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SUMMARY

The longitudinal frequency response of a large flexible swept-wing
airplane, as determined from its measured response to elevator pulses,
is presented over the operating Mach number range at altitudes from 15,000
to 35,000 feet. Response quantities for the nose, center of gravity, wing
tip, and tail are shown for frequencies from the airplane short-period
mode to the fuselage first-bending mode.

Comparisons are made between the measured responses and responses
predicted by dynamical analyses with up to three structural degrees of
freedom. The forms of transfer functions needed to simulate the response
over several frequency bands are shown. The dynamic response measured in
flight is interpreted in terms of lines of low response, and comparisons
are made with predicted lines of low response and node lines predicted by
free-free analysis and measured in ground vibration tests.

INTRODUCTION

The mass distribution and structural flexibility of some recent
high-aspect-ratio swept-wing bombers and transports has resulted in air-
planes with relatively low frequency structural modes. Consequently, the
response of these airplanes to disturbances such as control inputs and
gust loads consists of large structural deflections as well as motions
of the airplane as a whole. Various parts of the airplane, then, are
subjected to widely different accelerations. These accelerations not
only affect the local structural stress, but also influence the operation
of mechanical and electronic equipment. When the airplane is equipped
with an automatic control system, the local dynamic response to control
motion is of particular significance because structural vibration signals
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which are fed into the system by pickups (accelerometers, rate gyros, etc.)
may either cause the system to become unstable or limit the gain allowable
for system stability (refs. 1, 2, and 3).

In order to provide information on dynamic characteristics of flexible
airplanes, the NACA has been evaluating measured and predicted dynamic
responses of a Boeing B-47 airplane to control surface motions. The
dynamic response at frequencies below the structural mode frequencies
has been reported in references 1, 4, and 5. Also, a limited amount of
measured responses at structural mode frequencies was presented in these
reports, but the analysis was limited to frequencies below the natural
frequencies of structural modes. In the present report, measured dynamic
responses to elevator control at structural mode frequencies are presented
for a wide range of flight conditions, and an analysis is developed which
includes three structural modes, wing first bending, wing first torsion,
and fuselage first bending. Other analyses including structural modes
have been presented in references 6, 7, and 8.

In the first part of the report, the measured responses of widely
separated points on the airplane are examined for effects of altitude,
Mach number, and dynamic pressure. In the second part, equations of
motion are developed for three structural degrees of freedom and two air-
plane degrees of freedom. Finally, comparisons are made between measured
and predicted structural response characteristics and results are inter-
preted to locate optimum points for automatic control system pickups.

Data used in this report were obtained from flight tests conducted
at the High Speed Flight Station of the NACA and the analysis and reduc-
tion of data was a cooperative effort of HSFS and Ames Aeronautical
Laboratory.

Symbols used in this report are defined in Appendix A.

TEST EQUIPMENT

The test airplane was a Boeing B-4TA with General Electric J4T7-GE-23
turbojets and with wing vortex generators as shown in figure 1. Wing
deflections were measured by an optigraph mounted on top of the fuselage
which recorded the movement of 100-watt target lights. Elevator angle
was measured by an NACA resistance-type control-position indicator. The
pitching velocity at center of gravity was measured by a magnetically
damped NACA pitch turnmeter, the acceleration at the center of gravity
and tail by NACA air-damped accelerometers, and the acceleration at the
nose and wing tip by Statham linear accelerometers. The locations of the
instruments used in this report are indicated in figure 2.
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MEASURED FREQUENCY RESPONSE

Measured frequency responses were selected which would define the
complete motion of the airplane over a wide range of flight conditions.
The measured quantities are pitching velocity at the center of gravity,
acceleration at the center of gravity, acceleration at the nose, accel-
eration at the wing tip, and acceleration at the tail. Although these
few points are not sufficient to define structural deformations in detail,
the most significant deflections which occur in the frequency range of
interest are of the first-bending type and, hence, the principal deflec-
tions of in-between points can be approximated by use of the assumed
cantilever modes which are introduced later in the analysis. The flight
conditions covered are plotted in figure 3 and are listed in table T.

Frequency response data were obtained by the "pulse technique" which
is described in detail in reference 4. Briefly, in this method, the pilot
applies a pulse force to the controls and the resulting motions are
recorded. The time histories of the elevator angle input and the output
response quantity are transformed to frequency form by the Fourier inte-
gral. Corrections are made for the dynamic response of instruments and
frequency response is cut off at frequencies where the level falls below
values required for accurate results.

In order to document the response and to show how the response varies
with different parameters held constant, frequency responses are plotted
with altitude held constant in figures 4, 5, and 6, with the aeroelastic
parameter q/B held constant in figure 7, and with Mach number held
constant in figure 8. Discussion of these results follows.

Frequency Response At Constant Altitude

The frequency response is presented for three altitudes, 15,000 feet
in figure L4, 25,000 feet in figure 5, and 35,000 feet in figure 6. Cer-
tain trends are apparent from these figures. The peak of the short-period
mode at a frequency from 1 to 4 radians per second increases in amplitude
and occurs at higher frequencies as Mach number is increased. This trend
is explained in reference L.

The peak in the acceleration responses due to the wing first-bending
mode (approximately 9 radians/sec), which is most apparent in figures 4(d),
5(d), and 6(d), decreases with increasing Mach number. Also, the valley
or dip in the response which follows the short-period mode peak shifts to
higher frequencies as Mach number is increased.

The response is very complex at frequencies higher than the wing

first-bending mode, partly because of inaccuracies in the data by the pulse
technique and partly because of many vibrations, insignificant for present
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purposes, which are picked up by the accelerometers. However, the peaks &
which reach fairly high amplitudes are considered to be accurate indica-

tions of structural modes and only peaks which rise above 10g's per radian

on acceleration responses will be considered to be significant here. .

The next significant peak appears at frequencies from 14 to 17 radians
per second. On the basis of ground vibration tests (ref. 9) and analysis
(ref. lO), this mode is believed to be of a wing second-bending type
coupled with body translation and pitch.

A very definite high peak is in evidence on all of the responses near
a frequency of 30 radians per second, which, according to ground vibration
tests, is a mode consisting primarily of fuselage first bending. Unfor-
tunately, the frequency content of the pulse inputs was not high enough
to define this peak clearly in every case, but the peak amplitudes appear
to increase with Mach number and tend to become less severe as altitude is
increased.

A small blip or side band occurs in many cases at a high level of
amplitude from 20 to 25 radians per second on the acceleration responses
of the wing tip. This is believed to be due to the wing first-torsion
mode as indicated by ground vibration tests and analysis. Because of the
very close proximity of the wing first-torsion mode to the fuselage first-
bending mode it is difficult to note any separate effects.

Frequency Response With Aeroelastic Parameter q/B Constant

Frequency responses with aeroelastic parameter, q/B, equal to 280
pounds per square foot are plotted in figure 7 for the range of test
altitudes as indicated in figure 3. All of the responses fall fairly
close together in both amplitude and phase. The differences which do
occur, near the short-period mode frequency, are explained by the pseudo-
static theory (refs. 1 and 4) when differences in weight are included.

