-square output. In reading the output, averages were taken for a 
period of 1 minute. The mean-square voltage associated with the hot-
wire signal passed by the band was obtained by feeding in a known sine-
wave input at the proper frequency to give the same output reading. The 
mean-square voltage per unit frequency was then obtained by dividing by 
the effective band width. The effective band width had a value of 
5.36 cps and was defined as the rectangular band width having the same 
area as the experimentally determined band shape. The results presented 
in figures 6 and 7 are normalized and 

F(k) dkl = 1 

and the wave number k1 is given by 

ira _2irn
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Over most of the range the accuracy was on the order of'±lO per-
cent. The accuracy is somewhat less at the two extremes because of 
large-amplitude fluctuations at low frequencies and because of low 
signal-to-noise ratio at the high frequencies. The error due-to finite 
length of wire increases as the scale of the turbulent motions decreases 
and becomes significant at the higher wave numbers. However, because 
of the lesser accuracy :of measurement in this range no wire-length 

corrections were applied. The over-all value.of u 2 served as a check 
and was in good agreennt with that calculated from the spectrum. 

The same signals as those involved in the measurement of the over-
all turbulence shear were passed through the same analyzer to obtain the 

spectra of UV shown in figure 8. Values below lO should be taken 
with some reservation since they involve the small differences of two 
nearly equal signals. 

The spectra of v shown in figures . 9 and 10 were calculated from 
the data taken during the measurements of the shear spectra. This 
method, in principle, is perhaps not so accurate as a direct measurement 
of the v-spectra, but a check on the reliability of the measurement was 
afforded by comparing the u-spectra calculated from the same data with 
that directly measured, and in general the agreement was good.: 

The data for the shear and v2 spectra are not normalized so that 

- 

Probability Distribution, Skewness, and 

Flattening Factor of u-Fluctuations 

The distribution of amplitude of u-fluctuations was determined by 
passing the voltage signal through a conventional gate circuit which 
conducted when the signal was above the level of the gate. The signal 
was preamplif led so that the gate width could be considered negligible 
with respect to the root-mean-square value of the signal and the pulses
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produced by the gate were a series of square waves of constant amplitude 
of varying duration dependent on the time the signal was above the gate. 
The percent of the time that the signal was above the gate with the 
gate set at different levels gave an integral curve from which the 
probability density .P(u) was determined by graphical differentiation 
where P(u) du is defined as the fraction of . the total time the fluc-
tuation spends between u and u + du. A counting procedure similar 
to that described in reference 16 was found to offer the best means of 
measurement and averaging. Briefly stated, by means of a coincidence 
circuit the pulse from the gate permitted passage, of- a' l00,000-cps 
signal for the duration of the pulse and the resultant, signal was then 
counted by' means' of an electronic counter. The ratio of 'the::nuinber of 
counts to the total number of cycles during a specified time'gave the 
desired fraction. The counting interval varied with the level of the 
gate and ranged from 1 minute at the 50-percent position to 5 minutes 
at the edge where the pulses were short and infrequent. 

The midpoint was defined as the position about which the average 
signal was zero and Is obtained from the first moment of the probability 
distribution, which by definition is 

= J uP(u) du =.O 

The distributions of the probability density at various positions 
across the boundary' layer are shown in figure . 11 and 'are expressed in - 
values of r u relative 'to u, so that  

I	 P(--d(-\=l  
J	 \u') 'utJ 

At most of the positions the distributions closed in rather well 
and permitted the- calculation with reasonable accuracy' of the skewness 
and flattening factors, where 	 -'
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and

I uP(u) du 
F	 00	 U4 

If-u2P(u) dul(
oo	

1 

At y/ö = 0.8 and y/ = 1.0 the limbs of the curves were uncertain., 
and no attempt was made to calculate the higher moments at these posi-
tions. The flattening factor was also measured directly. Since this 
involves the nondimensional ratio of the same voltage signal, that is, 

F	
e4	 u4 _ - 

(—.)2(_)2 

it was not necessary to calibrate the hot-wire, but the correction for 
the difference in gain involved in the processing of the divided signals 
had to be determined by calibrating with a known sine-wave input. The 
fourth power was measured by feeding the signal from the compensated 
amplifier into an instantaneous squaring circuit, which consisted of a 
series of diodes properly biased to give the square of the input 
(ref. 12), and then squaring again with a thermocouple. The distribu-
tion of flattening factors across the boundary layer measured in this 
manner is given in figure 12. 

