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SUMMARY

A method 1s presented for calculating the aerodynamic 1ifts and
moments experienced by a cascade or two-dimensional approximation to a
compressor or turbine blade row in subsonic flow under harmonic oscil-
lation. Arbitrary stagger and interblade phase-lag angles are permitted.
The most significant features of the method stem from the utilization of
Fourier transforms of blade pressure-jump functions. This permits expres-
sion in closed form of the kernel function appearing in the integral equa-
tion relating upwash to the pressure-jump transform. So-called resonance
phenomena, first discovered in connection with the subsonic wall inter-
ference problem, are shown tc occur in the case of cascade oscillation
even in the presence of stagger and arbitrary interblade phase-lag angles.
The resonance points are shown to be related to the poles of the kernel
function for the Fourier transform formulation of the problem. Numerical
techniques are developed for the direct solution of the transform rather
than of the pressure jump proper, and it is shown that 1ift and moment
nay be easily expressed in terms of the pressure-jump transform without
requiring any inversion. The method is applied to computation of a zero-
stagger cascade in antiphase motion (corresponding to the tunnel-wall
interference problem) in order to permit comparison of results with those
obtained by solution of the more conventional integral equation based
upon the Hankel function series type of kernel. Excellent agreement is
obtained in all cases.

INTRODUCTION

The aerodynamic forces and moments experienced by compressor blades
undergoing oscillatory motion or in the presence of certain classes of
oscillatory inflow are of interest to the aircraft-jet-engine industry
for several reasons. First, while the occurrence of classical flutter
in compressor blades has not been a matter of concern up to this time,
it is conceilvable that current design trends may lead to configurations
and flow conditions in which the avoidance of classical flutter must
become a consideration. Second, the value of aerodynamic damping is of
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interest quite apart from the flutter problem proper, and the existence
in compressible subsonic flow of certain so-called resonance phenomena
can have a major influence upon this source of damping. Third, the
aerodynamic behavior of blade rows under the influence of certain types
of inflow disturbance or nonuniformity may be calculated by the same
methods utilized in the computation of aerodynemic forces and moments
experienced by the blades undergoing oscillations. Thus, a technique
for computing subsonic, oscillatory, blade-row air forces and moments
would have several areas of application in the compressor field. More-
over, the problem of tunnel-wall interference effects in subsonic wind-
tunnel tests for oscillatory aerodynamic pressures constitutes a special
case of the blade-row problem as treated herein, namely, the case in
which stagger is zero and adjacent blades are 180° out of phase (this
being the proper image system equivalent to the wall influence). This
problem has been previously treated by the National Advisory Committee
for Aeronautics (refs. 1 and 2) by utilizing a form of aerodynamic inte-
gral equation which constitutes a natural extension of the equation for
the single wing oscillating in subsonic flow. It is belleved that the
computation method developed herein for the more general case including
stagger and arbitrary interblade phase-lag angle may prove more conveh-
ient for application to the wall interference problem because of its
relatively simple form of kernel function. It is even probable that
the wall interference problem for the tunnel with slotted walls, whose
image equivalent constitutes the special case of zero stagger and in-
phase motion of all blades, may prove most easily calculable from the
scheme derived herein.

The present work constitutes a natural extension of previous inves-
tigations (refs. 3 and L) concerning the general problem of oscillatory
blade-row behavior under flutter or vibration. These investigations
established the blade-system mode shapes which characterize a blade row
at flutter (or even in vibration distinct from flutter) and developed
the computation techniques for oscillatory air forces in the incompres-
sible flow regime. This report presents an entirely different approach
to the problem of calculating aerodynamic forces and moments experienced
by cascades or of approximating compressor blade rows in the subsonic
two~dimensional regime. Considerations are limited to low incidence,
and effects of blade thickness and camber are neglected. The mutual
oscillatory aerodynamic interference of all blades is accounted for under
the class of system mode shapes the existence of which is proven in
reference 3.

By use of the Fourier transform the kernel function of the aerody-
namic integral equation is effectively reduced from an extremely cumber-
some form involving semi-infinite-range integrals of doubly infinite
series of Hankel functions to a simple, single, closed-form expression.
Moreover, the nature of the kernel is such that close control over accu-
racy is facilitated. Concurrently with the study of the formulation and
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numerical solution of the aerodynamic integral equation considerable
attention has been given to the occurrence of the so-called resonance
phenomenon. This resonance phenomenon constitutes an infinite set of
values of a parameter depending upon flow and configuration character-
istics at which the aerodynamic kernel function becomes everywhere
infinite. The phenomenon was described and treated in detail by Woolston
and Runyan (ref. 1) for the wind-tunnel-wall interference problem and,
consequently, could be interpreted as a situation to be encountered by
the cascade or blade row at zero stagger and under antiphase blade
motion. The present report shows that the resonance condition may occur
in staggered cascades with arbitrary interblade phase lag, the resonance
parameter values depending upon Mach number, oscillatory frequency,
interblade phase angle, gap, stagger, and acoustic velocity.

The resonance phenomenon could be a matter of serious concern to
compressor designers in view of the fact that it represents a set of
conditions at which all self-induced aerodynamic forces, including the
beneficial aerodynamic damping usually present below flutter speed, dis-
appear. The blades act effectively as if they were in a vacuum. Thus,
not only will certain critical blade oscillation frequencies be undamped,
but disturbances caused by wakes or upstream disturbances giving rise to
the proper combination of frequency and interblade phase lag may fall at
the resonance condition with consequent disappearance of aerodynamic
damping. This resonance-induced damping loss in an actual compressor
configuration will, of course, be mitigated by the radial variation of
cagscade and flow parameters. These variations preclude the possibility
of a major radial extent of the blade row becoming simultaneously resonant.

Following the development of the aerodynamic integral equation in
the Fourier transform domain, the discussion of resonance, and the formu-
lation of calculation techniques, the results of a specific set of com-
putations are presented in order to provide confidence in the feasibility
and accuracy of the method. The conditions for which the calculations
are performed correspond to the conditions at which Woolston and Runyan
(ref. 1) performed computations for the wall interference problem by the
more conventional but far more cumbersome Hankel function series type of
kernel formulation. The agreement is excellent in all cases. The method
described herein is thus believed to be "checked out" for its validity
and feasibility and, thus, to constitute the most reasonable technique
for computation of blade-row subsonic oscillatory air forces and moments.

This investigation was carried out at New York University under the
sponsorship and with the financial assistance of the NACA. The authors
wish to express their gratitude to Messrs. Woolston and Runyan of the
Langley Aeronautical Laboratory for their kind cooperation in making
available the results of subsonic, oscillatory, single-wing calculations
and for their encouraging attitude toward the present work.
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SYMBOLS
coefficients in pressure-jump expansion

values of A, associated with constant and linearly
varying upwash, respectively

dimensionless elastic-axis location
semichord

Theodorsen flutter function

chord

free-stream sound speed

slant distance between blades in Prandtl-Glauert space,

\s2 + (s%)2/p2

F, = Bfy(a) /o bU°

fpla)
Ho(e)( )
h

In( )

k

L

1

Lpoly

no b

Fourier transform of mth-blade reduced pressure jump

Hankel function, second kind, order zero

translation, downward, of blade elastic axis

Bessel function, order n

reduced frequency, wb/U
1lift amplitude

1ift amplitude due to translation; blade in cascade
and isolated blade, respectively

1ift amplitude due to pitch; blade in cascade and iso-
lated blade, respectively

free-stream Mach number

nose-up moment amplitude about elastic axis
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MMy !

My,

My

=
1l

M

1

6

w/c B

midchord moment amplitude due to translation; in cas-
cade and isolated blade, respectively

nose-up moment amplitude about midchord

midchord moment amplitude due to pitch; in cascade and
isolated blade, respectively

magnitude used in replacing infinite integral limits
by finite limits

pressure

pressure Jjump, (Pupper - plower)

gap distance

stagger distance

time

free-stream velocity (relative to blades)
x-direction disturbance velocity
y~-direction disturbance velocity

coefficients in the expansion of upwash for incompres-
sible case

streamwise coordinates

coordinates normal to stream

Fourier transform variables

angle utilized in angular transformation of chordwise
coordinate

pitch angle

transformation coordinate defined in equation (C1)
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integers O, *1, 2, . . .

free-stream density

interblade phase-lag angle

poles of kernel function

phase angle between translation and 1ift due to trans-
lation; cascade and isolated blade, respectively

phase angle between pitch and 1ift due to pitch

phase angle between translation and resulting moment
in cascade and isolated blade, respectively

phase angle between pitch and moment due to pitch

reduced pressure function defined in equation (6)

frequency

frequency of lowest resonance condition

amplitude, under harmonic-time dependence

real part
imaginary part

jump, (Upper - Lower)

signum function

corresponding to mth blade
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FORMULATION OF PROBLEM

A development of the linearized aerodynamics problem for the oscil-
lating cascade in subsonic compressible flow is presented as follows.
At the outset the system mode shape is introduced whose existence is
established in references 3 and 4. This states, in effect, that at
flutter the cascade or blade-row system oscillates with but a single
characteristic blade mode, this mode occurring with equal amplitude in
all blades and with a uniform phase shift between adjacent blades. The
ultimate value of this phase shift is, in the flutter of an actual
rotor-mounted configuration, that value chosen from among a discrete
set of admissible phase-shift values which minimizes flutter velocity.
For a linear cascade and, practically, for a rotor-mounted blade row
with many blades, it may be assumed that the phase angle is continuously
variable and the minimization may be performed with respect to the
resulting continuum. It should be noted at this point that the presence
of resonance and its dependence upon phase angle in the compressible
subsonic case might raise a question with respect to the validity of
replacing the minimization problem for a discrete admissible set by a
continuum-minimization problem. The fact that resonance will be auto-
matically avoided by the system at flutter, however, indicates that the
assumption of continuously variable phase angle, for purposes of flutter-
velocity minimization in the many-bladed configuration, should remain
valid in the subsonic case. 1In the event that the assumption of con-
tinuously variable phase angle is rendered physically unjustifiable by
a trend toward smaller blade numbers, then the minimization process
must be performed with respect to the discrete set of admissible phase
angles, equal to the number of blades in the blade row.

The blade-row or cascade geometry is shown in figure 1, all vari-
ables being physical or dimensional ones. ILater scale lengths will be
taken with respect to the semichord for convenience. The problem treated
is two dimensional, initial blade angles are assumed to be zero or very
small, and oscillatory disturbances are considered sufficiently small
for linearized theory to apply. Under this theory the equation satisfied
by velocity potential and acceleration potential, and hence also by pres-~
sure or either of the disturbance velocities, is

2 2M 1 =
(1-M)wm+ww-.c_gth-_.§wttﬁo (1)
Co

where W may be taken to mean any of the above-mentioned quantities.

