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SUMMARY

By use of the Id_neartheory of boundary-layer stability, an approxi-
● mate relation is derived between the Reyaolds number on a cone and the

Reynolds number on a flat plate for eqml closeness to transition; the
assumption is made that the ratio of the lamkar shear to the shear caused

4 by the velocity fluctuations in the laminar boundary layer is an indica-
tion of the closeness to transition. The fluctuations on plate and cone
are assumed to be of the same type and to be periodic in the direction of
flow. ~ use of Schlichting’s calculated simplificationratios for incom-
pressible flow,-the approximate relation-is made specific. This specific
relation is roughly that, at equal ratios of oscillation shear to laminar

..

shear, the cone Reynolds number based on the distance from the apex exceeds
the plate Reynolds nuniberbased on the distance from the leading edge by
twice the tinimum critical Reynolds nuniberon the plate. This relation
requires that the amplitude of the disturbance be equal on cone end plate
where amplification begins. The frequency on the cone is the frequency
that results in the maximum simplificationat a Reynolds num’’er;the fre-
quency on the plate is the frequency that results in the maximum aurplifi-
cation at the corresponding Reynolds number on the plate and is in general
not the sane as the frequency on the cone.

Although an exact analysis of the transition problem is not given,
nor is there given even an exact analysis of the stability of the laminsr
boundary layer on a cone, the indication is that the ratio of the cone
Reynolds number for transiticm, based on the distance to the cone apex,
to the plate Reynolds nuuiberfor transition, based on distance to the
leading edge, is not in general equal to3, as has been suggested by
other investigators. The analysis indicates.that the ratio varies from 3
when transition occurs at the minimum critical Reynolds nuniberto unity
when transition occurs at a lsrge multiple of the critical Reynolds number.

●

An examination of two sets of data does not lead to a definite conclusion
concerning the validity of the results obtained.

v
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INTRODUCTION

The significant practical effects of the

w

difference between the skin-
friction and heat-transfer coefficients sasociated with lsminar boundary
layers and those associated with turbulent boundary layers make important
the study of the transition from lsminar to turbulent flow. At present
the useful information concerning transition.is almost entirely derived
from experiment. mere is, however, a theory of the stability of ls.minar
flow for both incompressible ahd compressible flow (ref. 1) which, although
not sufficiently developed to be of direct practical use, is often useful
in a qualitative sense; that is, the theory can predict the direction of
the effect on transition of chsmges in pressure gradient, heat transfer,
Mach number, and Reynolds number if the initial disturbances in the
lsminar flow that eventually produce transition to turbulent flow are
sufficiently small. Disturbances that are tm large to be described by
the linear equations are often introduced by local surface imperfections
or by distributed roughness.

Although the theory of reference 1 gives the direction of the effect
v

on transition of a change in pressure gradient, heat trsnsfer, Mach number,
and Reynolds number, it can in no case predict the Reynolds number for b
transition. This Mmitation exists even when the imposed disturbances
are small enough to allow their initial behavior to be predicted by a
linearized disturbance eq~tion. The reason is that when the disturbances
have grown large enough to cause transition, they have also become too
lsrge for their behavior to be described by the linear equations. The
information on transition is therefore obtained from experiment, with the
stability theory serting at most as a guide for expected effects.

A simple example of boundary-layer flow is the flow over a flat
plate in the absence of a pressure gradient; this flow has been exten-
sively investigated at both subsonic and supersonic speeds. At SUpeTX3011iC

speeds the flow over a cone at zero angle of.~ttack is another exsmple of
flow with no pressure gradient. Since many bodies have cone-like fore-
bodes, the skin-friction smd heat-transfer coefficients on cones are
subjects of study. A simple relation is known to exist between the skin-
friction and heat-transfer coefficients of cones and those of flat plates
for either laminsx flow (ref. 2) or turbulent flow (ref. 3). Because
there is, however, no lumwn relation between the transition position on
a cone md that on a flat plate, this simple relation is not as useful
as it would otherwise be.