The results in reference 1 show that the steady-state gain of the ratio

of acceleration to elevator angle and the damping ratio of the short-
period mode both decrease with an increase in altitude at constant g/B.
These trends have opposite effects on the amplitude of the frequency
response curves and tend to cancel each other when the frequency is raised
to the short-period mode frequency. However, with the exception of the
steady-state gain, it appears that the response could be considered essen-
tially unchanged for some practical purposes when q/B is held constant
and other parameters are varied.
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Frequency Response At Constant Mach Number

Curves for a Mach number of 0.7 (fig. 3) are plotted in figure 8.
As altitude is decreased at constant Mach number, the aeroelastic param-
eter q/B increases and,therefore, the frequency of the short-period
mode peak and the general level of the amplitudes increase.

The peak of the wing first-bending mode at a frequency of 8 to 9
radians per second which is seen most clearly in figure 8(d) tends to
disappear as q/B is increased. Although peaks are not well defined
at higher frequencies, an opposite trend appears for the modes at 16
radians per second and 30 radians per second. These peaks tend to
increase with q/B. It should be noted here that in forced oscillation
tests the height of the peak in the frequency response depends on the
manner in which the driving force is coupled to the mode as well as on
the damping of the unforced mode itself. Hence, in the interpretation
of peak-amplitude trends, consideration should be given to changes in
the coupling of the modes with the forcing as well as to changes in
aerodynamic damping and spring forces.

ANATYTTCAL METHODS FOR PREDICTION OF DYNAMIC RESPONSE

In the previous section, measured dynamic responses of the airplane
were presented to document the response and to show the effects of various
parameters. Of course, it is desirable to be able to predict these
response characteristics for use in rational design of the airplane and
its control system. In the following section, methods of analysis
including structural degrees of freedom are developed.

Equations of Motion

Equations of motion of a flexible airplane for frequencies below the
structural mode frequencies were developed in reference L. Also, equations
of motion including structural modes have been presented in references 6,
7, and 8. In the analysis here, the equations are developed for two air-
plane degrees of freedom and three structural degrees of freedom in a form
which lends itself to digital machine computing or hand calculations. The
equations of motion of the airplane may be simply stated by Lagrange's
equation:

4 XE PR
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where KE is the kinetic energy, PE the potential energy, a4 the
generalized coordinates, and Q3 the generalized forces. To completely
describe the complex dynamic system of a flexible airplane, an infinite
number of coordinates (qj) are needed. However, in most practical prob-
lems, the motions of the airplane occur within a finite frequency range,
and these motions can be adequately described with a finite number of
coordinates. The trick is to select the minimum number of coordinates
which are needed for the frequency range of interest.

Selection of coordinates.- The mode of deformation of the structure
at an instant of time represents a condition in which the structural
spring forces are in equilibrium with the combined forces of all the
loads. The individual loads, which include inertial, aerodynamic, and
structural damping loads due to motions of the airplane as a whole and
structural deflections, vary in accordance with the frequency range con-
sidered. At low frequencies, loads due to motions of the airplane as a
whole are of primary importance, while at higher frequencies, loads due
to motion of the structure are of primary importance. Since the total
deflection results from various combinations of the individual loads, an
insight to the coordinates needed to define the total deflection is gained
if the deflections due to the individual loads are known.

To study the low-frequency range, pseudostatic deformations of the
wing resulting from loads due to a, 6, n, and § were calculated through
use of aerodynamic and structural influence coefficients (see Appendixes B
and C). The deflection of the wing from the reference plane shown in fig-
ure 9 is presented in figure 10 in components of bending of the elastic
axis (38-percent chord) and streamwise twist. All of the curves are of
the wing first-bending type with various amounts of twist of the wing
first-torsion type. Although fuselage bending is not shown on the figure,
it occurs in various amounts in the same direction as the wing bending.

At structural mode frequencies, the inertial forces due to structural
motion are apt to be of greatest importance. The individual effect of
these inertial forces was evaluated by calculating the vacuum vibration
modes of the airplane as described in Appendix B. These modes are plotted
about the space axes in figure 11, but the deflections will be discussed
as viewed from the deflection reference plane on the fuselage.

The dominant mode is of the wing first-bending mode type. The first
subdominant mode is primarily wing first torsion with some wing second
bending. The second subdominant mode is primarily fuselage bending with
a curve of wing first-bending type in the wing. At this frequency it is
noted that there is little or no bending of the inboard portion of the
wing which indicates a component of wing second bending is present.

The individual deformations in figures 10 and 11 indicate the
principle deformations to be expected for frequencies up to 25 radians
per second. In order to satisfy both the conditions of the pseudostatic
frequency range (various amounts of wing torsion and fuselage bending
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occurring with wing first bending) and the structural mode frequency range
(various amounts of fuselage bending with different types of wing bending
curves), it is necessary to break up the deflection curves into components.
This was done by selecting wing first bending, fuselage first bending, and
wing first torsion for degrees of freedom (fig. 12 and table II). Although
wing second bending is evident in some deflections, it was neglected to
simplify the analysis. It should be noted that the deflection coordinates
in figure 12 are deflections relative to the deflection reference plane in
figure 9 which represent the structural deflections which an observer would
see from the rigid airplane center-of-gravity location. Also, coordinates
of displacement of rigid airplane center-of-gravity location and pitch
angle of the deflection reference plane were included to take into account
motions of the airplane as a whole.

There are other combinations of coordinates which could be used to
describe these motions, but the component deflection breakdown used here
has many advantages. The equations are put in a form which allows direct
application of the pseudostatic principle in any of the structural degrees
of freedom. The calculation of generalized forces is simplified. The
structural degrees of freedom correspond to deflections seen by an observer
on the airplane and, hence, correspond to the optigraph measurements.

APPLICATION OF LAGRANGE'S EQUATION

By means of equation (1) and coordinates, displacement of center of
gravity (Zcg), pitch angle of center of gravity (6), wing first bending
(y), fuselage first bending (h), and wing first torsion (1), the equations
of motion as derived in Appendix C are:
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Symbols are defined in Appendix A. Aerodynamic coefficient terms
(e.g., ZCLm.ai) were evaluated from aerodynamic influence coefficients
at

which were based on steady-state lifting line theory. The aerodynamic
influence coefficients were further modified to include weighting terms
so that the summations performed are quadrature solutions of the integral
of the product of the spanwise 1lift function and the deflection function.

Equation (2) may be solved for transfer functions Z.g/5, 6/8, y/8,
h/6, and 1/5. From these solutions the motion of any point on the air-
plane may be determined. The acceleration at a point (i) for example is
given by:

ng  p2 (Zeg ) ¥y n 1>
TR ek, SE - PR S b — e
5 32.2<Zs+i6+a16+18+clz3 (3)

Equation (2) may be easily extended to include more degrees of
freedom. Coordinates should be selected which are normal or nearly nor-
mal to avoid ill-conditioned equations. In other words, the cross terms
such as Zmjajcy should be approximately zero. If a suitable digital
computing machine is available, then a large number of normal coordinates
could be included in the equations of motion. However, for preliminary
design use and for interpretation of the dynamic response, the simplifi-
cations attendant with a few degrees of freedom are desirable.