Writing the equation in terms of pressure and at the same time intro-
ducing harmonic time dependence as

p(X}YJt) = ﬁ(x)Y)eimt (2)
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gives
(1-w)5_ +5, -eikeg 40?5 (5)
X Yy cy X C02
If the substitution
x' = X/B
(%)
y' =V
is employed, equation (%) takes the form
B, . 4P, -2Mg Lo 5_g (5)
XIXI yly! COB X' C02

The function (x',y')
defining relation

is then introduced in accordance with the

- ioMx' /e
Blx',y') = w(x',y')e [eoP (6)
In terms of V(x',y'), equation (5) in turn becomes

w2
2.2
Co B

v (1)

v =20

x'x! + Wy'

, T
Y

which is simply the familiar reduced wave equation. For convenience the
parameter 1 1is introduced, where

N = w/ceB (8)

Equation (7) then becomes

(9)

20 =
WX'X' + Wyqu + 1y =0

At this point it is assumed that
reduced frequency k = «b/U, all

frequency o, hence also 1 and later
have a small negative imaginary part.

w =0 + ﬂbg
n=mn + ing
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where

—Wwp
0< -k <1
_ne
The effect of this will be to replace the usual outgoing-wave require-
ment at infinity by a requirement of boundedness at infinity. The

device is a commonly employed cne. Ultimately the imaginary part of
@ will be forced to zero in a limiting operation.

Singling out for inspection the mth blade, the following notation
is introduced:

V' = y' - ms =y - ms
(11)
Xm' - x' - ns* _x - ms¥
) B

Separation of variables shows that equation (9) has solutions of
X ' [ .2 2
the form el\oX'ty'\n - ) which may be superimposed with respect to

the separation parameter «. Then a solution to equation (9) with Jump
conditions in the proper form for the mth blade is

Wm(x',y') = %Zmﬁ foo fm(a)ei<a‘xm'—‘ym', Vﬂg-a,g ) da, (12)

= =00

‘where fm(a) is an undetermined function. It should be noted that v,

as expressed in equation (12) satisfies the differential equation (9)
(i.e., differentiation under the integral is permissible) as long as
|ym'| is held away from zero, provided the "proper" branch of the func-
tion \/ng - a? 1is used and ﬂm(m) behaves, at worst, algebraically

at infinity. This proper branch is the one which behaves like —ii@l

as |al Dbecomes large. Further, the slightly imaginary character of 1q

is needed to keep Y, bounded as |ym'|-e w for |a| < lnl‘.

The Jjump [Wm] in the function from the upper to the lower
side of the line y' = ms is given by

[wm(x')} = f_: fm(ou)eioLxm de (13)
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The fact that this jump must vanish for |xm" > D will be taken care

of subsequently. Moreover, the functions fp(a) will be shown ulti-

mately to behave like Bessel functions of argument ob/B and hence to
approach zero like 1/\la| as |a| - «. In view of this and chapter X,
section 120, of Carslaw (ref. 5), the integral in equation (13) exists.

If the complete solution ¢ to equation (9) is expressed simply
as a sum over all blades of functions vy, then

Vo= m}:;o Y (14)

Then it is evident that the jump [¥] in ¥ across the line y = ms
is given by the term [Wﬁ] alone, all other values of YV, being contin-

uous across y = ms. Now from the phase-shift characteristic of the
system mode shape under consideration, it follows that

[I-)m(x')] _ eimc[f)-o(x' _ gl_gj)] _ olmo E:)o(xm')] (15)

where ¢ is the angle . of phase shift between adjacent blades. Thus,
from relation (6) there follows

[wm(x‘)] SlaMx ' /cop _ eimcl:wo(xm, )'J 1My " /eop (162)

or

im (0- s~
[?m(xtﬂ =v[?o(xm’ile ( C062> (16b)

In view of the fact the interblade phase-lag angle ¢ will appear
only in the form in which it enters expression (16b), a new variable @
is defined as

_ wMs*

Q=0
coB”

(17)

At this point, it is assumed that ¢ has a small imaginary part On,
0 = 0y + iy, with o, = mng*/coB2 in order to keep the quantity
real. It should be recalled that ultimately w,, hence also o5, Will
be forced to zero. Henceforth, therefore, the quantity @ is to be
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considered real. Just as the entire problem is periodic in o with
period 2n, so it will obviously be periodic in £ with period 2=x.

Inserting equations (16) into equation (13) and making use of equa-
tion (17) gives

[o8]
Elro(xm')] e1ml =f £ (a)e™ ™M 4g (18)
- OO
Inverting this expression, comsidering [wé]elmg and fp(a) as Fourier

transforms of one another, and noting that |y (x')| =0 for |[x'| > b
© B

leads to the relation

imp b/ O -daxg' o
£py(a) e2ﬂ Lm'=-b/g [Wo(xm):'e - axy

eimgfo(m) (19)

Thus, the first result of the system-mode-shape concept is that the
Fourier transform fm(a) of the pressure-jump function over the mth

blade is equal to that of the pressure-jump function for the zeroth
blade multiplied by elmé

Utilizing equation (19) in equation (12) and combining all values
of ., as in equation (14), to form the complete expression for V,

. . oo = [yt |{mBoc
v o= }; elmQ nggﬁﬁllJf fo(or,)elcj‘xm lym'l Ll 2ﬂx (20)
= -0 =

Now, from the second Euler equation of motion, in linearized form, the
y~derivative of pressure relates to the material derivative of upwash
v as follows:

1
vy + Uv, = -— 21
" x =5 Py (21)
Under harmonic time dependence and in terms of <x‘ = %,y' = y) this
becomes
jw?wgvxt =’Elg B, (22)
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Equation (22) can be expressed in the form

(vx, v Bv) _..Eiﬁ By (23s)

or
JloBx' /U o <veﬂnBX' /U>

= = -Bby1/PcU (23b)

In view of the fact that upwash must vanish infinitely far upstrean,
equations (23) may be integrated to give

V(x_',y') - e-i(DBX'/Uf :L(DBE. /U< - U)py (g .Y ) ae! (211»)
00 o

Now expressions (6) and (20) may be utilized in equation (24) to get a
relation between the upwash amplitude function Vv and the unknown
Fourier transform of the zeroth-blade pressure-jump function as follows:

. -depx' /U pX' e « ) o )
lar,yt) = RAEROD PR e/ T T )\ R
EDOU '=coo Q=-00

N===00
_
; 1_ ' 2 2)
*
where &' =E&' - me. Actually, the limiting operation 1im . or
: B (D2—>O

lim _ or lim should be understood in equations (24) and (25).

Interchanging the order of integration in equation (25), which is
legal as long as Iym_l > 0, the expression for v becomes (ut111z1ng

the sllghtly negative imaginary component of )

. . 0 Ve - g2 .
F(x',y') = lim _ e 0B /Uf £ (@) S T % odawx!/UB
EDOU (D2'—) 0 Q=00 a + w
&)

5? eimﬂeiclxm"'Ym'l Vﬂz*mg) do, (26)

M ==00
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or

Hxty') = um_ﬁei‘”MzX'/UBf e }: St v | VB<2)
wp-» 0 2p,U - (cx, + UB) M=o

It is next verified that

V(EE— + X ,ns> = ¢1ino v(x',0) (28)
B

For, inserting [ﬁ‘ + (ns*/Bﬂ for x' and ns for y' in equa-
tion (27) gives

BeinZX'/UB e1'11)1\'?ns""/0132 ® £ola) , o2 elax' g z oimo e~ E? '[(E%f-%i),_lns_m' \jnz_u'z] (29)

=l ns¥* .
v{x' + —,ns) = lim u)
B w,—0 2p,U o 4 =

or, letting v = (m - n)

S Ml !
iM% *
U * 2 dax' 1LuMs*v 1(“‘SBV-IV|5HHE_G2>
do

v<x' + Esﬁ,ns! lim _ elno Be f fo(a.) ©-ofe Z e cop?
B /w0 2p U o

VY=~

einc ;(X',O) (30)

is obtained as was to be proven. This result is in accordance with the
system-mode-~shape concept and reduces the problem, by its periodic
nature, from one in which boundary conditions must be inserted on all
‘blades to one in which they need be inserted on only one, say the zeroth
blade. Therefore the upwash amplitude dlstrlbutlon #(x') on the
zeroth blade, which is assumed known for -%-< x' < E, is given by

im0 - 28% -1 2_o2
lm< B > Hmle 2% 4y (31)

ioMx'/eoB o 5 5| @
¥(x',0) = lim _ pe f fola) V2 - of z e
2pU —c0 @

Wo— 0 o +
UB M= —co

The summation (bracketed expression) may be expressed, in closed
form, as

i sin(s n2 - o@)

TR

(32)
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Utilizing equation (31), eguation (3%0) becomes

o /cOBf R G sm(s\/"—'_“_> 0 (33)
2pU <a, + I—JE) &05< 7 - “2> - COS(Q B g%tﬂ

Once again the lA/Td] type behavior of Fo(a) as |a| >~ insures

the existence of the integral expression for upwash. Now GO(X') is
known only for |x'| <b/B. For |[x'| >1b/p the upwash amplitude func-
tion Vo(x‘) is unknown, but the zero-pressure-jump condition is known
to hold. Thus, equation (52), considered as an integral equation for
fola), constitutes a three-part mixed-boundary-value problem (ref. 6).

v(x',0) = vo(x } = lim

This exceeds by one the number of parts amenable to Wiener-Hopf tech-
nique. Had the blades been doubly infinite in the chordwise direction,
then a straightforward use of Fourier transforms would allow solution
of equation (33) for fg(a). For blades semi-infinite in extent, a
Wiener-Hopf extension of Fourier transform technique would suffice.

The actual problem, with finite blades, exceeds the capabilities of
even Wiener-Hopf technique and hence demands some form of variational
or numerical treatment.

The approach to be outlined herein will thus constitute a numeri-
cal technique for finding what amounts to the Fourier transform of the
desired pressure function rather than the pressure function itself.
This appears to be a somewhat novel feature of the method. As will be
shown subsequently, it will be unnecessary to transform the solution
function f£gy(a) (or the numerical approximation thereto) in order to

get the pressure-distribution function. Rather, it will be shown that
oscillatory lift and moment amplitudes are expressible directly in
terms of fo(a) and its first derivative.

The procedure is as follows: From equations (6) and (13), special-
ized to the zeroth blade,

[?O(X'E} = [%O(x‘i]ehuwx'/cOB = eﬂdﬁx'/coﬁk/“m fo(a)eiax' da. (34)

At this point, a new dimensionless system of variables 1s introduced.
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X = EEE % (Physical)
k = wb/U
T = ab/p > (35)
£ (IE
ofe) _ Pol)
FO(T) _ g o(@) - b
P P p bU
Then equation (34) takes the form
Pn(x) {kMex /e P :
el |l [ e »
p U 0
o -
while equation (33) becomes
_ / kQM2 itx sB
Volx) = 1im 1 BeikMEx/[32 - Tolme™ etn b BL{' ar (37)
-2 o 2]
¢ 20 = < ‘§écos sk kM Tg—cos(Q-T—SiE
B=, [31L b,
Discussion of the first-order pole at 1 = —j% will be delayed until
B

the limiting process k;- 0~ is performed.

