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TECHNICAL NdTE 3667

WING-BODY COMBINATIONS WITH CERTAIN GECMETRIC
RESTRAINTS HAVING LOW ZERO-LIFT WAVE DRAG
AT 1.OW SUPERSONIC MACH NUMBERS

By Harvard Lomax

SUMMARY

Several variational problems involving optimm wing and body combina-
tions having minimum wave drags for different kinds of geometrical restraints
are analyzed. Particular attention is paid to the effect on the wave drag
of shortening the fuselage and, for slender axially symmetric bodies, the
effect of fixing the fuselage diameter at several points or even of fixing
whole portions of its shape.

TITRODUCTION

Recently several authors have used linearized theary to study the
wave drag of wing-body combinations traveling at supersonic speeds (see,
e.g., refs. 1 to 5). These studies have clearly demonstrated the impor-
tance of finding the wave drag of a whole airplane rather than the separate
wave drags of its various parts (wings, fuselages, etc.), since the magni-
tude of the interference terms can predominate. In effect, this means
that various optimization problems for bodies - such as the problem of
finding the body shape having a minimum wave drag for a given volume -
ghould be re-examined when interfering wings or other bodies are in the
game flow field. In many cases the solution to the new problem differs
from the body-slone problem only in interpretation. .

The purpose of this report is to study minimum wave-drag combina-
tions which satisfy a few of the many possible geometric restraints per-
tinent to the interests of alrplane designers. An attempt has been made
to analyze the various problems in & unified manner so that extensions
to other kinds of restraints can be deduced.
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LIST OF IMPORTANT SYMBOLS

aspect ratio

source distribution equivelent to wing in sense defined by
equation (3)

miltipole distribution of order n

wave drag

portion of drag due to all the nth order multipoles for n>0
See equation (8).

additional drag resulting from restraint (See eq. (11).)
restraints defined in equations (19)

distance between spexes on x axis of forecone and aftercone
enclosing wing (See sketch (c).)

length of basic body
length of modification to basic body

Mach number

2
PoUo

2

average body radius
fuselage ares in cross section normal to the free stream

normael (to free stream) projection of wing aree in section cut
by plane x; = x + By, cos 8 (See sketch (b).)

speed of free stream
volume

Cartesian coordinate system (See sketch (a).)

source distribution representing the fuselage modifications



NACA TN 3667 3

B 2 -1

) polar coordinate (See sketch (a).)
Po free-stream density

(o See equation (17).

Q velocity potential

BASTC THEORY AND ASSUMPTIONS

Basic Theory

Many of the discussions and derivations contained in the following
are carried out on the assumption that the reader is familiar with the
concepts presented in reference 4 which should be considered as a first
part to this report. Im particular, 12
an acquaintance with the solutions ‘
to the wave equation referred to as '

"multipoles" is assumed, together 1)
with Hayes' invariance principle and °
the consequent multipole distribu-

tions equivalent to a wing in the o
sense that both induce the same \X j7
momentum spectrum at infinity.
The entire analysis used herein :
is based on the assumptions and ideali-
X

zations necessary to develop the
linearized equation for the wvelocity
potential, ¢, in supersonic flow,
namely f.l

ﬁzq)xx - q)yy - Py = 0 (l)

vhere P2 = M® - 1 and the reference
coordinate system® is shown in r V4
sketch (a). The analysis is further

restricted to the solution of prob- (/// \
lems involving a given uncambered

<Y

Sketch (a)

1Tt should be stressed that the x axis is parallel to the free-
stream direction (wind axes).
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and untwisted wing mounted,centrally on a vertically symmetrical fuse-
lage, the entire configuration being at zero angle of attack.

Additional Assumptions

We now make the two additionsl assumptions: one, the value of B4,
where A 1is the wing aspect ratio, is small; and two, the value of BR/Le,
wvhere R 1is the average body radius and 2Le is the distance along the
X axis in which the multipole strengths differ significantly from zero,
is small.

One can evaluate the significance of these assumptions by studying
their implications relative to the source and multipolée distributions
used to simulate the wing and body. Suppose, for exsmple, a group of
multipoles are placed along the body center line, their strengths, Cn(x),
being fixed by the condition that a circular cylinder in the viecinity of
the body is & stream surface when the velocity field induced by these
multipoles is combined with the veloeity field induced by the source
sheets representing the given wing. With the assumptions of small BA
and BR/Le mentioned above, the Cp's, for n greater than 0, can be
shown (see, e.g., ref. 4) to have a negligible effect on the wave drag.
Hence, all the multipoles (for n > 0) that combine with the wing to meke
e circular cylinder a stream surface and any additional multipoles (for
n > 0) added to make the body have mild distortions from such a surface
are negligible in evaluating the wave drag. Therefore, under the assump-
tions mentioned above, out of all the singularities distributed along the
body axis, it is necessary, in studying the wave drag, to comsider only
the sources.

