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SUMMARY 

A series method of determining two -dimensional vortex paths is con ­
sidered and applied to the computation of vortex positions behind a slender 
equal-span cruciform wing at any angle of bank as a function of the dis ­
tance behind the trailing edge. Calculated paths are shown for four bank 
angles. For a bank angle of 450 comparison is made with the results of a 
closed expression given in NACA TN 2605 . For other bank angles water - tank 
experiments provide qualitative comparison . Satisfactory agreement is 
found for a sufficient distance downstream to include most practical 
missile -tail positions. 

The interference forces on an equal-span interdigitated cruciform tail 
behind a slender equal - span cruciform wing are calculated for four angles 
of bank from the vortex positions found by use of the series. 

INTRODUCTION 

It is now well established that the vortex wake at the tail of a 
slender configuration similar to those used for many missiles is often 
entirely rolled up and that the downwash field at the tail can be obtained 
by use of a single discrete vortex as an approximation to the vortex wake 
trailing from each wing panel . If attention is confined to configurations 
for which the ideas of conventional slender -body theory can be used, the 
problem of determining the steady-state vortex paths becomes an exact 
analog of the classical problem of the motion of a system of parallel 
rectilinear vortices. 

~acks, in reference 1, has investigated the case of an equal-span 
cruciform wing at 450 angle of bank where the symmetry of the problem per­
mits the writing of a closed analytic solution for the vortex paths. The 
direct extension of his method to other angles of bank where no such 
symmetry exists does not appear feasible. 

In the present paper, in order to avoid the reqUirement of symmetry, 
a series has been developed to define the vortex paths. Paths computed by 
this method are compared with the analytic results of Sacks for 450 angle 
of bank, and with the results of water-tank experiments for three other 
bank angles. Calculations are made of the forces on a tail due to vortices 
in the computed positions. 
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SYMBOLS 

(2s)2 
aspect ratio, 

S 

one half the distance, at t = 0, between the t wo vortices 
associated with a component wing1 

distance of a vortex from the plane of symmetry of a component 
taill 

maximum chord 

lift coefficient, 
P U 2 

00 00 

2 

L 

S 

(The reference area used in this report is the area of one 
component wing . ) 

CL interference lift coefficient (approximate ) 
I 

eN interference normal - force coefficient 
I 

H tail surface that is horizontal at 
tail 

:n: 
1+ for interdigitated 

h perpendicular distance from a vortex to a component tail 

L lift, force in the z direction 

force in the z direction on a cruciform wing (invariant with 
bank angle) 

projection of the interference normal force on the x , z plane 
(approximately the interference lift) 

NI interference normal force, that is, normal force on a component 
tail due to the presence of vortices 

n positive integer 

R radius of a cylindrical boundary; specificall y, the radius of the 
water tank 

S area 
(The reference area used in this report is the area of one 
component wing.) 

lBy "component wing" (or "component tail") is meant a wing (or tail) 
consisting of two "panels" lying in the same plane. 
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s 

T 

t 

v 

semispan at trailing edge (maximum semispan) 

parameter used in series, fwt 

4rra2 

time, related to x by x = uoot 

free - stream velocity 

tail surface that is vertical at ¢ = * for interdigitated tail 

v,w velocity components in y and z directions due to two - dimensional 

w 

x,y,z 

f 

T 

¢ 

t 

w 

vortices 

complex velocity, v - iw 

Cartesian coordinates, origin at center of wing trailing edge, 
x axis in the stream direction (See fig. 1.) 

angle of attack, radians 

attitude angle of cruciform wing, that is, the angle between the 
free stream and the center line, radians 

circulation, positive counterclockwise 

reference vor"cex strength, invariant with bank angle, 
pooUoo(2a) 

complex coordinate, y + iz 

y - iz 

mass density of air at free-stream conditions 

parameter used in series, ~ 
~ 

perturbation velocity potential 

wing angle of bank positive clockwise 

Subscripts 

tail 

wing 
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ANALYSIS 

Axis System 

The coordinate system used in this report is a wind -axis system as 
shown in figure 1, where the origin lies at the trailing edge of the wing 
center line . The angle of attack is required by the limitation of the 
theory to be small and the trailing edges of the wing panels are assumed 
to lie in the x = 0 plane . 

