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SUMMARY

By use of the linear theory of boundary-layer stebllity, an epproxi-
mete relation is derived between the Reynolds number on a cone and the
Reynolds number on a flat plate for equsl closeness to transition; the
assumption is made that the ratio of the laminar shear to the shear caused
by the velocity fluctuations in the leminar boundary layer is an indica-
tion of the closeness to transitlon. The fluctuations on plate and cone
are assumed to be of the same type and to be pericdic in the direction of
flow. By use of Schlichting's calculated amplification ratics for incom-
pressible flow, the approximate relation 1s made specific. This specific
relation is roughly that, at equal ratios of oscillation shear to laminar
shear, the cone Reynolds number based on the distance from the apex exceeds
the plate Reynolds number based on the distance from the leading edge by
twice the minimum critical Reynolds number on the plate. This relation
requires that the amplitude of the disturbance be equal on cone and plate
vhere amplification begins. The frequency on the cone is the frequency
that results in the maximum amplification at a Reynolds number; the fre-
quency on the plate is the frequency that results in the maximum amplifi-
cation at the corresponding Reynolds number on the plate and 1s in general
not the same as the frequency on the cone.

Although an exsct analysis of the transition problem is not given,
nor is there given even an exact analysis of the stebility of the laminar
boundary lsyer on & cone, the indication 1s that the ratio of the cone
Reynolds number for transition, based on the distance to the cone sapex,
to the plate Reynolds number for transition, based on distance to the
leading edge, is not in general equal to 3, as has been suggested by
other investigators. The analysis indlcates. that the ratio varies from 3
when transition occurs st the minimum critical Reynolds number to unity
when transition occurs at & large multiple of the critical Reynolds number.
An examination of two sets of data does not lead to a definite conclusion
concerning the validity of the results obtained.
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INTRODUCTION

The slgnificant practical effects of the difference between the skin-
friction and heat-transfer coefficients assoclated with laminar boundary
layers and those associated with turbulent boundary layers mske important
the study of the transition from laminar to turbulent flow. At present
the useful information concerning transition is almost entirely derived
from experiment. There is, however, a theory of the stability of laminar
flow for both incompressible and compressible flow (ref. 1) which, although
not sufficiently déveloped to be of direct practical use, is often useful
in a qualitative sense; that 1s, the theory can prediet the direction of
the effect on transition of changes in pressure gradient, heat transfer,
Mach number, and Reynolds number if the initial disturbances in the
laminar flow that eventually produce transition to turbulent flow are
sufficiently small. Disturbances that are tco large to be described by
the linear equations are often introduced by local surface imperfections
or by distributed roughness.

Although the theory of reference 1 gives the direction of the effect
on transition of a change in pressure gradient, heat transfer, Mach number,
and Reynolds number, it can in no case predict the Reynolds number for
transition. This limlitation exists even when the imposed disturbances
are small enough to allow their initisel behavior to be predicted by a
linearized disturbance equation. The reason is that when the disturbances
have grown large enough to cause transition, they have also become too
large for their behavior to be described by the linear equations. The
information on transition is therefore obtained from experiment, with the
atability theory serving at most as a guide for expected effects.

A simple example of boundary-lsyer flow is the flow over a flat
plate in the absence of a pressure gradient; this flow has been exten-
sively investigated at both subsonic and supersonic speeds. At supersonic
speeds the flow over a cone at zero angle of attack is another example of
flow with no pressure gradient. Since many bodles have cone-like fore-
bodies, the skin-friction and heat-transfer coeffiliclents on cones are
subjects of study. A simple relation is known to exist between the skin-
friction and hest-transfer coefficlients of cones and those of flat plates
for either leminer flow (ref. 2) or turbulent flow (ref. 3)}. Because
there is, however, no known relation between the transition position on
a cone and that on a flat plate, this simple relation is not as useful
&8 it would otherwise be.

In order to obtaln some information concerning the relation hetween
the transition positions on cones and those on plates, use is made of
results obtained by Battin end Iin (ref. 4) concerning the relation
between the amplification of disturbances on cones and plates. Their
conclusion is that, for a disturbance of a given time freguency, the
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emplification of the disturbance between two boundary-layer Reynolds

nunbers on a cone will be A3 1if the emplification between the same
boundary-layer Reynolds numbers on a plate is A. This result is the
starting point for the present analysis, the purpose of which is to
investigate the possibility of obtalning a useful approximate relation
between the Reynolds number on & cone and that on a plate for equal
closeness to transition. The analysis 1s based on the linear stability
theory and on the assumption that the ratio of the shear caused by the
disturbance to the laminar shear is an indication of the closeness to
transition. The information so obtained may be useful if the difference
between the transition Reynolds number and the Reynolds numbers at which
the relations for equal shear ratio become lnsppliceble is small.

