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SUMMARY

The influence of solid-body rotation on a screen-produced turbulence
in a flow between concentric, rotating cylinders has been investigated.
Radial distributions of the three components of turbulence intensity and
the three turbulent shear stresses were measured at a fixed distance down-
stream of the screen both with and without rotation. An energy balance
is made for the three intensities from measured decay and dissipation

terms.

In addition, the change of the axial and peripheral mean velocity
profiles with distance along the axis of rotation is presented.

INTRODUCTION

Although the bulk of theoretical work on turbulence has been
restricted to homogeneous isotropic turbulence, there have appeared in
recent years a number of investigations on turbulent shear flows char-
acterized by the presence of mean velocity gradients. The ordinary. types
of shear flows that have been investigated, for example, channel (ref. 1)
pipe (ref. 2), wake (ref. 3), boundary layer (refs. 4 to 6), and jet
(ref. 7), have one thing in common: The principal mean rate of strain is
either exactly or approximately equal to the rotation, that is, one-half
the vorticity, of the mean flow. A somewhat unusual experiment on a tur-
bulent flow with uniform mean rate of strain but with no mean vorticity
was recently reported by Townsend (ref. 8). The present investigation
deals with the other extreme case, namely a turbulent flow with uniform
mean vorticity but with no mean rate of strain. Such a flow was obtained
by a solid-body rotation of the mean flow between two concentric circular
walls, the walls also rotating like a rigid body about their common axis.
An approximately uniform mean axial velocity served as a carrier. The
turbulence was created by letting the flow pass through a series of
screens, a customary method for generating turbulence except that in




2 NACA TN 4135

this investigation the screens were attached rigidly to the tunnel walls
and therefore also rotate with the walls.

Even without the influence of viscosity and turbulence, the solid-
body rotation of an ideal fluid has received considerable attention.
(See a recent survey in ref. 9.) Taylor (ref. 10) showed that all small
steady motions relative to the rotating fluid must be two-dimensional in
the sense that any two fluid particles originally in a line parallel to
the axis of rotation must remain so. This work was extended recently by
Long (ref. 11). Morgan (ref. 12) considered the same problem without
the restriction that the motion be steady. For the case of small forced
oscillations that vary sinusoidally with time, he found that the differ-
ential equations describing these oscillations are of elliptic type for
0 > 2w and of hyperbolic type for o < 2w, where o 1is the frequency
of oscillation and ® 1is the angular speed of rotation. He speculated
therefore that, for o = 2w, the oscillation may grow to very large ampli-
tudes. It was also found in the same reference that the ratio of ampli-
tudes of the radial velocity to the tangential velocity is 0/2&5 thus,
for large values of w compared with values of o, the radial component
of the oscillations is suppressed, and the motion again appears to be
two-dimensional. Stewartson (ref. 13) treated a weak source in a rotating
fluid; the very peculiar result was obtained that the output of the source
spreads axially but not radially, again a two-dimensional effect.

An important feature of many flows encountered in practice (e.g.,
the flow in a turbomachine) is the fact that the streamlines may be
curved, often quite strongly, introducing a pressure gradient in the
direction perpendicular to the main flow direction. It is of great
interest to know something of the effect that this curvature may have
on the turbulence characteristics. One such investigation is reported
in reference 14, where the effect of curvature on a fully developed
channel flow is studied. It is clear that the curvature of the stream-
lines alone is not sufficient to determine uniquely the characteristics
of turbulence; the velocity distribution also must be considered. 1In
the present investigation a solid-body rotation was therefore chosen for
the simplicity of constant mean vorticity and zero laminar shearing
stress.

The present investigation was conducted at the Johns Hopkins University
under the sponsorship and with the financial assistance of the National.
Advisory Committee for Aeronautics. The author gratefully acknowledges the
important contributions and criticism of Dr. Hsuan Yeh, senior Faculty
Advisor. He also wishes to thank Dr. Stanley Corrsin for his encourage-
ment and suggestions, Dr. G. F. Wislicenus for his role in initiating
the work, and Dr. Salamon Eskinazi, Dr. J. R. Weske, and Mr. W. G. Rose
for numerous discussions throughout the investigation.
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SYMBOLS

coefficient in relation

= >
1

<12l

radius of inmer cylinder, 2.766 in.
radius of outer cylinder, 5.344 in.
constant of integration

channel width

mean voltage across hot wire

fluctuating voltage across hot wire, dE

fraction of turbulent energy v associated with
K1, cmd/sec?

strength of disturbance defined in appendix B, vo/aro

mean hot-wire heating current

hot-wire heating current extrapolated to zero velocity

one-dimensional wave number in direction of mean flow, em—L
integral scale of turbulence in direction of flow

mesh length, that is, distance between mesh wires (reciprocal
of mesh number), in.

signal from hot wire defined in appendix A

coordinate measured perpendicular to streamwise direction on
stream surface

mean static pressure

instantaneous pressure fluctuation
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q = er2 o+ Veg ay V22

R hot-wire resistance with heating

Ro hot-wire resistance with no heating

Re Reynolds number, Vo(b - a)/v

Ryy correlation coefficient, V;V;/vay

Ry, turbulence Reynolds number, VA/v

7 radial cylindrical coordinate

ri radius of inner wall of plane curved channel
Tro radius of outer wall of plane curved channel

S slope of hot-wire calibration curve

S coordinate measured along streamwise direction
8) component of mean velocity parallel to surface
\Y% mean velocity component, direction indicated by subscripts r,

6, 2z, n, and s

Vo mean throughflow velocity (VZ averaged over flow area)
Vp mean velocity component perpendicular to hot-wire axis
v instantaneous velocity fluctuation, direction indicated by

subscripts r, 6, 2z, s, n, X, and ¥y
v root-mean-square value of velocity fluctuation v

X coefficient in the hot-wire response equation,
sin B cos B sin

1 - sinca sin2B

N2, Cartesian coordinates
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¥ coefficient in the hot-wire response equation,
sin'a. €05 sin2B

1 - sina sineﬁ

Z coordinate along axis of rotation; also axial distance from
farthest downstream 20-mesh screen

a angle of turning of hot-wire probe, measured in plane per-
pendicular to probe axis

B angle between hot-wire axis and radial direction

o} boundary-layer thickness

g axial distance from farthest downstream L-mesh screen

| exponent in relation 12 = SVVS(cos a) + 102

S peripheral cylindrical coordinate

A microscale of turbulence, %ez,z = —12{1—7 ks SR —féﬁfiq |

and so forth

o
dz

<avz>2
dz

v viscosity

v kinematic viscosity

o) density

o frequency of forced oscillations

T laminar shearing stress

T turbulent shearing stress

¢ flow angle, measured from the axial direction

w angular velocity of rotation




6 NACA TN 4135
WIND TUNNEL

The rotating wind tunnel was designed to produce a radially uniform
axial velocity and solid-body peripheral velocity distribution, axially
symmetric to prevent further complications. These combined requirements
suggested the idea of using rotating screens.

It is known that a flow, approaching with some angle to the normal
to a screen, will be turned by the screen toward that normal so that
downstream of the screen the velocity component parallel to the plane of
the screen will be smaller than the corresponding component upstream of
the screen. For a large number of screens, the parallel component of the
approaching flow will be substantially reduced in the flow behind, this
component vanishing in the limit of infinitely many screens. If the
screens are rotated about a normal axis the flow behind them will also
rotate like a solid body. Further, if the pressure-drop coefficient of
the screens depends on the normal component of velocity only, as it does
for approach angles of up to 45° (ref. 15), nonuniformities in axial
velocity will be diminished by the screens as well as peripheral
nonuniformities.

To avoid the excessively large number of screens that would be nec-
essary to induce rotation by this method alone, an impeller with approxi-
mately axial vanes at discharge was employed here to create a prerotation.
This impeller was followed by a system of screens rigidly attached to it
and thus rotating with it. These acted to reduce both nonuniformities
in axial velocity and departures from solid-body rotation. They also
acted to suppress peripheral variations caused by the wakes of the vanes.

The impeller was a modified version of a previously existing mixed-
flow runner (fig. 1). By machining, a vane system resulted whose outer
surface was cylindrical and 10.688 inches in diameter, but whose hub

varied in diameter from 2% inches at the inlet to 5.53%2 inches at the

outlet. Five screens, spaced 1/4 inch apart, were attached to the hub
in a single unit just downstream of the trailing edge of the vanes.
They were 20-mesh screens, of 0.0l-inch-diameter wire, resulting in a
solidity of 0.360 and a pressure drop coefficient of approximately 1.0
for each screen for the throughflow velocity of 42.3 fps that has been
used in these experiments. The screen Reynolds number based on rod
diameter and throughflow velocity is 207. As will be described, two
additional turbulence-producing 4-mesh screens were later installed

3

8 inches and 13= inches, respectively, downstream from the last 20-mesh

L

screen. The Reynolds number of these screens is 975.
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Since the impeller alone will not produce a sufficient throughflow,
a 3.75-horsepower axial blower is used to supply air to it at the rate
of 4,000 cu ft/min through a settling chamber. A 20-mesh screen is
located just before the impeller entrance. An adjustable bleed is pro-
vided between blower and impeller to make up for blower characteristics
unfavorable for this particular application. With the speeds of the
blower and impeller separately controlled, variation in the ratio of
peripheral to axial velocity is possible.

Downstream of the impeller and screens, two coaxial cylinders form
the inner and outer walls of the ‘tunnel; the dnner wall s rigidily
attached to the hub of the impeller, the outer wall, rigidly attached
to its shroud.

The inner wall of the test section is formed by the outside surface
of a piece of aluminum pipe 6 feet in length, with an outside diameter
of 5.53%2 inches, supported by two bearings on a shaft extending through
the inside of the pipe on which is also supported the impeller on its
own two bearings. Both pipe and impeller rotate as a unit when the pipe
is driven by a belt from the rear with a variable-speed direct-current
motor.

The outer wall of the test section consists of sections of various
lengths of a cylindrical plastic tube having an inside diameter of
10.688 inches and a wall thickness of 1/2 inch, supported from the out-
side on separate bearings. The ratio of inner to outer diameter of the
test section is thus 5.532 inches to 10.688 inches or 0.518. The distance
between inner and outer walls is 2.578 inches. The length of this outer
wall is adjustable by fitting together a different number of sections.
As mentioned, the outer wall is rigidly attached to the impeller and
thus also rotates with it.