With the restrictions to small values of ﬁR/Le and mild body dis-
tortion (see Ward, ref. 6, for a discussion of orders of magnitude),
slender-body theory can be used to calculate the body shspe, and on the
basis of this theory one can show (see ref. I, Appendix B) that Sp(x),
the body cross-sectional area measured normal to the free stream, is
completely determined by the axial source distribution alone. Hence, if
only the exposed panels of the wing are used to calculate the Cp's, Co
is negligible and the entire axial source distribution ao(x) is related
to the geametrical properties of the body by the relation

ap(x) = Ug % = USe'(x) (2)
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The Wing BEquivalent Source Distribution and the
Optimum Cancellation Sources

Let the given wing lie in the 2z; = O plane. According to Hayes'
theorem (ref. T), the wing equivalent source distribution [ag(x)],; is
obtained by accumulating on the xi; axis, at a distance x from the
origin, all the wing sources intercepted by the line x; = x + By,cos 8,
snd then, for a fixed x, averaging these values as 6 varies from O
to 2n. Thus, using thin-airfoil theory to relate the planar source sheet
to wing geometry, one finds

271
1 =2 '
o ao(x) = = [ Sy’ (x,0)d8 (3)
vhere Sy'(x,0) = 3/dx[Sy(x,6)] and S(x,8) = Normal projection

Sw(x,0) is the normal (to the x axis) ]
projection of the wing cross-sectional of wing area along AA
area intercepted by the plane®

X3 = X + Byycos 6 as shown in .

sketch (b). Without the addition of |
further restraints, the optimum source
distribution along the x; axis is

that which just cancels the wing: .
equivalent source distribution. Fur-

ther, this can be interpreted directly

in terms of both fuselage and wing

geometry by means of equations (2) y,
and (3). Thus, with no further ~ —
restraints, the best fuselage shaping,

for a wing-body combination satisfying ~k
the assumptions discussed above, satis- A
fies the equation ' L

:ﬁ

~

AN

21 o

Se'(x) = - = f Sy'(x,0)d0 (1) ‘ X = x+Bycosl
2n 5 o

-

and has any reasonably smooth cross- ‘[&
sectional form. Notice that the total
Sketch (b)

2The true oblique plane is given by the equation
X, = X + Byjcos 6 + Bz;sin 6

but, to be consistent with the assumptions basic to linearized theory,
the variation with 23 is neglected.
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volume taken out of the fuselage is exactly equal to the total volume of
the exposed portion of the wing. Hence, the total volume of the modified
combination is the same as that of the original smooth cylinder.

The Drag

The totel wave drag of a s&stem can be expressed in terms of its
actual or equivalent multipole distributions as

D = 2Dp + }j Dn (5)

where Dp is the drag caused by the nth order multipoles apn(x) and is
given by the equation

Lo Lo
Dn 2n . n+i n+1
2= F > dx; dxzan( )(Xl)&n( )(x2)ln |x1 -x2], n=0,1,2...
qa )'I-T[U t 1
° Lo ~Lo

(6)
(n+1) n+1
where ap (x) represents (9/0x) a,(x). Under the assumptions

o]
given above, the magnitude of § Dpn is small. Iet us designate it by
De, so that, in general,

D = 2Dy + De (7)

On the other hand, the total wave drag of a system composed of the
cambination of a wing and a body can also be written symbolically as

D =Dy, + 2Dy, + Dy (8)
where

drag of the wing alone

g
Il

drag of the body alone

&
I

Dy = interference drag
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The verious components of wave drag defined in equations (7) and (8)
help one to evaluate more readily the drag reductions that can be realized
from appropriste fuselage formations. Thus, if the fuselage shape satis-
fies equation (4), the total wave drag of the combination under the assump-
tions that PBA and ﬁR/Le are small cen be written either as

D = De (9)

or as
D =Dy - Dy - (0)

If, in finding the fuselage shape,

(a) the multipoles representing a wing and a body flying separately
are assumed to represent the same wing and body when combined (i.e.,
the shape fields can be superimposed),

(b) the multipoles representing the fuselage are equal in magnitude
but opposite in sign to the wing equivalent multipoles,

then equation (10) holds without the assumption of small BA and ﬂR/Le.
In subsequent problems we will discuss the effects on the wave drag

and fuselage area distribution of adding certain additional restraints to

the body geometry. The addition of such restraints msy or may not change

the relation given by equation (10), but they must always add a term to
equation (9) so that

D = De + Dre

Dre 20

(11)

WINGS CENTRALLY MOUNTED ON SLENDER QUASI-CYLINDERS

This section is devoted to the solution of two problems involving a
given uncambered and untwisted wing mounted centrally at zero angle of
attack on a tube that is cylindrical forward of some point ahead of the
wing. The problems are, in both cases, to find the area distribution of
the fuselage behind the cylindrical portion that will minimize tThe wave
drag of the combination.
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Shortening the Fuselage

Remembering the assumptions listed at the beginning of this section,
let us consider the following problem: '

(i) Given a wing and a slender fuselage having the same normal
cross-sectional area in all planes ahead of the plane x= -Lg'
(see sketch (c)), what is the optimum fuselage area distribution
behind the plane x = -Lg' if the fuselage must end at the plane
X=Zo?