SYMBOLS

A amplification ratio
b ratio of v' to u'
c cp + 1cg
Cp wvave veloclty of a disturbance of a single frequency
ey emplification paremeter; c4y <O for a decaying disturbance;

cs = O for a neutral disturbance; cy > O for a growing

disturbance
Cl boundary-layer Reynolds number parameter

T
Cf,lam, laminar shearing stress coefficient, ; =
P>3
2
F( ) funetion of ()
k correlation coefficient, ‘%xT
utv

M Msch number
r perpendicular distance from point x,y +to axls of symmetry

of cone
S amplification parameter

t time
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u ingtantaneous value of velocity fluctuation in x-direction
u' root-mean-square of veloclity fluctuation in x-direction
Us velocity at outer edge of boundary layer
U veloclty inside boundary layer and parallel to surface
v instantanecus value of veloclty fluctuation in y-directiomn
v! root-mean-gquare of velocity fluctuation in y-direction
X distence measured along surface from leading edge or apex
Y distance from surface measured perpendicular to surface
Rex boundary—layerURgznolds nurmber based on displacement
thickness, 5
Ry Reynolds number based on distance x, ng
T temperature
o wave number of disturbance, %?
o] boundary-layer thickness
o0
3 displacement thickness of boundary leyer, u/‘ ( - —EE;)dy
0 PsUs,
A wavelength of disturbance
v kinematic viscosity at outer edge of boundary layer
p density
Tturb shear caused by oscillations, -puv
Tiam laminar shear, pgg
i viscosity

amplitude function

—_— mean value
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Subscripts:

c cone

0 at the beginning of ampiification
min minimum

max meximum

P plate

T transition

X at distance x

o] at outer edge of bowmdary layer
w wall

ANATYSTS

Battin and Iin (ref. L) stated the result that, if a disturbance of
a given time frequency grows A times between two Reynolds numbers RS* 1
2

and Rgx,o on & plate, then a disturbance of the same time frequency will

grow A3 +times between Ra*,1 and Rg¥,2 on a cone. This result can be

obtained by noting that the amplification ratio as glven in reference 5
is (in the present notation)

(U; X f tzx sey 4 (1)

G

where t5 is the time at which the disturbence, which travels like a

wave, first reaches the part of the boundary layer where 1t is amplified,
and tyx 1is the time at which it arrives at x.

A =

el

The use of equation (1) to calculaste the amplification on a cone
implies that the ratio of the local boundary-layer thickness to the local
cone radius is vanishingly small. In this case the equations that describe
the local stebility characteristics of the boundary layer are the same as
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those for a flat plate. The effect on the disturbance of the change in
surface area of the cone with increase in distance downstream is, however,
not availsble from the equations for a venishingly thin boundary layer;
consequently the use of equation (1) for a cone is an approximstion. In
the present analysis the assumption is alsc made that the disturbances

on both plate and cone are of the type ¢(y)eia(x-ct).

In order to express the amplification ratio as a function of the
boundary-layer Reynolds numbers st times to end t,, make use of the

fact that a disturbance composed of a single frequency moves downstream
wilth the wave velocity ¢,; therefore,

dx _ -

_= C
at r
Then .. h .
X
%1 ax
C
A=e¥YXy T (2)

To express the ratio A as a function of the boundary-layer Reynolds
number, note that on a plate

Usx
or
2 Ug

When equation (4) is used, equation (2) becomes, for a flat plate,

Regx
2 5 ¢
T2 f % & Bex

Ap = "1™ Fox, 0 N (5)

To obtain the corresponding expression for a_cone, replace expres-

sion (3) by the relation between Ryyx and _JE%E on a cone (ref. 2);
namely,
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Rex = %Jgﬁ (6)

U
ERgx dRgx = C1° 2 dx (7

or

When equation (7) is used, equation (2) becomes

Rex
5 7 sk g% dRpx
A, = ECl Ra*;o (8)

C

If both the initial and the final values of Rgx &are the same on
plate and cone and if the disturbance travels along the same psth in
the same a&*,Ra* plane for both cone and plaste, the exponents in equa-
tions (5) and (8) differ by the factor 3. 1In this case it follows from
equations (5) and (8) that

Ay = A (9)

The relation (9) requires the same path in the ad%,Rgx plane and,

therefore, the disturbance must have the same frequency on cone and plate.
The relation (9) results because the disturbance takes three times as
long to pass from RS*,O to Rgx on the cone as on the plate and thus
has three times as long in which to amplify. Note that for the ad¥,Rgx

diagram to be identical for cone and plate, it 1s sufficient that the
Mach number and the temperature boundary condltions on cone and plate be
identical.