The adequacy of the degrees of freedom selected can always be
checked at a given frequency by comparing the deflections predicted by
the equations with the deflections computed from the applied loads
(Appendix C).

The Pseudostatic Method

When only the dynamic response below structural mode frequencies is
needed, equation (2) may be simplified by eliminating terms in D® and D
which occur with the variables y, h, and 1. This assumes that the iner-
tial and damping forces arising from structural motion are negligible.
This is sometimes called the pseudostatic method because only the spring
terms of the structural modes are included, but all of the dynamic effects
of the rigid body degrees of freedom are included. Equation (2) may be
written in matrix form as follows:

cg 'CL5
= 0 Cmgy
Cisglyy (=1 0(?d (4)
h -CLg
v 0
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in which the elements of tcijJ are quadratic polynomials in D, that is,
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C (%lM > —%1 D —%9 D. Equation (4) may be partitioned into
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In the pseudostatic method, equation (6) is solved for {%}vand
7

substituted in equation (5). The resulting equation then is only a func-
tion of ch, 6, and 5. The important condition in using equations &)

and (6) for pseudostatic calculations is that

2 2
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for this is the condition for existence of the inversion used in solving
equation (6) for {g}-. The determinant, equation (7), becomes very small
1

and approaches zero if two similar modes are selected as degrees of free-
dom. The best conditioning of equation (6) is obtained when modes are
selected which are normal (Zmiaici = 0). The pseudostatic analysis, as
used in reference 4, used each of the control points on the wing as a sep-
arate degree of freedom. All of these degrees of freedom could be used
in the dynamical analysis by expanding equations (2) to include more
degrees of freedom, but this procedure is usually impractical.

Pseudostatic method techniques can also be applied to the equations
which include dynamic effects of structural modes. In these cases, the
modes in the frequency range of interest are included as dynamic degrees
of freedom, and the higher frequency modes as pseudostatic. For example,
if the frequency response were needed through the wing first-bending mode
frequency, then only terms in D2 and D associated with variables h
and 7 would be neglected.

COMPARISON OF MEASURED AND PREDICTED RESPONSES

In the previous two sections, measured dynamic responses were
presented to document the dynamic response for systems design, and ana-
lytical means of prediction of the dynamic response were developed. Com-
parison of the measured and predicted responses will now be presented to
show how well the analysis represents the measured frequency response
characteristics of the airplane (i.e., which forms of transfer functions
are needed to simulate the dynamic response in systems design) and how
well the node lines or points of low response can be predicted by analysis
or ground vibration tests.

Frequency Response Curves and Related
Transfer Function Forms

Near the short-period frequency.- If the response is only needed at
frequencies near the airplane short-period mode frequency, then the
pseudostatic method should provide adequate predictions. In order to
verify this, measured responses of wing tip deflection at several alti-
tudes are compared with the predicted response in figure 13. Wing tip
deflection is used here for comparison because it is the most direct and
accurate measurement of aeroelastic effects on the airplane. From equa-
tion (6), solutions of y and 1 are combined in accordance with equa-
tion (033) in Appendix C to form the transfer function for wing tip
deflection which has the form
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2t 1 o
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where the numerical values for { and wy are determined from the equations
of motion for a given flight condition. The subscripts 1, 2, . . . are
used to indicate that the ¢ and wp are different in the second-order
transfer function terms.

The forms of transfer functions of other quantities é/%, n/sd are
the same as for a rigid airplane and are given in reference 4. Solutions
in the form of equation (8) were obtained for flight conditions at a Mach
number of 0.7 and altitudes of 35,000 and 15,000 feet for the airplane
weilight configuration. These were then plotted in frequency response form
through use of dynamic response templates presented in reference 11. The
frequency response function may also be obtained by substituting d4iw for D
in equation (8).

The agreement between experiment and the pseudostatic predictions is
quite good up to a frequency of 4 radians per second. At higher frequen-
cies, the response rises sharply in a dynamic peak due to the wing first-
bending mode which is especially noticeable at the higher altitude
©hE $\5101010) Gicichu

Including the short-period and wing first-bending frequencies.- In
order to take account of the dynamic effects of the lowest structural
mode the wing first-bending mode needs to be included as a dynamic degree
of freedom in the equations of motion. This is done by only neglecting
the D® and D terms associated with h and I in equation (2). The
transfer function for z/8 then takes on the form:

K<i + EE D+ — D%>

= (9)

<1+%D+—1—D2>(1+3§D+LD2>
Wy w2 2 “n wn®

4

o | N

Responses predicted by this method are also shown in figure 13, and
it may be seen that the dynamic response peaks agree well with the experi-
mental ones. The deflection check, as described in Appendix C, indicated
that the selection of coordinates was excellent for describing the struc-
tural deflections in this frequency range (up to 15 radians per second).
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An interesting result in figure 13 is the disappearance of the large
dynamic response peak of the wing first-bending mode at an altitude of
15,000 feet. When the airplane undergoes forced oscillation, there is a
frequency for which the generalized forces of inertial loads and aerody-
namic loads nearly cancel. This frequency is marked by the valley in the
frequency response which occurs around 5 radians per second at an altitude
of 35,000 feet. At 15,000 feet, this condition occurs at nearly the same
frequency as the wing first-bending mode frequency and hence little or no
driving force is transmitted to the wing and the dynamic response peak
remains small.

The forms of other transfer functions for dynamic y and pseudostatic
h and 1 are:

2 = (10)
(l+——§-D+-—l—2D2><l+—£D LZD2>
Wn 2 b 4
and
Knl+-2-§-D+—l-D2><1+2—CD+-i§D2>
n Wn wn? Wn
CE _ 1 3 (11)
5
<1+§£D+—:L—2D2><1+§D+L2D2>
Wn U 2 “n Wn 4

Including the short-period, wing first-bending, and fuselage first-
bending frequencies.- The predicted response may be extended to cover a
wider range of frequencies by including another dynamic degree of freedom.
In selecting additional degrees of freedom, consideration must be given to
the importance of the modes on the over-all response. In looking at the
free-free modes in figure 11, it may be seen that the first subdominant
mode consists primarily of deflection of the inboard nacelle mass whereas
the second subdominant mode consists primarily of deflection of the tail
mass. Fuselage bending was selected as the next most important degree of
freedom because it would be expected to have the largest influence on
local fuselage responses.

Because of the small deflections involved at the higher frequencies,
structural deflection measurements, particularly of the fuselage, were
not of sufficient accuracy to use for comparison with theory. However, the
accelerometer measurements were of sufficient accuracy over the entire
frequency range of interest, and hence will be used for comparison here.