It is interesting to note that, despite the presence of the term

KM° 2 . . N

—~Z— - T in equation (57), because of the manner in which the term
B

appears, the entire integrand is single valued or possesses no branch

points. This fact will not be used, however, and the original branch
choice stated below equation (12) will be followed. This is necessary

because the integrand of equation (37) will subsequently be separated
into two terms, each of which is itself multivalued or possesses branch

points.

LIFT, MOMENT, AND FORM OF TRANSFORM FUNCTION F ()

Next the statement concerning the direct relation between 1ift,
moment, and the function Fy(7) is verified. From equation (36), it
follows that
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] 'p (Xf - 'kMg 2 _j
F _ 1 X/B 1TX
O(T) = _—&/1 —;i—i—— € € dx (38)

Thus, the dimensionless oscillatory 1lift amplitude is given by

T 2
L _- -wo(- k—%—) (39)

considered positive upward, as in figure 1. Moreover, nose-up moment
amplitude about midchord easily follows also from equation (38).

M 2ﬂ1F0’<-—m—\24—-2—> (k0)
0 UD?

Thus a solution for the Fourier transform FO(T) constitutes, in effect,
a complete solution to the problem.

The aerodynamics problem now reduces to the determination of a
function Fg(T) satisfying equation (37) with ¥o(x) given in (-1,1)
and such that [ﬁo(xﬂ vanishes for |x| > 1. Referring to equation (36)
for [ﬁo(xZ] and to the treatment of Weber's discontinuous integrals in
reference 7 it may be seen that an expansion of Fy(1) in a series of
Bessel functions Jp(T) would automatically satisfy the zero-pressure-
jump condition off the blade proper (i.e., for |x| > 1) Moreover, in
view of the expansion formula (ref. 8) for the Bessel functions of a
sum-type argument it is evident that an expansion of FO(T) in a series
of Bessel functions Jn(T + c), where c¢ 1is a parameter independent of
T, would serve the same purpose. Thus, by assuming FO(T) to be given
by an expansion in Bessel functions Jn(T) the off-blade-pressure con-
tinuity condition is automatically satisfied. All that remains is to
determine the coefficients in the expansion such that egquation (37) is
satisfied to the required degree of approximation on the wing (i.e.,
for |x| < 1).

In order to facilitate the solution to the problem and, at the same
time, put Fo(T) in a form such that behavior of the integrand in equa-
tion (37) may be examined, a trigonometric transformation together with
a corresponding pressure expansion, common in both steady and nonsteady
two-dimensional wing theory, 1s introduced as follows:
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NG
X = ~COS ¥
o]
B, (x) y ; (41)
= Ag cot & + An sin ny
poUP 2
0] 1 )
Expression (41) for pressure jump contains the proper leading-edge
singularity and vanishing trailing-edge value of pressure Jjump, in
accordance with one form of the Kutta condition. Substituting equa-
tion (L1) into equation (38) leads to an expansion form for FO(T):
A 2 A
1 1 kM . 2 kM2
FO(T) = E(AO + ——2->JO<T + ;2—-> + l(AO + —2->Jl<'r + -—2—> +
B
1 VY kM=
2 Z (1) (Av+l - Av-l)Jv(r + [3_2_) (42)
v=2 )

Now, as could be verified by direct integration of equation (hl), the
dimensionless 1lift amplitude is given simply by referring to equa-

2
tion (39) and letting T = :5%_. Noting that the zeroth-order Bessel
function is the only contributor, there results

L Ay
Y o "
o UPD ﬁ(o+ 2) (43)

Again, referring back to equation (40) and utilizing the Bessel function

recurrence properties, the moment is found to be given by the following
expression:

o .
o _ 2ﬁ1|f<AO + égj}le(o) =._% (AO + %?) (hh)
pOU2b2 2 2

Once more, this is easily verified by direct weighted integration of
equation (41).

The next important point to notice is that, as a result of the
assumed expansion equation (41) of the pressure-jump function, FO(T)
takes a form, involving Bessel functions, which insures the vanishing
of off-blade pressure jump. Thus there remains only to calculate Ags
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Ay, and A,. Unfortunately, however, as is usually the case in such

problems, the higher index coefficients influence these required first
three coefficients.

Singularities and Resonance Condition

Tt should be noted that the integral of eguation (37) may possess,
in addition to the first-order pole at T = 2% (which approaches the

B

real axis as ko - 07), poles at the zeros of the cosine-difference term

in the denominator. The form of this term makes it evident that these

poles, if they lie on the real axis as ko - 07, must lie at values of
kM

T so that | 7| < _%_. It will now be shown that the arrangement of these

poles relates to the criterion for resonance. This is best accomplished
by expressing the cosine-difference term in a different form

7/
cos (—S;b@-\)}-k—i-%—% - 12 - cos(Q - I?) =

!/
/
i
§

2v2 2u2
-2 sini%% 5—%— - 124 g - %%f sin g% E—%— -2 - @ + 8% (L45)
‘\ B : B 2 2b
Letting
(a%)2 = 52 + (s%)2 (16)
: 52

(Note that d* is the slant distance between blades after a Prandtl-
Glavert transformation of the physical plane.) The first sine factor

vanishes whenever
*
sB Vug I Lk (k7a)
2b 2 2b

for any integer value of mn, positive, negative, or zero; the second
sine factor vanishes whenever

iﬁ\fz_ 2 - g @ _ 1s¥
o u T m + il (47p)



NACA TN 4136 19

for integer values of m. Calling the first set of poles Tln and the
second set T,", solution of equations (47) gives

bs* b2
=257 (o - om) 4+ \I 2(a%)2 - X (@ - 2m)2  (48a)
L g2(ax)2 (ax)2 " B2

bs 2 2 2
T = =250 (g4 2mm) - S (uP(a%)2 - (2 + 2nm)2 (48D
5 ()’ 4+ 2mm (d*)g\/u ) 52( + 2mm) (48b)

where the poles Tln, when complex, lie in the lower half plane and the

poles Tgm, when complex, lie in the upper half plane. It is of interest
to note that, as ’n| or !m] becomes large,

n_, _=2nb fns* + i (492)
E B(ax)? ( |n|>
TEmwa —EEE——<mS + 1lml ) (49pb)
B(d*)

In other words, for large values of |n| and |m| the poles approach
positions similar to the cascade itself together with its reflection in
the y-axis after a Prandtl-Glauert type of transformation. Unfortunately,
the possible utilization of residue calculus in the evaluation of the
infinite integrals such as appear in equation (37) is defeated by the
behavior at infinity of the function F (-r)elTx for |x| < 1. Since

F (T) is known to be expressible in an expansion of Bessel functions,

1t therefore, acts like cos 7/\/7 for large values of T, and

F ( el™ fails to converge on elther an upper or lower semicircular
contour (for | x| < 1) as the contour radius approaches infinity. The
impossibility of evaluating the infinite integrals via the residue cal-
culus reduces the behavior of the complex poles Tln and Tem to a
matter of academic interest only. The numerical solution of the inte-
gral equation must be performed with integrations over the real line

as they originally occur. Thus the remainder of the analysis will be
confined to real-line integrations.

The existence and location of real poles 7" and 7,™ under cer-
tain conditions may be related to the resonance phenomenon in the fol-
lowing manner: For sufficiently small values of u (d*)EB /b

k2M2(d*) 2/‘b2[32 there will be a range of values of { (recall that only
values of  in the interval (O 2x) need be given consideration because
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of the periodicity of the entire problem in ) in which § is bounded
away from all multiples of 2= (including zero) far enough to prevent
the radicands in equation (48) from becoming positive. For such com-
binations of &, %k, M, and d*/b no real roots are possible. This
situation corresponds to the region labelled A in figure 2. As noted
in the figure, no real poles of the "cascade term" exist for this zone

which will be shown to be below the "lowest resonance point." Now as
either of the two boundary lines of zone A are crossed one real root
Tln appears, and simultaneously a real root Te‘n appears. Moreover,

they first appear at precisely the same point on the real rt-axis, indi-
cating the presence of a second-order pole. This second-order pole
constitutes a nonintegrable singularity and hence suggests a resonance
condition. As shown by figure 2, the condition occurs at

Q = kMd*/pb (50a.)
or
Q = 2x - (kMd*/BDb) (50b)

these being the boundaries of zone A. As zones B and C are entered, the
real poles persist but separate into two first-order poles. They thus
constitute a pair of Cauchy type singularities which are integrable in
the sense of Cauchy principal values. Next, the boundaries of zone D
are crossed, and two more poles appear on the real axis. Once again,
they first appear simultaneously at the same point and form a second-
order pole indicating resonance conditions. The boundary between

zones C and D is characterized by

kMa*
Q = 1
o (51)
while that between zones B and D corresponds to
Q = 2n - KMIX (52)

gb

Entering into zone D, four poles exist on the real axis, but they are
distinct and thus integrable in the Cauchy principal value sense. Pro-

ceeding, in this manner, to successively higher values of k%%*, more

and more new poles appear on the real t-axis and, as they first appear,
they do so in pairs, the pair first occurring at a common point as a
zone boundary is crossed. The general equation for the zone boundaries
is given by

kMa*/pb = x(2nv - Q) (53a)
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or
wd*/coB = £(2xv - Q) (53b)
with v an integer, positive, negative, or zero.

Now condition (53) is precisely the set of resonance conditions for
a staggered cascade at arbitrary interblade phase angle. TFor, when the
present problem is formulated in terms of the Hankel function series,
as given in appendix A, which is then converted via the Poisson summation
formula (ref. 9) to an exponential series in much the same way as is
performed in reference 1 for the case of tunnel-wall interference, then
the resonance conditions appear as relations (53). As is to be expected,
these resonance conditions reduce to those of Runyan, Woolston, and
Rainey (ref. 2) for the wall-interference problem upon specialization
of d%¥ to s (s¥*=0) and 9 (@ =0 when s* =0) to =. Since
resonance, as herein defined, corresponds to a divergent kernel in
equation (Al), for all values of X, it follows that the pressure jump
itself must vanish at the zone boundaries of figure 2. These boundaries
are therefore resonance loci for the cascade problem. For the present,
the method of computation of aercdynamic oscillatory 1lift and moment
coefficients is confined to zone A, the region lying below the lowest
resonance condition.