Series Solution for Vortex Motions 

Analytical solutions for the motion of a system of parallel recti ­
linear vortices are given by Grobli in reference 2 for the case of three 
vortices with certain restrictions on the starting positions and strengths, 
for four vortices with a plane of symmetry, and for 2n vortices with n 
planes of symmetry . The solution for four vortices as given by Grobli 
contains an error2 but is given correctly by Sacks in reference 1 and is 
there applied to the case of the vortices behind a slender equal - span 
cruciform wing at 450 angle of bank, that is, to four vortices of equal 
strength starting in the form of a square. The solution in this case 
depends on the existence of a plane of symmetry and cannot readily be 
extended to cases of arbitrary vortex strength where the symmetry is 
lacking. 

The present analysis undertakes to define the positions of a number 
of vortices of given strengths and initial positions in terms of a Taylor's 
series in powers of the time, t, thereby eliminating the dependence on 
symmetry. Expansion around t = 0 results in the following expression 
for the position of the ith vortex: 

( 1) 

t n 
+ ... 

The coefficients of this series can be determined by using the Biot­
Savart law for two-dimensional vortices parallel to the x axis. For a 
system of free vortices, if Vi and Wi are the y and z components of 
the velocity of the ith vortex due to a vortex of strength rj situated 
at yj' Zj' the required vortex laws are: 

2Page 147 of reference 2, equations 23 and 24. 
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vi(t ) ~ y . ( t ) L - f j Zi(t) - Zj ( t ) 
= dt l 2n: r 2 

jfi 
( 2) 

Wi (t) d zi(t ) L fj Yi(t) - Yj(t) 

dt 2n: r 2 

j1i 

where 

Now if the positions of all the vortices are known at 
possible to write the coefficient of the first power of t 
for all the vortices concerned by simpl y substituting the 

t = 0 , it is 
in equation (1) 

initial positions 

into equation (2) to get (dYi) 
dt t=O 

and (dZi0 . Thus the first t wo terms 
dt/t=O 

of the series are known for all the vortices, that is, Yi and zi can now 
be written as linear funct i ons of t . Substituting these f i rst t wo ter ms 
into equation (2) and differ enti ating with r espect to t and then setting 
t equal to zero gives the coefficient of the second power of t. Now 
three terms of the series are availabl e for substitution into equation (2 ) , 
etc . Note that at each step the unknown terms of the series- are of no 
significance in the process since they still contain t as a factor after 
the differentiation and therefore disappear when t is set to zero . 

The following formula for differentiation of a product of two func ­
tions is convenient for use in obtaining higher order terms: 

dn d dn - l n(n - 1) d2 dn - 2 

f --- g + ~ -- f ----- g + f ----- g + 
dtn l ! dt dtn - l 2! dt2 dtn - 2 

n ! dn -k dk dn 
------ g - f + .. • g f (3) 
(n - k) !k ! dtn - k dtk dtn 

n> 1 

o < k < n 
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In the present case, if f(t) 

dn dn+lYi L -fj dn 
when -- v· = = dtn l dtn+l 2rr dtn 

jfi 

when dn dn+l L f j dn 
--w· z· 
dtn l dtn+l l 

2rr dtn 

jfi 
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1 
r2 

then g(t) represents (zi - Zj) 

zi - Zj 
is required, and (Yi - y.) 

r2 J 

Yi - Yj 
is sought. 

r2 

Now it can be seen that if the positions can actually be described 
by such a series, the only rpstriction on problems to be solved is that 
the series should converge rapidly enough to be practical for the desired 
values of t and that the work of evaluating the coefficients should not 
be prohibitive . 