14 NACA TN 41kh7

Equation (2) was solved for 6, Zcgy ¥, and h with the torsion-mode .

variable 1 neglected. Acceleration responses at the nose, center of
gravity, wing tip, and tail were obtained through use of equation (3) and

are plotted in figure 1h4. The form of these acceleration responses is J
2 2 2
K <1+—CD+LZD2>(1+—QD+%D2><1+—§-D+—13D2>
= () Wy W Wy wn Wy wn
() 1 3 5
5 2 2 2
1+—§D+—12-D2>(1+—§D+—52-D2><1+—€D+—12-D2>
S Wn 2 “n Wn 4 “n Wn 6
(12)

and the form of pitching velocity at the center of gravity is

. . 20 s 2t 1 -2
K6<i + T9?><; + GH D + 655 D :L<; + GE D + 6;5 D :L

) 2 2 z
(1+Z0+ L7)(1+2ns 1) (1 oy L)
sl Wn 2 “n Wn 4 “n Wn 6

Comparable measured acceleration responses are shown in figure 15.
The portion of the measured wing-tip response has been deleted between
frequencies of 12 and 25 radians per second because the scatter in this
region obscures the other response curves. It may be seen that the pat-
tern of predicted (fig. 14) and measured responses (fig. 15) are very .
similar in both amplitude and phase angle which indicates that the equa-
tions are of the correct form. Hence, transfer functions of the form of
equations (12) and (13) should be adequate for simulation of the dynamic
response over this frequency range.

(13)

oD

A closer comparison of the responses can be obtained by plotting the
accelerations at peaks of the various modes on an amplitude-phase plane.
Discussion of the results at the wing first-bending mode and the fuselage
first-bending mode peaks follows. When values are compared, it should be
kept in mind that errors should be evaluated on the basis of absolute
differences rather than percentages because amplitude ratios which are
small and phase angles at points with a steep slope are difficult to
measure accurately.

The amplitude and phase angle of the various accelerations at the
wing first-bending mode frequency are plotted in figure 16. The agree-
ment between measured and predicted values is considered to be good. The
deflection check of Appendix C is shown in figure 17. The deflections
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in phase with the wing tip are plotted in bending and streamwise twist
components for comparison. The close agreement indicates that the degrees
of freedom were adequate to describe the mode shape.

Comparison of the peak amplitudes at the fuselage first-bending mode
frequency near 30 radians per second in figures 14 and 15 shows a large
difference between measured and predicted values. However, in both cases
the damping ratio is very low and the height of this peak is extremely
sensitive to small changes in damping ratio. Physically this means that
the exact values of the peak are dependent on very small forces which are
beyond the accuracy of the analysis. It is quite possible that better
agreement would be obtained if structural damping and unsteady 1lift forces
were included in the analysis. However, since the structural and mass
characteristics of the fuselage are not known accurately (see Appendix B),
it is felt that further refinements would be futile unless structural
properties of the fuselage were measured.

In order to compare the modes of deformation, the accelerations at
the fuselage first-bending mode frequency were normalized to the tail
acceleration and are plotted in figure 18. It may be seen that there are
phase-angle differences between measured and predicted values as high
as 45° and that the relative wing-tip amplitude measured is much larger
than predicted. Hence, the coordinates of wing first bending and fuselage
first bending are not adequate to define the motion with precision at the
peak frequency, but are close enough to give the correct general form of
the frequency response over the entire range under consideration. For an
analog simulation, the damping of the fuselage first-bending mode would
have to be increased to match flight values.

The deflection check of Appendix C is plotted in figure 19. Here,
the deflections in phase with tail deflection are plotted in wing bending
and streamwise twist components. It may be seen that the applied loads
in this condition cause much higher wing-tip deflections and more wing
torsion than is predicted with simple wing first bending and fuselage
first bending. A solution of the complete equations with dynamic y, h,
and 7 was also made and the results indicated that the correct amount of
torsion was obtained, but that wing-tip deflection was still too small.
As seen in figure 17, the experimental values also indicate higher wing
deflections than predicted by the simple wing-bending analysis. A wing
first-bending type curve with more curvature near the root could be used
in place of the wing first-bending curve used in the analysis, but this
would compromise the results in the low-frequency range. If a wing first-
bending curve with more curvature near the root were included as an addi-
tional degree of freedom, then the equations would probably be ill-
conditioned. Hence, it appears that a wing second-bending degree of
freedom would have to be added to predict the wing deflections accurately
over the frequency range considered here.
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Node Lines and Lines of Low Response

In many applications the adverse effects of a structural mode can be
eliminated by locating control system elements on node lines, that is,
points of zero displacement. Also the stability of a system or the effec-
tiveness of a mass balance weight often depends on which side of the node
line the pickup or mass is located. The existence of node lines requires
that all points on the structure vibrate either in phase or 180° out of
phase. This condition is satisfied in the free-free analysis and approxi-
mately in ground vibration tests.

Wing first-bending mode.- It may be seen in figure 16 that the nose,
center of gravity, wing tip, and tail accelerations do not fall on a
straight line through the origin, but are close enough to determine points
of low response in flight. Through the use of the assumed fuselage mode
of deformation, parabolic bending to the rear of the center of gravity,
points of low response on the fuselage were calculated for the measured
and predicted values in figure 16 and are shown in figure 20 together
with node lines from ground vibration tests and from the free-free analysis.

The fuselage node lines or lines of low response from flight, free-
free analysis, and dynamical analysis are in approximate agreement, but
the ground vibration values obtained from reference 9 are considerably
farther to the rear. Hence, support of the airplane on air bags is not
representative of the manner in which the airplane is supported in flight
at this frequency. A possible means of supporting the airplane on the
ground to simulate coupling effects of the short-period flight mode is
suggested by the moment of inertia tests described in reference 10. The
spring and knife edges support the airplane in a manner which very nearly
corresponds to the mechanics of the short-period mode at frequencies near
the wing first-bending mode frequency. As a result, the oscillations of
the airplane on the moment-of-inertia rig correspond very nearly to those
which occur in flight, except for the phase lag of the wing which results
from aerodynamic damping forces in flight.

Fuselage first-bending mode.- From figure 18 it may be seen that the
predicted accelerations at the nose, center of gravity, and tail fall
nearly in a straight line, and since nose and tail values are 180° out of
phase with the center of gravity, two node lines exist on the fuselage.
The experimental points do not fall on a straight line, but are close
enough to locate points of low response. The node lines are shown in
figure 21 and it may be seen that they are in approximate agreement.

It should be noted that the forward flight node line is somewhat
farther forward than the others. In the evaluation of flight node lines
it was found that considerable nose bending was taking place. As seen in
figure 18, the phase of the nose acceleration is shifted toward that of
the wing tip which indicates that nose bending would have to be treated
as a separate degree of freedom to duplicate the motion accurately.
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: CONCLUSIONS

The evaluation of the dynamic response of a large flexible airplane
to elevator pulses over a wide range of flight conditions including Mach
numbers of 0.5 to 0.8 and altitudes of 15,000 to 35,000 feet and compari-
sons with predicted dynamic response at selected locations have led to the
following conclusions:

1. For practical purposes the dynamic response of a flexible airplane
is invariant with the aerocelastic parameter q/B.

2. At constant Mach number, the dynamic response peak of the wing
first-bending mode tends to increase in amplitude as altitude is increased.