In order to obtain some information concerning the relation between
the transition positions on cones and those on plates, use is made of
results obtained by Battin smd Idn (ref. 4) concerning the relation
between the simplificationof disturbances on cones and plates. Their
conclusion is that, for a disturbance of a given time frequency, the

—
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simplificationof the disturbance between two boundary-layer Reynolds

● numbers on a cone till be A3 if the simplificationbetween the same
boundary-layer Reynolds nuniberson a plate is A. This result is the
starting point for the present smalysis, the purpose of which is to
investigate the possibility of obtaining a useful approximate relation
between the Reynolds nutriberon a cone and that on a plate for equal
closeness to transition. The analysis is based on the linear stability
theory and on the assumption that the ratio of the shear caused by the
disturbmce to the laminsr shear is an indication of the closeness to
transition. The information so obtained may be useful if the difference
between the transition Reynolds number and the Reynolds nunhrs at which
the relations for equal shear ratio become inapplicable is small.

SYMBOLS

A

●

-b

Cr

Ci

c1

Cf,lam

F( )

k

M

r

● s

t
u

amplification ratio

ratio of Vr to u’

Cr + ici

wave velocity of a disturbance of a single frequency

simplificationparsmeter; Ci<o for a decaying disturbance;
Ci = O for a neutral.

disturbance

boundary-layer Reynolds

lsminar shesring stress

function of ()

correlation coefficient,

disturbance; Ci > 0 for a growing

numiberparameter

Tw

coefficient,
p##

2

Mach number

perpendicukr distance from point x,y to axis of symmetry
of cone

amplification parameter

time



instantaneous value of veticity fluctuation

root-mean-square of velocity fluctuation in

velocity at outer edge af boundary layer

velocity inside boundary layer and parallel

instantaneous value of velocity fluctuation

root-mean-square of velocity fluctuation in

NACA IIW4078

in x-direction

x-direction

to surface

in y-~rection

y-direction

distance measured along surface from leading edge or apex

distance frcm surface measured

boundar~-laver Remolds numiber

perpendicular to surface

based on displacement

Reynolds number based on distance x,
U@

v

temperature

wave nuniberof disturbance, y

boundary-layer thiclmess

displacement thickness of boundary layer,
J:b - ~)~

wavelength of disturbance

kinematic viscosity at outer edge of boundsry layer

density

shear caused by

laminar shear,

viscosity

oscillations, -pm

%
.-

ampl.itudefunction

mesn value
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Subscripts:

c

o

tin

max

P

T

x

cone

at the beginning of

minimum

maximum

plate

transition

at distance x

amplification

at outer edge of boundsxy layer

wall

Battin and Iin (ref. 4)
a given time frequency grows

and %*, 2 on a plate, then

grow A3 times between R~*,

ANALYSIS ~

stated the result
A times between

that, if a disturbance of
two Reynolds ntiers %*, 1

a disturbance of the same time frequency tifi —
1 and Rs*-a on a cone. TMs result can be- >-

obtatned by noting that the &plification ratio as given in reference 5
is (in the present notation)

(1)

where to is the time at which the disturbance, which travels like a
wave, first reaches the part of the boundary lay= where it is smplified,
smd tx is the time at which it arrives at x.

The use of equation (1) to calculate the amplification on a cone
implies that the ratio of the local boundary-layer thiclmess to the local

● cone radius is vanishingly smalJ. b this case the equations that describe
the local stability characteristics of the boundary layer are the same as
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those for a flat plate.
surface area of the cone

The effect on
with increase

NACA TN 4078

●

the disturbance of the change in
in distance downstream is, however, K

not available frcm the equations for a vanishingly thin boun~- layer; -
consequently the use of ~quation (1) for a cone is an a~roximation. In
the pres~t analysis the assumption is also made that the disturbances

on both plate and cone are of the type ~(y)eia(x-et).

In order to express the amplification ratio as a function of the
boundary-layer Reynolds numbers at times to and tx, make use of the
fact that a disturbance composed of a single frequency moves downstream
with the wave velocity Cr; therefore,

Then

To
number,

dx—=
dt Cr

J’x ac~
—dx

A=e ~ Cr

express the ratio A as a function of the
note that on a plate .-

boundary-layer

.A-

Reynolds

.