As a test of the method the coefficients have been determined out to 
the fourth power of t for the case which corresponds to the equal-span 
cruciform wing at any angle of bank, that is for four vortices initially 
placed at the corners of a square with diagonally opposite vortices of 
equal strength but opposite sense. Furthermore, since there was a closed 
analytic solution available for this configuration at an angle of bank of 
450 , five additional coefficients were found for that case with a view to 
increased understanding of the behavior of the series . 

Initial Positions and Strengths of Vortices 

z 

--------------~~--~-+--------- y 

Sketch (a) 

In accordance with the work of 
Spreiter and Sacks (ref. 3) all of the 
vortici ty behind a "ring has been assumed 
to be concentrated in vortex lines 
springing from the centroid- of -vorticity 
positions at the trailing edge and sub­
ject thereafter to the two -dimensional 
vortex laws. Since the circulation, f, 
is equal to the jump in potential, 6~, 
and since slender-body theory leads to 
an elliptic spanwise distribution of 
~, the centroid of vorticity at the 
trailing edge of each wing panel lies 
at a point rr/4 of the distance from 
the center line to the wing tip. Thus, 
each vortex pair has a span of 2a, where 
a = (rr/4)sw as shown in sketch (a). 
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The lift of the equal - span cruciform wing, Lw, that is, the force 
in the direction of the positive z axis does not vary with angle of bank 
but remains throughout : 

(4 ) 

where 
¢ = o. 

fw is the circulation around the horizontal wing at angle of bank 
At other angles of bank the vortex strengths are related to fw 

as follows : 

) 
where the vortices are numbered as in sketch (a) . 

Solutions 

The use of equations (1) , (2), (3), and (5), together with the fact 
that the initial positions of the vortices are known in terms of the wing 
semispan, sw, and the bank angle, ¢, leads to a series for the vortex 
positions at any time t. Coefficients have been found out to the fourth 
power of t, and with the substitution 

T = ( 6) 

the series can be written as follows: 
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4Yl = sin ¢ _ (sin ¢ cos ¢)T - g (sin ¢ cos3¢)T3 + 
~sw 3 

g (sin ¢ cos2¢) (sin2¢ - cos2¢)T4 . 
.3 

cos 

4Z2 = sin ¢ _ (1 + sin2¢)T - (sin ¢)T2 - 1 sin2¢(1 + 2 sin2¢)T3 -
~sw 3 

1 sin ¢(3 - 4 sin2¢ cos2¢)T4. 
3 

4Z4 = _ sin ¢ _ 
~sw 

1 sin ¢(3 
3 
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For the special case treated by Sacks , that is, the equal-span 
cruciform wing at an angle of bank ¢ = n/4, there is a plane of symmetry 
and the series is simplified so that the labor of evaluating the coeffi­
cients is a great deal less. For this case coefficients were found out 
to the ninth power of t. Since cos ¢ = sin ¢ = 1/J2, and 

the series can be written, letting T = T/J2: 

4 J2 Yl = 1 _ T _ 2 T3 _ 8 T5 + 134 T 7 + 13318 T9. • • 

n Sw 3 15 315 2835 

4.J2 zl 1 - 3T - 2T2 _ 4 3 8 4 _ 28 T5 - 226 TS = T - - T 
45 n Sw 3 3 15 

932 T7 _ 3062 
T8 - 12172 T9. . . 

315 315 2835 

( 8) 

4J2 Y4 1 + T +E T3 + 8 T5 - 134 T7 - 13318 T9. . n Sw 3 15 315 2835 

4.J2 z4 
-1 - 3T + 2T2 4 T3 + 8 T4 28 ---= - - T5 + n Sw 3 3 15 

226 
TS -

932 T7 + 3062 
TS -

12172 T9 . . 
45 315 315 2835 

Relation Between T and x 

As pointed out previously, the vortex laws used here apply to 
straight-line vortices, parallel to the x axis, extending to infinity 
in both directions, and changing their position with time. Their use in 
the situation to vlhich they are to be applied depends on the three­
dimensional steady-state vortex picture showing relatively gradual vari­
ations in the x direction. Within the limits of slender-body theory 
the correspondence is exact, and the results obtained in the previous 
section can be used to compute the three-dimensional vortex paths behind 
a slender equal-span cruciform wing by means of the relation 
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Now since 