It is seen from figure II that from y/6 = 0.4 to the wall the 
usual safety factor of three times. the root-mean_square value for 
determining the operating point of the equipment is quite satisfactory. 
In the outer region of the layer, at y/ = 0.8 1 this factor is exceeded 
in the direction of negative values of u. Here measurements were taken 
at varying gain-control settings to make sure that the equipment was not 
overloading.

Measurement of Derivatives 

The usefulness . of the concept of local isotropy lies in the hope 
that the rate of turbulent-energy dissipation in shear flow can be given 
in terms of the dissipation expression for isotropic turbulence. This 
would simplify the experimental procedure by requiring only the measure-
ment of the mean-square derivative of the u-fluctuation with respect
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to x. A fuller discussion as to the adaptability of the concept of 
local isotropy is given in the section entitled "Energy Balance," but 
it may be stated that the use of the isotropic relation in determining 
the dissipation is inadequate, especially in the region near the wall. 
It thus becomes necessary to measure all of the following nine mean- 
square derivatives appearing in the dissipation term of the turbulence 
energy equation 

(
2 ++ (7t)2 +	 \2 +	 2 ++ (\2 + (^^i 2 +	 2 

x/	 \x) 	 \y)	 \z/

	 (^X)2

y 	 z/	 ?iy)	 \z) 

In the present investigation, because of the practical limitations 
of hot-wire techniques it was possible to measure only the first five 
of the above terms. The first three were evaluated by taking the time 
derivative of the signal by means of a resistance-capacitance network 
and obtaining the mean-square value with a thermocouple and meter. The 
practical use of a differentiating circuit involves a compromise between 
attenuation and the extent of linear response with frequency. In the 
present measurements the differentiation was linear to 10,000 cps and 
was down 12 percent from linearity at 16 1 000 cps. This was considered 
adequate for the frequencies under investigation since no significant 
change in the measured values was obtained by varying the cut-off 
filters in the amplifier. The time derivative was converted to the 
space derivative by assuming the accuracy of the space-time transfor-
mation 

, - 1 (u (^i6x
 u2 313

The remaining two terms were obtained by measuring the correlation 
coefficients	 and RZ for a sm11 distance of y and z and using 
the relations given by TaylOr (ref. 17) 

R 
= u(y)u(y + y') 

= 1 - _. ()2(y' 

)2 
u'(y)u'(y+y') 

y' —)O
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-I.

u(z)u(z + ,Z , )	 1 ("r(ZI)2 
u(z)u(z+z)	 2	 zj 

z 	 0 

The correlation coefflöients were measured by the method described 
in reference 18 for varying distances of yt and z' ranging from 
0.004 to 0.014 inch. 

The distribution of the various derivatives across the boundary 
layer are given in figures 13 and 14. 

An attempt to assess the validity of the space-time transformation 
was made at y/o =0.05. In figure 15, the longitudinal correlation 
coefficient RX obtained by measuring the correlation between values - 

of u at the same instant for varying distances in the x-direction is 
compared with that calculated from the spectrum using the Fourier 
transform	 S	 S 

= fo 
CO

 

(k) cos (k1xt) dkl 

The latter gives the spatial correlation from a time correlation 
using the space-time relation. The microscale A calculated from the 
spectrum is defined by

2 2 f, = CO

 k12F (k) dkl	 S.. 

It is seen that for values of Xt. less than-0.2 inch the two are 
in good agreement. They yield the same nLicroscale, and the space-time 
transformation is apparently valid for the small-scale motions respon-
sible for the dissipation. For large values of x t the two begin to 
diverge and the space-time relation becomes progressively worse for the 
larger scale motions. At x t = 0•4 inch the major , contribution to the 
correlation comes from those wave numbers below 1.3 per centimeter. It 
seems therefore that the adequacy of the space-time transformation
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depends on wave number arid , gives rise to the interesting speculation 
that the large-scale. motions have their own characteristic velocities' 
different from the mean speed. Still closer to the wall; the space-
time assumption does not become a serious obstacle to the calculation 
of the dissipation since the magnitude is given mainly by derivatives 
in the y- and z-directions. 

Although no wire-length corrections were applied to any of the data, 
it should be mentioned that an estimate of the correction was made for 
(11)2 

 at Y/5 . = 0.005 by the-method given in reference 19.: It was 

approximately 10 percent and consequently dre-length corrections may 
be considered negligible across most of theboundary layer. 