With impeller, screens, inner wall, and outer wall all rotating
together as a unit, a special arrangement is necessary to introduce
measuring probes into the flow. The scheme used is as follows: A
stationary section of the outer wall is fitted to the downstream end of
the tunnel. The measuring probe enters radially through a hole in this
piece as close to the sealed joint between the rotating and stationary
sections as possible. Thus the outer wall at the traversing station is
not in rotation, but it is felt that the resulting sudden change in
peripheral velocity is limited to a region very close to the wall.

An assembly drawing of the wind tunnel is shown in figure 2. Fig-
ure 3 shows in more detail the traversing section.

The flow leaving the screens will undergo considerable change as it
proceeds downstream. Thus, in contrast to investigations on fully devel-
oped flow, several traverses are necessary at various distances from the
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screens. This is accomplished by varying the length of the outer wall
by fitting together the proper number of rotating sections and then
adding the stationary traversing section at the end.

Two general views of the tunnel are shown in figures 4 and 5, looking
downstream and upstream, respectively.

INSTRUMENTATTON

The instruments used for all mean flow measurements were a shielded
total head probe (Kiel probe), a Pitot static tube, and a claw direction-
finding probe. These instruments were mounted on a micrometer traversing
apparatus to allow for radial traversing between inner and outer walls.
Attached to this traversing apparatus was also a protractor, and with a
p7inter attached to the stem of the probe, angles may be read to within
1429,

The same constant-current hot-wire set described in reference 14
was used for turbulence measurements. (A complete description of the
equipment is given in ref. 16.) Tungsten wires 0.0003 inch in diameter
and about 0.03 inch long have been employed. The bare tungsten wire
was copper plated to enable soldering to the probe. The wire was com-
pensated through a manually controlled resistance-capacitance network
using the square-wave method. The time constant ranged from 0.7 to
1.0 millisecond. The mean-square values of the turbulent quantities
were measured through a vacuum thermocouple unit. Time derivatives of
the fluctuating quantities were measured with an electronic differentiator.
A1l three components of the turbulence intensity, as well as the three
turbulent shear stresses, were measured by a single inclined wire. The
technique employed is more fully described in appendix A. In addition,
an X-wire was used to measure the spectrum of radial fluctuations. All
spectra measurements were made on a Hewlett-Packard wave analyzer.

ANALYTICAL CONSIDERATIONS

With the assumption of axial symmetry, the Reynolds equations in
the cylindrical coordinate system are

§%<Vrvz) + v(?aVr = §g> (1)
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v, vV, VoV, o il o vV
Vr a_rg sy S T E -l2- éa—<r2vrve) = aa—z(vevz> + V(nge - ;—%) (2)

where

The equation of continuity for incompressible, axially symmetrical
flows is

orVy OVy
—== 0 )
r Or * dz )

As mentioned previously, the region of flow to be investigated is
the free-stream region in which Vy is practically constant with the

radius. (This excludes the boundary layers in which Vz drops rapidly

to zero at the inner and outer walls.) In this region of interest, it
was found that Vz increases only slightly with z. The continuity

equation then gives an estimate of Vr. The experiments indicate that
Vr is smaller than the turbulence intensities but is still of the same

order of magnitude as the latter. For this reason the terms involving
Vy should, in general, be retained for this type of flow in equations (1)

to (3). However, the terms involving viscosity v in these equations

v
as well as the term Vyr S_E in equation (3) can be neglected for the
r

region under investigation. (Naturally none of these terms can be neg-
lected in the boundary layers near the two walls.)

Although every quantity in equations (1) to (3) has been measured
in this investigation, it seems futile to try to balance these equations
by experimental data. For example, in equation (1) the two terms Veg/r
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and - éli are of a larger order of magnitude when compared with the rest

P or
of the terms so that any experimental error in these two terms would com-
pletely overshadow the others. It appears that no useful purpose can be
served by balancing Reynolds equations except perhaps as a check of
measurements.

Among the turbulence quantities to be studied under the influence
of a gross rotation, the most interesting quantity appears to be V,vg.

Idealize the situation a little more and imagine the following case:

Let the wind tunnel with the inner and outer walls rotating (as a unit)
at a constant angular speed w be filled with turbulent flows whose mean
velocity at the initial instant t = O 1is purely tangential and is such
that Vg = ar and hence there is no slipping at the walls. The question
is what will be the Vg distribution at later instants. The appropriate

equation describing this idealized case is, corresponding to equation (2)

v
but taking into consideration that possibly SEQ ¥ 0 although Vi =

VZ..—._Q—:O’

Z

Q/

Vo 1 3
P =~ 2 5;[1‘2(71; + Tlﬂ (5)

where for turbulent shear stress

Tt = -pVpVg

and for laminar shear stress

d (Ve
v e 20

It is known that eventually, as the turbulence dies out, the flow becomes
laminar and, under the condition of rotating walls, the Vg distribution

of the fluid must again be that of solid-body rotation, that is, Vg = ar.

It is plausible therefore to assume that, between t =0 and t = &,
Vg remains always ar. With this assumption,
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so that either

Tt+TZ=O
or

Tt Ty = £
t 1 e

The latter possibility must however be ruled out, since it would impose
a nonzero value for T¢ at the walls where 7, vanishes (Tz is zero

everywhere for Vg = ar).

The statement that wv,.vy 1s likely to be zero for solid-body rota-

tion of the mean flow would have been so obvious as to become trivial

if it were not for the fact that such a conclusion apparently contradicts
the prediction by the well-known momentum transport theory or turbulent
shear flows. As pointed out by Taylor (ref. 17), this theory gives for
shear flow along circular paths

T = oK ﬁ(rve) (6)

where pK is the eddy viscosity and rVg 1is the angular momentum. This

is analogous to unidirectional shear flows for which T4 = pK ég. The

oy
basis for equation (6) is, of course, the conservation of angular momen-
tum of fluid elements in circular flows, which is analogous to the con-
servation of linear momentum in unidirectional flows. According to equa-
tion (6), the turbulent shear stress Ty = -pV.vg for solid-body rotation

of mean flow would be a positive constant and equal to 2pKw everywhere.

Now the shortcomings of momentum transport theory are, of course,
well known. The assumption, for example, that the masses of fluid which
transport the momentum from one layer to another move about without losing
their identities and without the influence of viscosity and fluctuating
pressure gradients is not true. Nevertheless predictions by this theory
on turbulent shearing stress in unidirectional shear flows are at least
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qualitatively correct, although quantitatively inexact. The fact that
in solid-body rotation this theory appears to run into difficulty even
in a qualitative way is somewhat puzzling.

Dr. Hsuan Yeh is responsible for the following application of the
momentum transport theory which makes the theory predict a zero turbulent
shearing stress for a solid-body rotation type of mean flow. This cor-
rection is based on taking into consideration the mean pressure gradient
normal to the flow, a quantity existing prominently in curved mean flows
but not in straight mean flows. The other simplifying assumptions of the
transport theory are retained. The detail of such a development is given
in appendix B. The conclusions can be stated briefly as follows. If at
any instant a fluid element possesses an excess velocity, either in vy
or in vg or both, it will then oscillate around an oval path relative
to the mean flow. The frequency of oscillation, irrespective of the
magnitude and direction of the initial disturbance, is always 2w. This
confirms the speculation by Morgan (ref. 12, see "Introduction") that 2w
might be the resonance frequency of forced oscillations; this value is
indeed the natural frequency of the system. Furthermore, the amplitude
of vy 1is equal to that of vg for any kind of initial disturbance.

This again seems to confirm Morgan's result for o = 2w. However, unlike
Morgan's assumption, the fluctuating velocities vy and vg do not vary

sinusoidally with time, although the departure from a sinusoidal function
is not very great. Another interesting fact is that the magnitudes of vy

and vg at subsequent times do not bear a simple proportion to the magni-
tude of the initial disturbance. Finally, such a simplified analysis shows
that when a fluid element moves out with a positive value of vy, for

example, then there is equal chance of its possessing either a positive
or a negative value of vpg, so that the correlation vxvy ig zerol.

The equations governing the six components of Reynolds stress tensor
(three component intensities and three shear correlations) and the total
turbulent energy, in cylindrical coordinates, were derived in reference 184
These equations, after simplification by the assumption of axial symmetry,
are reproduced as follows:

2 2
il aVr aVr 2V9 _2 aVr aVr
=V + V - VpVy — + Vp& —— + VpVy —— =
2<:r or Y = Y Y
Vg2
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ov dv,2 dV — v
i 0 0 i g > Vr
=V + V + v,.vg = —(rVp) + Vv, Vg — + V<= — =
R v Y Slams T & 7
1L op LT D 2 2 VrVvg
- =v - == = 1rv.v + — Vv,V + 2 -
P erae 2<r8r o z &
Bve = Bve 2 Bve = ve2 Vg Bvr
i | Aty SER AN (BURL R B2 s Bt i s %
or oz r A6 re r r 96
2 2
d Bistitdded
lVr OVZ v i +VI.VZ._Z. Vg 92: __]__vza_P__
2 or oz T A P oz
2 2 2
— o)
LliI‘Vr\122+-ivz - _VZL + EY_Z + dVZ
2\T or oz or oz r 06
Sl N2 S— — e
lvrai.pvzﬁ_ +V2 I‘+vr28ﬁ ZEBV_Z zeéy_e_+
2 or dz dr oz
B oVz , OVr + Vpvgr - 8L 19 seilles, o +
% ) o oz or\r r dOr o
3 @ . p\|_ Buiaui+v92+v2_ E._Bv_r_v_rave
9E 2 x5 dx; 2 r r 38 T v op

15

(9)

(10)
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g :_L<ve§2+vr5_l>>_
dz 2p or r J6

dvy OV dv, OV
VrVO -V 6 £ + 6 24 +

dz 0z r 36 r J8

(11)
Vo % g%(rve) + VzVg Y +
i 515<v9 :_1; M ra§e> al
%(1%2 a_af = aa_z VZEVS) - Z:e :ZZ H ivge ivge +
Vg v, Vzvg Vg vy a

