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AT LOW SUPERSONIC MACH NUMEWRS

By Harvard Lomax

SJMMARY

Several variational problems involving optimum wing and body comMna-
tions having minimum wave drags for different kinds of geometrical restraints
are analyzed. Particular attention is paid to the effect on the wave drag
of shortening the fuselage and, for slender axially symmetric bodies, the
effect of fixing the fuselage diameter at several points or even of fixing
whole portions of its shape.

INTRODUCTION

Recently several authors have used linearized theary to study the
wave drag of wing-body combinations traveling at supersonic speeds (see,
e.g., refs. 1 to 5). These studies have clesrly demonstrated the impor-
tance of finding the wave drag of a whole airplane rather than the separate
wave drags of its various parts (wings, fuselages, etc.), since the magni-
tude of the interference terms can pred.ominate. In effect, this means
that various optimization problems for bodies - such as the problem of
finding the body shape having a minimum wave drag for a given volume -
should be re-examined when interfering wings or other bodies are in the
same flow field. In many cases the solution to the new problem differs
from the body-alone problem only in interpretation.

The purpose of this report is to study minimum wave-drag combina-
tions which satisfy a few of the w possible geometric restraints per-
tinent to the interests of airplane desi~ers. An attempt has been made
to analyze the various problems in a unified mmner so that extensions
to other kinds of restraints can be deduced.
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LIST OF IMPORTANT SYMBOLS

aspect ratio

source distribution equivalent to wing in sense defined by
equation (3)

multipole distribution of order n

wave drag

portion of drag due to all the nth order multiples for n>O

See equation (8).

additional drag resulting from restraint (See eq. (n).)

restraints defined in equations (19)

distauce between apexes on x axis of forecone and aftercone
enclosing wing (See sketch (c).)

length of basic body

length of modification to basic body

Nkch number

POU02

2

average body radius

fusehge area in cross section normal to the free stream

normal (to free stream) projection of wing area in section cut
by plane x= =x+ ~yl cos (3(See sketch (b).)

speed of free stream

volume

Cartesian coordinate system (See sketch (a).)

source distribution representing the fuselage modifications
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P c1

e polar coordinate (See sketch (a).)

3

Po free-stream density

G See equation (17).
.

9 velocity potential

IMSIC THEORY AND ASSUMPTIONS

Basic Theory

Msmy of the discussions and derivations contained in the following
are carried out on the assumption that the reader is familiar with the
concepts presented in reference 4 which should be considered as a first
part to this report. In ~ticular, Ibz
an acquaintance with the solutions
to the wave equation referred to as
“multiples” is assumed, together /
with Hayes’ invariance principle and ~

the consequent multipole distribu-
tions equivalent to a wing in the
sense that both induce the same
momentum spectrum at infinity.

Y“

The entire analysis used herein
is based on the assumptions and idealiz-
ations necessary to develop the
linearized equation for the velocity
potential, q, in supersonic flow,
namely

Az

Imxx-%y-%z=o (1)

where P2 = M2 - 1 and the reference L
coordinate systeml is shown in 8
sketch (a). The analysis is further

r

restricted to the solution of prob-
lems involving a given uncambered P

Y
Sketch (a)

lIt should be stressed that the x axis is parallel to the free-
stresm direction (wind axes).
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4 NACA TN 3667

and untwisted wing mounted,.centrally on a vertic~y symmetrical fuse-
lage, the entire configuration being at zero angle of attack.

Additional Assumptions

We now mske the imTo additional assumptions: one, the value of PA,
where A is the wing aspect ratio, is small; and two, the value of ~R/Le)
where R is the average body radius and @ is the distance along the
x axis in which the multipole strengths differ significsdilyfrom zero,
is small.

One can evaluate the significance of these assumptions by studying
their implications rehtive to the source and multipole distributions
used to simulate the wing and body. Suppose, for example, a group of
multiples are placed along the body center line, their strengths, Cn(x),
being fixedby the contition that a circular cylinder in the vicinity of
the body is a stream surface when the velocity field induced by these
multiples is combined with the velocity field induced by the source
sheets representing the given wing. With the assumptions of small PA
and @Le mentioned above, the Cn’S, for n greater than O, can be
shown (see,e.g.,ref. 4) to have a negligible effect on the wave drag.
Hence, ti the multiples (for n > O) that combine with-the wing to make
a circular cylinder a stream surface and say additional ruultipoles(for
n > O) added to make the body have mild distortions from such a surface
are negligible in evaluating the wave drag. Therefore, under the assump-
tions mentioned above, out of all the singularities distributed along the
body axis, it is necessary, in studying the wave drag, to consider only
the sources.

With the restrictions to small values of &l/Le and mild body dis-
tortion (see Ward, ref. 6, fora discussion of orders of magnitude),
slender-body theory can be used to calctite-the body shape, and on the
basis of this theory one can show (see ref. 4, Apyendix B) that Sf(x),
the body cross-sectionalarea measured normal to the free stream, is
completely determined by the axial source distribution alone. Hence, if
only the exposed panels of the wing are tied to calculate the ~’s, Co
is negligible and the entire axial source distribution ~(x) is related
to the geometrical properties of the body by the relation

.,.
.!

dsf””
~(x) =uo~= u#-f’(x) (2)

. . . . . . . . . . . .