Computation Methods

The fundamental integral equation (37) is now treated for subreso-
nant conditions (zone A). Referring to equations (31) and (32) it
becomes evident that, in the case of a single wing oscillating in sub-
sonic flow, the cascade term

2 2

-2 (54)
cos s n2 - o - cos( - 9§f>

i sin s\ 7

would be replaced simply by 1 (unlty) For purposes of computation, the
single-wing term is added and subtracted in equation (57) to give

kaMZ sB k2M2

F.(x) 5D p® 3 Fol7) =5 IF i sin -~

° = Single-wing contribution + lim £ Lut /B f '™ ar -1 (55)
T=

v k2_’0-2 "'"’_ Ssﬁ K -#-cos/o-ls—*\
& b/

The reasons for handling the problem in this way will become evident as
the development progresses. The first point to notice is that the brack-
eted term in equation (55) converges exponentially to zero, thereby
effectively reducing the limits of integration from (-o,») to quite small



22 NACA TN 4136

finite values for practical computational purposes. In fact if the infi-
nite lower and upper limits are replaced by -A and B, respectively, then
the error committed by neglecting the "tails" of the infinite integral
may be shown to be bounded by €, where

1 Bsfar\2 _psR g2 _ KA
0.4b |R D lg2 b e
€ =2""¢e p 1+ 4 B (56)
sB R - X
82

and where R 1is the smaller of A and B. For reasonable values of
M, %, and Xk, extremely high accuracy is obtainable with rather small

1limit magnitude R. For example, with

it is easily possible to have a subresonanp range of £, and a value of
R = 8 gives an error of less than 1 x 10-°.

Thus, expression (55) is replaced by a numerically equivalent expres-
gsion in which the finite limits -A and B replace the infinite limits.
In particular, it proves convenient to take

~

B
k (57)
B=N-%
B

where N 1s such that the smaller magnitude N - j%- must satisfy the
B

error requirement (eq. (56)) on R for any prescribed accuracy €. As

k/B2 will seldom in practice exceed 1.5 for M = 0.5, 1t is seen that

N = 9.5 will be consistent with R = 8.0 in the above example. With

the limits now centered about the singularity T = :%, the singularity

is eesily removed by the artifice of adding and subtracting the value

of the remaining portion of the integrand, evaluated at 1 = E%. Thus,
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- N
¥olx) = Single-wing contribution + lim -g eikMex/ B2 EE__E"_'__ alr) - of=E\ + c.(:l<.> (58)
U ky =0~ m-%<T+$) 52 P
B

where

(59)

At this point the limiting operation kg—aO' is introduced. This has
no utoward effect on the bracketed term in view of the continuous behav-

[G(T) - G(JE)] .
ior of the quotient B as T approaches -k/B2 (i.e.,

k
T+ B2
in this term k 1is merely replaced by kl)' The expression in brackets
G(:g in equation (58), however, contributes a term outside the inte-
B

gral as the limiting operation 1s introduced

' K X
o) ey
1im i ar = inG(-:l%>+ B L ar (60)
ky— 07 -_El. T"‘—é‘ B _..ﬁ T4+ -+
B g2

In equation (6Q), because of the symmetry of the interval of integration
-k

about the point 7T = —EE and of the antisymmetry of the function -
B T+_1_{‘_l.

in the same range, the integral vanishes and only the external term

remains. This explains the reason for symmetrizing the range of inte-

gration in equation (57).

Performing these operations and replacing k; by k, assumed real
henceforth, gives the equation
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k

) _ 2 1102/ 52 !G(T) - G!—Ez!
__—Vo(x) + Single-wing contribution + X pe 14 /p K 4 Be (61)
T 2 BZ 2 -N*— ( )

*w

Now

sk
of ) - ex/p° Ty ( >(‘1k SRy -1 (62)
52 82/\ B /| cosh %% - cos<Q + 5§f)

bp°
Hence, equation (61) becomes

k
N -
ks 2 =k
3 inh o /a2 B [G(T) - G§~E ]}
v__o(X) + Single-wing contribution + —Az Fo ( 2) —ikx{ s ] - ]} . _2_ Q1M x/8 2/ aqr (63)
U 8 c >

k
osth~cosQ+5§f -N—% <T+§2->
8% B

for |[x|] <1 where it is no longer necessary to indicate the Cauchy
principal value since the integrand is now continucus at T = -k/B
and where

[~

A .
Fo<;§> = % <A0 + 2%)J0(—k) + i<A0 + 7§>J1(—k) + % j{: (1)V(Av+l - Av_l)Jv(‘k) (64)

v=2
and where G{7) is given by equation (59).

The form of equation (63) is the one recommended for computational
purposes. It is to be emphasized that it holds only for the subresonant
condition, since when poles Tln and t2m lie on the real axis as

ky — 0~ (superresonant conditions), then other terms are carried out-

side the integral in the performance of the limiting operation indicated
by equation (60).

Equation (62) is to be solved for the function F,(T1) or, more
precisely, for the first three coefficients A,, Ay, Ay, in the expan-

sion (eq. (42)) of F (7). Several methods come to mind, but the pres-
ence of the single-wing contribution restricts the technique to that in
which this conftribution is expressible in the required form. In any
case, under the assumed expansion (eq. (41)) of the pressure-jump dis-
tribution, methods must be used in which the contribution of the single
wing to the upwash distribution is expressible in terms of the coeffi-
cients A, of the pressure series. Two means of solving the resulting
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equation are the pointwise or collocation method and the termwise or
Galerkin method. In the former, the desired relation (eq. (62)) is
satisfied at a finite number n of discrete points x in the interval
(-l,l) and the same number n of coefficients i1s retained in the pres-
sure series (eg. (41)). The resulting equations are satisfied for the
first n coefficients A,. While only the lowest three values of A

are required, nevertheless as more values of A are included in the
collocation calculation, the accuracy with which these first three coef-
ficients are calculated increases. This is the method recommended for
the subsonic compressible case (0 < M < 1) in view of the existence of
numerical data obtained by Woolston and Runyan (ref. 1) for the contribu-
tion at each of three points x (—0.5, 0, and 0.5) to the upwash from
the first three terms in a pressure series equivalent to expression (41).
In the incompressible case, a Galerkin technique is recommended, in which
the error in equation (63) is orthogonalized with respect to a finite
number of the complete set of functions 1, cos y, cos 2y, cos 37,

. after replacement of x by (-cos 7) throughout equation (63).
This procedure is outlined in detail in appendix B.

COMPUTATION METHODS IN SUPERRESONANT CONDITION

Returning to formulation (55) of the aerodynamic integral equation,
considerations are extended to the case where zones to the right of the
subresonant zone A (fig. 2) are entered. Hence real-axis singularities
appear because of the vanishing of the denominator expression (45) in

addition to the obvious singularity at T = :g in the limit as ko - 0.

In each of zones B and C, there will be a total of three singularities,
and in zone D there will be a total of five, and so on. The computatiocns
must, of course, be performed with parameter combinations lying within
the interior of a zone, that is, bounded away from the zone boundaries

or resonance lines. Hence, in the limit as k, - 07, the real poles

will be separated by nonvanishing distances. Consider the general case
of n real poles T, (v=1,2, .. .n) (in the limit as ko — 07),

one of these being the pole at T = S and the others being the terms

Tln and 72m of equations (48). Rewriting equation (55), for conven-

ience, in the form

- N
vo(x) . Single-wing contribution + 1lim \jp H(T) ar (65)
U k.2—9 0~ T==N
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where a value of N is chosen which is sufficiently large to give the
required accuracy, centered intervals I, are introduced about each
pole Ty as shown below:

v Tun

_ L L 11

1 ——
Ty Tl

The distinctness of the poles T, insures that nonoverlapping intervals
I, may be constructed, although this is not crucial to the argument.
Outside of the intervals I, but within the integration range (-N,N),

the cascade contribution (the integral conmtribution) of equation (64)
is calculated by numerical integration in straightforward fashion.
Within an interval I, centered about the pole T,, the following pro-
cedure is followed:

The integrand H(T) may be written

H(T)(T - Tv)<;—%—;;>

J(T,TV)(;—%;;;)

_ 3y = 3,1y |, Iym) (66)

I

H(T)

it

T - Ty T - Ty

where J(7,7y) = H(7)(T7 - 7)) is regular at = = Ty, Since 1, 1is a
simple pole of H(t). Then, in the limit, as ko — 07, the contribution
of the term

J(T)TV) - J(TV,TV)

(67)
T - T'v
to the interval I, of the integration is simply
J(t,1y) = J(1y,7
f 2Ty vv) | g, (68)
JI

v T""Ty

w%th re?l values of T, being understood. As ko —» 07, the term
J(14,,T
— Y Y of equation (65) contributes nothing internally to the inte-
T = Ty

gral in view of the symmetry of the interval and the antisymmetry of
the function ——Ja——, but a term
T - Ty
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+inI( Ty, Ty) (69)

appears externally (ref. 10) (outside the integral), the plus sign
corresponding to a pole T, which approaches the real axis from above,

and the minus sign corresponding to approach from below. The pole at

T = :g is a special exsmple of the first case, since as kp, - 07,
B
T = :% approaches the real axis from above thereby contributing a term
B
: -k -k
ind (?’?) (70)

as was shown in equation (60).

In this fashion, the superresonant cases may be éomputed by a
routine though somewhat more cumbersome procedure.

It is to be noted that for the pole at T = -k/B2 the operations
indicated in equation (66) are actually unnecessary in view of the fact

that this singularity is already in the form I(r,7y) Nevertheless,
T - Ty

for the sake of uniformity, it does no harm to include this pole in the
general considerations of equation (66).

It will be necessary to know the value of J(Ty,T,) in the limit
as ko - 0 or as the values of T, become real. Referring to equa-

tion (55) for H(T) and to expressions (45) through (49) for the values
of T,, the following steps may be taken:

2 P ——
i) - B eix<T+ §MT> Fo('f)‘/ug - 2 N sin(ébﬂ\/pZ T2 )
2

k sB Q * 88 Q £ -t (71)
—_ - in( 2 2 _ g2 4 8 _ 38T \4qn(8 2. 28 187
<'r + 132> 2 s:.n<2b 0 ™ + > >s1n<2b n T + )

2b 2 2b

Hence,

I(ry,7y) = lim H(7)(7 - 7y)
T—DTV

2
ix+kM_.> 5 o

ToTy ("' + -B%> -2 sin(%% \/u2 = Ifi)sin(sﬁ P S Iﬁf)

1
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In the case where 7, 1is one of the Tln terms of equation (L48) with
approach to the real axis from below, as k, » 07, there results

s*\/ue - 'rv2 + TSP

w2 Ny ix Ldﬁj
I(ryymy) = B eix<TV+ 82 ) Folry) | ®tVu? -2 | 28 be (T"+ﬁ2 Folr) (1 - 1,%) L (13)
v Ty 2 Tv+_1§_ a% 4 —TySB TV"'L)
82 W2 - T2 p2

: 2 o> _ b T.,8% . .
with pE - TS = B 2xn - Q + —%;— and with T, given by equa-
tion (48a). Similarly when 7, is one of the terms sz of equa-
tion (L48b), approaching the real axis from above,
. kM2>
1X [Ty +—— 2 2
s 2 F T - T
J(TV)TV) = _:Léﬁ be ( B O( v)(u - y ) 1
k
<TV + 'B—§> TVSB - S*\/}J.E - TV2

R [ D o b Tvs* R .
with ME = TS = _E 2mm + Q - o and with T, given by
s

equation (48b).