Equstion (9) can also be obtained from Schlichting's work (ref. 5).
Although Schlichting made calculations for a single frequency at a time,
the disturbance was assumed to be composed of many frequencies. e

veloclty ¢, was therefore replaced by the group velocity e + a;r);

the disturbence under consideration now moves with the group velocity.
Thet the result gﬁien by equation (9) 1s unchanged can be seen by replacing

er By oy +afSE) in equations (2), (5), and (8).
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Equation (9) glves the relation between the amplification on the
cone and that on the plate for a disturbance of the same time freguency
that has reached the same value of Rgy on cone and plate. For example,

if a disturbance of a single frequency has arrived at a value of Rgx,
say R&*,l (fig. 1), by moving along the peth labeled (1) and has ampli-

fied A times on a plate, it will have amplified A5 times on the cone
along the same path (1). Disturbances of all frequencies can exlst but
only some cross the lower part of the neutral stability boundary

(curve ¢y = 0, fig. 1) and pass into the region of amplification as

they move downstream. The various disturbances of fixed frequency, for
example, those along paths (2) and (3) in figure 1, cross the lower
branch of the neutral curve at different values of Rgx, and by the time

they have arrived at the same value of Rgx they have grown by different

emounts. At each value of Rgx one frequency has grown more than any

other. If the frequency for maximum smplificetion and the maximum ampli-
flcation are known for each value of Rgx on the flat plate, then,

because the ob%,Rgx dlagram is the seme for cone and plate, the maximum

amplification to the seme value of Rgx on a cone occurs for the same
frequency and can be found from equation (9). That 1s, equation (9)
becomes

Ae max = (Ap,ma.x)5 (10)

Thus 1f, for example, the relation between Ap,max and Rgx 1s given
in the form of a curve of Ap mgx against Rgx, the same curve will be

the relation between Ac,max and Rgg, 1f the ordinate Ap,max is

replaced by (Ac,max)l/3'

Now let the reletion between Ap,max and RS* be

T
loge Ap max = F(Ra*’p, M, E:si) (11)

Tl . - =
where FCRB*,p,min’_NL Eg) = 0 Dbecause Ap,max =1 at 35*,p = RG*,P;min'

The comparison between cone and plate 1s made for equal values of
T
M and EE' Then, because of equation (10) and the preceding discussion,

o)
the relatlon for the cone is -—
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1/3

loge (Ac’max) = F(Rex, o) (12)

where M and T, /Ty are not written in equation (12) because M, = M,

T T
and ﬁ;) = <T¥) . Equation (12) can also be written as
&/ec &/p

loge Ac mex = 3F(Rex,c) (13)

The expression for the shear caused by the oscillations in the
laminar boundary lsyer is taken as

Tourd = =0
for compressible as well as for incompressible flow. (See ref. 6.)

The assumption is now made that the maximum value of the ratio of
the disturbance shear

Tturb,max = =PWV

to the lsminsr shear
=y U
Tlem = ¥ @y

in a boundary-layer cross section is a measure of the closeness to
transition of the boundary layer at that cross section. The ratio is
glven by the expression

2
T 1
tirb,max - -z 2 ¥b (u ) A? (1h)
lam f,lam Us/o
max

where k = u?z‘ is the correlstion coefficient and b 1s the ratio

%é to %é. The expression (1) 1s teken from reference 7, where
it 1s derived and discussed.

of
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For the plate, equation (1L) becomes

T : 2
_turb,max) 2 b [(u—')] I (15)
Tiam D Ce,1am,p Us /o

Pymnax

For the cone, equation (14) becomes

T 2
_twbmax) _ 2 (u_) 22 (16)
Tlam /e Cf,lam,c Us /o

c,max

To find the relatlion between cone and plate Reynolds numbers for

T
equal closeness to transition, set the ratio —EEEELEEE equal to the
lam i)
T T T
ratio (ﬂ_max_) . When (M) is mede equal ‘o M)
Tiam c Tlam c Tlam /p
and equation (16) is divided by equation (15), the result is
2
u! 2
—_— A ()
[(USJO,C] (c;max) f,lam,p
=1 (17)

[@—;)o,p]g(%’mx)ecf s Lam,c

where the assumption has been made that the magnitudes of the quantities
k and b in equation (16) are sbout the same as thelr values in equa-
tion (15). This assumption is supported by the discussion in reference 7,
which points out that the quantities k and b probebly vary very
slowly with Reynolds number.