T (6) 

and 

p U rw(2a) 
00 00 

( 4) 

and in slender theory 

(10) 

the positions of the vortices at any downstream station, x/sw, can be 
found from equation (7), or for 450 bank from equation (8), by use of 
the relation 

( 11) 

where Ow is the "attitude angle," that is, the angle between the center 
line of the cruciform wing and the free-stream direction. 

If Aw 
written: 

as for triangular wings, then equation (11) can be 

x 
Sw 

'Jt4Aw T 

16cLw 
( 12) 

Equation (12) provides the relation used in the present report. 

EXPERIMENT 

In order to provide a qualitative means of judging the results of 
the computations for angles of bank for which no closed analytic solution 
is available, experiments were run with small models in a water tank. 
Water miscible paint spread on the trailing edge before each run remained 
floating on the surface of the water behind the model and made the vor­
tices visible. For various reasons, it was considered inadvisable to 
attempt quantitative comparison. For one thing, there is no general 
agreement a~ to the point in a vortex swirl which is to be considered 
the center of the core, and the centroid of vorticity, which is the 
quantity calculated in this report, is even more difficult to define. 
For another thing, the best pictures were obtained at angles of attack 
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which were too high to be entirely compatible with the assumptions of 
the theory. However, the water-tank experiments were expected to demon­
strate the trends in the variation of the vortex patterns with bank angle . 

Water Tank and Models 

The water tank used in the present experiments was the same as that 
described by Sacks (ref. 1) and is shown in figure 2. Three different 
models were used, all equal - span cruciform wings constructed of sheet 
metal 0 .050 inch thick. One model had an 8 - inch span and an aspect ratio 
of 2. The others were smaller, having only a 4- inch span. One of these 
had an aspect ratio of 1, the other, 2. Various angles of attack were 

- :n: 0 tried. The most successful runs were made at a = 12 = 15. As in ref-

erence 1, motion pictures provided a record of the distance traveled by 
the wing as well as of the changing vortex patterns. 

The water tank was not deep enough for the 8 - inch- span model to 
continue running much beyond two span lengths below the surface. However, 
the camera was kept running after the model stopped and the time measured 
in frames was used to determine an equivalent distance. 

Accuracy and Repeatability of Experimental Data 

It was found that runs made with the two small models showed exces­
sive influence of currents set up in the tank by the supporting mechanism 
and by various outside distrubances. The vortex paths behind the model 
with 8 -inch span showed little effect of stray disturbances but, since 
the water - tank diameter was only 22 inches, there was a large systematic 
error due to wall interference. 

A comparison was made of the vortex patterns at corresponding dis ­
tances behind the three different models for ¢ = :n:/4 . The choosing of 
the particular runs in which the symmetrical vortex pattern typical of 
this symmetrical configuration was maintained eliminated most of the 
irrelevant disturbances which made data from the small models generally 
unsatisfactory . Measured in terms of the half span of the model, the y 
coordinates of the vortex cores at corresponding distances behind the 
three models did not differ by more than 10 percent. However, the z 
coordinates behind the large model differed from those behind the small 
models by about 25 percent . 

A wall-interference correction consisting of a constant upwash, 
computed on the assumption of four discrete vortices (see Appendix A) 
was sufficient to bring the results for the large model into very good 
agreement with those for the small models . Since this was the case for 
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the bank angle of 450 where the general nature of the vortex pattern was 
known, and since the upwash at t = 0 was found, under the same assump ­
tion, not to vary with bank angle, it was assumed that the data obtained 
from the large model for other angles would also be satisfactory when the 
same correction was applied . The water-tank pictures shown in this report 
are those taken with the large - span model and the necessary corrections 
are indicated by additional reference points marked at the sides of the 
prints . 