RESULTS OF SAMPLE CALCULATION FOR ZERO STAGGER,

ANTTPHASE CONDITION

In order to establish confidence in the Fourier transform solution
technique described herein, a sample set of calculations was carried out
completely for a particular condition at which previous results, both
experimental and theoretical, exist, the previous theory being that
associated with the kernel function in the form of an infinite integral
of an infinite series of Hankel functions (appendix A). Runyan, Woolston,
and Rainey (ref. 2) present experimental wind-tunnel-wall interference
effects on oscillatory 1ift and moment in pure pitching motion (about
midchord) for a series of subsonic Mach numbers with a ratio of tunnel
height to wing chord of 3.80. They provide theoretical results, obtained
from a three-point collocation treatment of the aerodynamic integral
equation with infinite-integral-—infinite-series kernel, for these same
conditions as well as for pure translatory motion and for other tunnel
heights. The tunnel-wall interference problem is, of course, completely
equivalent to the blade-row problem under the restriction of zero stagger
(s* = 0) and antiphase motion (¢ = 180°).
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The present Fourier transform technique, with its simpler, closed-
form kernel, was utilized in a three-point collocation solution for the
particular case of a blade row at zero stagger under antiphase motion,
with a gap-chord ratio of 3.80 and for the particular value of Mach
number M = 0.5. For this value of Mach number and for the range of
values of reduced frequency (0 < k € 0.7) considered in the present
example, three-point collocation gives satisfactory accuracy as has
been proven by comparison with results obtained from five and seven-
point collocation schemes for the isolated wing. The present computa-
tion procedure requires the availability of single-wing or isolated-
blade contribution to upwash resulting from each term A, in the

pressure-jump expansion as well as the contribution from the remaining
blades in the blade row (or the images in the wall-interference inter-
pretation). This single-wing contribution was kindly provided by the
langley Aeronautical Laboratory of the NACA in the form of tables of
integrals of the nonsingular portion of the single-wing kernel function
with weighting functions corresponding to terms in a pressure-series
expansion equivalent to equation (41) nerein. The contributions of the
singular (logarithmic and first-order pole) terms were calculated and
added to the NACA tabular values to provide the data of table I pre-
sented herein. This is the tabulation of total single-wing contribution
to upwash at three stations (quarter-chord, midchord, and three-quarter-
chord) due to each of the first three terms in the pressure-jump expan-
sion (eq. (41)). As noted in the table, the values are for M = 0.5

and reduced frequency values k of 0.02, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
and 0.7. In the present case, reference to figure 2 and a brief calcu-

" lation show that the lowest critical value of k is kcrit = 0.715975%.

Table II presents the results of the computation scheme outlined in
appendix C for all the remaining blades of the blade row, that is, for
the terms exclusive of the single-wing contribution on the right-hand
side of equation (63). The corresponding values from tables I and II
are simply added toc obtain the upwash contribution of each pressure term
for the complete blade row or the complete wing-plus-image system in the
wall interference interpretation.

Tables IIT and IV give the results for the single wing and the com-
plete blade row, respectively, of the collocation process where the coef-

v
ficients A correspond to a constant unit relative upwash E? =1,

(o) ™

and the coefficients (1)An correspond to a linear upwash variation

U
sions below tables III and IV give the dimensionless 1lift and moment
(complex) amplitudes as linear combinations of these A coefficients
for arbitrary elastic-axis location and for arbitrary combinations of

v
<_9 = x> inserted into the left-hand side of equation (63). The expres-
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pitching and translatory motion. The manner in which the systems (O)An

and (l)An are utilized in computing air forces and moments leads to

use of the term "influence coefficients" in describing them.

Figures 3 to 10 illustrate the comparison of 1ift and moment coef-
ficients derived from the present theory with both the theoretical and
experimental results of Runyan, Woolston, and Rainey (ref. 2). These
figures relate to either pure pitching motion about midchord or pure
translatory motion. It should be emphasized, however, that the data of
tables IITI and IV permit simple calculation of 1lift and moment for any
combination of translation and pitching about any axis. Figure 3 gives
the results, in the form of 1lift amplitude ratio for the blades in
cascade or the wing between walls to that of the isolated wing, for
pure pitching motion about midchord. The present theory denoted NYU
theory is seen to follow closely the theory of reference 2 denoted
NACA theory, whereas both theories depart noticeably from the experi-
mental results. The major portion of this discrepancy between theory
and experiment probably lies in the pressure-integration technique
utilized in reference 2 to obtain 1ift (and moment) from chordwise
pressure~-jump measurements. Figure L4 gives theoretical and experimental
phase angles for 1lift in pure pitching about midchord, and once again
the NYU and NACA theories follow each other quite closely. The single-
wing curve, as shown for purposes of comparison in figure 4, can be
obtained from the available single-wing tables or from a simple calcu-
lation using table III. Figures 5 and 6 give amplitude ratios and
phase angles for moment about midchord in pure pitching about midchord.
The two theories give very close agreement, and the experimental ampli-
tudes lie at a nearly constant distance below the theoretical amplitudes,
again probably because of the pressure-integration method of obtaining
experimental moments. The NACA experimental values and NYU theoretical
values of moment phase angle are seen to correspond closely in figure 6
up to just below resonance. As explained in reference 2, the pressure
integration technique used therein would be expected to exhibit less
severe effects on phase angles than on amplitudes.

Figures 7 to 10 relate to pure translatory wing or blade motion for
which NACA theory but no experimental data are available. These figures
thus provide simply a comparison of numerical results from the two theo-
ries. The agreement is seen in all cases to be excellent, to such a
degree, in fact, that the curves are in some regions indistinguishable.

If a generalization were to be attempted regarding the comparison
of NYU and NACA theoretical results, it might be to the effect that the
NYU results emphasize slightly the "saddleback" shape characteristic of
the amplitude~-ratio curves and exhibit a sharper decrease in phase angle
as the rescnant frequency is approached. On the whole, however, the two
theories give extremely close results and, thus, each affords an increased
measure of confidence in the other.
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REMARKS CONCERNING APPLICATION OF METHOD TO

BLADE-ROW PROBLEMS

The extremely good agreement between NACA calculations based upon
the form of kernel function having an infinite integral and infinite
Hankel function series and the NYU results based upon the simple closed-
form kernel function stemming from the use of Fourier transform serves
to justify the steps taken in the latter theory and to give this method
a "clean bill of health" so that it may be used with confidence in the
more cumbersome blade-row problems involving nonzero stagger and inter-
blade phase-lag angles other than 180°. Comparison of equation (63) of
the present report, which includes the general case of arbitrary stagger
and arbitrary interblade phase-lag, with expressions in reference 2 for
the kernel function in the more restrictive case of zero stagger and
antiphase motion serves to illustrate the marked simplicity achieved by
the transition to Fourier transform and the subsequent summing of the
blade-row series and integration of the semi-infinite integral necessary
to convert from pressure to upwash. Furthermore, the exponential decay
of the integrand of equation (63) permits setting the finite integration
limits to achieve any accuracy desired so long as a quadrature scheme
of compatible accuracy is utilized. The use of a three-point colloca-
tion technique probably constitutes the weakest link in the accuracy of
the present calculations; however, five- or seven-point schemes would
require the availability of five- or seven-point tables for the single,
isolated wing.

For application to turbine or compressor blade-row flutter or
response problems the aerodynamic influence coefficients (O)An and

(l)An must e computed for an appropriate range of Mach numbers and

reduced frequencies and for a range of values of § between O and 2x
(this range corresponds to a shifted range of length 2x for the inter-
blade phase angle o at any particular combination of the parameters
w, M, s*, and cg). Critical flutter conditions then correspond to
the minimization of flutter velocity with respect to ¢ as shown in
reference 3. Actually, as explained in that reference ¢ must vary,
not continuously in the range O to 2n but rather among & discrete set
of values depending upon the number of blades in the blade row. How-
ever, for large blade numbers, the assumption of continuously varying
values of ¢ dis shown in reference 3 to be Justified in facilitating
the minimization procedure.

The emphasis placed herein on subresonant conditions'(fig. 2,
zone A) is justified for configurations and operating conditions under
kMa*

55 do not exceed & value of

which expected values of the parameter
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unity during the occurrence of flutter. TFor values of this parameter
less than unity, critical conditions will lie in a vertical strip adja-
cent to the Q-axis in figure 2, the strip width being less than one-
third of the altitude of the zone A triangle. While this in itself
does not insure that flutter cannot occur in a superresonant condition
(zones B or C), all indications are that it does not. Calculations
performed by Lane for the incompressible case M = 0 have always indi-
cated a distinct boundedness of critical flutter conditions away from
interblade phase angles o, of 0 and 2nx. In the compressible case, the
vanishing of self-excitation air forces along the resonance lines aa
and bb (fig. 2) precludes the possibility of flutter, in the immediate
vicinity of these lines, of a blade row having any internal damping.
Hence all indications are that blade-row flutter would occur with values
of ¢ (note Q rather than ¢ in the compressible case) between
(1/4)x and (7/4)x and with critical conditions falling in the subreso-
nant zone A. When values of the parameter in excess of unity are
expected, then calculations in the superresonant zones B, C, and D are
necessary. The necessity for performing computations in still higher
zones (E, F, etc.) appears most unlikely in any case.

CONCLUDING REMARKS

The objective of the work reported herein was to develop a feasible
computation technique for the aerodynamic oscillatory 1lifts and moments
experienced by cascades or compressor blade-rows in subsonic flow as well
as to examine analytically the existence of the resonance phenomenon and
the location or set of conditions at which the kernel function of the
aerodynamic integral equation blows up. The objective was achieved by
resort to a new technique in which the aerodynamics problem is formulated
in terms of the Fourier transform of the blade pressure distributions and
numerical solutions are found for the transforms rather than for the
pressure distributions proper. It is shown that oscillatory lifts and
moments are easily derivable from the transforms without the necessity
of inverting. Moreover, the technique permits the expression of the
kernel function in a simple closed form, whereas conventional methods
lead to an extremely cumbersome kernel consisting of a semi-infinite
range integral of a doubly infinite series of Hankel functions of the
type encountered in single-wing subsonic oscillatory aerodynamic
considerations.

A plot is presented giving the location of resonance conditions,
in general, and calculation results are reported for a configuration
corresponding to the tunnel-wall interference problem which constitutes
a special case of the cascade problem. The conditions for which calcu-
lations were performed correspond to the conditions at which the National



NACA TN L4136 33

Advisory Committee for Aeronautics had previously executed wall inter-
ference computations following the conventional integral-equation formu-
lation. The agreement achieved is excellent. The technigue developed
herein is thus believed to represent a valid and feasible method for

obtaining oscillatory cascade or blade-row aerodynamic forces in the
subsonic regime.