+
dr OJr ol r r J9
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% OVyVy OVpVy y i oVy AV, ( 2V9)
=|V: v + =|VpVg|—— + —=| + VgVg |- —
N T ”<ar 3 LR
— W, —5 OV ' e
7/
> Rilan

Vg Vo d 5| [OVvz Ovy Ovy Ovr dvy, Ovy

r i z r¥z v(?z dz # r 38 r 36 % dr Or

T (13)

In any one of these equations, the interpretation of the groups of
terms, from left to right, is as follows: (1) The convective rate of
change of some turbulent quantity; (2) the production of that quantity
from the mean velocity (a positive production is associated with a nega-
tive value for this term); (3) the increase or decrease of the quantity
due to the fluctuating pressure velocity correlation. This usually serves
to feed the smaller intensity component at the expense of the larger
(refs. 19 to 21), as will be more fully discussed later; (4) the increase
or decrease due to turbulent diffusion; (5) the change due to the action
of viscosity. This term is a combination of the rate of dissipation of
turbulent energy to heat and the rate at which viscous forces are doing
work on a fluid element (see ref. 22). This term is obtained by a trans-
formation in each equation of the type

v(vivevj + vjvgvi> = VVQVIV_J' Lo
aX;;_ an

The second derivative of the fluctuating quantity is neglected because
it is small compared with the other terms except in the region very close
to the wall.
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The most direct influence of the rotation would seem to be in the
production terms, where the peripheral mean velocity appears. The way
the various turbulent quantities are changed by rotation from the values
without rotation would depend therefore on this distribution. Since the
turbulence problem is nonlinear, the mean peripheral velocity of course
depends in turn on the turbulent quantities. The system of equations
presented so far is indeterminate. As an equation is derived for each
of the unknown fluctuating quantities, new unknowns appear. The theoret-
ical motivation of deriving such a chain of sets of equations seems to
be the hope that eventually the new unknowns generated may be evaluated
by some plausible physical assumption to which the system is not sensitive
and the process stopped. Meanwhile, the equations have served as a guide
in interpreting experimental work. In the next sections the determina-
tion of the mean velocity field and the measurement of some of the various
turbulent quantities encountered will be presented.

The following speculation by Dr. Hsuan Yeh on the conditions for simi-
larity to exist in a turbulence field under gross rotation is of interest.
For the idealized case in which V. =0, Vg =ar, and V, 1s constant

everywhere, the equations can be reduced considerably. Since V, now

serves merely as a carrier, the magnitude of V, cannot influence the
problem. With respect to a coordinate system moving with a velocity Vg .
equation (T), for example, appears as follows:

dvy2 v vrvge
& _ngrve_-_r.al_ii_é_rvr5+ rve -
ot P dr 27T Jr r
2 2 2 2
, vy o (Bvr N vy ) 0 s dvg
or Jz r 98/ 22 r r 36
~2 N
The last term is proportional to v XE where Vv 1is a typical turbulence
A

intensity and A\ 1is a typical turbulence microscale. This equation can
be made dimensionless by dividing each term by «¥2. In the resulting
equation there appears two dimensionless parameters V/ar and v/a%g.
Physically the first parameter is the ratio of the Coriolis forces due
to turbulence to the centrifugal force from the gross rotation of the

mean motion. On account of the fact that the dissipation term v =

% v
is proportional to V5/Z where 1 is a typical length of the energy-
containing eddies (ref. 23), the second parameter can also be written
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as V/wl and therefore represents the ratio of the Coriolis forces due
to turbulence to the centrifugal force due to mean rotation of the large

eddies.

Since only one rotational speed and one type of turbulence were fully
investigated in this work, no conclusions can be drawn as to the influence
of a continuous variation of these two parameters.

PRELIMINARY MEASUREMENTS

In order to isolate the effect of rotation on the flow field, it
was necessary to investigate the flow both with and without rotation.
As previously described, a prerotation is induced in the flow before it
enters the rotating screens by a rotating impeller. Due to the twist
of its blades this impeller when it is not rotating blocks the flow coming
from the main blower; it must therefore either be modified or removed for
tests without rotation.

Initially, the latter arrangement was used. A series of radial
rods of the same spacing and thickness as the impeller vanes was mounted
on a dummy hub in an attempt to give similar conditions upstream of the
system of 20-mesh screens. These screens were then attached to the hub
in the same way they had been mounted on the impeller.

A number of traverses were made at various axial positions both with
and without rotation, using the dummy hub in the latter case. The speed
of rotation of the tunnel was 1,560 rpm (corresponding to maximum rated
speed of the driving motor), giving a peripheral velocity of 37.T fps
and 72.8 fps to the inner and outer walls, respectively. A throughflow
o L9550 e ft/sec was used both with and without rotation, corresponding
to an average throughflow velocity of 42.3 fps. This value was arbitrarily
chosen to give a ratio of peripheral to axial velocity of nearly unity
near the inner wall. The Reynolds number based on this velocity and half
the distance between inner and outer wall is 26,700.

The results of these measurements are shown in figures 6, 7, and 8,
where axial velocities without rotation, axial velocities with rotation,
and peripheral velocities, respectively, are shown at various axial sta-
tions. The axial distance 2z is measured from the farthest downstream
20-mesh screen. (It should be noted that the 4-mesh turbulence-producing
grids mentioned in the section "Wind Tunnel" were not yet installed.)

The axial velocities are made dimensionless with the average throughflow
velocity, the peripheral with the peripheral velocity of the outer wall.

In figure 8, the striking lack of change of the peripheral velocity
with distance along the axis should be noted. Although the peripheral
velocity is not strictly one of solid-body rotation, it nevertheless has
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changed very little when compared with the changes that have occurred in
the axial velocity profile in the same distance downstream.

Turning to the axial velocity profiles as a function of distance
downstream both with and without rotation as shown in figures 6 and T
it 1s interesting to compare the thickness of the boundary layers on
both inside and outside walls for these profiles. The boundary-layer
thickness is here defined as that distance from the wall at which the
velocity distribution given by the power law which best fits the observed
data is equal to the free-stream value. Results are given in figure 9.
It is seen that without rotation the boundary layer on the outer cylinder
is thicker than that on the inner. For fully developed laminar flow in
an annular space the maximum velocity occurs closer to the inner wall
than to the outer wall (see ref. 24). To satisfy this condition the
boundary layer on the outer wall in a laminar flow that is not fully
developed will have to grow faster than that on the inner wall. It is
interesting to note that the same trend still holds for turbulent flow.

With rotation, the very interesting effect is seen that the boundary
layer on the inner wall grows faster than it did before, while the oppo-
site is true for the boundary layer on the outer wall. A detailed analysis
of boundary-layer growth must include measurements very close to the wall.
This is beyond the scope of the present report, since the emphasis is on
the region between the boundary layers.

A profile of turbulence intensity ?r‘z/Vz at the farthest downstream
station without rotation is shown in figure 10. As would be expected,
at a given distance from the wall a larger turbulence level exists near
the outer wall than near the inner, since the boundary layer near the
outer wall is thicker.

From the velocity profiles just presented, one may estimate the order
of magnitudes of the following terms in Reynolds equations (1) to (3):

Va2
v g ol toe
or dz =
0(0.0001) 0(0.0001) 0(1)
AV Vg VrVe
¥ — o
or dz =
0(0.01) 0(0.01) 0(0.01)
oV oV,
Vp — Vs
T dr Z 3z

0(0.001) 0(0.01)
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ESTABLISHMENT OF SIMILAR UPSTREAM CONDITIONS

The measurements and results described in the previous section were
obtained, in the case of nonrotating flow, with the impeller removed from
the system and replaced by the dummy hub and rods described. This was
intended to give the same conditions upstream of the screens both with
and without rotation. The effectiveness of this device cannot rigorously
be established without a direct comparison to nonrotating flow produced
with the impeller left in place.

Tt was found that if the impeller is rotated at a low speed, a flow
with no peripheral velocity is obtained behind it. This is so because
the trailing edge of the impeller vanes is not axial but rather at an
angle of about 20° to the axis of rotation. The flow is deflected toward
the axis by the 20-mesh screens behind the impeller but not enough to
make it axial. A slight rotation (about 160 rpm) then eliminates the
remaining peripheral component. At this low speed of rotation, however,
the inlet vane angles are not correct. An upstream extension was there-
fore attached to each moving blade, tangent to it at its leading edge
and designed to meet the inlet flow at the proper angle. To reduce
secondary flows between impeller vanes, a series of four flat concentric
rings was attached to the vanes by cutting slots chordwise into the
trailing edge of the vanes and fitting the rings into these slots. These
rings, 1/2 inch wide and coaxial with the axis of rotation, extend
l/h inch upstream and l/h inch downstream of the vane trailing edge. The
20-mesh screens were reattached. A mean velocity profile was then

obtained for slow rotation at = 1.1, corresponding to the farthest

- a

upstream profile shown in figure 6. At this station, comparison of the
profiles with slowly rotating impeller and with dummy hub and rods showed
them to be almost identical.

Preliminary turbulence intensity measurements in the mean fillowidireec=
tion showed the turbulence level also to be about the same with the two
different methods of producing purely axial flow. Thus the data taken
with the dummy hub with its radial rods shown in figure 6 are believed
to offer a good comparison with the flow in rotation.

With slow rotation the axial turbulence intensity component at
Z
b - a
in peripheral direction from 1.8 to 2.2 percent of the mean velocity with
the impeller in place. These variations were traced to wakes from the
impeller vanes passing through the four 20-mesh screens. At this dis-
tance from the screen, which corresponds to about 150-mesh lengths, the

= 3.2, a traversing station fairly close to the screens, varied
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turbulence created by these screens has therefore decayed to such a small
value that nonuniformities passing through the screen become significant.
In order to avoid these axially asymmetric blade wakes one could go
farther downstream until they have died out, but one then approaches the
flow region where the axial velocity is no longer uniform. It was decided
to install additional large-mesh screening some distance downstream of

the 20-mesh screens. A large-mesh screen will create turbulence of a
larger scale which allows more time to decay. At a given station, the
turbulence level will then be higher, and if the peripheral variations

in the turbulence upstream of the screen remain the same, such variations
downstream of the screen will be proportionately lower. The position of
the screen will be a compromise: If it is too far downstream the boundary
layers are too thick, too far upstream the wakes become stronger.