O
of course, if 1o > ILg (i.e., the

body modification ‘can extend over the
entire range enclosed by the forecone
% and aftercone enclosing the wing),

/7 \ the solution is already given by equa-
J’ \\ tion (4). Hence, in the following,
\ lp <Lg-

7
o

For simplicity of notationms,
\ let ao(x) represent the sources
N\ along the fuselage center line and
ao(x) represent the wing equivalent
) source distribution. Then, according
to equation (6)

/ LO LO

/ " Do 1 f f
2 __ ax dxolag' (x1) +
7 q )-|-T[U02 H * é ° (

1
// Lo -Lo

;;K\ A oo’ (x1) 1lay ' (xa2)+ag '(x2) Jin |x1-x2|
1 (12)

Sketch (c)

where from the conditions stated in the problem and the geometric inter-
pretation to the fuselage sources given by equation (2), a,(x) is zero
for values of x outside the interval® -L,' <x < I,.

STt is necessary, for equation (6) to be valid, that ap(-Lo') and
ao(lo) be zero. This implies that ao(x) must be continuous and if the
body shape is given by equation (2), this, in turn, means that the stream-
wise gradient of body cross-sectional area must be continuous. It was
pointed out in reference 4 that ag(-Ly') and ag(Ly) will both be zero if
the wing has no blunt edges along which the normal component of the free-
stream Mach pumber is unity or greater.
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Consider now a variation of equation (12) for a fixed ay(x) in the
interval -L,' <x <L, and a free variation of ao(x) in the sub-

interval -L,' < x < 1p. There results

1 » i Lo
= 0®Dy = - T f dx18a0(x1) f ao' (x2) 1n |x1- xo| axo +
q 1o Ok ‘Lo,

o

Zo -
ao'(x2)1n |x1 - xp|dx2 | = 0
_Lo'

Integrate once by parts with respect to x3 (since the variations 8ag(-Lg')
and ®as(l,) must be zero). Then, by the fundamental lemms of the calculus
of variations, the bracketed term must be zero for ,—Lo' < x3 < lp and one
finds the condition

LO ' 10
8o (x2)dxa oo ' (x2)dxz .
—— ———=0; Lo <x1 <1, (13)
Lot Xi- X2, . X1~ X2

o

Equation (13) is an integral equation which can be inverted (by methods
such as those outlined in ref. 8). Inverting, integrating once with
respect to x, and expressing ao(x) and ay(x) by means of equations (2)
and (3), respectively, one finds

21
. 1 . J(6 - %) (L' + %)
8p'(x) = - = [ Sw'(x,0)a8 + —— 2ﬁ2_°
Lo 27K .
f d.x1f ae Sy (x2,6) (1k)
10 (o] (Xl = X)ﬂLo, + xl) (Xl - 2'o)

which gives the optimum fuselage area distribution under the conditions
and assumptions posed.

The wave drag of the combination represented by equation (14) can be
expressed either in the terms defined in equation (8) or (11). Let us
Pirst consider the form given by equation (8). If the expression for the
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drag of an nth order multipo%e distribution is integrated once by
parts, there results since ap n+1) (-Io?) = &p (n+1) (o) =0

(n+1)
%‘i f an( )(xl)axlf o~ (xe)dx

l”‘Uo X1 - X2

Using this expression, one can readily show that equation (12) yields

n, Lo 1,
b 1 "(x2)dx
B 2 [ [ e
21U “Lo, _Lor X1 -X2
1o Lo .
a X2)d.X2
= L 2 f a’o(xl)dxlf = -
QT[U.O _Lor —Lo' X1-X2
so that, by equation (13)
lo lo
Dy "(x2)dxz
LA lzf ao(xl)dxlf Jo 2/ _Dp
q‘ 23'(1]‘0 1 1 Xl "'XZ q'
L, -L, .

Hence, for any combination satisfying equation (lh), once again
=Dy - Dp

On the other hand, Do, the increase in drag caused by shortening
the fuselage can also be obtained. Integrating equation (12) by parts,
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one has (note Dpe = 2Dg)

Lo Lo
D, 1 + 1
2. ) [ao(Xl) + ao(xa)ldxa Lag (x2) To (x2) Jx
a2, , | ,
~Lo ~Lo . Froxe
Combined with equation (13), this beccmes
Lo Lo ‘
Hx2) + o'
Dre __1 f ao(X1)dX1f &' (x2) + do’ (x2) dxs
9 2w . X1 - Xz
lo Lo
The derivative of equation (14) with respect to x gives
Lo
-1 a'ot (Xl) "/(LO' +xl) (xl - 7'0)
ao'(x) + ag'(x) = 15
CaN (1o -x) (L' + x) 1 X-X1

Lo £x <1,

SO
Lo L
Dre | _1 ag(x1)dx fo ao'(xe__)dxg +
a 21‘[U02 A * X3 -Xo
lg lo
1, , Lo
1 f dxo ao'(xs)\[(Lo' +x3)(xs-10) ax
= - 3
T (k1 -x2) N (L' + x2) (16~ x2) X2 - X3
."Lo lo
which reduces to
Lo Lo

D. 4 ' ! Xo -
% - 1 f ao(xl)dxlf 8¢ (XZ) (Lo +X2) (x2 7'o) dxo (158,)

)
2o I 1 X1 -Xo (Lo + x4 ) (x1 - 1)
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or, alternately,

S originat .
- ;}i cylinder Constrained Fuselage Areas
Modified [~ ™
boay'—)(;\ H Another class of problems is that
/’Ea A d\\~ in which the magnitude of the fuselage
% R v SN area is fixed at various points. Sup-
; 74\\7\§§T pose, for example, that a fuselage
1 - shaped- according to equation (%) had
i X ”///,<7J b 4 in some region a cross-sectional area
N I \ // too small to pe acceptable for some
N } \ / practical purpose. The question is,
N 7 then, what is‘the best shape for given
5%}¢ },’ Areas Sb, velues of minimum fuselage cross-
N R4 éﬁ,‘Qé,and ieczion az:iﬁatigiven péines and what
. . 8 e pe ¥y in wave ag caused by
wing all fixed. the added constraints? Before consid-

tion.