New York University,
New York, N. Y., August 2, 1956.
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APPENDIX A

EXPRESSION OF AERODYNAMIC INTEGRAL EQUATION

IN CONVENTIONAI FORM

For the sake of completeness, the integral equation for the
pressure-jump amplitude distribution is presented below in a more con-
ventional form, that is, the form involving a kernel expressed as an
infinite series of Hankel functions:

an axq (a1)

T(x) e im0 Pt ~1k(x-x0) [f;o(xo):l XXo iy /52 32 (2) kM\/ *\2 2 2_l
OU =l+_;z e .[xo=_le ——;)o?fz-m et %EHO 5_2 (ﬂ—msT"i-B()"%)

M= =00

¥=0

where y, 1, X, and Xo are all scaled with respect to the semichord
b, that is, all are dimensionless. The above integral-equation formu-
lation results from a straightforward application of Green's function
for the reduced wave equation to the cascade or blade-row problem under
the type of blade-to-blade periodicity predicted by the system mode
theory. Once again, the interblade phase-lag angle ¢ appears only in

*

the form (o - mMS2> defined as 0 in equation (17).
c B

o
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APPENDIX B

APPLICATION OF AERODYNAMIC INTEGRAL EQUATION

TO INCOMPRESSIBLE FLOW

The aerodynamic integral equation, eguation (65), becomes, in the
case of incompressible flow (cy - ),

= N-k
_ikx sinh(%8 G - Go(-k
volx) | Single-wing contribution + = F_(-k)e (%) -1+ %\/w Golr) - Gol-k) o {m
u 2 cosh %s- - cos (o + ——k_z*) ~N=k (7 + k)

noting the fact that, as cy—» », Q- 0. In equation (B1) GO(T)
signifies the limit of G(T) as cgy— « and is given by

. h _S_I
sin lb
coshéﬂy - cos( - IEf)
b b

Equation (Bl) holds for all values of o, k, s, and s* since the
possibility of resonance disappears when c¢y— «, This is evident from

¢ (1) = -i|r|e*™ F () 21 (B2)

examination of figure 2 where, with zero Mach number, the entire problem
degenerates to the Q-axis and only the points =0 and § =2x (or

0 =0 and o = 2r) appear as resonance conditions. Upon closer examina-
tion, however, it becomes clear that even these two points do not give
resonance. This is because, with vanishing values of @ or o, the
only possible zero in the cosine difference term (for the incompressible
case) is at T =0. But at T = 0 & second-order zero appears in the
numerator, completely overpowering the zero in the denominator. It
should be noted that, as pointed out by Woolston and Runyan (ref. 1) in
the wall-interference problem, resonance is possible in the limit of
zero Mach number if this is achieved by letting free-stream velocity go
to zero while maintaining finite acoustic velocity. In the present case,
however, incompressible flow in the classical sense is implied.

It should be noted that, in the incompressible case,
A A 1 N v
Fo(r) = 2 <AO + ?1>JO(T) . 1<AO + _52->Jl(1) N ORI Cl¥Cl G

v=2

and F_(-k) is simply the same expression with -k inserted for T.
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Now referring to Klssner and Schwarz (ref. 11), or to Fung (ref. 12),
it is found that in the single-wing case, for zero Mach number, under
the trigonometric substitution of equations (k1)

X = -Ccos 7y
2 -p =
Upper lower _ [p] = Ag cot 7 A, sin ny
o e o 2 2
© o n=1
If the upwash ratio % is expressed in a cosine series
- T
v(r) _ Vo + }J W, cos ny (B4)
U
n=1

then there is a set of relations giving the pressure coefficients Aj,
in terms of the (known) upwash coefficients as follows:

A W w
0 _.¢ Wy - it 5 T

2 2 2
ﬁ = B W‘O - 1’2 - W_l

L 1 2 2

> (B5)

A

2 ik
—_—— W - W - W

> 2 ( 1= W) 2
Ap _ ik :
2 " n (wn-l - Wn+l> " ¥n (nz 2)—

where C = C(k) = F(k) + iG(k) is Theodorsen's well-known flutter func-
tion. While equations (B5) constitute an effective solution in the usual
sense, for the purposes of this investigation in combining effects with
the cascade contribution, it is necessary to back track and find the

contribution of each A, term to all the w, terms. Eventually coef-

ficients of cos ny will be equated on both sides of equation (Bl)
(which is equivalent to the Galerkin type orthogonalization of error
with respect to cos my where m =0, 1, 2, 3, . . .) and this requires
a knowledge of the contribution of each component of pressure in
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equations (41) to every upwash component in equation (Bk). The method
ofﬂgetting this contribution in the cascade portion is quite straight-
forward and will be discussed at the conclusion of this appendix. The
contribution of each pressure component to the downwash elements in the
single-wing case requires a solution of the infinite system of equa-
tions (B5) for the terms wn, assuming the terms Ap +to be given. This
development follows:

First, it is noticed that the homogeneous system corresponding to
equations (BS) is, for n 2 2,

= %% (Wn—l - Wn+l) = ¥n (86)

This is satisfied by Bessel functions Jn and Y, of the first and

second kinds, respectively, with argument (-k) and coefficient (i)-%
as may be seen by reference to the recurrence relations satisfied by
the Bessel functions. Thus a general solution to equation (B6) is

wy = ai ™™ J (k) + bi ™ v, (k) (B7)

Now from equation (B7) a type of Green's function is constructed for

the system of equations (B5) by imagining one of the terms A, to be
unity while all others vanish. The corresponding terms w, are then
precisely the desired elements of the single-wing upwash distribution
corresponding to the term multiplied by A, in the pressure expansion.
The first two equations of system (B5) do not fall in the pattern of the
Bessel function recurrence scheme and thus have the character of initial
conditions in a difference equation.

The construction of a Green's function proceeds by assuming first
that

Ag

il
)

(B8)
Ay

I

=
N

It

h=3
W

l

(@)

in which case
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l:Cw _w_l>+ﬂ—.

2 0~ %% 2

y W W

2 1

0 = kiw - — - —

l<° > 2
ik > (B9)

ik
= £ - - >
0= = (Wn-l n+1> V) (n22)
Now let
-l -1
Wy =al Jl(-k) + bi Yl(-k)
. -2 ] .
w, = ai™@ Jo(-k) + bi™% Y~(-k)
2 2 2 . (BlO)
w, =ai™® Jn( k) + bi™ ¥ (-k)

then all except the first two equations of equations (B9) are satisfied,
and it remains only to find &, b, and Wy 80 that these are satisfied

as well. However upon noting that Yn(-k) blows up as k —» 0, it
becomes evident that b = 0. Thus only a and Wy remain to be deter-

mined. These follow from the first two equations of system (B9) after
substituting from equations (B10) for Wwo and wq.

1 _ ai ai
E_c(wo+-§-Jl> -& g,

(B11)

Solving gives

(0) J
W (0) = -3 (Ig + ?%> (B12a)
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a(0) _ kK (BL2b)
Jl[ik(c -1) -c] - CkJ,

the arguments (-k) being understood for the Bessel functions. In equa.-
tions (B12) the superscript (0) indicates that the values are for the
particular case implied by equations (B8). Hence, equations (B1O)
become, for this case,

w (0) = a(0) 41 5 (L) (nx1)  (B13)
(0) , _1

2c(o)
as k- O 'which checks the steady-state theory. Next, the term wn(l)
is determined by letting

Note that Wo(o) remains bounded as k - 0. In fact, W, 1
2

Ag=A,=A, =47 =...0
> (B1k)

n
[

A

in the system of equations (BS). All but the first two equations of
equations (Bl0O) are satisfied if

W.

n(l) = oD I, (k)i (nz21) (B13)

again dropping the Yp(-k) terms for reasons of boundedness of the

terms Wn(l) as k —» 0. The two remaining quantities a(l) and wo(l)

must be found so that the first two equations of the system dre satisfied.
Thus

ia;l) Iy - ia;l) 1

- s (B16)

ikE’O(l) + a(1) J. | + ia(l) J

Il

+ I+

and
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wo(1) = iJl(—k)<% - )

(1) 1/2 ( B

a =

Jl(-k)(k - % + i> + 1kT,(-k)

which, together with equation (B15) completes this case., Once again,

all Wn(l) terms are bounded as k- 0. Continuing in this manner,
that is, letting m run through the integers in the relation

Ap =8, =0 (m # n)\
> (B18)
A =3 =1 (m = n)
it is found for m = 2
w (2) 2 a(2) yn g () (n32)
o (2) _ 32 Wp(K)
1 =
k
G- k - 1
(2) X (B19)
WO(E) = Y_l_e_._ (]_ - %)
al2) _ 1
.2
2J2(-k) + kJB(—k) + K~ 3p(-K)
k _ k -1
C
)
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For m = 3,

w (3) - a3 i 5 () (n23)

L (3) 1 al?) 55(x)

k2+21<k-lé.+ i)

(3)
w \
WO(B) = 1 (l - %)

- > (B20)

w,(3) = (3) (1 -1 %>

a(3) = 3i/2
%2 kK,

535(-k) + kJ) (k) - e (k “c” 1>J3('k)
k2 + 2i(k -%+ i>
For m =k, ]
Wn(u) = a(u) i Jn(-k) (n > nt

3 (%)
Wl(u) — k7 a Ju('k)

2 k. . L2 . k.
k(k-b—+ 1>+31E< +2_1<k_5+1>]

Wg(ll') = w. (1) <]_ _JC._+;>

o
wy (W) = 2L E:2+2i<k_}§+i):l

wo(h) = wl;u) <1 - i)

o) 5
- 162 ) (-k)[ K2 + 21(k - f + 1]

k2<k —%+ i) + Bi[k2 + 2i(k - bli.l. 1):]

(B21)

‘kJ5('k) - hJu(—k) +
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Finally, for all values of m 2> 2, a general expression is found for
the solution to the system of equations (B5) with Ap = Bpp. Letting

CLO =1
G;l = (k - % + i)
Uy = k2 o, + 2iay
© > (B22)
oz = k2 a; + 510&2
= k2 a, + mi
%y -2 -1
gives the following general expressions:
]
m . =2
(m) _ _EW
w3 (k) + kI, (-k) - 12 3 (k) Sm=2
-1
w (12 a(m) () () (n 2 m)
(m)
™ = 8 (1) () > (m23)

We(m) - Wl(m) _k;
W-j(m) = wl(m) Zg_é
Wh(m) = wl(m) o)

k5

i l( m) _ w]L(m) ﬁu_?.