Various arrangements of 4-mesh, 0.047-inch-diameter wire (solidity =
0.340) screens were tried. The best arrangement turned out to be the
following: one 4-mesh screen 160 mesh lengths (referred to the fine
screen) behind the last of the 20-mesh screens followed by another L-mesh
screen 23 meshes (referred to the coarse screen) farther downstream. The
traversing station closest to this screen is 17.5 mesh lengths away.

(This station will henceforth be identified by ﬁ = 17.5 where £ is
the axial distance measured from the last 4-mesh screen (in contrast to
z which is measured from the farthest downstream 20-mesh screen). All
further radial traverses were made at this station. In terms of the
distance between inside and outside walls, this station corresponds to

2z = 7.1. Peripheral variations at this station were only *2.5 percent
b - a
of the turbulence level. Measurements taken at this station are presented
in the following section.

EXPERIMENTAL RESULTS

Mean Velocities

Axial velocity profiles with and without rotation, 17.5 mesh lengths
downstream of the last 4-mesh screen, are shown in figure 11. The through-
flow velocity is the same as that for the preliminary experiments, but
with rotation the angular velocity has been increased from 1,560 to
2,000 rpm to maximize the effects of the rotation within the limits of
the equipment. It can be seen that the presence of the two additional
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screens has made the axial velocity more uniform compared with the pre-
vious profiles shown in figures 6 and 7. As before, the rotation seems
to have decreased the boundary layer on the outside wall, which without
rotation is thicker on the outer wall than on the inner. The peripheral
velocity is shown in figure 12, where for comparison the previous profile
is shown as a solid line. Due to the higher speed of rotation and the
two extra screens, the peripheral velocity distribution is much closer
to solid-body rotation than it was before. Figure 12 shows that there
is still a small relative peripheral velocity between fluid and screen.

Turbulence Intensity and Shearing Stresses

The method used in measuring the various fluctuating quantities is
described fully in appendix A. The essential point is that with this
method the three components of the intensity as well as the three shear
stresses are measured at one time. Results of these measurements follow:

Figure 13 shows the radial, tangential, and axial turbulence inten-
sity, without rotation, made dimensionless with the local mean velocity.
As would be expected for a grid-produced turbulence with no mean velocity
gradients, the intensities are fairly uniform in the region excluding the
boundary layers, with ¥p/V, and %¥y/Vz about the same, both less than
VZ/VZ. Again, because of the thicker outer boundary layer, the intensity
near the outer wall is larger than that near the inner wall, at the same
distance from the walls. The three shear correlation coefficients for
purely axial flow are shown in figure 1l4. Since there are no mean veloc-
ity gradients in this case except for those near the wall, one would
expect no shear stresses other than those near the wall. Figure 14 shows
that this is indeed the case.

For experiments with rotation, two sets of results are presented.
One set is in a s,n,r coordinate system, with s in the mean velocity
direction, n perpendicular to it in the stream surface, and r radial.
The other set of results is in the usual cylindrical coordinate system.
The conversion from one to the other is given in appendix A.

With rotation, figure 15 shows the three components of the turbu-
lence intensity in s,n,r coordinates (made dimensionless with the local
mean velocity). It is to be noted that, except near the outer wall,
Vs/Vs and ¥%,/Vs are nearly the same. The radial fluctuation intensity

is much less. Shear correlation coefficients in the same coordinates are
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given in figure 16; although there is considerable scatter of the data
it appears that the coefficients are no longer zero.

The same results in r,0,z coordinates are shown in the next two
illustrations. The intensities are given in figure 17 and were made
dimensionless with the axial component of the mean velocity. Since the
axial velocity is nearly the same both with and without rotation, the
results as plotted can be directly compared with the intensities pre-
viously given for purely axial flow. The rotation has not appreciably
changed the axial fluctuations, but the radial fluctuations have been
markedly decreased and the peripheral, increased. The shear correlation
coefficients are shown in figure 18. The coefficients Ry, and Rgp

still appear to be zero, the same as they are with no rotation. How-
ever, the rotation is seen to have produced a slightly positive value
for Ryg over the entire flow area. Since in the peripheral Reynolds

equation, equation (2), the term gl(r2vrvg) appears, the variation of
by

in figure 19, with Vg again the

2 TV
VyVg 1s shown as ( e > r26
- a
\f
0

average throughflow velocity.

A more direct comparison of the turbulence intensities with and
without rotation is given in figures 20, 21, and 22.

Integral Scales

The integral scale in the direction of the mean velocity is defined

0
Ls=f des
0]

where Rg 1is the correlation between simultaneous measurements of vg

at two points separated by the distance s, measured in the mean flow
direction. From the ratio of the compensated to uncompensated signal
from a hot wire placed normal to the flow, Lg may be determined approxi-
mately (see, for instance, ref. 1). Results for Ls/M, with M the mesh
size of the screen, are shown in figure 23 both with and without rotation.

as
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- As a comparison, reference 26 shows %? = 0.22 for the same ratioiof

distance to mesh size behind a single l-mesh screen at 52 I8\ fps.

Microscales

The microscales of turbulence are here defined in the following way:

e Ipe e ) 2v,2 g s o opgs
10 e e Vg, L i et kvz,e i
2 2 2
v, vy, vy
oz or r 00
2
- 2 B 2Ve
b g . >
92 ———
2
1 ovg
dz
2
5 2Vy
% ; :

The mean-square derivatives appearing above can be related, in
homogeneous turbulence, to the various correlations of the particular
velocity component at a point with the same component at another point
removed from it in the proper direction. (See, for instance, ref. 1.)
In isotropic turbulence all these microscales are the same, but this is
not true otherwise. The measurement of two-point correlations was not

made in the present work. However, by Taylor's hypothesis, ds may be
replaced by -Vg dt, where ds 1is in the mean flow direction and Vg

is the mean velocity. Hence, a direct measurement of the time derivative
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may be used to calculate microscales, but only those involving derivatives
in the mean flow direction.

For flow with no rotation, only one radial station was measured at
r - a
b - a
was found to be fairly uniform in the region away from the boundary layers,
it was not considered necessary to take a complete radial traverse. It
was found that, in this region,

= 0.5, halfway between the two walls. Since the turbulence level

)\VG,Z B )\Vr,z -0 19
M M

For the rotating case, since only the derivatives involving the -

streamwise direction s can be measured by time differentiation, scales
in the streamwise direction are given in figure 24. To express these
scales in the more meaningful cylindrical coordinate system, it becomes =
necessary to make certain assumptions based on isotropic relationships.
The details of such transformation of coordinates are given in appendix A.

A . ?\Vz’z xVe’Z er,z
With these assumptions, D , and

M M M

They are shown in figure 25. The values without rotation in the region
excluding the boundary layer are indicated in the same figure by dashed
lines.

were calculated.

Turbulence Decay

Since the flow is not fully developed, it is important to know how
the turbulence is changing with distance along the axis. All of the
measurements reported so far in this section have been made at a fixed

S

distance from the farthest downstream screen, at M 17.5. With suit-

able modifications in the traversing apparatus to allow movement in the
axial direction, axial traverses were made over a distance of about
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10 mesh lengths at the midstream position without rotation and at several
radii with rotation.

Without rotation, measurements of vz/Vz agreed very well with
Vg _ Vr
Z

3
some screen decay data by Corrsin (ref. 26). Since at ﬁ =815

z
was found also to be in agreement with this reference, the variation of
these latter quantities in the axial direction was taken from there.
Figure 26 shows the inverse of the turbulence levels plotted against
distance from the screen, again made dimensionless with the mesh size.

As is described in appendix A, the method of measurement of the tur-
bulence employed herein makes use of the signals from a single hot wire
oriented in various positions with respect to the mean velocity. In each
position, it is sensitive to one or more of the turbulent intensities and
shear stresses; by an algebraic manipulation of the signals for the vari-
ous positions the desired quantities are obtained. It was found that with
rotation of the flow the wire signals as a function of axial distance
could be collapsed into a single curve, regardless of radius or wire posi-
tion. This implies that for the range of axial distance considered, the
ratio of any one intensity component to another remains constant, within
the accuracy of measurement. Making use of this fact, decay curves with
rotation are shown for the three intensities at the midstream position
in figure 27. For any other radial position, the curves are shifted in
such a way as to go through the previously measured values at that posi-

tioen, &t % = 17.5. It can be seen that the effect of rotation has been
to lessen the decay, for all components, with the strongest effect on the
radial component.

Spectruml

The spectra of vn2, vg2, and v,2 with rotation are shown in

tigive 28, Bl teken ot one'poins’ [EamiBLigup G
b - a M
of these curves is the one-dimensional wave number K,, oriented along

the direction of the mean velocity. In figure 29 the vr2 spectra at

=g,

= 17.5). The abscissa

two radial positions, = 0.2 and 0.8, are compared.

b - a

lSpectral measurements were made by Dr. Hsuan Yeh.
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DISCUSSION

General Considerations

The left-hand sides of equations (7) to (13) for turbulence inten-
sity and shear stress components become, respectively, when simplified
by Vg = ar in the present problem,

2

vy,

oz

o B o
<
N

- Vrvglw

2
aVe

AY
%z

+ VrVglw

n |-

Ol | o
<
N

V..V —_— —
1 o= U (ve2 - vr2>a)
2 oz

AVaV
Ly, —02, v
= dz

OV,V.
= Vg, e VgV,
2 dz

The statement on orders of magnitude (given in the section "Prelim-
inary Measurements') for the various mean velocity terms has been used -
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to eliminate those terms that would otherwise appear. The terms on the
right-hand sides of equations (7) to (13) remain the same and are not
repeated here.