(3)

or

2 qj
=5* dR~*=cl ydx (4)

When equation (4) is used, equation (2) becomes, for a flat plate,

To obtain the corresponding

sion (3) by the relation between

namely,

expression for a cone, replace expres-

J_
%.* and ~ on a cone (ref 2);v . ●

✘
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or

(6)

2%ti6R~* dR& = c1 Y

When equation (7) is used, equation (2) becomes

%? ‘--

If both the initial and the final
●

plate and cone and if the disturbance
the same a~, R5* plane for both cone

* tions (~) snd (8) differ by the factor
equations (~) and (8) that

(7)

(8)

values of %* sre the ssme on

travels along the same path in
and plate, the exponents in equa-

3. In this case it follows from

(9)

The relation (9) requires the same path in the ti*,R5+ pl~e ~d~

therefore, the disturbance must have the same frequency on cone and plate.
The relation (9) results because the disturbance takes three tfies as
long to pass from R~*,O to R~x on the cone as on the plate and thus
has three times as long in which to smplify. Note that for the uW, R5*

diagram to be identical for cone and plate, it is sufficient that the
Mach number and the temperature boundary conditions on cone and plate be
identical.

Equation (9) can also be obtained from Schlichting’s work (ref. 5).
Although Schlichting made calculations for a single frequency at a time,
the disturbance was assumed to be ccmposed of many frequencies. e

velocity ~ waa therefore replaced by the group velocity Cr +
?)
J%;

the disturbance under ccmsideration now moves with the group velocity. -
That the result ven by equation (9) is unchanged can be seen by replacing

(7
Cr by Cr+CL~ in equations (2), (~), and (8).

a
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Equation (9) gives the relation between the simplificationon the
cone and that on the plate for a disturbance of the same time frequency
that has reached the same value of Rb* on cone smd plate. For example,

if a disturbance of a single frequency has arrived at a value of ~x,

say R5*,1 (fig. 1), by moving along the path label~ (1) and has ampli-

fied A times on a plate, it will have amp~fied A3 times on the cone _ _
along the same path (l). Disturbances of all frequencies can exist but
only some cross the lower part of the neutral stability boundary

—

(curve ci = O, fig. 1) and pass into the reg$on of amplification as

they move downstream. The various disturbances of fixed frequency, for
example, those along paths (2) and (3) in figure 1, cross the lower
branch of the neutral curve at different values of R5*, and by the time

they have arrived at the same value of R~* they have grown by different

amounts. At each value of R~* one frequency has grown more than any
other. If the frequency for mudmum amplification and the maximum ampli-
fication are known for each value of R5* on the flat plate, then,
because the CL5*,R5* diagrsm is the same for cone and plate, the maximum

●

amplification to the same value of R~* on a cone occurs for the same
frequency and canbe found frcm equation (9). That is, equation (9)
becomes B.

A (AP )3C,max ‘ ,max (lo)

Thus if, for example, the relation between
in the form of a curve of Ap,m

~,max and R~ is given
against R~, the same curve willbe

the relation between Ac - and R5+, if the ordinate Ap,m ‘s
replaced by

(AWJ/3:

Now let the relation between
%?,= and R& be

(U)

( ~Twwhere F R8%,P,tin~ J ~
)
= O because ,- = 1 at R8* p =

% %*,p,min”2

The comparison between cone and plate is made for equal values of
Tw

M and —. Then, because of equation (10) and the preceding discussion,
‘b

the relation for the cone is

a

u
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1/3
@e (%,max) = F (%, c) (M?)

where M and Tw/I’5 are not written in equation (12) because ~ = ~

and ($)c = ~)p. Equation (12) can also be written as

lop&

The expression for the

AC,max = 3F(Rw, c) (13)

shear caused by the oscillatirmm in the
laminar bo~dary layer is taken as

‘tmb = -p=
4

for compressible as welJ as for
*

The assumption is now made
the disturbance shear

incompressible flow. (See ref. 6.)

that the maximum value of the ratio of

‘tur_b,B ‘ -PUV

to the laminar shear

dU
‘M

.VG

in a boundary-layer cross secticm is a measure of the C1OSeness to
trsmsition of the boundary layer at that cross section. The ratio is
given by the expression

{[()1 JH2
‘turb>max = - 2 ~b U[ A2

Tlsm ~f,lsnl Go
(14)

m iswhere k = —~Ivl the correlation coefficient and b is the ratio

of ‘1 to X The expression
~ u~

it is derived and discussed.