Dre
a

ao'(x1)ag'(x2)

le-Xgl(Zo‘i-Lo') -
dx;idx l5b)
N(m+To) (- 1) W (Ra i o) (- 10) 12 (

ering the genersl case of an arbitrary
X number of restraints, let us first con-

sider the s le problem:
Sketch (d) tmple

(ii) Given a wing, what (under the various assumptions given
above) is the area distribution of the adjoining fuselage which
has a prescribed area at three given stations (the initial, the
final, and an intermediate station x = dj, see sketch (d)) and
yields a minimum wave drag for the combination?

As before, let ao(x) represent the wing equivalent source distribu-

Then the drag caused by the restraints can be written

1 to . Lo 80" (x2) + UgSp" (x2)
= m L/Ij ;[ao(xl)f*'UjoS:f\' (x1) ]d-xlf dxo
i =Lo

J X1 - Xo
Fo @
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Let

13
where Sf(x) is the unknown fuselage area to be optimized. For simplic-
ity, replace the unknown Sp(x) by o(x) where

X (£) =314 ' 3
_ o) _ 1
a(x) _f o a€ + Sp(x) = é':?f S, (x,0)d0 + Sp(x)
-Lg o]
‘ A7)
o(-Lo) = So
U(Lo) = S2 J
oo(x) =0(x); -Lo<x<d
(18)
oy (x) = o(x); d1 Sx <Ly
and the restraints on the fuselage area give the relations -
dl 210
1
f 0o'(x)ax = |81 - S + 2_:tf Sw(d1,0)ae| = J, (19a)
-Lo . (o]
Lo =44
f o1'(x)éx = |85 - 8 - L f Sw(d1,0)a0 | = J1 - Jg (19b)
dy 2% )

(o]

vhere Jo and J1 are constants fixed by the given constraints. Notice

J1 = (82 - Sp)

(19¢)

s0 the constant J; 1is a measure of the difference between the initial
and finel areas.

tity to be minimized,

diy

Dre | Pohy
q by 1
~0

Using the usual variational techniques, we can write, for the gquan-
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or

di da L
p oo" (x2)dx ©
=2 f 0o (x1)dx1 f Jo” (x2)dxz +f 1" (xg)dxz | Ao |+
X1 - X2

hx X1 -~ X2
_LO - d'l

Lo i, ' Lo _ n
JF o1t (x1)dxa L/h oo" (x2)dxo +k/ﬁ 01" (x2)dxo + N
_dl “Lo X1 -X2 ay X1 -X2

By taking the variation and satisfying the conditions at the end points,
one obtains the two simultaneous integral equations

- 0" (x2)dx Lo & ¥ (x2)dx o )
f _9_3___2+f oa'{xeldxa _ _ Do, g <y <a
X3 -Xo X3 - X2 2
- o d_l
» (20)

dl
x d.X 1"
f ( 2) 2 f Gl (xz)dx2 = - Z\}.° d; < x; < LO J
d;

2 Pl
X3 - X2 X3 - X2

(o]

The set of equations (20) is identical to that analyzed by Adams
(ref. 9), page 14, for bodies of revolution with fixed areas at the
initial, final, and an intermediate section. In the interest of subse-
quent generallzation, however, we will consider its solution in the
following way: First write the equations (20) in the equivalent form

7\0
Lo " -5 Ly <x3 <di
h/q 0" (x2)dxz
X3 -X2 - (21)
_LO 7\1

- —_— d1<X1<LO

J
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One can show that

2
A + sz -1 LO - d.lX2

o"(x2) = =———= - Cicosh
(e JLo2 - %52 ' Lo|xz - d1]

is the solution to the integral equation (where A, B, and C; are con-
stants) since

(22)

r
- N
Lo -n[B- Cjcos )5 Ly < %1 < 43
[ e ) ° -
*1- X2 ' (23)
-L, - /-
-5t|B+Cycos _Lo ; di <x1 <ILg
L -

which satisfies equation (21). The constraints can now be satisfied by
means of the equations

o '(x) =fx " (x1)dx; = A cos'1< > Lo _x2. +

Lo

Loc-4a -
01[(d1 x)cosh™* O—i'x— N cos'1<—x>]
Lolx - dy] Lo

(2k)

and

o(x) - So=A[X COS'](%)"' Lo® - XE] -g[xJLoz-;é + Lo- cos=1 z >:l -
o

C R _
1[(dl x)Zcosh” -11———41—-- JLoﬁ-dlz(dl-Qx)cos‘l<£§> +

2 Lolx-ai]

J(L62-4:2) (L2 xZ)] (25)
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Since ¢'(-Lg) = o(Lg) = 0O