No allowance was made for the effects of stopping the model before 
the runs were complete. The influence, if any, should have appeared as 
an additional downwash at the surface near the end of a run , but none was 
noted in comparing runs made with the large and small models . 

RESULTS AND DISCUSSION 

Computations of vortex paths behind a cruciform wing have been made 
using equations (7) and (8) for four angles of bank, ¢ = n/16, n/8, 3n/16, 
n/4 . Figure 3 shows the paths with y/sw plotted against z/sw for 
various value s of x/sw in a coordinate system in which the x axis 
lies in the stream direction and the bank angle is measured from the z 
axis and is positive when the starboard wing is rotated down . The points 
shown are for T = 0, 0 . 276, 0 . 352, 0 . 449, 0 . 517, 0 . 582, 0.650 , and 0 .766, 
which for an aspect -ratio - 2 wing with a lift coefficient of 0 .82 (~=n/12), 
corresponds to x/sw = 0, 4 .1, 5 . 2, 6 .6, 7 .6, 8 .6, 9 .6, and 11.4; that is, 
this figure may be considered either as a time history or as a representa­
tion of three - dimensional vortex paths. 

computations have been carried out to a value of T corresponding 
to the "leapfrog" ·position of reference 1, that is, to the value at which 
the two upper vortices pass between the two lower vortices for a bank 
angle of 450 . 

Figure 4 shows water - tank pictures taken with the 8 - inch- span model 
at an attitude angle of n/12 radians and at bank angles of n/16, n/8, 
and 3n/16 . Choice of the appropriate frames from the motion picture film 
made it possible to present pictures corresponding very closely to most of 
the values of T used in the computations. No comparison is shown for 
small values of T where the vortices were in the process of rolling up 
and the visible vortex cores were not only poorly defined but did not yet 
correspond to the centroids of vorticity. As can be seen from the first 
picture of each series, the solid white markers indicate the point at 
which the trailing-edge center line entered the water . The open white 
markers indicate the corrected position of this reference point, shifted 
upward to account for the upwash due to the presence of the tank wall. 
(See Appendix A.) It can be seen that the variation with angle of bank 
found by the calculations (fig. 3) is similar to that shown in figure 4. 
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In figure 3(d) the positions as calculated by the formulas of ref­
erence 1 are shown for comparison with the series results at a bank angle 
of n/4 . For this bank angle the ninth- order terms of the series were 
available from equation (8). Points are also shown computed with terms 
out to the fourth order as for the other angles of bank . Even at the 
"leapfrog" position (last point computed) the agreement is good if ninth ­
order terms are used. If only terms out to the fourth order are used, 
the largest error appears in the z coordinate of the fast moving vor ­
tices 1 and 2, but at a point which, for a = 12, would correspond to a 
distance downstream of four times the wing span, the error is still less 
than 10 percent of the total change of position in the z direction, or 
about 5 percent of the wing span. 

From this comparison with the work of Sacks, together with the fact 
that the water - tank pictures for other angles of bank also show qualita­
tive agreement with the computed vortex positions, it appears that the 
series computations give satisfactory results for a distance of several 
wing spans behind the trailing edge . 

As a further check on the dependability of the series method the 
results for ¢ = ~/4 using one term of the series, two terms, three terms, 
etc . , are presented in figures 5 and 6, again in comparison with the 
results calculated from the formulas 
of Sacks . In these figures the 
values of y/sw and z/sw are plotted 
separately against the parameter T, 
which is related to the downstream 
distance as in equation (12), so 
that 

T 

It can be seen from these figures 
that the series appears to converge 
quite rapidly for small values of 
T, and to converge, although more 
slowly, even for the highest value 
of T used. Sketch (b) shows the 
sum of the first n terms plotted 
against n, out to n = 9, for 
T = 0 . 517 for vortices 1 and 4. 
(The first term, n = 0, is not shown 
as it is simply the initial posi ­
tion.) It can be seen that in both 
cases the series for y/sw con ­
verges very quickly. Note also that 
only the odd powers of T appear in 

1.0 

I T 
Y4/ 'w and -Y3 / sw ~ 

-
'" 

Q....--

.5 

r.>.. -

~Y2/Sw~ 
---

yl/sw and 

I I 
2 4 6 8 10 

0 

--~~s---
I I 

.5 -0- equation (8) 

---- method of ref. I 
zl 's. 