‘.
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The Ili.ngEquivalent Source Distribution
Optimum Cancellation Sources

Let the given wing lie in the Z1 = O plane.

and the

According to Hayest
theorem (ref. 7), the wing equivalent source distribution [~(x)]~j is
obtained by accumulating on the xl axis, at a distance x fran the
origin, all.the wing sources intercepted by the line x1 = x + ~y=cos 13,
and then, for a fixed x, averaging these values as e varies from O
to 2fi. Thus, using thin-airfoil theory to rebte the planar source sheet
to wing geometry, one finds

(3)

where ~t(x,e) = b/bx[~.T(x,63)] ad
~(x,e) is-the normal.(to the x axis)
projection of the wing cross-sectionsJ-
area intercepted by the @ane2
xl = x + pylcos e as shown in
sketch (b). Without the additio~ of
further restraints, the optimum source
distribution along the x1 axis is
that which just csmcels the ~m .
equivalent source distribution. Fur-
ther, this canbe interpreted directly
in terms of both fusekge and wing
geometry by means of equations (2)
and (3). Thus, with no further
restraints, the best fusekge shaping,
for a wing-body combination satisf@.ng
the assumptions discussed above, satis-
fies the eqmtion

J
21t

Sf’(x) = -* ~,yx,e)de (4)

o

and hhs any reasonably smooth cross-
sectional form. Notice that the totaJ-

I I ~x,=x+/g$cos@

w
T4

Sketch (b)

I

%’& true oblique plane is givenby the eqpation

x= = x + 13Y=COS e + 13z1sti e

but, to be consistent with the assumptions basic to linearized theory,
the variation with Z1 is neglected.

.

.—. . . .. —-. —..— — — --- —— . ._..__—.



6 NACA TN 3667

volume taken out of the fuselage is exactly equal to the total volume of
the exposed portion of the wing. Hence, the total.volume of the modified
combination is the same as that of the original smooth cylinder.

The Drag

The total wave drag of a system canbe expressed in terms of its
actwl or equivalent multilole distributions as

a

D=’Do+
I

% (5)

1

where ~ is the drag caused by the nth order multipoles ~(x) and is
given by the equation

‘n+’)(~) represents(a/&)n+=~(X) .where an Under the.assumptions

given above, the magnitude of ~

De, so that, in general,

On the other
combination of a

D=

hand, the total
wing and a body

D=%

drag of the wing alone

drag of the body alone

interference drag

h is small. Let us designate it by

‘DO + D6 (7)

wave drag of a system composed of the
can also be written symbolically as

+~b+~ (8)

.—



NACA TN 3667 7

me various components of wave drag defined in equations (7) aad (8)
help one to evaluate more readily the drag reductions that can be reslized
from appropriate fuselage formations. ‘l?hus,if the fuselage shape satis-
fies eqyation (4), the total wave drag of the combination under the assump-
tions that @l ad &l/Le are small can be written either as

D = De

or as

19)

D=~-~ (lo)

If, in finding the fuselage shape,

(a)

are

the

(b)
but

the multiples representing a wing and a body flYing separately
assumed to represent the same wing and body when combined (i.e.,
shape fields can be superimposed),

the multiples representing the fuselage are equal in magnitude
opposite in sign to the wing equivalent multiples,

then equation (10) holds without the assumption of small ~ and @l/Le.

h subsequent problems we will discuss the effects on the wave drag
and fuselage &ea distribution of adding
the body gecmetry. The addition of such
the relation given by equation (10), but
eqwtion (9) so that

certain additional restraints to
restraints may or may not change
they must always add a term to

(n)

v3NGS CEMRALLYMCUNKDID ONSLEIIDIR QUA.SI-~~

This section is devoted to the solution of two problems involving a
given uncs.mberedand untwisted wing mounted centrally at zero angle of
attack on a tube that is cylindrical.forward of some point ahead of the
wing. llheproblems are, in both cases, to find the area distribution of
the fuselage behind the cylindrical portion that vXLl mirdmize the wave
drag of the combination.

— _.... . ...— —. —— —.- —
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Shortening the Fuselage

HACA TM 3667

Remembering the assumptions listed at the beginning of this section,
let us consider the following problem:

(i) Given a wing and a slender fuselage having the same normsl
cross-sectionalmea in aU planes ahead of the plane x= -Lo’
(see sketch (c)), what is the optimum fuselage area distribution
behind the plane x = -Lo’ if the fuselage must end at the plane
x = 20?