3. Dynamical analysis with one structural degree of freedom (wing
first bending) and steady-state aerodynamic theory adequately predicts
the response through the frequency of the wing first-bending mode.

4. Dynamical analysis with two structural degrees of freedom (wing
first bending and fuselage first bending) and with steady-state aerody-
namic theory gives a form of frequency response which approximately cor-
responds with measured frequency responses through the frequency of the
fuselage first-bending mode.

first bending, wing first torsion, and fuselage first bending) gives better
> predictions of the wing distortion than the analysis with two structural
degrees of freedom, but components of wing second bending and fuselage nose
bending will have to be taken into account to obtain more accurate predic-
- tions of the response at frequencies above the wing first-bending mode
frequency.

|
5. Dynamical analysis with three structural degrees of freedom (wing
|

6. Lines of small response of the wing first-bending mode and the
fuselage first-bending mode measured in flight show fair correlation with
those predicted by dynamical analysis.

T. Node lines measured in ground vibration tests with the particular
airplane support used did not agree with the lines of small response
measured in flight.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffe Gt Hileld N CalifutOeite &, iS5
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APPENDIX A

LIST OF SYMBOLS

Cy, 14 £ coefificient
Crs weighted 1ift coefficient at station 1
Cn pitching-moment coefficient
D differential operator, é%
Fj applied force at station j, positive downward
I, longitudinal moment of inertia, slug-ft2
K( ) gain of subscript quantity
M total mass of airplane, slugs,or Mach number
S wing area, sq ft
Té pitching velocity time constant, sec "
v velocity, ft/sec
W airplane gross weight, 1b
Z( ) vertical displacement 9f.subscript station relative to space

reference plane, positive downward, ft
aq normalized coordinate of first structural mode
84 j aerodynam%c in?luence coeffi?ient, weighted 1lift coeff?cien?

at station i due to a unit angle of attack at station
b wing span, ft
by normalized coordinate of second structural mode
bij structural influence coefficient, deflection at station 1, .

relative to reference plane, due to load at station j, ft/lb
(Because of symmetry, stiffness of both wings is included.)
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wing chord, f%t

normalized coordinate of third structural mode

b/2
wing mean aerodynamic chord, M.A.C., %k/\ cfay
o]
center of gravity, percent ¢
acceleration due to gravity, 32.2 ft/sec®

deflection coordinate of second structural mode relative to
reference plane, positive downward, £t

deflection coordinate of third structural mode relative to
reference plane, positive downward, ft

mass at subscript station, slugs
(Because of symmetry, mass of both wings at each wing station

is used.)

normal acceleration at subscript station, positive downward,
gravity units

dynamic pressure, 1b/sqg ft
longitudinal distance from center of gravity to subscript
quantity, positive when center of gravity is forward of

subscript quantity location, ft

deflection coordinate of first structural mode relative to
reference plane, positive downward, ft

total deflection of subscript station relative to reference
plane, positive downward, ft

angle of attack, radians

ratio of rigid wing lift-curve slope at M = O to the rigid
wing slope at M, (B = J1 - MBcos3p )

elevator control deflection, positive downward, radians

damping ratio, dimensionless

spanwise coordinate, fraction of wing semispan

pitch angle at center of gravity, radians
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A angle of sweepback

0 mass density of air, slugs/cu ft

®<' > phase angle of output quantity minus phase angle of input

output quantity
input
w frequency, radians/sec
£ undamped natural frequency of subscript free-free mode,
() radians/sec
Wn undamped natural frequency of subscript pseudocantilever mode
() used as coordinate, radians/sec

Subscripts
a first structural mode
b second structural mode
(@ third structural mode
cg center of gravity
n nose v
t tail
wt wing tip

Dots are used to indicate differentiation with respect to time; for

example = %% .

MATRICES

{j}- column matrix

[ } square matrix
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O
. square matrix with all except diagonal elements equal to zero

row matrix

L

=T
transposed matrix

b o

-{%} column matrix with all elements equal to unity

[IJ unit matrix

-1
[ ] inverse matrix
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APPENDIX B
CALCULATION OF FREE-FREE MODES

When an alrplane vibrates at structural mode frequencies in flight,
the aerodynamic and structural damping forces are ordinarily small com-
pared to the inertial forces. For this reason, it might be expected that
the modes in flight would not differ greatly from those of the airplane
suspended in a vacuum (the free-free modes). Hence, a knowledge of the
free-free modes is valuable in selecting degrees of freedom in the
equations of motion.

Equations for free-free modes are also derived in reference 12, but

the form obtained here is a particularly useful form. In figure 9, the
vertical position of the ith discrete mass is given by:

Zi = ch + Gxi + Z4 (Bl)
where the center of gravity is taken as the reference point and small

angles are assumed (6 = sin 6).

If it is assumed that the airplane is vibrating sinusoidally in a
natural free mode, the force due to inertia of the jth discrete mass is:

Fj = wgmyZy (B2)

Then, at an instant of time in accordance with D'Alembert's principle,
the system must be in a state of equilibrium as expressed by the following
equations: The sum of vertical forces must be equal to zero,

n
}E}njzj + Mogleg + Mg (Zegt0%g) = O (B3)
J=1

and the sum of moments must be equal to zero,

n
}:ijjxj 4 ma(ch+6xa)xa =0 (BY4)
J=1

where moments are taken about the center of gravity and the masses mgg
and m, are introduced to take account of mass at the center of gravity
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and any rigidly attached mass my;. The masses Mg and my; are separated

from ij. .+ JPor convenience. ‘In the example airpilane, ‘the infiluenece

coefficients of the nose of the airplane were not known. Hence the part
of the fuselage forward of the center of gravity was assumed to be rigid.
The masses mpg and my are selected to satisfy mass and moment of inertia

of the airplane as follows:

n
M =ij + Moo + Mg (B5)
=1
n
L e =ijx32 ¥ M E (B6)
J=1
n
}:mjxj + HoXs = 0 (B7)
J=1

The deflection of the system of masses is given by the structural
influence coefficient matrix which was obtained from load-deflection
measurements of the wing (ref. 13) and an estimate of fuselage stiffness
which was made from the results of the ground vibration tests (ref. 9)
and the known mass distribution of the fuselage;

-0 3

ViEETE Ahesyl = Al s s D

The structural deflections in the free-free mode are obtained by
substituting the applied forces from equation (B2) into equation (B8)

{zi}: wfz[bij}[:ﬂ {ZJ} (89)