(14) is taken from reference 7, where

.
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For the plate, equation (14) becomes

()-‘turb,max . 2 {mkb ~
2A2

‘lm p Cf,lm, p % o
1

For the cone, equation (14) becomes

()‘turb,max . 2

‘km c Cf,km, c
F

Jp,max

2

()]}

~t A2
F()

C,max

(15)

(16)

To find the relation between cone and plate Reynolds numlers for

equal closeness to transition, set the ratio
(Tta-)p ‘qua’”’he

ratio (Tt~~H)c. When (Tt~H)c is made equal to (Tt~~H)p

and equation (16) is divided by equation (15), the result is

[(&)o,f(Ac)H)2cf,lm,p

[t)o,P12(~J~)2cf,m,c =1

(17)

where the assumption has been made that the magnitudes of the quantities
k and b in equation (16) are about the ssne as their values in equa-
tion (l~)o This assumption is supported by the discussion in reference 7,
which points out that the quantities k and b probably vary very
S1OWQ with Reynolds number.

The discussion in reference 7 cites Schlichting’s calculations
(ref. 8) for two points on the neutral curve (ci = O) in the a3*,I@* dia-
gram (fig. 1). One point was at Rb* = 893 cm the lower branch of the
neutral curve, the other at R5* = 2070 on the upper branch. Although k
varied across the boundary layer, both its maximum vs.lueand the position
for the maximum were almost the ssme for both points. Consequently, the
available data do not contradict the assumption that k and b canbe
taken as approximately independent of the Reynolds number.
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Equation (17) can also be written as

cone

tionh
and

*“

2 loge
AC,max

% ,max
+ 2 loge

()UfE O*C
+ loge

Cf,lam,p

Cf,lam,c
=0 (18)

Because the boundary-layer velocity profile on the plate and the
is the same, it follows that

~f , lam,p ‘w, c (19)
%,lam, c ‘R 6*,p

When equations (U.), (13), and (19) sre substituted into equa-
(18), the result is the general.approximate relation between R8*,c

%*, p

()

u!

3F(R~~4 - ‘(R~4 + ‘0” f “c + * l-oge$’: = 0

()

(20)

% O,p
>

No6pecific relation between R* c - R5*,p can be obttined frcm
equation (20) umless the form of the function F is known. At present
the only data available that canbe used to obtain this function sre
those worked out by Schlichting for the incompressible flow over a flat
plate (ref. 5). From Schlichting’s results it is found (see fig. 2) that
-agood approximation for the functicm F is

F(R~*) = s[R&2 - (R~*,~n 2)1 (21)

where S is equal to

If relation (21)

and R~*,p becomes

0.186x 10-~ for SchHchtingis data (fig. 2).

is used in eqmtion (20) the relation between R5*,c

(22)
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.

Because the u5*,R5* diagram is the ssme for cone and plate, it

follows that R&,p,tin = R~,c,mi.n. Equation (22) can then be written u

as .

()%*,C => ‘5++,tin
(23) -

‘5*,P > ‘&+,~n
+,

If the smplitude of the frequency that has had the maximum growth to
R5*,C is the same as the amplitude of the frequency that has had the

max~mum growth to R5*,P, when each frequent-yfirst crosses the lower

branch of the neutral c=e, then

(;)0,= (:)”,P

Equation (23) then becomes

J&Y‘d C&%$‘ithEquation (23) is a relati.onbetween

( )

2
the parameters S R5*,tin and , .