A =CiNLZ-a2
and
B 2 -dl Cl —dl
JO = - 5 dJ_\/Loa— d1§ + Lg cos-1 ’]-_T + E"JLOE -d1%| dicos—1 L— +
o]

/LOZ_ d12]
c
Jy = - gLogi‘[ + ?l- J‘[d]_\/Loa- d.12

Solving for Cj and B, we find

B = —2—]—373 {ﬁleb- J]_[dlcos"l %) + NLpo= - dlz] }

n[LoZ - 4,2 o

Ci = 2 {‘I[LOZJO - JJ_I:dJ_-JLoz -4;" + Lozcos'1<%"1>jl }

a[Lo2 - d:2]° o

From equation (25) the fuselage cross-sectional area cen be written
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V.
1 =
Sp(x) = 8o - % f Bw(x,6)4d8 + - a5 QJOL(LCF- daxW (Lo - x2) (Lo= - 412) -

0

Lo2(x - dl) cogh~ 1%-_(11_] + J’l{(LO dl ) coa“l<—— --J(I.o"avdcz)(l,c,2 d;,_‘?) Lo —dla(d:_-x)-l-
LO X~ dl

Lo|x- dll

(Lo= - d:_x)cos"l< ):I (x - d1)? [d1m+ L, cos‘l<ldlol>cosh“l “ X }) (26)

In terms of the wing, body, and interference drag components defined in equation (8), the
total wave dreg 1s

D Dy Db r ‘dy -
' -q- = -?l— — '—q—-— + (SO_ SE)B + Cl[ifSl -SOcOS-l(ﬁ) - SECOS l(ﬁ) J (275-)

where B and Cy &are given above. The equation for Dpa 18

Dre = 1 (’121*02']-02 - EﬂJoJ].IidJ.JLO - d__-,_ + Lo cos” ( )

4 ‘ 'Jt(LOE - dlz)

\
J1Z {Loa—dla + 2&1 2 - a3%cos” ( )+L E[COB l( ) }> (2b)

L99E NI YOVN

LT

V¢
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If the additional specification is made that the initial and final
areas are the same, the solution simplifies considerably, since, for such
cases, Ji = O and equstions (26) and (27) reduce to

1 an 1 1 27
Se(x) = 85 - = f Sy(x,0)da8 + —-————[sl- so+——f sw(dl,e)de]
o o A (Loz_ d12)2 21 .

L2 -d
l:(Lo:2 - ‘11>‘5)~/(Lo2 -x°) (L02 -d,%) - LO'2 (x - d1)%cosh-2 Zo T9uX ]
Lo |x - da]

(28)

and

2 27
L —275'-0——(51 -so)[sl- So + %f Sw(dl;e)de:l (292)
(e}

Dre 5L, 2 l ?T[ ]2

Often the exact statement of the restraint is that S(x) shall not
be less than S; at x = di. In such cases care must be used in applying
equations (26) and (27) or (28) and (29), since they are only valid when
the fuselage cross-sectional area at d; 1is exactly S;. If such is the
case, equations (26) and (28) give the optimm body shape only if Jo > O,
that is, only if

a1
1
81280 - 55 f Sy(d1,6)de
o

Otherwise the optimum veristion of area is given by equation (4).
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Next let us generalize the analysis leading to equations (26) and (27)
by considering the following problem:

(iii) Given a wing, what is the area distribution of the adjoin-
ing fuselage which has prescribed areas at n + 1 stations (includ-
ing the initial and final ones fixed by the Mach forecone and
aftercone enveloping the wing, see sketch (e)) and yields a mini-
mum wave drag for the combination?

)

By snelogy with equation (22), the So - Original
integral equation for o"(x) (where o(x) Modified *;’ﬁ cylinde
is defined by eq. (17)) that must be body ¥ \]/
satisfied for a minimum wave drag can be \/4}‘ ]
written at once in the form e Sl*' ! dl\\
/ f:s1 : \
Lo : ] ;} \
o" (x2)dxz \ ! 2
— = N5 44 < X1 <djyq5 \l v/ _
Xy - Xo h i 7
o ! ,\\ -
\ s 4
1=01, ... 10 (30 \\Sn'} {|%,”
/
! \l/
vhere dg = -Lo and dpy, = Lo. The Y | A7 Areas S,
quantity n+/ 7 5, PRl .S'”,
n . Spey0and
- X -
" (x2) = A+ BXe Zcicosh‘ —o ~“27d1 - wing all
] -xz2 & Lo[%z -a4] X  fixed.
Sketch (e)
(31)
is a solution to equation (30) since it yields
Lo
a" (Xg d.Xz [
—=——=_x(B+) C it -1
f P Z jcos” < > ZCiCOS <Lo>]
-Lo
dy_; <x1<4dy, v=1,2, . . ., n+1 (32)
in which
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Further, it is apparent from equations (24) and (25) that, with the con-
ditions o'(-Lg) =0'(Ly) = O