In the simplified left-hand-side expressions Jjust given, the second
term stands for the production of the quantity whose rate of change is
given by the first term. In the present case, this first term is found
to be negative for the first three equations, corresponding to a decay
of turbulence. A negative sign for the second term implies a positive
production, and vice versa. For example, in the first expression, if

Vpvg < O, Bvrﬁ/az would be decreased by the shear stress acting on the

mean velocity. If v,vg > 0, Bvrg dz would be increased. A positive

production of course does not necessarily mean a larger value of vr2

compared with no production since the pressure and tripile veloeibyicor=
relation terms also enter into the energy balance.

The influence of rotation is directly apparent in the production
terms; with o= O all these terms vanish. However, all the terms on
the right-hand side of equations (7) to (13) will probably also be dif-
ferent with and without rotation.

Flow without rotation.- In considering flow without rotation, all
production terms vanish, and the turbulence decay is given then by the
combined influence of the viscous terms, pressure correlations, and triple
velocity correlations. At any point the values of the turbulence inten-
sities depend on this decay and on the manner of production at the screen.
Immediately downstream of the screen, velocity gradients exist in the
flow due to the wire wakes. There are both OVy/r 36 and OV,/dr terms,

alternating in sign on either side of a wire wake. (It would be more
natural in the nonrotating case to use Cartesian coordinates, with x,y
instead of r,8. The cylindrical coordinates are retained, however, for
comparison with the rotating case.)

Very close to the screen, the left-hand sides of equations (7) to
(9) and (11) to (13) become for turbulence intensities:

2
1 vy
2 'z 3

Z

2
e v
ol Z
2 dz




28 NACA TN 4135

2
.]_' Vz sz + vev ﬂz_ + a_vz.
2 dz Zr 30 T2 3¢
and for turbulent shear stresses:
Vv,

st v, rVvo

e dz
s . dvgV,, ) ve2 BVZ Vpvg OV,
e dz 2 r 36 2 Jdr

OVyVy, N v OV, L YrVe ov,,
dz 2 dr 2 r de

n |+

Vy

Assume that, in the shear equations only, the production term alone
is important in the determination of the value of the quantity being pro-
duced. By this assumption, since there is no production of V,vg, this

quantity vanishes. In the last two shear-stress equations, it follows from

v —_—
the same assumption that when g >0 then Vgv, <O end when
r 96

< O then VgV, > 0. It also follows that when §Y& >0 then
fe

OV,
r 06

oV -
VoV, < 0 and when —2 < O then ViV, >0
r

Thus the quantities Vgv, OV,/r 38 and Vov, JdVz/dr are negative

throughout the entire region immediately behind the screen. Considering
now the intensity equations, there is no direct production of v62 and

vrz but always a direction production for vzg. It is known that some

distance behind the screen the turbulence will become nearly isotropic.
Since there is direct production from the mean velocity only of vze,
the other two components must receive their energy from the pressure

velocity correlation (see, e.g., refs. 19 to 21). Thus the assump-
tion made above for the shear equations that the production term alone
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determines the value of the quantity being produced cannot be valid for
the intensity equations.

The physdical pieture is then a direct production of vze, with about
equal feeding of v92 and v, V.2 by the pressure velocity correlations.

Some distance behind the screen when the wakes have died out there is no
longer any direct production since the velocity gradients in Vz have

vanished; the terms vr z and vevz therefore vanish, while vze,

vg2, and v,.2 decay, with v,2 larger than vg2 =~ v,.2 but decaying

faster due to energy loss by pressure fluctuations which feed v92

and vrz.

Flow with rotation.- A similar reasoning is now applied to the case
when rotation is imposed on the flow field. Far enough downstream so
that the wire wakes have disappeared, the only production terms are those
given in the section "General Considerations."

Within the limits of the previous assumption it is seen that in the
last two equations the production of vgvg necessitates a nonzero value

of vrvz, while the production of vrvZ necessitates a nonzero value of

VeVZ' Thus VpVg 1is necessary to produce VEV; which is necessary to
produce vyV, and if wv,v, 1is zero it must remain so. The same 1is
true for 7Vgvgz. Furthermore, the system is such that if in the vgv,
equation, VyV, > O, the production of ¥Vgv, is negative, and Vgv, < O.
Then in the ¥VyV; equation the production of V4V, 1is negative so that
vyv, decreases. Arguing from the production terms alone, the last two
equations are such that neither VEV; nor V;V; could be produced

directly from the rotation.

The equation for v,vg, however, involves the turbulent intensities
in the production term. It is seen that if v,2 > vg2 then Vyvg <O
and if v,.2 < vg2 then vuvg > O.

Thus if vp2 > vee, V92 is produced from the rotation by the

turbulence-intensity equation, while vrg is diminished. Similarly,

if vg2 > vy2, vg2 is diminished while v,2 is produced. When

Vpl = veg, there will be no production of ¥V,vg and thus no effect of
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rotation on the production of either . Vr2 or v92. Hence the production

terms act in such a way as to keep V.2 = vg2, even with rotation. The

actual values of vy2 and vg2, of course, will depend on the more

indirect effects of rotation on the remaining terms in the first three
equations.

Close to the screen, the production of turbulence is not affected
by the rotation if there is no relative motion between screen and fluid,
that is if both are in solid-body rotation. If there is relative motion,
however, similar reasoning as before shows a positive production of

V
ve2 due to the term vgzvg g—g, which is found to be always of one sign.
Z

The physical picture, then, for solid-body rotation is a direct pro-
duction at the screen of ;;E, with subsequent direct production or dimin-
ishing of ;;5 and QEEL depending on the values of ;;5 and ;E§, in
such a way as to keep them about equal. If there is relative motion
between fluid and screen there will be an additional production of vg2

at the screen. The turbulence then decays under the influence of viscous
dissipation and energy transfer between components by the pressure velocity
correlations; both quantities are presumably also influenced by the
rotation.

Energy Balance
In considering the energy balance it will be recalled that, at the
one axial station considered, the experiments showed the following

results over most of the flow field, excluding the boundary layers:

Without rotation,

vy2 > vpl & vg2

VpV, = VgV, = VyVg = 0
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with rotation,

vze ~ v62 > vr2

Vpvy = VgVgy = 0, vpvg > 0O

The result that v,vg > O 1is entirely consistent with the finding

of vg2 > vp2 by the preceding considerations. Since measurements of

the microscales and turbulence decay were made in addition to the meas-
urements of the quantities above, it is possible to substitute these
measured quantities into the three turbulence-intensity equations (7)

to (9).

For the purposes of calculation, the turbulence-intensity equations
were made dimensionless by multiplying each term of these equations by
M/VOB. In calculating the dissipation term, the following assumptions,

which are strictly valid only for isotropic turbulence, were used:

TAS (3% 2 fovg)\?
dz rd/ \or
B AF (v £
dz or

2 2 2
AR O W
oz 2\r 96 2\or

An assumption of this type is necessary because only derivatives in the
flow direction were measured. Furthermore, since neither the triple veloc-

ity nor the pressure velocity correlation terms are measured, they will be
considered together. Substituting the measured values into the energy equa-

(avr %

r Be/

tions for the case of no rotation, it was found that, at % = 17.5 and

L -2 0.5, (without rotation, the energy balance is made only at the

b - a
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midstream position, since conditions were previously found to be radially
uniform except near the wall):

Decay Production | Pressure velocity and triple Viscous
term term velocity correlations term
vp | 3.6 x 1072 0 =03 % 10°2 3.9 x 1072
vg | 3.6 x 107 0 ~0.% x 10~ 3.9 x 1079
v, | 6.4 x 107 0 0.6 x 1072 5.8 X 1072
q |13.6 x 1079 0 0 13.6 x 1072

The exact balancing of the total energy equation is not a coin=-
cidence. Measured values of the derivative terms consistently gave
A too large and a dissipation which was too small to balance this
equation. This discrepancy, amounting to a factor of about 2.0, could a
be due to the assumption of isotropy used in their calculation. For
lack of a better procedure, all measured values of A were adjusted by
the same amount in such a way as to balance the total energy equation
for the case of no rotation.

A result consistent with the previous considerations is obtained.
The unknown pressure-velocity-correlation and triple-velocity-correlation
term is obtained by difference; when positive it represents a loss of

energy and when negative, a gain. Thus Vr2 and vg2 are seen to be

gaining energy at the expense of vZ2 due to the influence of this
efifects

The same procedure when applied at several radial positions in the
rotating flow at the same station, & = 17.5, gives the results shown

in figures 30 to 33 for the three intensity components and the total
energy. In each case, the relative gain and loss due to the various
terms necessary to make up the measured decay are shown. The viscous
term, combining dissipation and viscous work, is denoted by DVW. The
pressure velocity and triple velocity term, considered together and
denoted by PTC, is again obtained by difference.
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The balance on total energy shows over the center region a larger
loss due to viscous action than the decay, which implies a gain due to
the term obtained by difference. Near the walls the opposite is true.
This implies a flow of total energy from both walls to the center. The

same considerations hold for the energy balance on vze. Similarly, for

both vg2 and vr2, a comparison of the decay term with the viscous term

shows the former to be less in the center, implying an inward flow of
energy. The picture is made more complicated by the production term

2vpvgw, which for wvypvg > O gives a gain by direct production for Vr2

and a loss for vee. This must be made up by the pressure and triple

correlation term, which therefore gives a gain for veg and a loss for

vrg. It will be recalled that this term, without rotation, acted as a

gain for both Vr2 and v62.

It is interesting to compare the coefficients A both with and
without rotation. These coefficients are defined in the following way:

sz,z A,
M Mvz

v

Avr, z Ay
M 3

v

Avg,z Ag
. MY

v

For a given value of 7, an increase in A implies an increase in A
and therefore a decrease in viscous dissipation and work. Figure 3k4
shows the distributions of A,, Ay, and Ag calculated from the
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measured intensities and time derivatives. It can be seen that A, and
Ag are about the same, with Ay considerably less over the entire range.

Thus, the relative loss of energy by viscous action is larger for VTE
than for the other two components.

A tentative physical picture for the effect of rotation is then as
follows: The rotation increases the loss through viscous action for the
radial fluctuations relative to the peripheral and axial fluctuations.