Of course, if Zo~Lo (i.e., the
body modification can extend over the
entire range enclosed by the forecone

~ X
and aftercone enclosing the wing),
the solution is already given by equa-

L: / \ tion (4).\ Hence, in the following,d

v ~ ~-

/ \ 70 <Lo.
/

/ \
/ \ Y For simplicity of notations,

/’ \ let ~(x) represent the sources
/ \

0/ along the fuselage center line and

L

so(x) represent the wing equivalent
/ \ source distribution. l!hen,according .

\ ‘ to equation (6)

.LO \ /’
\

1-, {

\ /’ Do
\ —=
\ /’

~ - & &’f~’’a’(x’)+
\ / -Lo’ -Lo’
\
\ /
\ /

/ ~
~’(x~)][ao’(xz)+ao’(x2)]tn[x~-xzl

t x (12)

Sketch (c)

where from the conditions stated in the problem and the geometric inter-
pretation to the fuselage sources given by eqyation (2), so(x) is zero
for values of x outside the intervals -~ ‘<X<ZO.

‘It is necessary) for equation (6) to be valid, that %(-LO’) and
~(to) be zero. ‘I%isimplies that ~(x) must be continuous and if the
body shape is given by equation (2), this, in turn, means that the stream-

,.

wise gradient of body cross-sectionalarea must be continuous. It T?’aS

pointed out in reference 4 that %(-LO’) and ao(Lo) will.both be zero if
the wing has no blunt edges along which the normal component of the free-

b

stresm l.kchnumber is unity or greater.



NACA TN 3667 9

Consider now a variation of eqyation (12) for a fixed so(x) in the
interval -Lo’ ~ x ~ & and a free variation of ~(x) in the sub-

interval -Lot ~ x ~ Z,o. There results

7 rT

J
‘O [1

‘o

&Do =-~
41-CU02-L ,

dx=&fQ’(xJ ao’(xJrllxl-x21 axz +

o
-L.‘

10

J
“1

q’(xz)lll Ixl-xzldxz = o
-L.‘

Integrate once by parts with respect to xl (s&ce the variations 5~(-Lo’)
and b~(zo) must be zero). Then, by the fundamental lemma of the cslculus
of variations, the bracketed term must be zero for -Lo’ ~ xl ~ 20 and one
finds the condition

Lo

!

20
a.’(xz)dxz

J

a.‘(Xz)dxz
+ = 0; -Lo’ ~Xl~lo (13)

-Lo’ ‘I-xz i -L , x1-x2
o

Eqpation (13) is an integral eqpation which can be inverted (by methods
such as those outlined in ref. 8). lh.verting,integrating once with
respect to x, and expressing ~(x) and so(x) by means of equations (2)
and (3), respectively, one finds

J
21’t

~(lo- X) (LO*+X)
Sf’(x) = -* ~’(x,e)de +

o
pf12

Lo 2Yt

4J
&Cl

~’(xl,e)

o ‘e (Xl- X)~(Lo’+xl)(xl-ZO)
o

(14)

which gives the optimum fuselage area distribution under the conditions
and assumptions posed.

The wave drag of the combination representedby equation (14) canbe
expressed either in the terms defined in eqgation (8) or (I-1.).Let us
first consider the form given by equation (8). If the expressionfor the

. — . . —..-. —- .—..——— — — — —.— ————
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drag of an nth order multipo e distribution is integrated once by
t)parts, there results since an n+~ (.Lo~) =an(n+’) (Lo) =0

Lo Lo
a&+l) (X,)dx,%

p2n

J
a#) (x.)dx.—=

~ 41’KJ02 -L , J xl - X2
o -L.‘

Using this expression, one can readily show t“ht equation (12) yields

Lo 10
%b 1

J
~(xl)dxl

J

~’(x~)dx~
—=—
!l 2fluo2

-L.‘ -LO* ‘1-X2

10

J
Lo

1 J a.’(2i2)dx2
=— CLo(xl)dxl

2m02
-L.‘ -LO* ‘1-X2

so that, by equation (13)

Hence, for any combination satisfying equation (14), once again

on the other hand, ~e, the ticrease ~ drag caused by shortefiu
the fuselage can also be obtained. Integrating equation (12) by parts)
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one has (note Dre = 2DO)

Lo Lo

%e 1
— = Z*02~ [ J

[ao(xl) + q(x=)]dx=

-L.‘ -L.‘ xl - X2

Combined with equation (13), this becomes

l-l

[an’(x2) + w’(x2) ldxz

Lo Lo

%e 1

J I

ao’(xz) + ~’(x2)
—=— ao(xl)dxl
~ 21’(U02 ~ xl - X2

o -L.‘

l%e derivative of eqyation (14) with respect to x giws

Lo

J ao’(XI)~(Lo’ +x1) (x1- 2.)~=,
so’(x) +%’(x) = .