I I 
z3/sw and Z4/Sw~ 

.0 
'0" -= -I 

-I .5 0 2 4 6 8 I 
n 

4>' T/41 T ' 0.517 

Sketch (b) 
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the series for y/ sw. The series for 
Z4 /SW alternate s and that for Zl/SW 
does not; however , both approach the 
correct val ue very rapidl y at T = 0 _ 517 . ~'~ J"'~~ 

- .5 

~I/SW 

~sw 1 
Figures 7 and 8 show y/sw and 

z/sw plotted agai nst T for each of 
the four vortices for a bank angle of 
~/8 . Only fourth -order terms are 
available for this case, but it can be 
seen that the behavior of the series 
is very simil ar to that observed for t>.. r Y3 /Sw 

e-a -1.0 I 'T'; 
2 
n 

I 

4 
4> = 11' / 8 ; T= 0.517 

Sketch (c) 

1 
~ l.4 Sw 

ZlSw\ 
~ (}' 

¢ = rr/4 . Sketch (c) shows the sum of 
the first n terms for ¢ = rr/8 plot ­
ted against n out to n = 4 for each 
vortex for T = 0.517, further sub-

2 
n 4 stantiating the statement concerning 

similar behavior, although the con­
vergence is slower . 

It appear s from these cons i derations that for smal l values of T 
only two or three terms of the series are required and that four terms 
are enough to give good results out to about T = 0 .5 . Beyond that point 
the results become somewhat doubtful unless more terms are used , but this 
provides a fairly wide range of useful values, as can be seen from the 
fact that for a lift coefficient of 0 . 5 and an aspect ratio of 2 , T = 0 . 5 
corresponds to about six span l engths behind the trai l ing edge of the wing . 

CALCULATION OF LIFT ON A CRUCIFORM TAIL 

The lift on the tail of a s l ender wing - tail combination due to the 
vortices from the wing can be computed by reverse f l ow techniques as 
discussed in reference 3, on the assumption that the tai l does not infl u ­
ence the positions of the vortices . The equation 
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given in reference 4 yields the nor ­
mal force on a component tail, or 
tail plane (see sketch (d)), due to 
a single vortex . Note that a factor 
has been placed in front of the 
outer radical to take account of the 
case of b < O. The effects of all 
the vortices must be summed for each 
component tail and the components of 
force in the z direction added to 
give the lift. 

The configuration chosen for 
the present calculations was a cru ­
ciform tail interdigitated behind a 
cruciform wing as in sketch (e ) , 
where the tail components are desig­
nated V and H as shown . Note that 
the tail center line is an extension 
of the wing center line, whereas the 
x axis lies in the stream direction . 
Since no account was taken of the 
effect of the tail on the vortex 
paths, the vortex positions used in 
the force calculations were those 
already computed in the absence of 
a tail for the station corresponding 
to the tail trailing edge. 

z 

15 

Sketch (d) 

x 

Sketch (e) 

The normal - force coefficients on each tail plane have been computed 
from equation (13) for four angles of bank for three ratios of tail span 
to wing span, and for T = 0 . 247 and T = 0.411. It should be noticed 
that varying T corresponds to varying either the tail length, the wing 
lift coefficient, or the aspect ratio (see eq. (12)) . For CL = 0 .5 and 
A = 2 these values of T correspond to x/sw = 6 and x/sw = 10 . The 
results are shown in figure 9. 