V DISCUSSION	 ,	 V

Intermittency 

In shear flows , that' have a' free boundary, it has been repeatedly, 
observed that as the free stream is approached the turbulence becomes 
intermittent, that is, that for only a fraction y of the time is the 
flow turbulent. This on-and-off character of the turbulence has been 
definitely established as being a manifestation of the irregular outline 
of the boundary layer as it moves downstream. The intermittency is 
easily observed by oscilloscope records of the u.-fluctuation in the 
outer region of the boundary layer, and the records can be used to give 
a quantitative estimate of , the factor y and to discern some qualitative 
aspects of the flow. Representative sections of oscilloscope records 
taken at various positions across the boundary layer are given in fig-
ure 16. It is seen that in the outer region of the layer y/ > 0.4 
there are intervals of time when the flow is not turbulent and that this 
time increases with increasing distance from the wall. Thus, the outer 
regime is divided into a turbulent part and a relatively nonturbulent 
free-stream part, and the hot-wire at a given position responds to 
alternate turbulent and nonturbulent flows' as the pattern is swept down-
stream. A vorticity meter which responds to the vorticity that exists 
only in the turbulent region and suppresses the low-frequency ., fluctua-' 
tion was used to obtain a sharper division between the turbulent and 
nonturbulent regions. Typical samples of the vorticity trace w at 
different positions across the boundary layer are shown in figure 17. 

The first measurements of the intermittency factor . 'y were those 
obtained, by Townsend (ref. 3), where y is taken as the ratio of the 
flattening factor (of . - u'of u or 'u/dt) in the wholly turbulent region to 
that in the intermittent region From figure 12, it is seen that the
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flattening factors in the region near the wall y16 <0. li. are quite con-
stant with a value corresponding closely to the Gaussian value of 3.0. 
By consider 4.ng the intermittency as an on-off process the value of y 
is given by

I. 
y=3.0/ U 

/ (_)2 

The intermittencies calculated in this manner together with those calcu-
lated from the oscilloscope records of the u-fluctuation and the vorticity 
are given in figure 18. Values of 7 obtained from the flattening 
factor are consistent with those obtained from the film only up to 
y16 = 0.9. As seen in figure 12, the flattening factors reach a maximum 
and then begin to decrease. This is not too surprising because for low 
values of y the turbulence of the free stream would be expected to 
make itself felt. The result is probably a weighting of the probability 
density for the turbulence of the free stream with that within the 
boundary, which depends on the relative turbulence levels and the degree 
of intermittency. The curve in figure. 18, which closely represents the 
variation of y with y/ö, Is a Gaussian integral curve given by 

=	 (i - erf ) 

where

= (V• ).l[(Y) - 0.78] 

and

(j)_l 

The standard deviation a Is

a = 0.]A8 

Such a distribution indicates that the Instantaneous position of 
the edge of the boundary layer has a random character with a mean posi-
tion aty16 = 0.78. The edge rarely extends outside the region 

= 0. 1i. to 1.2. While the position of the edge fluctuates over a 
large fraction of 6. the mean velocity Is near that of the free stream, 
being down by at most about 15 percent.
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Several interesting features can be gleaned from careful study of 
the oscilloscope records. Although it may be difficult to see from the 
short sections given in figure 16, it was noticed that in the strongly 
intermittent region, for example at y/o = 0.8, the trace had somewhat 
of a square-wave appearance. Increasing velocities are in the direction 
of the timing signal. The nonturbulent regions seem to be at a constant 
level corresponding to that of the free stream, while the turbulence 
regions are seen to be centered about some lower level. The difference 
between the velocity of the outside potential flow and that existing in 
the turbulent region seemed to depend on how far past the measuring 
position the instantaneous edge of the layer extended at the particular 
instant. At y/b 1.0 and 1.2 there is very little evidence of the 
shift because the edge does not extend to any great distance beyond these 
positions. There is then a step as well as the on-off process which was 
assumed in the calculation of y from the flattening factor. The 
agreement with values obtained from the film is probably due to the lack 
of sensitivity of the flattening factor to this shift. However, the 
skewness factor can be expected to be extremely sensitive. 