,fid(Zo-&Lo’+X) lo x- X1

,-
So

L

70 Lo

J

1“ dxz

I

ao’(x3) (Lo’+XS) (XS -ZO)

;

1

(3XS

-L , (XI-X2)4 (LO’+ X2)(Z0- X2) X2 - X3
o 70

which reduces to

Lo
Dre 1

f— = 23-CU02 zq
ao(xl)dxl

r:::)=”z ““)
o 0

. -... .—— — —— .- —. -—-——.——



NACA TN 3667I-2

or, alternately,

Lo Lo
%e ‘1—=
~ JJ a.’(xl)ao’(x2)

21’CU02 ~
o lo

IX=-X21(20+L0’) ““
h ~ dx~dxz (15b)

[~(xl+Lo’)(x2- 2.)+~(x2+Lo’) (xl- Zo)]

T
\,0

x

Sketch

SI, S2 ,ond
wing all fixed.

(a)

Constrained Fuselage Areas

Another class of problems is that
in which the magnitude of the fuselage
area is fixed at various points. sup-
pose, for example, that a fuselage
shapedaccording to eqyation (4) had
in som’region a cross-sectionalarea
too small to be acceptable for some
practical pur@3se. The question is,
then, whahis’,the best shape for given
values of “hinimumfuselage cross-
section area’at given phes and what
is the penalty in wave drag caused by
the added constraints? Before consid-
ering the general case of an arbitrary
number of restraints, let us first con-
sider the simple problem:

/

(ii) Given a wing, what (under the various assumptions given
above) is the area distribution of the adjoining fuselage which
bas a prescribed srea at three given stations (the initial, the
final, and an intermediate station x = dlflsee sketch (d)) and
yields amininkm wave drag for the combination?

As before, let so(x) represent the wing equivalent source distribu-
tion. Then the drag causedby the restraints can be written

Lo
‘0 ao’(X~)+Uosf’’(x2)

%e 1-—
1

-[aO(xl)-+Uosf’(x1)ldxl
J

dxz
~ 2Jfuo2

-L.
,. -L.

xl - X2
.. (16)

.

!’

. .
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where Sf(x) is the unhewn fusehge area to be optimized. For simplic-
ity, replace the unhewn ~(x) by u(x) where

f

J
21’C

x ao(~)
Cr(x)= — d~ + sf(X) =*

Uo [
f+r(x,e)de+ %(X)

-L. o

1

(17)

CJ(-LO)= So

O(LO) = S2

Let

Co(x) = u(x); -Lo<x+il 1
a=(x) = u(x); dl~x<Lo

I

and the restraints on the fuselage area

~dl r.

J

give the relations

23’(
n 1

J“

J’
Lo

(Jl~(x)dx=
dl

=J1 -JO (19b)

where JO and .1 are constants fixed by the given constraints. Notice

J1 = (S=

so the constant .l’ is a measure of
a?ldfinal axeas.

- %)

the difference

Using the usual variational techniques, we can
tity to be minimi-zeal,

(19C)

between the initial

write, for the qw-

dl
?ce +Po&

J

Lo
poA=

‘1 kn -L
aot(x)dx + —

J4X “
ul’(x)dx

o dl

. .— —. — —— —.- . .. ..—-—-——— .. . .. . . _. ___ _ _, ___ __
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,,

..

- dl

J

Lo
Uo”(XJ dxa

+
J

UI°(X2)‘3X2 1+h+.-LO‘=-‘2al‘=-‘2
J’dl

J

Lo
ao”(XJ CTixz+ al”(X2)Cl& 11+Al

-L. ‘1 -‘2 dl
xl -X2

By taking the variation and satisfying the conditions at the end points,
one obtains the two simultaneous integral.eqmt ions

dl

J J

Lo
co”(X2) ~2 + blJ1’’(x2)dx2 = - _.

2’

i

-L. < Xl < dl

-L. ‘1 -‘2 dl
xl -X2

(20)

J

d=
O.”(Xz)dxz + ‘0

J
u=”(X2)(3& AI=__ .

2’
dl<xl <Lo

-L. ‘1 -‘2 d= ‘ ‘1-X2

The set of equations (20) is identical to that analyzed by Adams
(ref. 9), page 14, for bodies of revolution with fixed areas at the
initial. final. and an intermediate section. In the interest of subse-
quent g&erali;ation,
following way: l?irst

however, we will consider its solution in the
write the equations (20) in the equivalent form

J~L0cn(x2)ti2= ‘>; ‘Lo<x=<d=

‘-LO ‘1-X2

[

Al
-—. dl<xl<Lo

2’

(a)
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One can show that

A+Bx2
2

.= Lo - d1x2
an(X2) =

~- - clcOsh Lo 1x2- d.!

is the solution to the integral eqyation (where A, B, and
stants) since

f

~a!1(x2,ti2J-fiF-clcos-1(5)l; -LO<.xl<dl=

(22)

Cl are con-

J xl- X2 \ (23)
-L.

[-++cIcos-l(’&)]; ..< X,<LO

which satisfies eqyation (21). The constraints can now be satisfied by
means of the eqgations

J’
x

a’(x) = 13°(XJ (3X1= A -(~) -B&++
-L.

[
c1 (dl-x)cosh-l

L02- dlx

Lolx-d=l ()1
-dE==Fins-l~

(24)
and

[ ‘<~)+~]-:~x~+Lo2 cos-@]-
a(x)- SO= AXCOS

. .