()

Equation (24) has the single

& o,p

(

2
parsmeter

)
s ‘~*,~n “



wkkm A.078
,’
.

If, iH”the absence of other data, the value of the psmmeter

. s(R5*,min)2 is calculated from sch~chtfig’s restits (ref. ~), ec$u+

()

R~*,c

()

‘5*,min .tion (24) can be solved for as a function of
%*, p %*jp

A convenient approach is to write equation (24) as

f %*.c\2.-

()‘5*,min
2

( ‘)

R~* c
2

and to calculate for vaxious values of
%*, p %*,p

. result is shown in figure 3. This result can be represented
simple form

13

(25)

. The

by the

(26)

without introducing much more of an approximation. (See fig. 3.) Equa-
tion (26) can also be written

3(R5*,C)2 -

as

(K5*jp)2‘ 2(RW,min)2 (27)

In order that equation (26) (or (27)) be a good approximation to
equation (24) it follows from equation (25) that it is sufficient that

When this inequality is satisfied, equation (24) is essentiddy independent

( )

2of the value of S I$*,tin .

The relations that have been obtained involve boundary-layer Reynolds
numbers. It is, however, often more convenient to consider Reymolds num-
bers based on the distance to the leading dge or to the apex rather than

.
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on the boumdary-layer thickness. In order to obtain relations that
involve the Reynolds number Rx rather than R&, eqution (22) is
used, together with the relations

Rx,c,min

(3), (6), and the relation

= 3Rx,p,min

Equation (28) follows from R~*,c fin ‘ ‘&+,p,min and equations (3)
and (6). Equation (22) can then~e written as

(C12 c12
3S ~ Rx,=

‘) ( )
‘~3%,p,min - s c12%,p - c12%,p,min +

()

U!

G O,c
l-”ge ~! +5 lo%

K =

()

o

% O,p
6 i&p>

or, titer rearranging the terms, as

(28)

()R 1

()
“p’tin loge %, c

()
= 1 + 2 %P@” -=+

%,p 4%2Rx,p,min %,p 3R’x,p Rx, p

If the amplitude of the frequency that ~ had the maximum growth
to q,= is the same as the smplitude of the frequency that has had the
maximum growth to ~ , when each frequency first crosses the lower

)P
branch of the neutral curve, then

●

(a,:(t)o,P
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.

and equation (29) becomes

n

()

Rx,c + 1

(“)

Rx ~ tin

RxlP R4sC12RX,~,tin x>P

Rx, c (“)Rx ~tin
=1+2

10ge 3RX,P %,p

15

(w)

Equation (29) is a relation between
&) ‘d (%~;:”) ~th

()
~1

K O,c
the parameters “12%, p,tin and

/11 ‘\ “
Equation (30) has the single

parameter “12%, p,min●

becomes so large that the

*
indicates that the ratio

()

u!
● % O,c

of loge U: .

()% Ojp

u%O,p
It is noted that if the Reynolds number ~,p

%,p,minratio is near zero, then equation (29)

R Rx,p
x,c

~
approaches unity for all finite values

If, in the absence of other data, the value of the parameter

“12Rx,p,min is calculated from SChl.ichting’sresults (ref. 5), the
Rx ~

equation (30) can be solved explicitly for ~ as a function of

%,p,min.
Rx,p

R
A convenient approach is to write equation (30) as

X>P

%,p,min .
Rx,cl-R

5P

Rx,p

[

1 :ge RX,C -2

4scl%,p,min
3Rx,p 1

(31)

Rx p,min
and to calculate ~ for various values of

* The result is
X>P R-x>P

shown in figure 4. This result can be represented by the simple form

(32)
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without introducing much more of an
tion (32) csm also be written as

NACA TN 4078
.

approxigqtion. (See fig. 4.) Eq,ua- .-
A

RX,c - Rx)p = ax, p,min (33)

In order that equation (32) or (33) be a good approximation to
equation (30), it follows from equation (31~that it is sufficient that

1 loge k <<2

4scl%,p,min %,p

When this inequality is
pendent of the value of

satisfied, equation (30) is essentially inde- .—

‘12%;p,min* ~.