A sketch of the boundary layer is given in figure 19. The boundary 
between the turbulent flow and the free stream is quite sharp, and the 
properties of the shear layer are comparatively distinct from those in 
the free stream. The boundary layer travels downstream with an outline 
constantly changing in an irregular manner, and the intermittencyis 
characterized by a large-scale diffusion process, carrying with it small-
scale turbulent motions. From the film taken at y18 = 0.8 it was also 
noticed that the average frequency of the occurrence of periods of no 
turbulence seemed to be approximately 100 per second, and, since the 
pattern is moving with nearly the free-stream speed of 70 feet per 
second, a rough estimate of the average wave length for the irregular 
outline of the boundary layer would appear to be approximately 2 
or 14-c. 

The effect of the intermittency on the probability density is 
clearly seen from figure II. In the nonintermittent region the distri-
butions are very nearly Gaussian and the values of skewness and flat-
tening factor calculated from the measured probabilities are given in 
the following table:

y/57 F S 

0.001 2.72 0.09 
.05 2.75 -.08 
.2 2.62 -.08 

3.19 -.26
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Calculations of the higher moments of the probability densities 
from the distributions tend to be inaccurate because of their emphasis 
on the higher values of u. However, the values of flattening factor 
agree fairly well with the directly measured values. Values of skewness 
should be taken with some reservation because they are extremely sensi-
tive to the accuracy of the midpoint. Also in the region near the wall 
where turbulent fluctuations are large the nonlinear response of the 
hot-wire tends to skew the signal. At y/ = 0.8 the probability 
density is very strongly negatively skewed because of the lower veloc-
ities within the turbulent regions. At the same time the large percent 
of time that the nonturbulent regions exist causes the maximum to be 
displaced to the positive side of the midpoint. The distribution at 
y/5 = 1.0 has a flattening in qualitative agreement with the trend of 
the flattening factor to reach a maximum and then to decrease. The 
distributions of skewness show the same general trend. The maximum of 
the probability distribution for y/ = 1.0 is displaced slightly to 
the left of u = 0, and it is uncertain whether this is experimental or 
a consequence of the weighting effect previously mentioned in connection 
with the flattening factor. 

By assuming that the free-stream regions* contribute little to the 
measured mean-turbulence quantities, an allowance may be made for the 
effect of intermittency by dividing by the factor 7. The distributions 
of turbulent energy and shear stress divided by y are given in fig-
ure 20. The distribution of turbulent energy within the bounded flow 
is strikingly similar to that for channel and pipe flow (refs. ii. and 7) 
as is the distribution of turbulent shear stress which is approximately 
linear from y/ = 0.1 to y/o = 1.0. 	 . . 

Intermittency is, of course, absent from fully developed turbulent 
flow in pipes and channels .because there is no free stream. It is well-
known that the mean velocity for pipe and channel does not deviate as 
much from the logarithmic distribution as does that of the boundary 
layer, and a major factor in this discrepancy is the intermittency. The 
influence of intermittency on the mean-velocity distribution is difficult 
to ascertain, being in the nature of a complex time-averaging problem. 
Although something may be done in a semiempirical fashion by introducing 
y into the mixing-length theories, It contributes little to the basic 
understanding of the problem. Since the turbulent stress is apparently 
confined only to the turbulent portions of . the flow, there arises the 
question as to the actual mean-velocity gradients in which the shear 
stress exists. In figure 21 the measured mean velocity is plotted In 
the form suggested by the velocity-defect law, and it is seen that the 
characteristic logarithmic law exists only in a limited range from about 

= 0.01 to y1b 0.2. The direct viscous dissipation (fig. 22) is 
negligible at y/5 0.01. This corresponds to a value of y* = 27.61 
which is in good agreement with the usually observed value of 30 for 
pipe and channel. An interesting point to note is that in the range of
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y16 = 0.1 to y/ = 0.8 the ratio of shear stress to turbulent energy 
is approximately constant, as is also evidenced by the constancy of the 
shear correlation coefficient in figure 5. This would tend to indicate 
some degree of "KAxm6n similarity" existing in the range where ,th 
distribution deviates from the logarithmic law. In addition Karman 
similarity requires that the large-scale motions responsible for the 
shear stress be free from the effects of viscosity, which, as will be 
seen in the section on spectra, is much more justified in the region 
where the logarithmic law is not obeyed than in the region where it is 
obeyed. Although any correction for the effect of intermittency is in 
the direction of minimizing this deviation, it is pointed out that the 
mean-velocity distributions for pipe and channel also deviate in this 
region. It is difficult to attach any particular significance to the 
logarithmic law which exists for so limited a range of the boundary 
layer, except that it is a region where the direct influence of the 
wall may still be present. It is not apparent that a degree of validity 
can be assigned to it on the basis of the various forms of the mixing-
length theory. With respect to the mean velocity, the boundary layer 
can be divided into three regions, namely, a viscous region extending 
to a value of y* = 30, an intermediate region where the influence of 
the wall still exists, and an outer region characterized by 
intermittency.