[
+ (d=- x)2cosh-’L0

2- dlx

.()
-~-(d=-2x)cos-l ~ +

Lolx-d=l

~(Lo2-d12)(L02- F) 1 (25)

—. —— —-..——
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Since CT’(-LO) = C(LO) = O

A= c1J=

and

[ ( )1
-d=

Jo = - ; d=~Lo2-d=2 + Lo2cos-1 —
Lo +>~~lcos-l(~)+

Solving for Cl and B, ye find

c1 = 2 2{w’Jo-J{d’J==+Lo2c+--)]}YC[L02- d12]

I%om equation(25)the fuselage cross-sectionalarea can be written



!
St

Sf(x) .sO -* ~(x,e)de+ 1
2([

@ (Lo2- dlX (~2-#)(Lo2-d12) -
n(~2- d12)

o

Loa - dlx
4

Loz(x - d1)2coeh-1
1{ ()’

+ J1 (k2-d12)2cos-l ~ -
Lolx-dll r

(~2:x2)(~2-d12) Lo2-d12(al-x)t

\

( )1
(Loz - Lodlx)cos-l ~ + (x-al)= [du&==%2cos-l(~)cosh-l:;::l (26)1})

In terra. of the w5ng, body, and Interference

total wave drag is

drag ccmpnents defined in, equation (8), the

D%%.. —-—

[ ()+(sO - S2)B + Cl mSI -SOCOS-l ~
~qq Lo ( )1-S2COS-1 ~

where B and Cl are given above. The equation for ~ ie

%e 1—.
q ,(+qo2J02 -

{ ( )1
2YTJOJ d=J~ + ~=’cos-~ 5 +

R (L02 - d12)

{
J12 ~2-d12 + 2d14~Coa

-=(%)+L02[CO”-’(+;2})

(2’j’a)

(2p)

s
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*

If the additional specification is made that the initial and final
axeas are the same, the solution simplifies considerably, since, for such
cases, J1 = O and equations (26)and (27) reduce

J’
2JI

1
Sf(x) =sO -* S~r(x,f3)d6+

o [(Lo2-d.2)2 ‘1

to

J’
21-(

- so+& Sv(dl,e)d@
o 1

[
(L02-d=x) (Lo2-x2)(Lo2-d=2) - Lo2(x-d1)2cosh-l

L02 -dlx

Lolx-d=l 1
(28)

and

D % Db 2fio2

[ J
21t

(s1-s0) S=- SO+* ~(dl,f3)de1 (29~)
‘i= F-T + (L02-@2 o

,

(2gb)

Often the exact statement of”the restraint is that S(x) shall not
be less than S1 at x = dl. In such cases care must be used in ap~~
~u~ns (26) and (27) or (28) and (29), since they are only valid when
the fuselage cross-sectionalarea at dl is exactly S1. H such is the
case, equations (26) and (28) give the optimum body shape only if Jo ~ O,
that is, O* if

L
211

sl>so-& ~(d=,e)df3

u

Otherwise the optimum variation of area is givenby eqmtion (4).
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Next let us generalize the analysis leading to equations (26) and (27)
by considering the following problem:

(iii) Given a wing, what is the area distribution of the adjoin-
ing fusebge which has prescribed areasat n + 1 stations (includ-
ing the initial and final.ones fixed,by the ~ch forecone and
aftercone enveloping the wing, see sketch (e))-and yields a mini-
mum wave drag for the combination?

Bya-ogy with eqpation (22), the
integral eqmtion for U“(x) (where a(x)
is definedby eq. (17)) that must be
satisfied for a minimum wave drag can be
written at once in the form

Lo

1

d’(x.2)dx2
= xi; di <xl < di+l~

-L. ‘1 - ‘2

i=O,l, . . ..n (30)

where do = -L. -d dn+= = Lo. me
qutity

n
A_+ BX2

I

- Lo2-x2di
U“(X2) = J- -, Cicosh ‘ LO[X2 -dil

(31)

so Original
Modified

*>
,/ N,

body 1\
1

/
1

\
I

\ YI
\ 1=

i, Snj
\ I
\,f’ ‘./’Areas So)

s !\ ,) sn+l’ *x. J)”” “ s~,
sn+~*andw
wing all

Vx fixed.
Sketch (e)

is a solution to eqution (30) since it yields

Lo

J

U“(xp)dxa

xl - X2
-L.