— e—

A shear stress vp,vg 1is produced by the difference of V62 and vrg

in such a way as to restore their equality by direct production from the
mean peripheral velocity. Because of this, the pressure velocity and
triple velocity correlations, which without rotation fed vy2 and vg2

from vz2, now feed V62 at the expense of Vr2'

It is interesting to note that solid-body rotation causes an increased
loss of energy by viscous action for the radial velocity fluctuations com-
pared with the radial and peripheral fluctuations. It will be recalled
that in the Introduction reference was made to investigations of small
motions relative to solid-body rotation. There it is found that the
radial velocity component is suppressed by the rotation, but this is an
effect associated with potential (Coriolis and centrifugal) forces and .
not with viscosity.

It should be pointed out that the considerations above are beclouded
by the following facts:

(1) The turbulence-producing screen has a peripheral velocity rela-
tive to the fluid since the fluid is not quite in solid-body rotation

at the screen. This implies a larger V92 production than would be due

to purely solid-body rotation, as previously mentioned.

(2) Due to the presence of the walls and axial velocity boundary
layers, there is a flow of turbulent energy inward from the walls.

(3) Because only time derivatives were measured, the viscous terms
of the energy equations are calculated with the assumption of isotropic
relations between the derivatives of any one velocity component with
respect to different directions. This assumption is usually verified
for sufficiently high values (of the order 100) of Ry, defined as




NACA TN 4135 39

For the different intensity components, the values of R) obtained

in this investigation are_shown in figure 35, with and without rotation.
It is seen that they are comparatively low, casting some doubt on the
validity of the assumption of isotropic relations between viscous terms.

Production of Turbulent Shear Stresses

The assumption that in the turbulent-shear-stress equations only
the production term is important in the qualitative determination of
these stresses will now be further examined.

It will be recalled that in any one of these equations it was
assumed that a positive production would give a positive shear stress,
negative production, a negative shear stress, and no production would
lead to vanishing of the shear stress. For unidirectional shear flows
this assumption is certainly true.

Take the case of fully developed flow through a two-dimensional
straight channel, where x ds the direction of mean flow and ¥y is
the distance from the wall. For this case, the production terms of the

shear-stress equations are as follows:

Vs OV
For VxVg: o
2 dy

|

<
n
Q/
<
»

Eorit vyt

i
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For vyvz: 0

Again a negative sign of these terms implies a positive production. Now

since there is no production of VyVzs VyVg vanishes. There is then no

production of VyVgs which also vanishes. Since vy2 is always > O,

there will be a production of negative VyVy when BVX/ay is positive,
and vice versa. Hence vxvy is negative in the region where BVX/By is

positive, and vice versa. At the center of the channel %!& = 0, there is
— e Yy

no production of va and VVy will be zero there. Thus the assumption

is in complete agreement with the experimental fact and also with the well-
known momentum transfer theory.

The case of fully developed flow in a two-dimensional curved channel
is considered next. An investigation of this flow configuration is
reported in reference 14. Using cylindrical coordinates, let the 8
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direction be in the direction of mean flow and r, the radial direction
(i.e., the direction across the channel). The production terms of the
shear-stress equations are as follows:

For Vvgv,: YrVz éXQ o Ve
2 \or T

2 20—
For v Vgt Iee S + k< = V82 YE
L 2 or 2 r
. N
For Vot -VgV, =

For a very large radius of curvature, the terms involving Ve/r

become small, and in the limit of zero curvature the production terms

aré the same as in the straight channel except for the change of nota-

tion from y to r and from x to 6. The influence of curvature is

thus represented by the terms involving Ve/r. For a fully developed >

flow, wv,v, vanishes (this can be shown from the Reynolds equations,

see ref. 14); then, since there is no production of VgVy, it also is
zero. Close to the wall, S—— > o and the first term alone produces
r

a negative shear V.Vg oOn the inner wall and a positive term v.Vg on

the outer, by the assumptions made herein. The influence of curvature

. 2
2> 2
Ve >

PR—

— v V'
on vVyvg 1is seen to depend on the term —g— - ve2 S TE

16/

over the entire flow, this term will cause an additional production of
positive Vyvg everywhere. Thus the ¥V.Vg shear-stress distribution

would shift in the direction of positive 7Vyvg over the entire channel
under the influence of a mild curvature. Measured V;VE distributions
obtained in such a curved channel are reproduced in figure 36; the results
were taken from references 14 and 16. For this flow, ve2 does exceed

vr2/2, and a shift of vypvg 1in the proper direction is in fact observed.

A physical interpretation of the influence of curvature was first -
suggested by Rayleigh (ref. 27) in the following way: It may be assumed
that for flow with curvature a displaced fluid element conserves its
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angular momentum. Then a positive radial displacement of a fluid element
is associated with a velocity defect if the mean peripheral velocity
decreases more slowly with radius than 1/r. The radial motion of the
element is retarded since the radial pressure gradient existing in the
mean flow exceeds the centrifugal force acting on the fluid element. On
the other hand, if the mean peripheral velocity decreases with radius
faster than l/r, any radial displacement would be increased by the action
of the radial pressure gradient. Thus radial motion is suppressed on
the inner wall of the curved channel and increased on the outer,
resulting in an increase of V,Vg on the outside and a decrease on the
inside.

As is shown in the "Introduction" and appendix B, such simple rea-
soning requires an extension in the case of solid-body rotation. The
modified theory still assumes the conservation of angular momentum (which
is, of course, not exactly true) but traces through the complete history
of a displaced particle. The theory then predicts that Wv,.vg = 0 for

solid-body rotation. This still does not explain the experimental fact
that v,.vg 1is slightly on the positive side. A simple physical inter-

pretation of the positive value of v,vg found in solid-body rotation
might be as follows: For a fluid element a positive value of vg cor-

responds to a small motion relative to the rotation in the direction of
rotation. This would be associated with a Coriolis force .acting radially
outward, causing a vy > 0. Thus vyvg > O. Similarly, a small negative

peripheral velocity relative to the rotation would give rise to a nega-
tive value of vy, again giving vyvg > 0. Thus a peripheral fluctua-

tion causes a positive value of VpVg. Similar reasoning shows that a

radial fluctuation causes, again due to the action of Coriolls forces,
a negative value of V,.Vg- If the peripheral fluctuations are larger,

as they are here, the former effect predominates to give a resultant
positive value of v.,vg.

CONCLUDING REMARKS

A peripheral velocity distribution like that of a rotating solid
body imposed on the turbulence produced by screens is found to undergo
very little change with distance along the axis of rotation. Experimental
measurements of the turbulent shear correlation between radial and periph-
eral fluctuations 17.5 mesh lengths from the farthest downstream screen
give a small positive value for this quantity over the major portion of
the flow field. The other shear correlations are found to vanish. It
is believed that the nonvanishing of this shear correlation is due to
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the fact that the flow is not fully developed, although the exact mech-
anism is not clear.

Consideration of the qualitative nature of the turbulent shear
stresses, based on the production term in the equations for these stres-
ses, leads to results in agreement with the experimental findings. Such
considerations also lead to results in agreement with experiment for the
influence of curvature on a fully developed channel flow.

The influence of rotation on the intensity of the fluctuations
17.5 mesh lengths from the screen is as follows: The radial fluctuation
intensity is suppressed, the peripheral intensity is increased, and the
axial intensity is not largely affected by the rotation. The turbulent
energy balance for these intensities indicates a larger loss of energy
by dissipation and viscous work for the radial intensity than for the
other two, with a gain by production from the mean velocity for the
radial fluctuations, and a loss by production for the peripheral fluctua-
tions. The action of the pressure velocity and triple velocity correla-
tions, which without rotation serve to increase the radial and peripheral
fluctuations at the expense of the axial, is, with rotation, to increase
the peripheral fluctuations at the expense of the radial. These results
are obtained under the assumption of certain isotropic relations for the
viscous terms of the energy equations.

The influence of rotation on the various mean-square derivatives of
the turbulent fluctuations which make up this viscous term should be e
investigated further; this would serve to check the validity of the assump-
tion just mentioned and to aid in the interpretation of the result that
radial fluctuations experience a relatively larger energy loss through
viscosity than do the peripheral and axial fluctuations.

It would also be extremely interesting to study the flow considered
herein after it has become fully developed. The measured lack of change
of the peripheral velocity profile with axial distence indicates that the
length of tunnel necessary to achieve this would probably not be larger
than that necessary to achieve fully developed flow without rotation.

The complications introduced by changing conditions along the axis would
then be eliminated to make a more detailed analysis possible.

The Johns Hopkins University,
Baltimore, Md., October 8, 1956.
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APPENDIX A
METHOD OF MEASUREMENTS

Response of a Hot Wire

The response of an electrically heated fine wire (the hot wire) in
a steady flow of airstream is found experimentally to obey the following
approximate relation when all quantities have reached an equilibrium state
with time:

12<§15—R> = AJV_p + B (A1)

where
it wire heating current
R, wire resistance with no heating
R wire resistance (with heating) at operating condition
Vp velocity component perpendicular to axis of wire
A,B constants for a given wire and surrounding medium, to be deter-
mined experimentally
In practice, ﬁ—%Lﬁg is fixed by the experimenter. In the present
investigation ﬁ—glﬁ— is chosen to be 3.0 at all times, corresponding
to B—:—BQ, the overﬁeat ravio, of 0.H5. For a fixed value of ——EL——,
Ro R - Rp
it is convenient to rewrite equation (Al) in the following form:
1 - 1.2 = sfv, (A2)

The two constants 102 and S are determined experimentally by meas-
uring I2 over a suitable range of Vp 1in a calibrating airstream. The

term IO2 has the significance of being the extrapolated value of 12

at zero Vp. It is clear that the constants IO and S are related to

A and B by I.° =B(R—1;—-R—9> and S=A(—R—§—R—O>.
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If velocity fluctuations exist in the airstream, the wire tempera-
ture and therefore its resistance will also fluctuate with time. In
constant-current operation, I = Constant, the resistance fluctuation dR
is measured as a voltage fluctuation dE. Differentiating both sides of
the steady-state equation (Al), in which R and VP are the variables,

gives

de o) e _d_E_
E

2
o R R
RO

In practice, since I does vary slightly, one may have to take its
variations into account also, resulting in the extra factor called the
"degeneracy' or

R - R
. 1+2<__o>£
_dVp _ p T Ro /EB|aE (A3)
V%o B.oi112.12 1. E =
R, o o

where Ep 1s the supply voltage to the Wheatstone bridge in which the
wire is placed. These equations are valid if the fluctuation occurs

very slowly (quasi-steady condition) or if the effect of the finite heat
capacity of an actual wire has been electronically compensated. The pro-
cedure so far is quite standard; see, for instance, Kovasznay (ref. 28).
By taking the root mean square of equation (AB), the root-mean-square
value of the velocity fluctuation is obtained in terms of the root-mean-
square value of the voltage fluctuation, which is obtained experimentally.