Energy Balance 

- After the usual boundary-layer approximations are made, the equa-
tion expressing the energy balance for the turbulence at a given cross 
section in a two-dimensional boundary layer is given by 

Tv LU + 1: 6 ( U-2 v + v3 + ; ;2- + 2: - L ( F 7) + 2: U - ^ - ( U-2 + V-2 + W-2 + 
:3y 2y	 P 6Y	 2 6x 

The respective terms from left to right have the following physical 
interpretation: 

(1) Production of turbulent energy from the mean motion 
(2) Turbulent energy diffusion 
(3) Pressure diffusion 
(14 ) Convection of turbulent energy by the x-component of the mean 

motion
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(5) Convection of turbulent energy by the y-component of the mean 
motion 

(6) Dissipation of turbulent energy 

The convection of turbulent energy is negligible near the wall and 
is significant only in the outer region of the layer where similarity 
on the scale of 8 has been experimentally observed. Consequently, 
by using the continuity relations 

x 6Y 

8 

the convection terms can be transformed into the single term which may 
be written in the nondimensional form

(++ 8 
fy/6 

- L U12x0 0	
d(Y/8)] d(y/8)
	 2 

where x0 is the distance from the virtual origin of the boundary layer. 
The dissipation term is not in a form that lends itself to measurement 
by hot-wire techniques. However, it can be rewritten in the following. 
more suitable form: 

d2 ( 2 + v2 + 

dy 2\	 2 

(;2 + ()2 + ()2] 

p)2+(p)2+(p)2 

v(
'

2
\2u2 Qiyi +() + )

All of the pertinent terms in the energy balance can be calculated 
from the measurements previously discussed except the diffusion terms 
which are treated as one and obtained by balancing the equation. The 
distributions of the various energy terms are given in figures 23, 24, 
and 25 in nondiinensional form using 8 and U1. The turbulent shear 
stress in the region 0 <y/8 < 0.05 was obtained by subtracting the 
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viscous shear stress (calculated from the mean-velocity gradient) from 
the constant value of total shear stress as given by the shear at the 
wall. The second derivative, term is important only in the region near 
the wall. Its calculation is quite uncertain and is given mainly to 
show its order of magnitude. The finite intercept at the wall is a 
consequence of the arbitrary linear extrapolation of the turbulence 
intensity to zero. The dissipation term is the most difficult to deter-
mine because of the importance of the region near the wall. The applica-
tion of the concept of local isotropy is strongly conditioned by the 
local similarity of the eddies responsible for the dissipation, the 
verification of which is dependent on the dissipation derivatives obeying 
the isotropic relation 

,U)2 

(6x

- ( \
2 1 (

0111 )

2 

2 \ x) - 2	 - 

From figures 13 and lii- it is seen that only In the outer region of 
the boundary layer, y/6 > 0.7, is this condition satisfied and that 
the derivatives become increasingly divergent as the wall is approached. 

,	 2	

(6.z 
The terms (-'and	 ) are equal across the layer, and at 

\ yJ	 /	
2 

y/ = 0.005 their ratio to () is 10 times that given by isotropy. 

• This illustrates the very small scale nature of the turbulent motions 
in the transverse directions as compared with the longitudinal in the 
region close to the wall. The inadequacy of local isotropy is strik-
ingly seen from the over-all energy balance obtained by integrating 
the energy equation across the boundary layer. The integrals of the 
diffusion terms and the second-derivative term are each zero, and the 
total production is balanced by the total dissipation plus the total 

	

Qx )
convection. Using the isotropic relation l5v 	 for the rate of 

 
dissipation of turbulent energy, the result is out of balance, with the 
dissipation being too low by a factor of 2.1. Hence, in order to obtain 
an accurate measure of the dissipation, it is necessary to measure all 
nine derivatives. Since it was possible to measure only the first five,
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the remaining four were obtained by the arbitrary assumption that deriv-
atives with respect to y and z are given by the isotropic relations 