2
o' (x) = -BJLO E:Ci(di -x)cosh™t—r—— xdi (33)

olx dil

and

8¢ (x) =so-§—ﬁf2isw<x:e>d9-§[ L 1 1ofeos (i) | -
(o]

%Z Ci{(di '-yx)zcosh-l Zo - X4 ,\/_*é[dicos <—_>+ o - :I}

Lolx -d3 ]
(34)

The wave drag due to the restraints can be obtained by using equa-
tions (32) and (16). Thus

A n :
-1/ -4
Brf:-]e:B( n+1)+—zcl[“°i cocos"1< > Opppcos™t Loi>] (352)
i=1

or in terms of the components defined in equation (8)

n -
D Dy Dy - di -d
s o -3¢ B(So - Spyq) +z Cj_l:I[Si - Socos 1(L—o->- Sn.l.lcos‘l<Toj=->]

i=a1

(35b)

where o3 = o(d;). Notice ¢, = S, and Opy, = Sp4y, SO Vhen So = Spi1s
n

‘D%e ='g‘ Zci(ai - So) (35¢c)
i=1
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or

n

D .
I %i - % + niZci(si - So) (35d)
=1

Finally, using the known values of - Sp(x) at dy,v =0, 1, . . .,
n + 1, one obtains the n + 1, similtaneous equations

2%
2 !
(sy - So) = = %[‘ f Sy(dy,,0)ae - g[dv'JLoz -d4,% + Ly cos 1<—I—'—v->:| -
(o)

(o}

o=

Loldv"diI- S

JLoZ - dvz:]}q v=1,2, . . ., n+1 (36)

which determine the n + 1 constants B, Ci, Cz, . . ., Ch. These, in
turn, fix the shape, through equation (34), end the wave drag,¢ through
equations (35).

WINGS CENTRALLY MOUNTED ON SLENDER CLOSED BODIES OF REVOLUTION

In the preceding section the interference between the central portion
of the airplane and its nose and tail regions was neglected. In this por-
tion we will consider the entire fuselage, assuming, first, it is a slender
closed body and, second, it can be calculated in the presence of the wing,

2 2

L - d.vd.' _ "d.
ZCi {(di - dv)zcosh'l o v ./Loz-diz[dicos 1<L—V> +
T

using the same postulates given in the previous section under "Basic Theory

and Assumptions.”

Tt has come to the author's attention, through a private commmica-
tion, that W. T. Lord has obtained a solution similar to the above and is
using it to calculate the drag of bodies of revolution having their areas
specified at a given number of stations. Such a method has the advantage

of giving the lower bound to the drag of bodies whose areas have been
measured at a discrete number of places and, further, of giving a value
representative of all area variations in the vicinity of the calculated
optimum.
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Unlimited Indentation Length, Fixed Volume

Let us first consider the question:

(iv) Given the wing, body length, and total volume of the com-

bination, what is the area distribution of the body which yields
a minimum wave drag if the apexes of the Mach forecone and

aftercone enclosing the wing lie within the body (see sketch (f))
and the specified volume is large enough for the body to be real?

é
/Z
A Y

\1

Sketch (f)

where

This problem can be solved in a'simple manner by meens of
the following lemma discovered by R. T. Jones, using methods
similar to those introduced in reference 10.

Designate the closed body which has a minimum wave drag
for a fixed volume and length as a Sears-Haack body. Then the
total drag of a Sears-Haack body and any other wing or (slender)
body entirely within the fore and after Mach cones with apexes
at the tail and nose of the Sears-Haack body, respectively, is
given by the equation

v

Dgg wave drag of Sears-Haeck body alone
Dy wave drag of second body alone

Vgg volume of Sears-Haack body

Vi volume of second body

A proof of this lemms can be obtained by placing the Sears-Haack
source distribution and the wing equivalent multipole distributions (or
the second body's equivalent multipole distribution) in equation (6).
Since only the sources interfere, the drag can be written in the form

D

Lo Lo aq '(x2)dxo
= Dgg + JF ' aoéxﬂdlef SH + D1 (38)

2 X1 -X2

ﬂUo -LO _1 o

where the interference term has been integrated by parts and -LO', Los
and -1y, lg form bounds of the arbitrary and Sears-Haack source



NACA TN 3667 23

distributions, aol and aOSH’ respectively. As is well known

Dsg _ SVsm
R (39)

and

2 2
8VSH 2x —7’0

= —_— (%0)
U, "SE nlo* 15 - %2

Placing equation (40) in (38) and integrating, one finds

L
8qVSH2 o © aol(xl)
D =D - ———— X3 — dx; + D
SH 1.4 1 1
and since one can easily show
Lo
1
ek [ s ttn
L'

equation (37) follows immedistely.

Returning now to problem (iv), we see that its solution follows from
equation (37) and the solution is, in fact, simply a Sears-Haack body
having, at the appropriate place relative to the wing-body juncture, the
additional areas variation specified by equation (4). This follows, since,
if D3 represents the combined drag of the wing and indentation, then Vi,
the combined volume of the wing and indentation, is zero. Hence, the
minimm velue of D, for a given volume, is obtained when Dgp and Dy are
independently minimized. But Dgg is already a minimum on a volume basis
and Dy is a minimum for a given wing. Notice the location of the wing
along the body is immaterial, provided the required indentation can be
accommodsted by the fuselage. '
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Limited Indentation Length On Sears-Haack Body,
Fixed Volume

Consider, next, the more difficult problem

(v) Given a wing and Sears-Haack body of length 21y (long enough
to contain the apexes of the fore and after Mach cones enclosing
the wing), what modification of this fuselage within the length

11" + 11 (end within that length only, see sketch (g)) minimizes
the totel wave drag for a given total volume?