Using equations (Bl) and (B9), one obtains:
o

Bt i) by o
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If equation (B1lO) is premultiplied by [miJ and combined with

equations (B3), (B5), and (B7), the following equation may be obtained

e (el

Also, if equation (B1lO) is premultiplied by LmixiJ and combined with

equations (B4), (B6), and (BT), the following equation may be obtained

o ool

Substituting equations (Bll) and (B12) into equation (B10), one
obtains

oo 1} - o e[ ) o

which is the equation desired. The modal columns {j and natural fre-

quencies wgy are the free-free modes of the airplane when {j }» -{ .}
This result may be achieved by iteration. When {%l}-ls known, then the

position of the reference plane through the original center of gravity
may be determined from equations (B3) through (B7) with the following
result:

ZM:Z-X: = X_Ym:Z-
ch = Jingned a”J-J (Blh)
mcha

. max ZmsZ; - (meg + ma)ijZij

(B15)

2
Mo gllaXg

where Jj = 1,2,...,n.
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APPENDIX C

DERIVATION OF EQUATIONS OF MOTION

The equations of motion of a flexible airplane in forced oscillations
about an equilibrium condition may be formulated through use of Lagrange's
equation:

d (OKE OPE _
S o

The airplane is assumed to be flying at constant velocity, and all
motions about this state of equilibrium are assumed to be small. In order
to calculate the kinetic and potential energies in equation (Cl), the mass
distribution and elastic properties of the airplane must be known. It is
assumed that these properties are known in the form of discrete masses and
structural influence coefficients.

The generalized forces (Qi) in the case of an airplane are the aero-

dynamic forces arising from motions about equilibrium. The forces due to
gravity, initial angle of attack, and initial structural deflection do not
enter into the problem because they are in equilibrium and hence do no
work. The generalized coordinates 9 represent the degrees of freedom

of the dynamic system. 1In a specific application, the minimum number of
coordinates which adequately describe the motion are selected. In this
analysis, it is assumed that the motion of the flexible airplane can be
described by the usual rigid airplane degrees of freedom, and three struc-
tural degrees of freedom measured in the axis system of figure 9. Any

arbitrary deflection of the structure {%i}-from the equilibrium position

%&:%&y+%%h+%%l (c2)

where {%i}3 {%i}y and {E;}-are the normalized deflections at the mass

is given by:

stations of the three structural modes, y, h, and 1, respectively.

In accordance with the coordinate system in figure 9, if the small
angle assumption 6 = sin 6 is made, the vertical velocity of a discrete
mass, m{, is:

{ = Zog + B0 a;¥ + byh + ¢yl (c3)

N
Il
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Expression for Airplane Inertial Forces in o
Terms of Coordinates

The kinetic energy of the system of discrete masses about the
equilibrium position is:

KE =

=

n
. 2 i . 2 1 . . 2
Eznﬁzi + 5 Megleg + > mg(Zeg + Xaf) (Ck)
i=1
where the masses m.g and my have been introduced to satisfy equations

(B5), (B6), and (BT).

Using equations (C3) and (C4) and taking the partial derivatives of
KE with respect to coordinate velocities, and also the time derivative,
one may obtain

—_— —

KE/dZ¢ g M 0 Tmiaq Tm; by Imjey Zer
XKE/36 0 Iy ImjaqX; Imgbix{ ImjciXi 6
é%< XKE/dy = | Zmyay Imyagx;  Zmgas® Zms;aib;  Zmjaicy ¥
OKE/h Smibi  Smybsx;  Zmjagb;  Tmyby®  Smibies | [ B
XKE/Jd1 Llernj-_c:i Imscsxy  Zmyascy  IZmybyey  Imyey” 1 :
(c5) i

Expression for Airplane Spring Forces

The potential energy of the deflected airplane is given by:

-]

which becomes

o]
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for the particular deflection in coordinate y. Taking the partial
derivative with respect to y, one obtains:

= fo o

Since potential energy as used herein must depend only on relative
displacements within an uncoupled mode, equation (C8) can be written in
terms of the undamped natural frequency of a particular degree of freedom.
From equations (Cl), (C5), and (C8), the equation for free vibration in

the coordinate y 1is:

Zmyas” ¥ + [.aiJl:bi j]-l{ai} =0 (€9)

which has solutions y = A sin wngt. Solving for wp, in equation (C9)
and combining with equation (C8), one obtains:

OPE
== = wp ®Emyasfy (c10)

dy

Similar expressions for potential energy may be found for the other
degrees of freedom.

Use of Free-Free Mode in Calculation of Wng,

The natural frequency uwp, 1in equation (C10) may be calculated
-1
without resorting to [bij] if the structural degree of freedom {%{}-y
is obtained from the structural deformation of a free-free mode such as

described in Appendix B. In this case the potential energy of the free-
free mode is given by:

= 2 2 2
PE = we [ZmiZi + mchCg + ma(ch + Xae) ] (c11)

O

where the Zj, Zogy @nd 6 are solutions of the ath free-free mode. The
deflection about the deflection reference plane (fig. 9) is:
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o fh o) of

where y 1s the deflection given by y = ZSR - ch - QXBR' If the

structure is constrained to vibrate in the form {%i}-with the deflection

reference plane fixed in space, then the potential energy is:

2 2
PE = S wn,“Smias ¥y (c13)

=

When equation (Cl2) is satisfied, the potential energy is the same whether
the airplane is vibrating in the free-free mode or with the deflection
reference plane fixed. Equating (C1l) and (C13) and solving for wn,
gives:

2 5 2
TmyZ: "+ W, Zeg * ma(ch + %,60)

(Gik)
2.2
Zmiai Y

Ung = Yry

This equation expresses the characteristic difference in frequency of a
free-free and a cantilever mode. Ordinarily, the free-free vibration of
a given mode of deformation occurs at a much higher frequency than the
cantilever one. When the fuselage bending is used as a separate degree
of freedom, then the potential energy of fuselage bending in the free-free
mode should be subtracted out of equation (Cl4) as follows:

2PE¢
w fa

z“’n:'LZ:i.Z 2 mcgzcg2 i ma(zcg + %g0)% -

Wng = We, (c15)

Zmya; °y”

where PEp 1is the potential energy of the fuselage in the free-free mode
which satisfies equation (Cl2).
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Equations of Motion With Air Forces Unspecified

Using equations (Cl), (C5), and (ClO), one may obtain

02 0 Zmya4D? £mybi D3 ZmycyD? 4 Zeg Weq
0 I.D= £mga4x;D? Ty by x4 D £mjcqx;D? ] Qg
Zmya;D®  EmyajxiD? ):miaiz( D2+uha2) )“_‘miza.ibiD2 ZmiaiciDE Y. ped Qo
£mybiD? ZmybixiD®  EmjaibiD? Zmybs®(DPrwn ®)  EmybyesDP h U
smy ciD2 Imicix{D® EmyagcyD? ZmybycyD? )3.mici2 (D2+wnc2 ) 1 Q
- =
(c16)