2 / 	 2 
= = 

(^
6y\y) j 

(\2 (\2 
= 2(\ 

\z) \z)

This considerably improved the total energy balance. As seen from 
figure 23, the dissipation calculated in this manner was obtained as 
close to the wall as y/ = 0.005, and if.itis assumed in order to 
close in the dissipation curve that the dissipation is equal to the 
production in the region 0 <y/ <0.01, the disparity is 15 percent. 
This can represent a significant difference in the point-to--point bal- 
ance as manifested by the diffusion term. When the diffusion term is 
compared with that obtained by Townsend (ref. 6), the same general trend 
is observed although there is a considerable difference in magnitude. 
The necessary balance cannot be achieved by the gain in energy due to 
diffusion in the region y/> 0.6 unless it is extrapolated to an 
unreasonably long distance. Consequently the conclusion is that the 
turbulent-energy dissipation is greater than the production in a very 
thin region next to the wall in order to provide the dissipation needed. 
This means a diffusion of energy toward the wall. Townsend's values for 
the kinetic-energy-diffusion term require a movement of kinetic energy 
away from the wall. Therefore, if energy goes toward the wall it must 
be due to the action of pressure forces (pressure diffusion). This 
intense dissipative region for the turbulence apparently coincides with 
the viscous region for the mean flow. 'The magnitude of the diffusion 
term illustrates the weakness of the mixing-length theory which has the 
implicit assumption that what is locally produced is locally dissipated. 

This flow of energy against the energy gradient is rather surprising 
and contrary to what is intuitively expected. It does not seem possible 
that such a result could . be brought about incorrectly by the questionable 
assumption made regarding those dissipation derivatives that could not 
be measured. Neither does it seem reasonable that these derivatives can 
be distributed in such a manner as to make the production equal to the 
dissipation at all points across the layer. However, it is felt that 
the situation is complicated by the phenomenon of intermittency. The 
energy-balance equation as used does not include the effect of inter-
mittency, in particular its effect on the production term. Perhaps the 
results should be accepted as tentative until a fuller understanding of 
the role played by the intermittency is available. 
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The energy balance for the mean motion is conveniently expressed 
in terms of the energy thickness be such that 

25_	 El +	 d(y/8) =	 (1) 
U, 
3 0 IUV- dy A	 dx 

where

be = 8	 U [1 - (u)2j d(y/6) 

Similarity of the mean-velocity distribution permits treating the 
integral in the expression for- be as a constant. If 8 is given by 

8 = 0.37v1/5ui_1/5xo/7 

then

= 0.296vh/ 1 /7x 17 f 	 [1 - ( L)] d(y/6) dx 

Equation (1) states that part of the loss of kinetic energy of 
the mean motion goes directly into heat through the action of viscosity 
and. the remainder goes into the production of turbulent energy. The 
energy balance was found to be satisfied to within a few percent and 
served as a welcome check on the accuracy of the measurements. The 
production of turbulent energy and the-viscous dissipation are compared 
for the region near the wall in figure 22. This emphasizes the impor-
tance of the region near the wall. In fact, almost 40 percent of the 
loss in kinetic energy of the motion is directly dissipated by viscosity 
in the region 0 <y* <30, and of the remaining 60 percent which is 
converted into turbulent energy 30 percent is produced in the same 
region. Thus, if the conclusion drawn from the turbulent-energy balance 
is correct, 87 percent of the total dissipation (viscous and turbulent) 
takes place in y* <30.
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Energy and Shear-Stress Spectra 

It is possible to gain some further insight into shear flow by 
examining the spectral distributions of turbulent energy and shear 
stress. A significant advance in dealing with the energy spectrum has 
been made in the domain of homogeneous and. isotropic turbulence (ref a. 9 
and 10). The basic concept underlying this advance is that energy 
enters the spectrum through the large eddies and is then transferred 
through the spectrum to the smaller eddies where it is finally dissi-
pated. If the lower wave numbers are excluded there exists a range in 
which the eddies are in a state of equilibrium, governed by the rate 
at which they transfer and dissipate energy. When the Reynolds number 
is high enough, inertial forces will predominate in the lower wave 
numbers of this equilibrium range, and a relatively pure transfer region 
will exist. By _dimensional reasoning it can be shown that the spectrum 
will vary as k 5/3 in this range. Heisenberg (ref. U) extended this 
concept by assuming that the transfer of energy at wave number k was 
caused by a turbulence friction produced by eddies with wave number 
greater than k. He represented the energy balance in the equilibrium 
range for homogeneous and isotropic turbulence as 

€ = [v + xfk / E (k" ) dkuifk 2(k')(k') dk' 	 (2) 

[	
V(ktt)3	

] 

The second term within the brackets represents a turbulent viscosity 
and X is an absolute constant. The solution of this equation gives 
the spectrum in the following form 

where k5 is a wave number in the intermediate range given by 

1/14. 

k 

For low wave numbers E(k) varies as	 and for the high-wave-
number end where viscous forces predominate, as k7. 