‘-Y’([B~~CiCOs_l(.) ‘~C!~COti,(~)];

1 v

dv-l<xl<dvjv=ljpj . ..yn+l (32)

in which

fcicos-l (g)= (3

n+l

. . ..—— .. ——
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Further, it is apparent from equatiom (24) and (25) that, with the con-
ditions U’(-Lo)=U’(Lo) = O

,

n

z

L02 - xdi
a’(x) = -B~~-+ Ci(di -x)cosh-l

Lolx-dil (33)
1

. and

21’C

Sf(x) = so - *
r

‘~,(x,e)de

‘o
- ;[x=+ L02COS-1(’)] -

n
1

1{

-1 Lo2- xdi
F

Ci (di-x)2cosh
[ -l(~)+J--} ~-~ dices

i=l
~lx-dil

(34)

The wave drag due to the restraints can be obtained by using equa-
tions (32) and (16). !RIUS

n“
?re 1

= ~B(Uo-Un+l)+~
1[ (“) ( )1

-di
T

Ci fiOi-UoCOS-l > -~n+=COS-l ~
Lo (3%) “

i=l
o

or in terms of the cmponents defined in equation (8)

n
11=% h+ B(~o

- Sri+=)+
1[ ()

di
~ 7-7 Ci Ytsi- Socos-l — -

Lo
i=l

where ai = cr(di). Notice .% = So and an+= . ~+=, so

n
be—=$~ I Ci(ui - so)

i=l

( )1
-di

Sn+lCOS-l —
Lo

(3m)

when So = ~+1,

(35C)

. .
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or

21

D
-=
~

Finally, using the
n + 1, one obtains the

211

(3X)

i=l

lmown values of- Sf(x) at dv, v = O, 1, . . .,
n + 1, simultaneous eqy.ations

( )1-dv
L02COS-1 — -

Lo

n
1 Y + L02-dvdi
T Ci di - dV)2cosh-1

Loldv-dil
- _[dicos-l(~) +

~Lo2 -

which determine the
turn, fix the shape,
equations (35) .

WIN% cmNTRmLY

‘I-dv2 ; V = 1,2,

n + 1 const.smts
through eqwtion

. . . ,n+l (36)

B, Cl, C2, . . ., ~. These, in
(34), and the wave

MOUNTEDON SLENDERCZOSEDBODIESOF

drag,4 through

REvmoN

In the preceding section the interference between the central portion
of the airplianeand its nose and tail regions was neglected. In this por-
tion we will consider the entire fuselage, assuming,first, it is a slender
closed body and, second, it cau be calculated in the presence of the wing,
using the ssme postulates given in the previous section under “Basic Theory
smd Assumptions.”

41t bas come to the authorts attention, through a private communica-
tion, that W. T. Lord has obtained a solution similar to the above and is
using it to calculate the drag of bodies of revolution having their areas .
specified at a given number of stations. Such a method has the advantage
of giving the lower bound to the drag of bodies whose axeas have been
measured at a discrete number of places smdj further, of giving a value
representative of all area variations in the vicinity of the calculated
optimum.

-. .——. .-—. . ..— — ...——— — .—— .— .—. ..—
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Unlimited Indentation Length, Fixed Volume

Let us first consider the question:

(iv) Given the wing, body length, and total volume of the com-
bination, what is the area distribution of the body which yields
minimum wave drag if the apexes of the Mach forecone and

%tercone enclosing the winglie within the body (see sketch (f))
and the specified volume is large enough for the body to be real?

Sketch (f)

where

DsH wave

D1 wave

This problem can be solved in a simple manner by means of
the following lemma discovered by R. T. Jones, using methods
similar to those introduced in reference 10.

Designate the closed body which has a minimum wave drag
for a fixed volume and length as a Sears-Haack body. Then the
total.drag of a Sears-Haack body and any other wing or (slender)
body entikel.ywit~” the fore and after Mach cones with apexes
at the tail and nose of the Sears-Haack body, respectively, is
given by the equation

‘=4+%)’D’

drag of Sears-Haack body alone

drag of second body alone

(37)

‘SH volume of Sears-Haack body

VI volume of second body

A proof of this lema can be obtained by placing the Sears-Haack
source distribution and the wing equivalent multipole distributions (or
the second
Since only

D

body’s equivalent multipole distribution) in eqmtion
the sources interfere, the drag can be written in the

Lo -1

I J

,0 aOs=’ (x2)dx2

=DsH+& ao=(xJdxl + D1
I’CU02

-L.‘ -Z. xl -X2

where the interference term has been integrated by parts and -Lo ) ~0)
and -Zo, z. form bounds of the arbitrary and Sesrs-Haack source

(6) .
form

(38)

t-

——
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distributions, ao= and aoSH, respectively. As is well lmown

and

23

(39)

(40)

Pkcing eqxation (4o) in (38) and integrating, one finds

@&2 2
Lo

J’

ao=(X~)
D=D~H-——

fiZo4 vsH
xl dxl + D1

-L.1
U. .

and since one can easily show

Lo

V1 =-JUo J
x=aol(x~)dxl

-L.‘

eqpation (37) follows immediately.

Returning now to probla (iv), we see that its solution follows from
eqpation (37) and the solution is, in fact) S@lY a Sears-~~ body
having, at the appropriate place relative to the wing-body juncture, the
additional area variation specified by eqyation (4). This follows, since,
if D1 represents the combined drag of the wing and indentation, then Vl,
the combined volume of the wing and indentation, is zero. Hence, the
minhum value of D, for a given volume, is obtained when DsH mdDl are
independentlyminimized. Bd DSH is tieady a mimimum on a volume basis
and D1 is a minimum for a given wing. Notice the location of the wing
along the body is hmnaterid, provided the required indentation csnbe
accamnodated by the fuselage.