- km—2
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Again, all Wj(m) are bounded as k — 0. Thus, the contribution of

each single-wing portion of the pressure series (egs. (41)) to every
term in the upwash series (eq. (B4)) has been completely defined.
There remains only to express, in correct form, the cascade contribu-
tion. This is easily accomplished utilizing the relation (ref. 8)

iz cos 7y

e = Jo(z) - Q[Jg(z)cos 2y - Jy(z)cos by + . . .]+

Qi[Jl(z)cos y - J3(z)cos 3y + . . :l
= Z e, (z)cos vy (B2k)
v=0

where € =1 when v =0 and ¢ = 2(i)Y when v > 0. Applying

equation (B24) to equation (Bl) and using equations (B3), (B4), and
(B12) to (B23) gives ‘

0

[e0] 00
) (m)
W, cos ny = cos ny| ) Wy Ayl +
n=0 n=0 m=0

[N vl

v
Single-wing contribution

k 2 sinhEE
- ZEn Jp(k)eos ny|F,(-k) — — - 1
n=0 cosh > cos <c + —-b—)
N-k
Go(T) - Go(-k)
z f 9 9 (B25)
-N-k T+ k
with
sinh lT—S| x
Go(T) = ~i|7|F,(T) b : -1 Z endn(-T)cos ny
0 0 - nen
cosh lbg’- - cos (o - —TS ) n=0

(B26a.)
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. IkS | oo
sinh Y
Go( k) = -i|-k|F (k) -1 >j end (k) cos ny
h ks kS* '

(B26b)

The term FO(T) is given by equation (B3) and the term FO( -k) is

given by the statement following equation (B3). The Galerkin process
now involves the retention of a finite number p of terms in equa-
tions (41) and the equating of coefficients of cos ny for the first
p integers (n =0, 1, 2, . . . (p - 1)}). This constitutes a system
of p equations for p unknowns and may be carried as far as desired
depending upon the available computing facilities. The major effort
involved lies in the computation of the integral '

N-k | sinh IS_T
f Tl Ja (-3 () -1 -
SNk T+ K cosh 5T _ cos(c - §-—T>
sinh lﬁ I
I, (k)T (k) Lb -1 lar (B27)

cosh ﬂi— - COS (cr + E)
b b

which, for a sizable number of parameter values, should be performed
by a high-speed computer.
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APPENDIX C
COMPUTATIONAL PROCEDURES

Following is a description of the computational procedure utilized
in evaluating the cascade contribution to the integral equation (63)
for purposes of solution by collocation. In order to compare the numer-
ical results of the present method with those of the method of refer-
ence 2, the special case of M = 0.5, zero stagger, antiphase motion
(0 = @ = 180°), and gap-chord ratic of 3.80 was chosen. Calculations
were made for eight values of k which are 0.02, 0.1, 0.2, 0.3, 0.k,
0.5, 0.6, and 0.7. All computations were programmed for and executed
on the Burroughs E-101 Electronic Digital Computer.

The Burroughs Computer, as currently available at NYU, is of limited
capacity having 100 12-digit memory locations and capable of accepting
only 112 instructions which are introduced by means of pinboards. To
multiply two numbers which are in different memory locations and write
the result in a third location requires four instructions. The machine
can accomplish approximately four multiplications a second and does not
have floating decimal. Hence all problems must be carefully programmed
and scaled prior to calculation. It is doubtful that this machine could
be used for the general (nonzero-stagger and arbitrary-phase-motion)
problem for, as will be shown, these two assumptions introduce several
simplifications in the analysis. Even with these simplifications opti-
mum use of the computer capabilities was required.

In order to put the integral of equation (63) in a form more amena -
ble for calculation the following adjustments were made:

(1) To eliminate the necessity of programming square roots, sub-
stitutions
\

T = kM cosh A
B2

= gin A » (c1)
2
B

1= =B cosn A
BE

for > XM M G E%, and T < "kM, respectively, were made, and
B
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the range of integration -N - X <TE<N - was subdivided into the

x
-
three ranges indicated in equations (Cl).
$ 1M
(2) After introducing the factor exp(—’z—klg——x> (see eq. (63)) into
B

the integrand, the integral was separated into real and imaginary parts.

(3) The factor G(—%) being unnecessary in the two ranges
B

§—kM and kMé Tg(l\l——§>, the integral f—ﬁﬁ) was
K
2

u’mIE

B p2 B
removed and evaluated analytically for these ranges.

After carrying out these operations and introducing

Ll a2 ]
Ml=coshl§—<N—§—>
kM 32

2
- -1 B~ X
Mgmcosh kM<N+ 2)
i B/

Hl<\l1-§-> = sin(_kx)Fc)(;lS) B Smh\?> -1
2 52 M sk s¥k
P cosh(—-g) - cos(—-—— + Q>

B°b

sinh (%—‘-)

cosh(ﬁg) - COS 8%k + 0
b Beb

the integral in equation (63) was separated into the following parts:

-1

CRE]

For range —k—M-STS( --15->,
B2 = =

sinh (:Tm sinh 7\>

- 1{ax (c2)

M inh?®
XM f 1 i’ih—)\— sin<% cosh A + kMzX)FO

5 (% cosh 7\)
28 Jo  cosh A+ i Bz B

A skM s*¥kM
v cosh (=== sinh A} - cos|{Z=~— cosh A ~ Q
( P > <Beb
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sinh(ili‘ sinh 7\)
b8

-1|a  (c3)
cosh(_gﬂ— sinh )\) - cos(azlgM cosh A - Q)

M 2 2
ik l._siﬂa_%_es%coshﬂﬁz_x)lr mgcoshx)
26 JO cosh A+ é g2 g 8

for range —EM-E- <1< _k%,
B B
2
kKM . 2 kKMx WM x\ . (skM
F sin 7\>cos A sn.n(-—-— sin A\ + )s:m( cos 7\>
2-+0
e Y (Eg \g? B2 ) \bB .
2
P -1/2 sin A + & cos B cos A} - cos(EXEM gin A - @
M bp . BZb '
cos (¥ gin A + _kll_@;) aa (ck)
2 2
B B
2
kM 2 kMx _. kMx\_.... [skM :
Fof = sin ?\)cos~7\ cos(—— sin A + )s:m( cos 7\>
2 +0
um [ <32 B® B° bp /.
2 -
8 “/2 sin A + 1 cos (SkM cos 7\) - cos 5 *kM sin A - §
oin(RE gin n 4 m) o (cs)
2 2
B B
and for range (-N - K\ < ¢+ < B
2] = = 2
B B
Mo
-kM —sinh N Josn (ZBMX oosn A 4+
2B O cosh A - ﬁ B2

snlh(SkM sinh )

2 -
kng Fy - cosh A}sinh A "
B pe cosh(,g]gM sinh )\) - cos< KM cosh A + Q)

B2b
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M

ikM 2 sinh A cos ~kMx cosh A +.
2B O cosh A -= g2

5 sinh (Eﬂ sinh ?\>
_E—XFolgﬂcoshxsinhx B -1 -

B B cosh(ZM sinh A\ - cos(EXEM cosh A + @

bp 82b

H2<L;—12§) aa (c7)

All integrals were evaluated using the Gaussian nine-point integra-
tion (ref. 13, p. 285) and were checked by the Newton-Cotes closed-
quadrature formula (ref. 13, p. 123). The Gaussian method was accom-
plished in all cases, except in the nearly resonant case, k = 0.7 and

bl

é? £ ANE 57 by subdividing the interval of integration into the nine

prescribed points. For the Newton-Cotes method, the interval of inte-
gration was divided into 30 equally spaced points and the six-interval
formula (ref. 13, p. 123) was used five times. Because of the sharp
peaking of the integrand in the above-mentioned case, the interval

:g <AL % was divided into three segments and the Gaussian nine-point
integration was carried out over each segment. This was checked again
using the Newton-Cotes six-interval formula over 30 equally spaced points.

In order to evaluate the integrand at each point it was necessary
to generate sines, cosines, hyperbolic sines and cosines, and four Bessel
functions, Jgs Jdy1, do, and J5. The standard method of storing coef-

ficients of the power series expansions, as recommended by Burroughs
Corporation, would require about 70 of the 100 available memory locations
in order that the truncated series used be accurate over the range of
arguments of these functions. This was clearly impossible. A method
was devised for generating the series by using a recursion formula for
the coefficients that would serve for all the above series. For any of
these series the nth term is obtainable grom the (n - 1) term by multi-

X
on(on + H)’
the plus sign is used for sinh X and cosh X and the minus sign, for
all others; H=1 for sin X and sinh X, -1 for cos X and cosh H,
and 2v for J,(X)..

plication by a factor of the form where X 1s the argument;
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The case considered of zero stagger (s* = Q) and antiphase motion
(0 = Q = ) reduces the factor in the integrands of equations (C2), (C3),
(cé), and (CT)

sinh(EEM sinh %)
bp

-1
cosh(ﬁgﬂ sinh X) -~ cos 5 XkM cosh A -
bB bBe
to
AY
sinh (iliM— sinh A}
bB [ .1 (c8)

cosh(ﬁgﬂ sinh A) + 1
\bB

Since the upper limit of integration was fixed by insuring that expres-
sion (C8) be sufficiently small, accuracy would be lost by having to
subtract the two very close numbers in equation (C8) when A is near
the upper limit. However, this was overcome by using the identity

sinh X -1 = -1 (C9)

cosh X + 1 cosh % (sinh % + cosh K)

2

This identity not only permitted more accurate generation of sinh and
cosh for smaller arguments % instead of X)) but it also retained

accuracy in the evaluation of the term (C8).

For the general nonzero stagger and arbitrary phase condition, the
problem will clearly not permit this elegant simplification and hence
would exceed the capacity of the E-101 computer.

In all calculations (series evaluations and infinite integral trun-
cations) a maximum error of 0.000l was permitted.