Although equation (2) involves an assumed mechanism that may not 
entirely represent the facts, it seems to be a'easonabl good approxi- 
mation. Where the Reynolds number is sufficiently high, there is
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evidence of a k' range and a transition to higher negative powers 
approaching -7 as k increases. There is some doubt as to whether -7 
is the correct value in the limit. The concept embodied in equation (2) 
provides a rational basis for an approach to the problem of shear turbu-
lence. However, the extension to shear flow is complicated by the 
presence of such factors as production, diffusion, convection, and the 
absence of isotropy and homogeneity. Any conclusions as to the effects 
of the diffusion and convection are difficult to draw. It may be assumed 
that such effects are confined to the very low wave numbers which lie 
outside the equilibrium range. In addition, the convection may be con-
sidered negligible across most of the layer. An attempt to assess the 
influence of the production term in the equilibrium range of the spectrum 
was made by Tchen (ref. 20). By considering the influence of the mean-

velocity gradient the conclusion is reached that a range of k 	 will 

exist in the wave-number region where k- " normally exists when there 
is no gradient.. 

An experimental test of theoretical predictions is rendered difficult 
by the fact that only the one-dimensional spectrum can be measured. In 
isotropic turbulence this Is not too restrictive a factor because the 
transformation from the three-dimensional spectral function such as 
appears in equation (3) to the one-dimensional spectral function is 
known (ref. II). In shear flow this relation is not known, and one has 
to be content with the qualitative inference that in some unknown manner 
the one-dimensional spectrum is still an Integral effect of the three-
dimensional. Despite the aforementioned complications the measured 
spectra are of interest, and several interesting features can be noted. 

The spectra of u2 at various cross-sectional positions are given 
in figures 6 and 7. The trend, in going toward the surface, is for the 
higher wave numbers to have a greater percentage of the turbulent energy. 
This is in accord with the trend of the shear-stress spectra (fig. 8) 
also to extend to higher and higher wave numbers as the wall is approached. 
It is noted that nearly all of the turbulent energy lies within the 
stress-producing range. The spectrum of shear stress at y15 = 0.2 
shows an increase over that at y/ = 0.05 in the lower wave numbers. 
This may be indicative of the influence of the wall becoming negligible 
at y/ = 0.2. For y/ > 0.2 the decrease In shear stress across the 
boundary layer takes ple for the entire spectral range. All of the 

energy spectra indicate the existence of a region varying as k '( at 
the high-number end, but because of the lesser accuracy of the measure-
ments in this range no direct comparison has been made. In the outer 
region of the layer at. y/o = 0.58 and 0.8 there is an extensive region 
where the spectrum of u2 varies as k1 1' corresponding to the 
inertial subrange. The effect of intermittency In this region Is dif-
ficult to ascertain except to say that It may be confined to the
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low-wave-number end of the spectrum. Also the maximum in the spectrum 
at y/o = 1.0 is apparently a consequence of intermittency. There is 
a gradual transition in the shape of the spectrum from y16 = 0.78 to 
y/6 = 0.07 where there is a wave-number range with the slope k1-1 as 
predicted by Tchen. The small-scale nature of the turbulence near the 

wall is shown by -the spectrum of u2 at y/b = 0.0011. The dip in the 
spectrum at the low-wave-number end as indicated by the dashed curve 
maybe due to experimental error. However, it was repeatable and atten- 
tion is drawn to it because it may be a result of some characteristic 
phenomenon associated with the laminar sublayer. 