Basic Sears-
Haack body

Yx
Sketch (g)

Cancellation
sources

In order to answer this ques-
tion, it is necessary to consider
separately two cases; namely, the
one in which 12;' > Lo' and 1; > Lo
(i.e., the portion of the body free
for varistion contains the apexes of
the wing's Mach cone envelope, as
shown in sketch (£)) and the other
in which the preceding conditions
are not satisfied.

First consider the combination
for which 113;' >Lo' and 13 > Lg.
The wave drag of such a coambination
can always be calculated using equa-
tion (37) wherein Dgp is the wave
drag of the basic Sears-Haack body
fixed by the stationary nose and teil
portions, D; is the combined wave
drag of the wing and the (as yet
unknovn) body indentation, and V;
is the net difference in volume
between Vg, the volume of the Sears-
Haack body, and the final volume of
the complete configuration. Since
the basic Sears-Haack body is fixed
and the total volume is given, the

entire term Dgp[l + (2V1/VSH)] is fixed and the solution to the problem
is obviously that for which the wing equivalent sources and the source
similating the body indentation combine to form a Sears-Hsack distribu-
tion in the interval —11'5 X S_ 11.

Using equations (2) and (3) to relate the wing and body source varia-
tions to their respective areas, ve find the fuselage cross-sectional area
can be written for -1 <x < -1;

Sp(x) =

8Vsg
3nl %

o

(102-x2)3/2 (b1a)
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for -1.'<x< 1y

21 X
Sp(x) = ﬂﬁ% (152 - x2)¥2 - -271; f 5,(x,0)a0 +
3nlo 5
1+ x)(a - 01YE (410)
3n(1+11")
and for 13 £x < 1o
Sp(x) = BB (1,2 1x?)%/? (ke)

3nlg

The total wave drag of the wing and the fuselage, as given by equa-
tions (41) is then :

8Van? oy 128v,% D
- SH4<1+V1 + L .k (42)
q ﬂZo S T((ll"' 7,1') Q

’

vhere D, is defined by equations (5), (6), and (7).

Since, as we have been assuming, BA is small, D¢ 1is negligible,
and a comparison between equations (37) and (42) shows that the drag of
the combination formed by mounting two wing psnels on a Sears-Hasck body
can be reduced without 'a change in the total volume and with a modifica-
tion limited to the interval -1:' <x < 13 by the difference between
the drag of the two panels flying alone and the drag of a Sears-Haack

+ body having a length equal to 11' + 11, and a volume equal to the volume
of the two panels. So long as the points x = -1;' and x = 13 do not
lie off the basic body, and so long as the required indentation can be
accammodated, this result is independent of the wing's fore-and-aft
position.

If the body modification is limited so that either 11'< Lo' or
11 < Lo (see sketch (g)) or both, the above results do not apply, since,
in such cases, the second body - in the sense defined above - cannot be
varied for x between -11' and -Lo' or Ly and 13 or both, and its
drag cannot, therefore, be reduced to that of an equivalent Sears-Haack
body. The best modification in this case can be calculated from the
results presented in the material immediately following.
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Limited Indentation On Arbitrary Body -
Fixed Volume

Consider the question

(vi) Given a wing, a body length, and the area distribution of
the fore-and-aft portions of a body, what is the variation of
area along the intermediate portion of the body which yields a
minimum wave drag for a fixed total volume? .

Again, as in equation (17), let o(x) represent the sum of the sources
representing the basic body and the wing equivalent source distribution,

27

0() = 5e) + 2= [ sulx,0)0 (43)

e}

It is now convenient, however, to let o(x) be a fixed function in the
entire intervel ' -1,' <x < Ly, see sketch (h), and let the body modifica-
tions, which are to be optimized in

1 the interval -1; <x < 11 be repre-
. ted by ASp(x) which has the end
Basic body  °°U:SY i3
conditions
Z, (not Sears -
Haack)

£Sp'(-11) =ASp'(11) =0
()

-

Asp(-11) =08p(11) =0

The change in volume caused by the
body modification, AV, is given by

5D —Pt—— 00

4

]

)
1
I
5 \\\ —
| ) 4
1
|

1

Y

Zo 1 - 11
Modified AV = - f H)ax (b
body (modifi- -leasf (=) (+9)
cations limited
to this por-
tion of the
body)

| B
Sketch (h)
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The usual variational procedure leads directly to the integral
equation

11

1
ASe" (x2)dx2 _fo o" (x2)dxo

= + Ao+ NXqs =13 <x<1; (46)
X1 - Xz

X1-X
_ll -7'0' 1 2

vhere and A;, are fixed by the conditions given in equations (U44)

and (45). Equation (46) is similar in form to equation (13) and its
inversion can be obtained by use of methods similar to those for invert-
ing the latter equation. Thus, the solution to equation (46) becames
for -11 <x<1;