In figure 10 is shown the lift coefficient of the tail due to the 
presence of the vortices, that is, the interference lift coefficient, 
eLI' measured in the positive z direction (the same direction as the 

lift on the wing). It is interesting to note that for T = 0.247 and 
St/sw = 1, and also for T = 0.411 and St/sw = 1.2, there is very little 
variation of interference lift coefficient with angle of bank. 

A comparison with analytical results obtained by the method of ref­
erence 5 for 450 angle of bank is shown in figure 11, in which the inter­
ference lift is plotted against the tail-span to wing-span ratio. The 
agreement is very good, as of course should be expected since the vortex 
positions agree so well. 
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CONCLUDING REMARKS 

Computations of vortex paths and of forces on a tail behind a slender 
equal - span cruciform wing have been made using a series to determine the 
vortex positions as a function of the distance downstream . The results 
show that, for a bank angle of 450 , only a few terms of the series are 
needed to provide satisfactory agreement with the known analytic solution 
at downstream distances encompassing most practical missile tail posi ­
tions. Comparison with water - tank pictures of the vortex patterns for 
other angles of bank, and consideration of the relative size of succes ­
sive terms of the series, indicate that the same is true for the general 
case where no analytic solution is known. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif., Feb. 8, 1956 
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APPENDIX A 

WALL-INTERFERENCE CORRECTIONS 

As in the case of tunnel -wall corrections, the effect of surrounding 
a group of vortices with a solid cylindrical boundary of radius R can 
be calculated by the method of images when the vortex positions and 
strengths are known . 

For 
where S 
boundary 
point S 

each vortex within the boundary, the position is 
= y + iz and i = J:I. The position of the image 
is then known and is R2 /[j where [= y - iz. 
the complex velocity due to the image vortex is 

W v - iw 

given as Sj 
outside the 
Then at a 

(Al) 

If the field of interest is confined to a small area in the center of 
the cylinder and if the vortices also remain in this area, S may be 
neglected as very small compared to R2/~j and the complex velocity 
due to a number of image vortices may be written 

n 
i(-fj[j) 

W L (A2) 
2nR2 

j=J. 

Then 

n r · n 
f jYj I -

L w J IPiS j 2:rrR2 2n:R2 
j=J. J=:J. 

(A3) I ( -fj) -
n (-fjZj) v -- RPiS· = L 2n:R2 J 2n:R2 

j=J. j=J. 

Since the present report is concerned with an equal-span cruciform 
wing, there are assumed to be only four vortices within the boundary and 
the relation between their' strengths is 
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Then at the center of the cylinder 

w = ~ [(y - y )sin ¢ + (Y4 - Y2)COS ¢] 
2rrR2 1 3 

(A4) 

where Yl' Y2' Y3' Y4 and Zl, z2, Z3, and z4 depend on t. At t = 0 
the positions of the vortices are known in terms of ¢ and the semispan, 
sw, and the expressions for w and v simplify to 

w 

v 0 

for any angle of bank. 

For the special case of 450 bank angle, sin ¢ = cos ¢ = -1-
.[2 

and 

symmetry provides relations between the vortex positions so that 

(A6) 

v 0 

at any time t. Furthermore it is known (see refs. 1 and 2) that for 
this case (Yl + Y4) is constant with time so at the center of the cylinder 

w = constant; v = 0 (A7) 

as long as symmetry with respect to the Z axis is maintained. 
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Since, near the center of the cylinder, the upwash for all angles of 
bank is the same at t = 0 and the upwash for ¢ = n/ 4 does not change 
with time, it has been assumed that one correction, namely, 

could be used throughout. This resulted in a correction of 
fwswt 

~2 
to 

the z position at any time, t, where R is the radius of the water tank. 
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Figure 4. - Photographs of wake at various stations behind a cruciform 
wing of aspect ratio 2 , for three different bank angles ; ~ = n/12. 
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Figure 4.- Continued . 
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Figure 4.- Conc luded . 
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Figure 10 .- Variation with bank angle ¢ of the interference lift coef ­
f icient eLI on an interdigitated cruciform t ail at two val ues of the 
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