Expression for Aerodynamic Forces

The generalized forces Qj in equation (Cl6) consist of the
aerodynamic forces. For convenience in calculation of these forces,
the angle-of-attack coordinate, a,(fig. 9) is introduced here, and later
in the report it is transformed to the coordinates of the preceding equa-
tions. The mass stations were originally selected to be compatible with
the aerodynamic lifts. From reference 14, which is a development from
Weissinger's steady-state lifting line theory, the aerodynamic influence
coefficients may be obtained as follows

{av} = [avn} {Gn} 5 vea = 1,2,3)4 (el
Solving for {%n}-gives
: -1
{Gn} = l:avn} {a,v} (c18)
The elements of {%h}-are the loading coefficients czc/2b at
stations 1, 2, 3, and 4, respectively, due to any arbitrary angle-of-
attack distribution. The total 1ift on the wing is given by:
. Ak
L="0 qf G(n)dn (C19)

(¢

where G(n) is the function taking on the value of Gn at the nth station.
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This integration may be performed by Multhopp's quadrature method.
In matrix form, the integration is performed by premultiplying equa-
tion (C18) by a weighting matrix. Also, dividing by ¢S to obtain a
coefficient form gives

— _
0.1502 0 0 0
42 0 0.2776 0 0 -1
{EL%} = <%;> [avn} {%y}- (c20)
0 0 0.3628 0
L_ 0 0 0 0.1964

The column CL%} is thus weighted so that a summation with deflection

coefficients gives a quadrature solution of the integral of the product of
the spanwise 1ift function and the deflection function. Also the summation

of the elements of {éLn gives the 1lift coefficient of the wing due to the
angle-of-attack distribution {%{} .

In order to take account of chordwise loadings, the 1ift was divided
into two components at each spanwise station, one component at the front
spar and one at the rear spar. These were selected in such a manner as to
place the chordwise center of pressure at the 25-percent chord line. This

puts 80 percent of the 1lift on the front spar and 20 percent on the rear
spar. Equation (C20) may then be written as

-]

=2

.
|

.
]

1F,1R,2F,2R, 3F, 3R, 4F, 4R
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where

2L

g8 0 0 0

) 0 0
e
a" o0l 0 0 |]0.1502 0 0 0
2% 0 e 0 0 0.,2776 ., © 0 s
[o1s] - () o]

0 OF 1056 O o) 0 0.3628 0
0 0 a0 0 0 0 0.1964
0 0 g .. 90

a0 ¢ B0 el

which is the aerodynamic influence coefficient matrix in a form suitable
for calculation of generalized forces. Mach number effects in accordance
with the Prandtl-Glauvert rule are included in the values of ayp from
reference 14, This means that an aerodynamic influence coefficient matrix
should be calculated for each Mach number. However, in many cases, Mach

number effects may be adequately taken into account by multiplying [aij]
for a Mach number of zero by 1/B.

The moment coefficients are given by:

fong} = &[] o}

A generalized force is the work done per unit displacement when the
system undergoes a virtual displacement of one of the degrees of freedom.
In the following equations for generalized forces, small angles are assumed
so that 1ift forces can be regarded as acting in the direction of the dis-
placements. In a displacement of the Z,, coordinate, all of the lift
forces do work. Hence:

(caz]

Weg = -[(CL&D+CLa)a4-cLée-+(CL&D+cLy)y4-(cLﬁD+cLh)h,+(CLiD+CLZ)z-FcL65}qs

(c23)
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where the terms Crs, Cr, CLé, CL8 are the rigid airplane derivatives.
The terms CLyr CLy, CLﬁ, CLh’ CLi’ CLZ were obtained by summing {éli}-ln

equation (C21) where }- is the angle of attack at control points due to

displacements {- }- {jl}y and {j }- respectively.

In a 6 displacement, work is done by all of the moments. Hence:

Q = l:(cmdmcma)a + Cmg D6 + (cmymcmy)y + (Cmle+th)h it (cmimcml)z o cmazs]qSC
(cak)
where Cmd’ Cmm, Cmé’ Cm6 are rigid airplane derivatives and the terms

Cmy; Cmy, Cmp» Cmy,, Cmi’ sz are obtained by summing {bmi}-in equa-

tion (022), using the appropriate respective angles of attack {%Q}-as

noted above.

In a displacement of the mode y, work is done by all of the forces
which are displaced. For example, the work per unit of y done by the
1ift due to o 1is given by

2l
= qu cy(n)a(n)dn (e25)

e}

AN
Ay

where Cz(ﬂ) and.a(n) are the distributed functions of 1lift coefficient
and mode of deformation. This integral is similar to the one in equa-
tion (C19) and is also amenable to solution by Multhopp's quadrature
method. Since the integrating factors are included in the aerodynamic
influence coefficient matrix, then the work done by 1lift due to o 1is
simply given by:

- efo] -

(one

3r
% = gS 2 CLaiai“ (c26)
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The generalized force is

Qy = —qS[(Z Cldiai> CL+G_'. CLaiai> (L+<mLéiai> e +(ZCL&1ai> y +<ZCLyiai> v+
(ZCLfliai>h +(ZCLhiai> h +<>:CLiiai> 1 +(ZCLliai> 1 +<ZCL5iai> 5] (c27)

and similarly for the other generalized forces

Q = -qSl—.(ZC]-_&ib]) a +éclﬂibi>a +<20Léibi>9 +<ZCI‘5’ibi> ¥ +<ZCLyibi> y+
<%CLﬁib;>f1+<£CLhib;>11+<;CLiib?> i*(;Cinbi>z'+<;CLaib?> 8] (ca8)

Qy = —qS[(ZCLdiCj)c'L +(20Lu,ici> a +<Z‘.CLéici> é+<Z‘.CLj_ici> v +():.CLyici> Y+
<%CLﬁic;>]i+<;CLhic?>]1+<;0Liic%> i+<;CLZiC?>Z'+<éCLSiCi> 8} (c29)

Again using the small angle assumption, one may relate the vertical
acceleration to 6 and o by the following transformation of coordinates.

7= V(O - &) (c30)

Equations (C16), (C23), (c24), (c27), (c28), (C29), and (C30) now
define the equations of motion. Further development depends on the exact
form in which the equations are desired.

Final Equations of Motion in Terms of Specific Coordinates

In the application to the B-47 airplane , the three structural degrees
of freedom selected were wing bending (y), wing torsion (Z), and fuselage
bending (h). The wing bending mode was obtained by removing the fuselage-



bending component from the first free-free mode.
fuselage- and wing-bending components from the second free-free mode.

The torsion mode was obtained by removing the

Hence, terms

Zmibici and

Zmyai;by Dbecome zero. Also, the terms Cldi and CLSi’ which represent forces at the tail, do not

enter into equations in y and 1.
was found to be small and was neglected.