——— -—. — —. -.-——
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Limited IbdentatioriLength On
Fixed Volume
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Sears-B&Lck Body,

Consider, next, the more tifficult problem

(v) Given awing and Sears-~ckbo@of length2Zo (long enough
to contain the apexes of the fore and after Mach cones enclosing
the wing), what modification of this fuselage within the length
21’ + Z= (and Within that length only, see sketch (g)) minimizes
the total wave’drag for a given total volume?

W order to answer this ques-

1 /\~ock body tion, it is necessary to consider
separately two cases; nsmely, the

1,, [
20

rt ,/” ‘
fL; ////

1’ 1 1 /

dA A

\

\

>

I

v
\
\\\\\\

-Y

\

/ sources

tx
Sketch (g)

one inwhlch Z1’ ~Lo’ and Zl ~Lo
(i.e., the portion of the body free
for variation contains the apexes of
the wing’s Mach cone envelope, as
shown in sketch (f)) and the other
in which the preceding conditions
are not satisfied.

First consider the ccnnbination
for which Zly ~Lo’ and Z1~Lo.
‘I!hewave drag of such a combination
can always be calctited using equ-
tion (37) wherein DsH is the wave
drag of the basic Sears-Haack body
fixed by the stationary nose and tail
portions, D1 is the combined wave
drag of the wing and the (as yet
unknown) body indentation, and V1
is the net difference in volume
between VSH, the volume of the Sears-
~ck body, and the final.volume of
the complete configuration. Since
the basic Sears-Haack body is fixed
and the total vol&e is given, the

entire term ~H[l + (2V1/VSH)] is fixed and the solution to ~he problem
is obviously that for which the wing equivalent sources and the source
simulating the body indentation conibineto form a Sears-Haack distribu-
tion in the interval -Z=’<x~ Z1.

Using equations (2) and (3) to
tions to their respective areas, ye
cam be written for -Z. <x ~ -z=

relate the wing and body source varia-
find the fuselage cross-sectional area

(Zoz- xz)yl= (41a)

.

—-
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for -21’< x ~ 21

128V1
[(2=’+ x)(2J_- X)13’2

311(2+Z1’)4

and for ll~x~lo

The total wave
tions (41) is then

Sf(x) =#y202:x7’2

.

(41b)

(41C)

drag of the wing and the fuselage, as given by equa-

(42)

where De is defined byeqtitions (5), (6), and (7).

Since, as we have been assuming, PA is small, De is negligible,
and a comparison between equations (37) and (42) shows that the drag of
the combination formed by mounting two wing panels on a Sears-I@ack body
can be reduced without.a change in the total volume and with a modifica-
tion limited to the interval -21’ <x < 21 by the difference between
the drag of the tx70psnels flylng alone and the drag of a Sears-Haack

body having a length equal to 21’ + 71, anda volume equalto the volume
of the two panels. So long as the points x = -71’ and x = 21 do not

● lie off the basic body, and so long as the required indenf.ationcan be
accommotited, this result is independent of the wing’s fore-and-aft
position.

If the body modification is limited so that either Z1’<Lo’ or
21 < Lo (see sketch (g)) or both, the above results,do not apply, since,
in such cases, the second body - in the sense
vqried for x between -71’ and -Lo’ or Lo
drag cannot, therefore, be reduced to that of
body. The best modification in this case can
results presented in the material immediately

defined above - cannot be
and 11 or both, and its
an equivalent Sears-Haack
be calculated from the
following.

————— --- — —-—-
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Limited Indentation On Arbitrary Body -
Fixed Volune

Consider the question

(vi) Given a wing, a body length, and the area distribution of
the fore-and-aft portions of a body, what is the variation of
area along the intermediate portion of the body which yields a

Again, as in
representing

wave drag for a fixed total volume? .

equation (17),
the basic body

let U(X) represent the sum of the sources
and the wing eqtivslent source distribution,

u(x) = s-f(x)++ ~2*sdx,f3)de (43)
GJL d

o

It is now convenient,
entire interval -zoY

however, to let u(x) be a fixed function in the
~x~ln, see sketch (h), and let the body modifica-

[not Seers -
Hoack}

\
Modified

body (modifi-
cations limited
h this por -
tionof the
body}

tions, which are to be optimized in
the interval -71 <x < 71 be repre-
sented by ASf(x) which has the end
conditions

ASf ’(-z.)=&f ’(l.) =0

1 (44)

4(-2=) = As’f(z=) = o J

The change in’volume caused by the
body modification, AV, is given by

.