Empirically the isotropi6 relation for the dissipation is in fair 
agreement with that given-'In figure 24 from y/ = 0.05 to 1.0. By 
assuming that the second moments of the spectra (fig. 26) are a fair 
representation of the total dissipation, it is seen that in going toward 
the wall the shear penetrates deeper and deeper into the dissipation 
spectrum. For example, at y15 = 0.78 the wave-number range up to 
where _L. f(k1) has fallen to 10 -5 contains approximately 10 percent 

U12 

of the dissipation. At y/ = 0.05 this figure is 30 percent. It is 
reasonable to expect this trend to continue, with the result that very 
close to the wall the turbulence produced is directly dissipated and 
there is no significant transfer of energy along the spectrum. This 
conclusion is consistent with the small-scale turbulence near the wall, 
and the rapidly decreasing spectrum at y/ = 0.0011. 

-The shear spectrum is a direct test of local isotropy, and it is 
evident that the range of wave numbers for which local isotropy exists 
becomes progressively smaller as the wail is approached. The transfer 

range, as evidenced by k1- ', has not yet become locally isotropic 
since the shear spectra approach zero at some higher wave number. How-
ever, the energy spectrum is apparently insensitive to the small amount 
of shear stress which does exist. In figures . 9 and 10 the ineasured 

spectra of V2 at y/ =0.05 and 0.58 are compared with those calcu-
lated from the measured u2 spectra using the isotropic relation 

fv(kl) = f(k1) -	 d fu(kl) 
22dki 

which; strictly speaking, is valid only for the range of local isotropy. 

It is seen that the measured v 2 spectra agree with the calculated at 
the higher wave numbers. This is consistent with the range of local
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isotropy indicated by the spectra of shear, and the difference between 

the over-all u2 and v2 is confined to the lower wave numbers. 

From the turbulent-energy equations for the individual velocity 
components it is seen that the terms responsible for the exchange of 

energy among the various components are the pressure terms Pi
TX 

Pi X, and P	 . The spectral range of such transfer is unknown but 
6y	 6z 

a reasonable speculation would be that the pressure term P i	 respon-

sible for the transfer of energy to v2 exists in the same wave-number 
range as the shear-stress spectra. There is little evidence in the 

measured v2 spectrum of a range of k1-5/3 as observed for-the spectrum 

of u2 . This may be a consequence of the spectral distribution of the 
pressure term being different from that of the shear stress with a 
weighting more to the higher wave number end of this range. 

CONCLUSIONS 

The following conclusions were obtained from an investigation of 
characteristics of turbulence in a boundary layer with zero pressure 
gradient. Here y is the distance normal to the surface measured from 
the surface, y* is y times the square root of the shearing stress at 
the wall divided by the density of air over the kinematic viscosity 

(yU/v where UT \JT0/p), and 8 is the boundary-layer thickness. 
1. The turbulent boundary layer can be considered to be divided into 

three regions: A viscous region extending beyond the laminar sublayer 
to a value of y* = 30, an intermediate region from y = 30 to approxi-
mately y18 = 0.2 where the, influence of the wall still exists, and an 
outer region characterized by the phenomenon of intermittency. 

2. The turbulent boundary layer has a sharp outline constantly 
changing in an irregular manner. The turbulent regions travel with a 
velocity lower than that of the free stream. A rough estimate of the 
average wave length of this irregular boundary would be approximately 28. 

3. The position of the edge of the layer with respect to the sur-
face is approximated closely by a Gaussian distribution centered at 
0.188 with a standard deviation equal to 0.148. 

. The probability density of the u-fluctuation is very close to 
Gaussian in the region y18
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7. The importance of the region near the wall has been demonstrated; 
in fact, approximately 85 percent'of the to'tal dissipation (viscous and 
turbulent) takes place within y* < 30. The production of turbulent 
energy and the turbulent-energy dissipation reach a sharp maximum within 
this region, and there is an inward flow of energy toward the wall 
because of the action of pressure forces. 

6. The concept of local isotropy is inadequate for obtaining the 
turbulent-energy dissipation, especially in the region near the wall. 

7. In the outer region of the. boundary layer where, the mean-velocity 
gradient is small the existing theories for the energy spectrum in iso-
tropic turbulence can be applied. As the wall is approached the 
nonisotropy becomes significant with a resultant change in the spectrum. 
Very close to the wall, the turbulent energy produced is directly dis-
sipated with no significant transfer of energy through the spectrum. 

8. As close to the wall as y/ = 0.05 it has been shown that the 
space-time transformation is valid for the smaller eddies responsible 
for the turbulent dissipation but becomes invalid for the larger eddies. 

National Bureau of Standards, 
Washington, D. C., May 8, 1953.
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Figure 6.- Spectra of u2 in inner region of boundary layer. 
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