The basis of the relations between the cone snd plate Reynolds num-
bers is the assumption that the measure of the closeness to transition
is the ratio of the shear caused by the oscillations in the lsminar
boundary layer to the viscous shear. It is interesting to note that if
this basis is replacedby the requirement that the smplitude of the
disturbances on,the cone and plate must be equal for equal closeness to
transition, it csm be shown that
by

9-
—

the relatio~s (23) an~ (24) are replaced .

(34) .

and

The relations (29) and (30) are replaced by

(35)

.
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.

and

*

Equation (35) is noted to be the
tion (37), the sauieas equation (32).
are used, the same result is obtained
amplitude is used as a criterion.

17

(37)

same as equation (26) and equa-
!l?herefore,if Schlichting’s data
whether the ratio of shears or the

the Reynolds number on a cone
transition has been obtained.

DISCUSSION

(eq. (20)) between
equal closeness to

A general rektion
snd that on a plate for
The relation is based on {he line= stability theory and on the assump-
tion that the ratio of the laminar shear to the shear caused by the
velocity fluctuations is an indication of the closeness to transition.
In order that equation (20) be valid it is also necessary that equation (1)
be correct. The use of equation (1) for a cone is based on the assumption
that the ratio of the boundary-layer thickness to the cone radius is so
smalJ that the linearized equations of continuity, motion, smd energy are
the same for the cone as for the plate. Consequently the values of u,
Cr, and Ci at a point on a cone are then the ssme as at a point on a
plate when the pertinent properties of the boundary layer at the two
points sre identical. It is also assumed that the amplification or decay
of a disturbance as it moves downstream can be calculated in the ssme way
as on a plate; that is, that although the effect of the downstream change
in surface area of the cone becomes more importamt as the ratio of the
boundsry-layer thickness to the cone radius increases (and also as the
ratio of the cone radius at transition to the cone radius at the beginning
of simplificationincreases), the effect is not important enough to change
the main conclusion; namely, that when ‘XJP is small, the ratio
R R
“c is near 3, but that when ~,p is very large the ratio “c is

Rx,p ‘X>P
near unity.

An attempt was made to retain the radius of the cone in the linearized
partisl differential equations of motion and continuity, but when the
radius of the cone was retained, the vsriables in the partial differential
equations could not be sepsrated. This means that disturbances of the

type upon which the snalysis is based, m=dy of the We F(y)e
iu(x-et)

>
are not, in general, possible on a cone. For vanishingly small values of

~, however, the radius disappears from the equations and the equations

become those for a plate; disturbances of the type @(y)eia~x-et) are
then allowable.
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An analysis based on the linear stability theory cannot, of course,
provide a relation between transition Reynolds numbers on cones and those
on plates because, when transition occurs, the disturbances are too lsrge
for their behavior to be describedby the linear stability theory. The
relations for equal closeness to transition csm thus be useful in a com-
parison of cone and plate transition Reynolds numbers only if the dif-
ference between the Reynolds numbers at which the relations for equal
shear ratio become inapplicable and the tr~sition Reynolds nunibersis
not appreciable. There i._no “a priori” method for determining whether
this difference is appreciable, because there is no sharp dividing line
between those oscillations with magnitudes small enough for their behavior
to be described by linear theory and those with magnitudes too large to
be so described. Moreover, although the use of the shear ratio as an
indication of the closeness to transition seems reasonable, because the
shear caused by the velocity fluctuations vsries from a negligible amount
in purely laminar flow to essentially the entire amount in turbulent flow,
it does remain sm assumption.

The specific relations, equations (23), (24), (29), and (30), are
obtained.from equation (20) by the use of the approximation given by
equation (21). Although equation (21) represents Schlichting’s data
almost exactly, it is possible that, for other Wh numbers and surface
temperature ratios~ the linear approximation_(eq. (21)) will not be so
exact. In this c=e the linear approximation can still be used if the
resulting decrease in accuracy is not important; or else a psrabol.icor
higher degree approximation can be used. At present no data on the
behavior of smplified oscillations in the compressible lsminar boundary

-.

layer are available; therefore, Schli.chting’sdata are wed to find the
value of the parsmeter S in eq-tion (21). Because Schlichting’s data
on smplificatim are used, the minimum critical Reynolds number is taken
as 575, the value calculated by Schlichting.