.
LI

AV=-
J

XASf’(x)dx (45)

-71

Sketch (h)
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The usual variational procedure leads directly to the integral
equation

Ll

J

10

%“ (-X2)dx2

J

d’(x.2)dx2
=. + ~ + x=x=; -Z. <X <2= (46)

-21 ‘1-X2 -20’ ‘1-X2

where & and A=, are fixed by the conditions given in eqwtions (44)
and (45). Eqyation (46) is similar in form to equation (13) and its
inversion can be obtained by use of methods similar to those for invert-
ing the latter equation. Thus, the solution to equation (46) becomes
for -21~x~2=

.“

ASf ’(x) = -a’(x) +

,/’

J= ‘z= “-.~(x=)dxl

11 J
+

-Zol (xl-x) d--

10

J
u ‘(Xl)dxl 4x

[

‘)

211
+— 212- Z1210-2(V +AV) “+—

21 (X1-X)4X12-2=2 214 112

(47)

vhere
s

-11 Ic)

J
xl% ‘ (XJ dxl

-$
Xpa r(XJ dxl

In =

-Iof ‘X1
2-112

1

and V is the total volume of the wing and

.
Lo

P

(48)

v=- J Xcr’(x)dx

-1.’

unmotified fuselage, that is

(49)

.- —.. .—. ——.—-. — . .. . . _ ____ ,_ .—



28 NACA TN 3667

.

Equation (47) integrates to give
~.

4

[
—212- 121210 + 2(V + AV) (2=2
31T214

where

o$j [ XIX - -L1’
a’ (XJ *-= +

-L~
J(2=’- X2)(X,2-2.’)

3/2
- i=) + H(x)

(w)

?(

1‘E ‘=-

1: ‘1 (51)

If Da is the drag of the original wing-body combination and D
9is the drag of a body of revolution having the same normsl area distri u-

tion as the modification, then

“DDa DN 8AV
-=— - —+—
~!l.q [

2(V +AV) + Z1210 - 212
lrzl~ 1 (5=)

On the other hand ~e can be written

?re D++—=—

{[
+~~ 212- zl’Io -

~~ 31Z12 Z12 2(v+d2+I’2}‘52b)
where if

.

G(X1,X2) =
‘c.xl-x’ (53)
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IY/q can be expressed as

.
-L1 Lo
n l-l

2
J

dx=
J

ik@’(x1)15’’ (x2) G(x1,x2) +

-1.1 21

10 10

(’f
.

(3X1 dx@ ‘ (Xl)d’ (X2) G(XI,X2) 11 (%) -

Limited Indentation On Arbitrary Body -
Fixed Dismeter

As a final example in this section, consider the question

(vii) Given a wing, a body length, and the area distribution of
the fore-and-aft portions of a body, what is the intermediate
variation of fuselage area that has a @ven area at some titer-
mediate station xl = dl and yields a ndmimum wave drag for
the combination?

Using the same definition for a(x) as is given in equation (43), and
again desi~ting the area modification as ASf(x), one can apply the
same methods used to develop eqwtions (21.)and (~) and write the inte-
gral.equation for, Mf.(x)

.
Ll

[
&f” (X2)dxa

=

‘-21 ‘= - ‘2

Gtliefom - -

20

-J

0“ (X2) dxa

[

&,-l= <x<di
+ (%)

-2.’ ‘1 - ‘2 A=, dl<x <21

where & and Al sre constsnts whose values depend upon the restraints.

..— — -—. . . . ----- —.-. _ .._. _.. —.. . .
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and

(1)

(2)

and

The
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The solution to equation (56) can be written

-l/l

A@’(x) = -d’(x) - [J U“(X.2)

* -,01 X-X2 ~“2-

10

J ““@+j~ti2.A-w -c=cosh-=z’2-xd’
x - X2 111 Z=lx-dll

(57)

the three constits A, B, and Cl are fixed by the conditions:

continuous slope
Ll

J
As-f”(X)dx = o (%)

-11

the body area at x = 11 is unchanged

21

‘J Asf ’(x)ax=o

-Z1

(3) the body area at dl is given

dl

J
ASf ’(x)dx=~(d=)

-Z1

final solution is

(*)

Z12- xdl
&f(x) = -a(x) +H(x) - ~ (X -d=)2cosh-1 +

Z=lx-d=l

~’ x-d=

Z12- d12 { s

a(dl) - H(dl)11

(Iodl + II)+ ‘1
2- dlx

~ [
Nf(dl) +

(59)

——
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where

22 ~2

[

N.lW
c1 = LSf(dl)+ cr(d=)- H(dl)- (I,dl + 1.2,2)1“ (60)

(Z=2-d~)2 Y’(2la

and In and H(x) are

The drag can be

where Da is agati the
D& is the drag of the

defined in equations (48) and (51), respectively.

expressed either as

tiag of the original unmodified combination and
modification alone, or as

Dre ti + B2(Z12 -d=2)

(

2
—=—

4Yr
~Bdl-

!l~ + 411 )
cud” (61b)

where D* and Cl are defined by equations (54) and (6o), respectively,
and B is given by

Ames Aeronautical Laboratory
National Advisory Ccmmittee

Moffett Field, Calif.,
for Aeronautics
Aug. 4, 1955

,
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