Downwash at the tail from the 1lift due to wing structural modes

K, MD?+ 0 KiZmgaq D%+ KyZmy by D%+ K;Zmy ¢4 D2+
ClL. c
G 4Cr ;
T Crg 1)y | O1g>Cry C1gDCry, C1sPry
. 0 - KoI D2~ KzzmiaixiDz- KoZmy by x4 D2~ KoZmy cq x4 DP-
mg,
- = D3 =D (Cmd'+Cmé)D-CIh cerD-cmy Cony D~Crny cmiD-cmZ
K ZmyaqD%+ K1Zmyayx; D%+ K1Zmya;2(DP+wy 2)+ K,Zmyaycqy Do+
2Cr 51 £C;, a4+EC[. ayD | ZCp. a4D+ICL_ & 0 ICL: & D+ECL, &
D e G | Ly 81 Ly 8i Lj, 81401 #1
v i 1 g 1
K3Zmy by D2+ K;Zmg by x4 D%+ K;1Zmyby? (D2+mnb2 )+
£C,. byD+
20T e bi ZCIuibi Lui 0 0
£Cr; byD+EC, b
S e, D | £Cp_ by+2Cp, byD Tyt o
\' \ 1 04
Kl):m.lciD2+ Kl):micixiD2+ KlzmiaiciD2+ Klzmicf(nﬂwnjp
X, ey EC[, cy+ECr. c;D | ECr. c;D+ECr, c 0 ZCr. cqyD+ICr. ¢
Loy . L, C1+E0L5, °1 Ly, “1P*ECLy €1 b bl el
v

Equations of motion used in the analysis are:

-CL5

5
(C31)

.CL8

w
=

LyTh NI VOVN
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vhere 1/gS =K, 1/9S¢ = Ky and all summations, %, are taken over stations
1F, 1R, 2F, 2R, 3F, 3R, 5, 6, and 7. The wing root stations, 4F and LR,
do not deflect in coordinates y, h, and 1 and, hence do not enter into
the summations, but the 1lift at these stations is included in stability
derivatives such as CLy, Cry, ete.

The acceleration at any point 1 on the airplane is given by:

2
n; = %; [ch + X960 + a3y + bsh + cil] (c32)

Deflection check.- Because of the many terms involved, it is advisable
to check the results obtained from the equations of motion. This can be
done as follows: From solution of equation (C3l), calculate the wing
deflection for a particular frequency (make substitution D = iw). Usually
a frequency corresponding to a peak in the frequency response is used
because these are the most important points. The deflection is given by

oo -

Through use of the structural and aerodynamic influence coefficient

matrices, calculate deflections due to «, 6, 8, Negs {%i}, {%i}b {%i}ﬁ

and sum. The total deflections due to the loads should check with the
initial deflection in equation (C33). Since the influence coefficient
matrices are based on eight degrees of freedom, the deflection check indi-
cates whether or not the three degrees of freedom selected are as adequate
as eight degrees of freedom at the frequency considered.
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TABLE I.- FLIGHT-TEST CONDITIONS

Flight | Run . Mach Gross 6 al N
number | number ebinhte number | weight IyXlo Cofs B
18 6 14,900 0.50 |103,400 | 1.23 |22.8 |0.91
18 i 15,000 .55 | 103,100 | 1.23 |22.8| .88
18 8 15,100 .59 | 102,700 | 1.23 |22.7| .86
18 10 115, 100 <67 | l0l,600 | 1.21, |21.9| .82
18 SKIL 15,100 .71 | 100,700 | 1.21 |21.9| .80
18 12 15,200 L6 1100,3000 .2l {222 | S T6
11 19 20,000 .59 | 106,100 [ 1.25 |21.2| .86
15T 1155 20,500 .71 | 104,200 | 1.24 ]20.9] .80
15 i 25,500 .49 | 118,700 | 1.36 |20.8 | .91
15 5 25,200 .60 |119,500 | 1.37 |2L.2| .86
15 I 25,100 .66 |120,000 [ 1.37 |21.1| .83
17 10 24,800 .70 108,100 [ 1l.27 |19.9| .80
17 12 25,380 .79 | 106,400 | 1.25 |19.6| .74
3 6 29,900 .71 | 125,900 | 1.25 |20.6| .80
5 18 34,400 .60 |110,000 | 1.29 |21.3| .86
5 15 36,000 .72 | 111,106 | 1.30 [2l.6 | -79
5 il 35,300 .80 (111,900 | 1.30 |2L.7 | <74

1Based on C c from reference 1k.
Lo/ Loy,
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TABLE II.- PHYSICAL CHARACTERISTICS USED IN ANALYSIS

q8 1l 8.9 3.1 3l e
4.6 DD ato) S
Beel2f & BlI8 24 .4 4oL
1 T8 13.7 6.1 - 1.¥
24k 1.7 24 i
e S628 1D E G
1 45 3.2 Mis i
¢ -
I'u‘tail 53
1F oF 2R 3F 3R 5 6
2.3486 [ 2.384%0 | 1.1943 | 1.2934 [ 0.2302 | 0.2730 |0.1717 | 1.6315 | 0
2.54598 | 2.5920 | 1.2430 | 1.4057 | .2330 | .29%0 | .1497 |1.6970 |0
1s213h M ehops| S lnigsl U Era s R g R0 51 ST 283 NIRRT 92638 0
v 1.3309 | 1.4300 | .7881 | .9005 | .180k [ .2318 | .1102 | .9916 |0
27| 2307 | L1765 | 1663 | L0659 | .0580 | .o767 | .2040 | O
24,000 | 3057| .3339 | .2116 | .2398 | .0705| .0931 | .0396 | .2u6k |0
.1614 | .0898 | .1286 | .0659 | .0596 | .o101 | .1273 | .14k |O
1.6137 | 1.6498 | .9208 | .9495 | .2025 | .2374% | .1528 |1.1859 |0
0 0 0 0 0.
20 20 61 61 130 130 48k 206 264
19.82 23.12 10.86 15.06 -2.53 2.98  -10.08 1k.22 4T
0.953 1  0.576 0.623 0.141 0.17% 0.096 0.718 O
0 0 0 0 0 0 R ]
0.32 -.32 0.316 -0.316 0.267 =0.267 1 0.32 0
¥ ol

in stabilizer angle

1,330,000 slug-ft

3,580 slugs
274 slugs
1,930 slugs

47.3 feet

0.0342° per 1000 1b tail load
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Figure 2.- Two-view drawing of test airplane.
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Figure 3.- Flight test conditions; 126,000 > W > 100,000 and center of

gravity between 20 and 23 percent M.A.C.
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(c) Acceleration at nose.

Figure 8.- Continued.
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Figure 8.- Continued.
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Figure 9.- Coordinate system.
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Figure 10.- Comparison of various pseudostatic deflection curves;
q/B = 209, c.g. = 21 percent M.A.C.
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Figure 16.- Amplitude-phase plot of predicted and measured accelerations
at wing first-bending mode frequency; w = 8.9 radians/sec.
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Figure 20.- Predicted and measured node lines and lines of low response
of wing first-bending mode.
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Figure 21.- Predicted and measured node lines and lines of low response
of fuselage first-bending mode.
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