' ) 11
N oot (x1)dx
£Se'(x) = -0'(x) P Sl o' (x1)dxa +
T -1o° (x1-x)x12-1,2

o ’ : i .

o! dx b . 2x
f (x2)dxy + = [212 - 1:2T, - 2(V + AV):I + =
11 (Xl-X)‘\/ X12—7,12 7'14

11
(%7)
where
-1 1
1 x1B0 7 (x1)dxy © x2P " (x1)dxs
In = f 2 -l 5.5 5 (48)
Nx1Z- 1y X12- 112

-ZO’ 1

and V 1is the total volume of the wing and ummodified fuselage, that is

lo
e -_fz 5 () (49)
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Equation (47) integrates to give

£5p(x) = - o(x) + ;12 (Tax + L.%)N 1% - -
L 3/2
[212 - 1,21, + 2(v +AV)}(112 ) P a(x)
3xta® (50)
where
-1
: 2
H(x) = = o (x )[ta.n‘l Xax - la + -’E] dxy -
i L-/:l.o' ’ V (122- x®) (322 - 1:2) 2
7'O
-'3(—'- f G'(xl)[ta_n"l X1x - 7'12 + %:l dxs (51)
1. J(le_xz) (x12-122)

If Dy is the drag of the original wing-body combination end D
is the drag of a body of revolution having the same normsl area distribu-
tion as the modification, then

"D Dy Dng BAV
—= = - =+ —|2(V + + 1,%I, - oI 28,
a a a nzl"'[( AV) + 117To 2] (522)

On the other hand D.. can be written

DI‘e D* 1 2 [ 2 ]2 2}
—_— —= | 2Tz - 11T, - 2(V + AV + I 2b
TR Pl e 1715 ( ) 1 (52b)

1 x2% - 122
xl-X2~/ X12 - 7;12.

(53)

d(xl,xa) =
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D¥/q can be expressed as

-1

LN

_10' _101

1

1
dx20' (x1)0" (x1)G(x1,%2) -

lo

-11
2 f dxy f dxz0 ' (x1)0" (x2)G(x1,%x2) +
=77 11

lo lo
JF dxi dxzﬁ'(xl)ﬁ"(xz)G(Xl;Xz)] (54)
23 1

Limited Indentation On Arbitrary Body -
Fixed Diameter

As a final example in this section, consider the question

(vii) Given a wing, & body length, and the area distribution of
the fore-and-aft portions of a body, what is the intermediate
variation of fuselage area that has a given area at some inter-
mediate station x3 = d; and yields a minimum wave drag for
the combination?

Using the same definition for o(x) as is given in equation (43), and
agelin designating the ares modification as ASf(x), one can apply the
seme methods used to develop equations (21) and (46) and write the inte-
grel equation for, ASp(x) in the form

i1 1
(0]
f ASf“ (xz)d_X2 f 0." (}{2)(1}{2 7\0, “11 <x< dj_
—_— - =
-13

X3 = X2

(56)

-7’01 X1 - Xz 7\1, dis < x <13

where A, and A; are constants whose values depend upon the restraints.
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The solution to equation (56) can be written

-13
asg"(x) = -0"(x) - zi = [ f T (xz) Nxz2 - 1,2dxp -
b1 3 - _Zol’x—XZ
7’O
" 7, -Xd
f 0" (x2) Jxo2 - 1:2axp - A- Bx] - Gycosh™l — -
) X-x2 Ly |x- da
1
(57)

and the three constants A, B, and C; are fixed by the conditions:

(1) continuous slope
l1

ASe" (x)ax = 0 (582)
i

=13

(2) the body area at x = 11 is unchanged

[ asermax =0 (58b)

-11

and (3) the body area at di is given

di
f ASe'(x)ax = ASf(dl) (58¢)

=15

The final solution is

7,12 - Xdl
0Sp(x) = -o(x) + H(x) - Cl (x -31)%cosh™> ——— = 4
1 lx-aaf

N1.2-x {x dl(Id £ Ty)+ 1.2 -dsx
1 1 —_—
7'l "'dl ,4112_6_12

(@) - m(a) | } (59)

[Asf(dl) +
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where
21,2 J1.2- a2 :
€y = ——Ee [Asf(dl) +0(ds) - B(dy) - ————(T1d; + 10112)] (60)
(112-a2)% 2112

and I, and H(x) are defined in equations (48) and (51), respectively.

The drag cen be expressed either as

D Dy

D
(—1- = -; -_ -—;A§ + ‘JIC]_ASf(d]‘.) (6:'-&)

where D, 1is again the drag of the original unmodified combination and
Dng 1is the drag of the modification alone, or as

—;.—'9- = -]—)-:— + ——(——:Lh_———l—) +—3:'; (Bdl - Cama/ 11 -d12> : (61b)
T

vhere D* and Cy are defined by equations (5%) and (60), respectively,
and ‘B is given by

B = -—-112 7@3C1 122 - ;% - 211> (62)
1

Ames Aeronautical Laboratory
National Advisory Committee for Aeronsutics
Moffett Field, Calif., Aug. %, 1955
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