In order to solve the integral equation (63) by collocation at

three chordwise stations (x = 0, and % , these three x-values were

-1
_ 2’
treated in the numerical evaluation of the integrals.
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TABLE I
TOTAL SINGLE-WING CONTRIBUTION TO REDUCED UPWASH VO/U
AT THREE CHORDWISE STATIONS FOR M = 0.5

Ao Contribution A; Contribution A, Contribution
k X

Real Imaginary Real Imaginary Real Imaginary

0.02{0.5]0.4519491 |0.0428256 |0.22578212|0.0258220k |0.21671019 [-0.00488926

.02(0 L4515698| .0k87572 | .00906871| 02734223 4332256 | -.0000756
.021-.5] A.4511555| 054684k |-.20764554| .0259733L| .21671191| .00473800
0] .5 .5352084| .1142825 | .26513120| .0809435 | .21963380| -.02613512
.10{0 S304671| 1474325 | .04529458| .0901383 | .4368039 | ~.0018872
.10|-.5| .5242158| .1802806 |-.17h64284| .08471L8 | .21983553| .02236510
.20| .5| .6450755| .1297hk2 | .31652281| .1172289 | .22520583| -.056794409
.20|0 .6338565| 2054147 | .09028736| .1397294 | .L4uhT7680 | -.0075312
.20|-.5| .6L60L10| .2794763 |-.13674993| .1322414 | .22681011( .041806889
30| 5] .7510416] .0955288 | .3680%027| 1334792 | .2305768k| -.09213552
3010 7379910 2230042 | 1346790 | 1734030 | .4shoh73 | -.01687482
.30(-.5] .7079702| .3468238 |-.10136703| .1669715 | .23595639| .058772773
Lo 5] .8455129] .0232180 | .41796165| .1350070 | .23398967| -.13197857h
Jbolo | .8394037| ..2106121 | .178L77 .196281l2 | 4662342 | -.0298216
L0-.5] .7995035| 43925083 |-.0679107T| .1938359 | .24663393 -07355509
50| 5| .9222588|-.0798821 | L46486215| 1245734 | 23402381 -.17589716
.50(0 .9352460| 1734976 | .2204926 | .2107855 | 4777981 | -.0L62385
.50 ~.5] .8901497| .42128385|-.03602700| .2150847 | .25844802] .08636572.
.60| .5| .9761701|-.20748176] .50753505| .1OM100L | .22049481| -.22325336
60lo |1.0230507] .1151938 | .26134806f .2183600 | 4889683 | -.0659546
.60} -.5] .9794408| .43592156]-.00549879 '.2319856 .27112929]  .09736951
70| .5|1.00%1925] -.35347302] .54k95248] 0751580 | .21942893| -.27323354
.70]0 |1.1006352| .0385219 | .30047885| .2199862 | .4891Th6 | -.0887732
.70 -.5|1.0669196| .43825568| .02381299] .24k534oLk | 28448357 .106695TL
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TABLE II
EXTERNAL. ELADE CONTRIBUTION TO UPWASH V, /U AT
THREE CHORDWISE STATTIONS (TOTAIL CONTRIBUTION
LESS SINGLE-WING CONTRIBUTION)
[M = 0.5;% = 7.60; s¥* = O; g = 1800:‘

AO Contributign Al Contribution A2 Contribution

k X . -
(a) Real Imaginary Real Imaginary Real TImaginary
0.02 {0.5 {-0.03298 | -0.01785 | -0.01254 | -0.00904 -o;oouou5 0.000098

.02 |0 -.02514 | -.01857 -.00847 | -.00937 -.004124 | .000070
.02 |~-.5| -.01700 | -.01L8%4 | -.00440 | -~.00918 -.004045 | .000041
1 5] -.0779% | -.00621 -.03512 | -.00449 -.00%992 | .001319
1 |o -.07032 | -.00899 -.03108 | -.005T7k -.004141 | .001176
d |-.5] -.06219 | -.01148 -.02695 | -.00685 -.00k122 | .001031
2 | 5] -.09096| .03060 | -.ob311| .0125% | -.002640 | .002693
2 ]o -.08608 0250k -.04018 .00992 -.003055 | .002515
.2 | -.51 -.08026 .01983 -.05697 00751 -.003243 | .002307
.3 5] -.08315 .05858 -.04105 .02680 -.000911 | .002539
3 |o -.08215 .05%62 -.03982 .02kol -.001556 | .002589
3 | -.51 -.07974 .04k852 ~-.03806 .02167 -.002021 | .002576
4 51 -.07T748 .07917 -.03893 .03854L -.000242 | .001262
b 10 -.07796 07713 -.03829 .03708 -.001056 | .001654
A4 [ -5 -.07669( .OTH25 | -.03693 | .03529 | -.001695 | .001951
.5 5] -.08155 .10883 - .0L006 .05537 -.001189 | -.000562
.5 10 -.08025 .11086 -.03842 05552 -.002113 | .000270
.5 | -5 -.07701 .11119 -.03597 .05489 -.002867 | .001021
.6 S| -.1025 18419 - .04655 .09567 -.005269 | -.002861
6 {0 -.09335 19156 | ~.ok079{ .09772 -.006364 | -.001212
6 | -.5] -.08175 .19568 -.03403 .09813 -.007205 | .000413
.7 51 -.24383 .T4995 -.08450 .38733 -.03865 | -.009206
T {0 -.16837 LTT459 - .0ll60 .39326 -.04035 | -.00267L
) -51 -.08955 .78649 -.00k03 | . .39261 -.04099 .003%k44

8Critical k for lowest resonance = 0.715973.
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TABLE ITI
INFLUENCE COEFFICIENTS FOR LIFT AND MOMENT
OF SINGLE WING AT M = 0.5
[ indicates real; I indicates imaginary]

k (0% o (0yh2 (ko . M (1yk2
0.02 R 2.1922 0.00245 0.00021. -0.05923 2.3109 0.00000

.02 T -.2380 060k -.00002 ~.1188 -.00055 -.01538
0.1 R 1.7846 0.03141 -0.00397 -.2718 2.3276 0.00037

.1 I -.5248 .2809 - .00065 -.2551 ~.01438 -.07733
0.2 R 1.4902 0.07702 0.01188 -.4285 2.3565 -0.00206

.2 I -.5737 53k1 -.00309 -.2645 -.04T754 ~.1559
0.3 R 1.327h 0.1297 0.02527 -0.5218 2.3901 -0.00580

3 I -.5688 7801 ~.00Tkk -.2421 ~-.09112 -.2358
0.k R 1.2258 0.1933 0.04357 -0.5848 2.4280 -0.01212

R I -.5610 1.0263% -.0L4h3 -.2148 -1435 -.3172
0.5 R 1.1555 0.2724 0.06683 -0.6327 2.4703 ~0.02148

.5 I -.5604 1.2751 -.02487 -.187k -.205k ~.4005
0.6 R 1.1015 0.3716 0.09514 -0.6723 2.5161 ~0.03458

.6 I - .5é81 1.5267 -.0k00L ~. 1604 -.278 -.h857
0.7 R 1.0542 0.4967 0.1347 -0.708L 2.57Th -0.05492

.7 I -.5833 1.7825 - .06k -.1278 -.3648 -.6017

Elastic axis

Bon/(moob?UR) = E.E/(xpobUE)] + %{%Eo)% + -(Qg-e-]] + 8 (% - 112‘—9:) li(f))Ao + -(Q%EJ + %El)% + .(%é?-:l
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TABLE IV
INFLUENCE COEFFICIENTS FOR LIFT AND MOMENT OF ELADE
ROW AT ZERO STAGGER, GAPCHORD RATIO = 3.80,

M=0.50, AND o = Q = 180°

[R indicates real; I indicates imagina.ry:l

k ' (0)%o (0)A1 (oYke (1Y% (1A (1)2
0.02 R 2.3328 0.08788 0.00217 -0.00957 2.3535 0.00012
.02 T -.17h0 05666 .00501 -.08549 -.00319 -.01293
0.1 R 2.0249 0.1107 10.00503 -0.1692 2.367h -0.00028
.1 I -.6359 .2790 -.002k4 -.3090 -.01940 -.07837
0.2 R 1.6254 0.1626 0.0135% -0.3829 2.4008 -0.00245
2 I -.7718 (5u28 -.00639 -.3630 -.05132 - 1577
0.3 R 1.3932 0.232k 0.02799 -0.5164 24472 ~0.00629
.3 I | -.T6u8 .8086 -.01329 -.3410 -.0934T -.2392
0.4 R 1.2637 0.3455 0.04898 -0.6084 2.5167 -0.01322
R I -.TE49 1.0831 -.02571 -.3159 -.1526 -.32k0
0.5 R 1.1670 0.5459 0.07645 -0.699% | 2.621k -0.02621
5 I -.817L 1.3654% -.04978 -.3013 ~.2500 ~ 4148
0.6 R 1.0061 1.0032 0.1043 -0.8538 2.789% -0.05746
.6 I -.986kL 1.5893 -.1081 -.2883 -.4826 -.5163
0.7 R -0.18p2 1.7376 -0.1246 ~-l.2242 2.2158 -0.2135
T I -.831L - .2052 -.2255 .2815 . -1.5488 ~.5549

E/(ﬁpobUg) = % {m [(O)AO + ﬁ%ﬂﬂJr B [(1 - :Lka)l:(O)AO + ﬁ%}ﬁl.} + 11{(1)% + Q%ﬂ]}

2

ﬁea/(:tpobeUe) = l:af/(:rpobtﬁ)] + % [ll-‘[(o)“o + -(%“2:[} + 8 [(% - l?) EO)AO + ﬂ%ﬁe—] + 3215[(1)1"0 + %Ag]]
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L Positive sense for
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Figure l.- Cascade geometry.
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Resonance lines

ki

Range in which Q is
restricted to lie by
periodicity of problem

1113

Figure 2.- Relationship between resonance and singularities of cascade
term. Letters are defined as follows: =zone A, no poles of cascade

term lie on real axis in T-plane; zone B, ~ Tg both iie on real

l)
axis in T-plane; zone C, T%, Tél both lie on real axis; zone D,
Tg, Tg, Ti, Tél, lie on real axis; and solforthi line aa, TS = Tg,
two poles coincide on real axis; line bb, TS Té ; two poles coin-
cide on real axis; line cc, Til = Té, two poles coincide on real

axis; and so forth.
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Figure 3.~ Effect of cascading or of tunnel walls on lift amplitude for
pure pitching motion about midchord. lLG' = Lift amplitude in cas-

cade; |Le'| = Lift amplitude of isolated blade; o = 180°; M = 0.5;
s/b = 7.60; s* = 0.
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Figure k.- Effect of cascading or of tunnel walls on 1lift phase angle
for pure pitching motion about midchord. o = 18005 M= 0.5;
s/b = 7.60; s* = O.
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Figure 5.- Effect of cascade or of tunnel walls on moment amplitude
for pure pitching about midechord (moment is about midchord) .
|Mg| = Moment emplitude in cascade; IMG'I = Moment amplitude of

isolated blade; o = 180°; M = 0.5; /b = 7.60; s* = O.
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Figure 6.- Effect of cascading or of tumnnel walls on moment phase
angle for pure pitching about midchord (moment is about midchord).
o = 180°% M = 0.5; s/b = 7.60; s* = 0.
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Figure 7.~ Effect of cascading or of tunnel walls on 1ift amplitude
for pure translatory motion. 'th = Lift amplitude in cascade;
‘Lh'l = Lift amplitude of isclated blade; o = 180°; M = 0.5;

s/b = 7.60; s* = 0.
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Figure 8.~ Effect of cascading or of tunnel walls on 1lift Phase angle
for pure translatory motion. ‘¢Lh = Lift phase angle in cascade;

¢Lh‘ = Lift phase angle of isolated blade; o = 180%; M = 0.5;
s/b = 7.60; s* = 0.
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Figure 9.- Effect of cascading or of tumnel walls on moment ampli-

tude for pure translatory motion (moment is about midchord).

thI = Cascade moment; IMh'I = Single-wing moment; o = 180°;
M= 0.5; s/b = 7.60; s* = 0.
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Figure 10.- Effect of cascading or of tunnel walls on moment (about
midchord) phase angle for pure translatory motion. ¢Mh = Cascade

'

moment phase angle; = Single-wing moment phase angle; o = 180°;

M= 0.5; s/b = 7.60; s* = 0.

NACA - Langley Field, Va.