Response of Hot Wire to Three-Dimensional
Velocity Fluctuations

Consider the general case when the axis of the hot wire is arbitrarily
oriented with respect to the mean velocity direction. To anticipate such
applications in this investigation, it is considered that the mean veloc-
ity Vg 1is in the 0,z plane, making an angle @ with the z-direction.

Let the direction of Vg be denoted by subscript s and the direction

normal to Vg by subscript n, the s,n plane being coincident to the

0,z plane (fig. 37(a)). The stem or holder of the hot wire is always along
the direction of r. The orientation of the hot wire itself is determined
by the two angles o and B (fig. 37(b)). The angle a 1is in the

s,n plane and the angle B is between the wire and its stem or the radial
direction.
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Equations (Al) or (A2) assume that the steady response of the wire
varies with the sine of the angle between the wire and the mean-velocity
Vg direction; that is, only the component of Vg perpendicular to the

wire is effective in cooling it. (The validity of this assumption is
subject to verification by calibration.) In this case, the velocity per-
pendicular to the wire is V, = Vg sin y (see fig. 37(b)). Expressed in

terms of the angles o and B, it is

Vp = VSVJ, - sin®a sin“p (Ak)

e d
Let the unit vectors along the directions s, n, and r be Ug,
- —
U,, and Ur’ respectively. Then, the unit vector ﬁZA along the direc-
tion of the wire is

U, = sin o sin pU, v in pU
oA = Sin o sin B g T cos B e + cos a sin B n

—_
Hence the unit vector along the direction of V can be expressed by

b
T Trnihn
VP 2 VP
. Jl 2 aines s1n2B 6; _ 8in a sin B cos B G; _8in o cos o sinzﬁ 6;
Vl - sina sin2B Vl - sina sinQB
(A5)

— -
where use has been made of the fact that Vg = VgUg. For small velocity
fluctuations vg, vy, and vy, only their components along the direction

-
of Vp have any influence in changing the magnitude of total Vb and

hence in cooling the wire. The total fluctuation of Vp (due to vg,
V., and vp) as a ratio of itself can be obtained from equations (Ak)

and (A5) as

av-
b PR ORI S0 (A6)
VP Vs Vs Vs
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__sin a sin B cos B

1l- sin®a singﬂ

_ sin o cos a sinEB

1 - sinca sin@p

av
Equation (A6) supplies the value for V_B of equation (A3). As a
P
check, it is seen that for a =0 or p =0, the wire is sensitive only
to A in agreement with the customary considerations. For B = g

X =0 and Y = tan a, and for a = 90°, X =tan B and Y = O. Both
facts are well known in hot-wire anemometry.

Substituting equation (A6) into equation (A3), squaring and averaging
over time, gives

D -} -2
Vst 4 x2 v +y2¥n__ ox Y&¥x - oy YsTn 4 oxy Zon -

2 2 2 2 2 2
Vg VS VS Vs Vs Vs

1+ E(R -Ihﬁ £]”
) 12 Ry /Ep ag2 (A7) ¢

RoC g 8 = 102 - E E2

5 Ep

It is seen that all six components of the turbulent stress tensor
appear, three components of intensity and three shear correlations.

Application

Since the measuring probes used herein are inserted radially through
the wall of the tunnel, it is quite simple to make use of the previous
three-dimensional response in the following way: A hot-wire probe is
made with one support longer than the other; the wire fastened to them
then assumes just the position shown in figure 37(b). The angle B is
fixed once the probe is made. Turning the probe stem about its axis has
the effect of varying o and therefore X and Y. Since there are six
turbulence quantities to be determined, the wire voltage in six positions
will be necessary. Two of these were chosen as the positions given by
a =0 and o = -90°. The other four are taken as symmetrical about the
plane formed by the two cross-component fluctuations. Looking radially -
inwards along the probe stem, the scheme 1s as follows (fig. 37(c)):
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The two F positions are for o = O and should give the same response,

namely, VSE/VSE. At the position A the wire is in the r,s plane, with

its shorter support at the upstream side. This is necessary to avoid
the wake of this support hitting the wire. The other positions are then
as shown in figure 37(c).

Let the right-hand side of equation (A7) be defined as N; that is,

2
R - R
ik qr 2 S
P = R,  Ep| aE®
i 12 -12 1, s 2
s ], o) E
Ro Ep
The following system then results:
B i - 2
Vg 2 Vp 2 ¥a Valy Ya'n T
=+ X* == +Y + 2X - 2Y - XY = Ng
L T V.2 V.2 e v
S S S S S S
) ARE . P
v v v VaV VeV VoV
S+ e y? o x Bl ey SRy BB - N
Vg Vg Vg Vg ¥ Vg
Vg2 > Vpe 2 A VgV VgV VrV
e e g -—2-2x—i2-12-2Y-§-é£+2XY r2n=ND
Vs Vs Vs Vs Vs Vs
o — i
b TR R 2 vn2 Yalr R i Ll
N o
s
Vg2
Vg2
VS2
2

<
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Since the coefficients in the first four equations are the same
except for their sign, this system is easily solved. It is found that

VrVn 1
o Np - 2

— BXY(NC+ D - N NE)

S

o - |
=—(Ng + No - Np - N

S

vV

s n AL

= =8Y<NC+NE-NB-ND)

S

o

Vs

=5 = N

VS

Vr2= I (NA-NF_;(NB’ch-NE-ND)

I

v.2 tan BL_tan B X

;n—E _]_‘_<NB+NC+ND+NE_NF)_(X) Vo
ng Y2 4

It can be seen from these equations that the presence of turbulent
shear stresses will be evidenced by an asymmetry of the values of N
about the F positions. Considering N as a function of a, N would
be a minimum at the two F positions, if all shear stresses are zero and
hence NB = No = N = Ng. The increase of N with a is then the same

amount on both sides of the F positions. If the shear stresses are not
zero, this is no longer true, and N will not be symmetrical about F.
The mean voltage or the wire heating current will still be symmetrical
about F regardless of the turbulent quantities, except for the influ-
ence of such extraneous factors as possible effects of wire supports,
uneven plating of the wire, or curvature of the wire. An illustration
of how heating current I and root-mean-square fluctuating voltage vary
with angular position is shown in figure 38. These data were taken in

= 1D

the rotating tunnel, at ; uck . 0.35 and
- a

=
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Calibration

In the usual application of hot-wire anemometry a wire calibration
is necessary to determine 102, the extrapolated value of I2 at zero

velocity, since this quantity enters in the calculation of N. All other
quantities that appear in the expression for N are measured directly or
preset.

In the present case, it is necessary to know X and Y as well as
N to calculate the turbulent quantities. The terms X and Y are func-
tions of o and B, with « determined by the angle through which the
probe has been turned about its axis and easily measured with a protractor
arrangement. This leaves B and 102 to be found by calibration. This

is done in the following way.

The wire is placed in a calibrating airstream, whose velocity can be
varied, with its axis perpendicular to the velocity (position Ple " A
series of points is obtained in the usual way by varying the velocity and
measuring the wire current. The wire is then turned to position A, which
implies that the velocity is decreased by cos B if the cosine response
is valid. A further series of points is then taken. The angle B 1is
determined as that angle which gives a straight line for all the points

on a plot of 12 against V5 cos B. An example of this procedure is

shown in figure 39. It should be noted that the ability to make all such
points fall on a straight line is an indirect verification of the cosine
response to angle. With B known, X and Y can then be calculated
for this particular probe for any value of «.

It can be seen from figure 38 that a considerable variation of heating
current is produced by the turning of the wire. Now if only the component
of velocity perpendicular to the wire axis is effective in cooling, as is
indicated by figure 39, it is immaterial whether a calibration curve is
generated by variations in velocity or variations in wire orientation. If
B 1s known, the perpendicular velocity component, called VP, may be cal-

culated for any value of ao. Then the variation of 12 with o can be
translated to a variation of I with VVP, which should be linear. If

the data of figure 38, for instance, are taken and plotted in this way, a
straight line does indeed result. It is thus possible, once B is deter-

mined by a separate calibration as described, to calculate 102 without
further calibrations from the data obtained during an actual experiment.,

An expression for 102 as a function of heating current for the

various positions can be derived. The equations for the calibration curve
are
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2 ﬁ;‘ 2
IF =5 s it IO 4
2_12.12-12_sfv( B )l/h 5
Ig- =1 =1y =1z = JVS 1l - sin a sin B 0T

1/u
1,° - s¢§;<1 - sin2§> e

The subscripts refer to the various positions of the wire as pre-
viously described. The slope of the calibration curve is denoted by S.
From these equations, it is found that

2 2
IF2 _ IF B IB)C)D)E /
o
1/k4
1 - (1 - sina sinp)

1 - /cos B =

Since differences of measured quantities are involved, the accuracy
in determining 102 from these expressions is not too good unless the
values of I2 are very accurate. In practice it is recommended to plot
a calibration curve from a number of points taken at various values of

a and to determine 102 from this curve.

A further check was made for the validity of the cosine law in the
following way.

LR 900, that is, with a probe whose wire supports are of equal
length, and if the response to angle o is not cos a but (cos a)tl,
then

2 2
IF=SVS+IO

2
IBl S{V; cos alﬂ/g + 102
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where IBl2 and 1322 correspond to angles aj and ap.
From these expressions,

IF2 - ]:Bl2 1l - (COS G,l)n/g

= =G
2 2 2
Ig~ - Ipo 1 - (cos ag)n/
or
log G -1
e <cos a T1/2
cos ag) = I
2

can be derived.