In order to determine whether equations (29), (30), and (33) are
useful in the comparison of cone and plate transition Reynolds numbers,
the data in references 9 and 10 sre used. The conclusion from reference 9

orR Rx
is that the ratio “c is about 3. If the factor 2 u,min in

Rx}p Rx)P
equation (29) is assumed to be negligible compared with unity and if the

value 0.575 x 10-5 is used for the term SC12, the result is that

—

()
UI

G O*-D ()- 2350 Q.
% O,c

for ~,p = 7x 105; that is, the initial disturb-

ances”& the plates-in the data cited in reference g would have to be very
much larger than those on the cones in order that the relation (29) predict
the behavior shown in reference 9. Reference 9 discusses this possibility.

.
On the other hand, the data of reference 10 behave in the manner

indicated by equation (33). It seems clear that a larger mount of
.
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comparable data is needed for cones and plates before
elusion csm be drawn concerning the usefulness of the

m
tions derived in the present analysis. At supersonic

19

a definite con-
approximate rela-
speeds the leading-

edge radius is noted to have an effect on the transition Reynolds nuniber
on plates and cones; W this effect may be large enough to affect the
correlation between plate and cone transition Reynolds nunibers.

In closing, it is remsrked that although the present state of
development of the theory does not permit the calculation of the ratio

()

Rx,c

()

R

%,p T’
the indication is that the ratio “c

R
will be near 3 only

x,p T
when transition occurs near the minimum critical Reynolds nuniber. When
transition occurs at a much larger Reynolds number, the indication is

()

Rx,c
that the ratio R tillbe nesr unity. Eecause these remarks apply

x,p T
only when transition is caused by the amplification of very small disturb-
ances, they are not applicable when local surface imperfections or US-
tributed roughness cause transitionby generating lsrge disturbances.

w CONCLUDINGR~

The Mnesr theory of boundary-lsyer stability is used to derive an
approximate relation between the Reynolds number on a caue and the
Reynolds nuniberon a flat plate for equal closeness to transition; the
assumption is made that the ratio of the laminar shear to the shear
caused by the fluctuations in the laminar boumdary layer is an indication
of the closeness to transition. The fluctuations on plate and cone sre
assumed to be of the sane type and to be periodic in the direction of
flow. By use of Schlichting’s calculated amplification ratios for incom-
pressible flow, the apprmcimate relation is made specific. This specific
relation is roughly that, at equal ratio of oscillation shear to lsminar
shear, the ccme Reynolds number based on the distance to the apex exceeds
the plate Reynolds number based on the distance to the leading edge by
twice the minimum critical Reynolds nuriberon the plate. This relation
requires that the amplitude of the disturbance be equal on cone and plate
where amplification begins. The frequency on the cone is the frequency
that results in msximum amplification at a Reynolds number; the frequency
on the plate is the frequency that results in the maximum amplification
at the corresponding Reynolds number on the plate smd is in general not
the same as the frequency on the cone.

Although an exact analysis of the transition problem is not given
nor even an exact analysis of the stability of the laminar boundary
layer on a cone, the indication is that the ratio of the cone Reynolds
number for transition (based on the distance to the cone apex) to the
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plate Reynolds number for transition (based on distance to the leading
edge) is not in general equal to 3, as has been suggested by other
investigators. The analysis indicates that the ratio varies from 3
when transition occurs at the minimum critical Reynolds number to unity
when transition occurs at a large multiple of the critical Reynolds
number. An examination of two sets of data does not lead to a definite
conclusion concerning the validity of the results obtained.

Langley Aeronautical Laboratory,
National Advisory Ccamittee for Aeronautics,

Langley Field, Vs., June 7, 1957. -

.
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Rx,c
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lation shear to lsminar shear on cone end plate.
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