G -1

COS CLl
i V___.
cOS C(Q

arithmic coordinates should gield a straight line of slope 0.5. From a
number of measurements of I as a function of o for a wire with

B = 90° the data shown in figure 4O were plotted. Agreement with the
line of slope 0.5 seems good.

If n 1is unity, a plot of against cos ap on log-

Change of Coordinates From r,s,n to 1,0,z System

Once all six components of the Reynolds stress tensor in the
r,s,n system are obtained, it is a relatively simple matter to find
these components in the cylindrical r,0,z system on account of the
relations

vg = Vg sin @ + v, cos @

Vg COS @ - v, 8in ¢

Hence,
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2 2 2 ——
Ve _ %) n 24 Vs VaVv
5 e ") —5 + sin ¢ =5+ 2 sin @ cos ¢ —553
Vs Vg Vg Vs
v 2 V.2 w2
v v v VgV
2 = sin2¢L+ cosg¢i-- 2 sin @ cos ¢_s_n
2 2 2 2
Vs Vs Vs Vs
Vr2 ) Vr2
Vs Vs
VoV v.2 y.2 ——
92 _ sin @ cos @|—B- - .| + (pos2¢ - sin2¢)-—§-—Q
2 2 2 2
Vs s Vs s
Vv Vv Vv
2y cos ¢ Lt % pin ¢ D
2 2 2
VS s S
Vv Vv Vv
i @ O} cos ¢ res
Vel s e

Measurement of Derivatives of Velocity Fluctuations

For the measurement of the viscous terms in the turbulent energy
equation it was necessary to measure not only the fluctuating voltage
signals from the hot wire but also their time derivatives. Using the
Taylor hypothesis for interchanging time derivatives and space derivatives
equation (A7) becomes for the wire signal passing through a differentiator

— T T e = @
(éXE) + X2 EZE + Y2 ?ZE) - 2X éﬁi EZE - oY EZE EZE EZE EZE =

os Js Os ds Os Js Os Js Os

I
R - RO\ E | (de
) 12 Lot 2( Ro )EB (dt> -
R _ 2 _ -2 1 - E o =
-1 - 1, - E

where e = dE 1is the voltage fluctuation.
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In isotropic turbulence the last three terms on the left are zero.
A careful check based on the symmetry of the signal N' with angle «
shows that in the flow of this investigation, terms of that type were
either zero or too small to be measured both with and without rotation.
Assuming that these terms are zero, the previous procedure 1is then con-
siderably simplified, since there are now only three unknowns and there-
fore measurements at only three positions of the wire are necessary. In
particular, the above equation becomes

2 2 2
) () ) e
(a‘; frt o M 2 o

The transformstion from r,s,n coordinates to r,8,z coordinates
involves derivatives with respect to both s and n but the derivatives
with respect to n were not measured. To circumvent this difficulty, it
is assumed here that the isotropic relations

2 2
gl | L0}  1fove
os 2\on 2\or
hold for any one component, though this is not necessarily true for dif-
ferent components; that 1is,

& T AT

Furthermore, the following isotropic relations are also assumed:

2

dvg dvg  dvy dvy  dvg dvy  dvg dvy
s On Os on Os Os on om

)
. (3
dn
With these assumptions, it is found that

2 o N 2
& - o)

év_s%=év_s_%=;(év_s)2
ds
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It is seen that because of the assumption made above the isotropic
relations still exist for any component in the new coordinates

v, \°
oz
(5 - (25) |
oz r 08
(5'“_6 . a“_6>2
dz B o L¢)

These relationships can only be verified by two-wire correlation measure-
ments, which were not made in the present work.

The increase of wire signal with increasing deviation of the wire
from a position perpendicular to the mean velocity offers an interesting
possibility to check roughly for isotropy in any turbulence field. All
shear stresses then vanish and the three intensity components are all the
same .

Equation (A7) becomes

e
V—z

(1+x +Y2)
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Since

|<€
]
[20] B b}
I
)

<
)

the following relation is obtained:
1 e ¥mre el
Np

Expaending X and Y in terms of o and B glves

2 2 2 2
T sin“a sin B(ZOS a ; cgs B) = %L (A8)
(1 - sinfa sinp) F
I f= 90,
1 + tan2a = % (A9)

Following a similar procedure for the differentiated signal gives

2 sin“a sin2B(cos2a + coszﬁ) N'
1+ - = 7= (A10)

(1 - sin2a s1n°p) F

If B = 9%
1+ 2 tan‘a = D (A11)
Np'

In any one of these cases, the ratio N or %LT may be plotted

F F

as a function of a, if B 1s known. The actually measured ratios as

a function of a would indicate isotropy if they follow the relations (A8)
to (All). As an example, some data taken in the rotating wind tunnel are
shown in figure 41, together with equation (A8) calculated for B = 62.2°
associated with that particular wire. The nonisotropy of the flow is

quite apparent. For comparison, equation (A9) (for B = 90°) is also
shown. It is seen that for B < 90° the increase of N with a is less
than for B = 0°; the reason is physically quite obvious since for small
values of B the wire will remain nearly perpendicular to the mean veloc-
ity direction for any value of a.




59 NACA TN 4135

Accuracy of. Measurement

As was previously shown, the determination of the intensities and -
shear stresses involves sums and differences of the measured quantity N
corresponding to several angular positions of the wire.

Due to inherent inaccuracies involved in the method of measurement,
the percentage of accuracy in turbulence level in the mean flow direction
is believed to be no better than 5 percent. This uncertainty is reflected
in the calculations of shear and cross components of intensity; further-
more, it will depend on a, since errors become critical when the signals
to be subtracted are very nearly equal. From the response of a wire to a
turning angle, such as is shown in figure 41, the following estimate of
accuracy is made for various values of o for each of the quantities to
be calculated:

., Ay v ., AV /V, ., - - -
deg Vr/V deg Vn/V deg BIL 8 —
percent percent
25 +£25 20 +0.08 +0.22
235 Al l5) 30 122 30 +.08 e llio) +0.29 -
45 +10 4o +14 Lo +.08 2 22 5 d15)
50 +9 L5 i) ]! 45 +.08 5o AlL +.14
60 =T 60 £ 60 +.08 +.09 il -

The table presents the largest possible errors, including inaccuracies

in N, as well as errors in the determination of the angle. The poor
accuracy is mainly due to the fact that the change of N with changing

a 1is less for B < 90° than for B = 90°. Here it is necessary to use

B < 90° in order to find the shear correlation between the two cross-
component fluctuations. A penalty is then paid in accuracy of measurement.
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APPENDIX B

MOTION OF A PERTURBED ELEMENT IN A ROTATING FLUID

By Hsuan Yeh

Consider a main flow field consisting of a solid-body rotation,
that is, Vg = wr. At a certain instant, say t = O, imagine a fluid
element at radius ry possessing a perturbation velocity in the form
of an excess tangential velocity v, (hence the total velocity of this
particle is wrg + vg at t = 0). The tangential and radial perturbing
velocities (i.e., velocities relative to the mean rotation) at any sub-
sequent time will be denoted by Vo and vy, respectively.

If it is assumed that the pressure fluctuation and viscosity exert
no influence on the subsequent motion of the fluid element and that the
angular momentum of the element is thereby conserved, the total tangen-
tial velocity of this particle at any subsequent radius r will be
(wro 1 Vo)ro/r. The centrifugal acceleration is therefore

(wro - vtberog/r3. However, the pressure gradient of the main flow is
such that a centripetal force of wlr is imposed at any radius r.

Hence the net radial acceleration of the fluid particle at any radius r
is
dvy (wro X vo)2r02

It = 3 - w°r (B1)

It is also possible to derive the same equation based on the fact
that the total radial acceleration is, in this case, the sum of the
Coriolis acceleration and the centrifugal acceleration, both due to the
relative (i.e., perturbed) tangential velocity vg. (The centrifugal

acceleration due to the main flow Vg 1is balanced by the pressure
gradient.) Hence,

2
dvy hd:]
—T = opvy + 2
at 0 -

But

(wro z‘vo)ro - o (B2)

Ve:

This again leads to equation (Bl).
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Using the familiar substitution

r_4 Vet
dt dr\ 2

equation (B1) can be integrated to become

2 = (wrg + vo)2re® _ oo + C
r2

v - 7T

The integration constant C can be evaluated by the condition that
v. =0 at t =0 and r =r,. After a slight rearrangement, the

result is
2 2 2
Ve B Vo o e
<w“o> - <l " “no> < ) re > M <l ) ro§> (B3)

Substituting dr/dt for v, further integration yields the following
relation between r and t:

I - vq.+ g2 + g) (1 - cos awt) (BY4)
To 2
where g = gg— is a dimensionless ratio representing the strength of
o

initial disturbance. From this the radial as well as the perturbation
tangential velocities can be obtained as functions of time as follows:

_g(ig-__g_)_ sin 2wt

e (B5)
Wro
1+ 5122?—51 (1 - cos awt)
g(2 + g)
g - 2= T &2 (1 - cos awt)
Vo _ > (B6)
wr

° \/1+M(l—cos 2wt)
>

These functions are plotted in figure L2 for g = 0.01, 0.05, and 0.10.
It is noted that their values do not follow a simple proportion to the
initial disturbance g.




NACA TN L4135 55

From this simple analysis the following remarks can be made:

(1) Although the anslysis was made for a purely tangential pertur-
bation at t = O, the relative velocity subsequently goes through all

V.
possible combinations of ;1. Hence the same analysis covers all pos-
3]

sible kinds of initial perturbations, the only difference being a shift
ofifthetorigin G = 0.

(2) No matter what the initial disturbance is, the subsequent
(relative) motion of a fluid particle is oscillatory, with a circular
frequency of 2w. The maximum radial distance of travel through a com-
plete oscillation is grg.

(3) The maximum value of v, occurs at ﬁl = \/l + g, at which
o

point vg is zero. Furthermore, (Vr) o ™ (ve)ma.x‘

(4) The time-averaged value of the product VyVg is zero.
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Figure 1.- View of impeller.
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Figure 4.- View of tunnel, looking downstream.

9

G¢TH NI VOVN



NACA TN 4135 63

L-57-4344
Figure 5.- View of tunnel, looking upstream.
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Figure 1l4.- Shear correlation coefficients without rotation.
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