The discussion in reference 7 cites Schlichting's calculations
(ref. 8) for two points on the neutral curve (ci = O) in the ad¥,Rgx dia-
gram (fig. 1). One point was at Rgx = 893 on the lower branch of the
neutral curve, the other at Rgx = 2070 on the upper branch. Although k
varied scross the boundary layer, both its meximum value and the position
for the maximum were almost the same for both points. Consequently, the
available data do not contradict the assumption that k and b can be
taken as approximately Independent of the Reynolds number.
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Equation (17) can also be written as

ut
A (ﬁ‘) C
2 loge S,mAx + 2 ]_ose _?_OLE + loge ai!i_a‘mﬂ = 0 (18)
max 4 f,lam,c
’ US o,p 2 >

Because the boundary-layer veloclty profile on the plate and the
cone 1s the same, it follows that

C
c

R
f,lam,p _ "8%,c (19)
f,lam,c RS*,p

When equations (11), (13), and (19) are substituted into equa-
tion (18), the result is the general approximate relation between RS*,c

(t)

Us/o,c Rgx

3F(Rgx,c) - F(Rox,p) + Loge 12— + 1 loge -Ea—*-ﬁ =0 (20)
o P
(US)O)P ’

No ‘specific relation between Rgy . and Rgy p can be obtained from

equation (20) unless the form of %he function, F is known. At present
the only date availsble that cen be used to obtain this function are
those worked out by Schllichting for the incompressible flow over a flat
plate (ref. 5). From Schlichting's results it is found (see fig. 2) that
a good approximation for the function F 1is

F(Rex) = 3[35*2 - (RS*,min)a] (21)

where S 1is equal to 0.186 x 10™2 for Schlichting's data (fig. 2).

If relation (21) is used in equation (20) the relation between RS*,c

8’p
J

( s

% log, ;éfls =0 (22)
5*’p .

38 [(Ra*,c)e - (Ra*',c,min)a] - "3[35-*,192 - (RS*,p,min)e] + loge
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Because the d.S*,Ra* diagram is the game for cone and plate, it

i:llows that Rex p min = Bo*,c,min Fquation (22) can then be written

ul
(U_)o R
2 2 8/0,¢ 1lge _d%.c _ g

2
Us 0,p ’

or, after a slight rearrangement, as

35 (Rs*,c) - S(Ra*’p)

(Rs*, C)E . 1 5*,m1n) loge(F ) _ 1., g(RB*,min)Q
Rex,p/  125(Box,min ) \ Box,p Ro,p 5\ Rox,p
o
1 (hs* min (ﬁ_s-)o,c Rex,c 2 Ro*,min
35(Box, min)e\ Rex,p ) © (—' | R > R (22)
US)O,p o%,p = o¥%,min

If the amplitude of the frequency that has had the maeximum growth to
RS*,c is the same as the amplitude of the frequency that has had the

meximum growth to R&*,p’ when each frequency first crosses the lower
branch of the neutral curve, then S T . . _

Equation (23) then becomes

R 2 R 2 R 2 2
<R8*!c) + 1 2(2*,min> loge<R8*,c) =21 4 gC‘a* 5%, min (24)
o¥,p le(RB*,min) &%,p &%,p 3 8*:P

N

2 2
R R
Equation (23) is a relation between _o%c and | -SX.min with
1\ o¥,Dp Ra* b
um 2 2
2 (%)O c :

the parameters S(RS*,min) and @J_ Equation (24) has the single

Us/o,p

parameter. S (RS*, min )2 .
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If, in the sbsence of other data, the value of the parameter
S(Ra*,min)a is calculated from Schlichting's results (ref. 5), equa-

R R .
tion (24} can be solved for (_Qf;g as a function of (—gf&giﬁ .
Rs*:P *,p
A convenient approach is to write equation (24) as
2
Ry%
2 1.3 (6_)
<$§32£§£5 = To%,p 2 (e5)
Rax 1 Rex
sP 5 loge<§%£) -2
hS(RS*,min) 5%, p

2 . 2
R R
and to calculate (€§E£E£9 for various values of (.§fz§) « The
o¥%,p

Rs*;P
result is shown in figure 3. This result can be represented by the
simple form

2 2
R

(ww)=l+g6wmm (26)
Rex,p 3 3\ Bex,p

without introducing much more of an approximation. (See fig. 3.) Equa-
tion (26) can also be written ss

2 2

5(Rox,c)” - (Rox,5)” = 2(Rox,min) (27)

In order that equation (26) (or (27)) be a good approximation to
equation (24) it follows from equation {25) that it is sufficient that

Ry 2 R., \°
L log _0%c) o I 8%c) 1
hS(RS*,min) 5%,p 5%,p

When this inequality is satisfied, equation (24) is essentially independent
2
of the value of S(RS*,min) .

The relations that have been obtalned involve boundary-layer Reynolds
numbers. It is, however, often more convenient to consider Reynolds num-~
bers based on the distance to the leading edge or to the apex rather than
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on the boundary-layer thickness. 1In order to obtain relations that
involve the Reynolds number Ry rather than Rgx, equation (22) is

used, together with the relations (3), (6), and the relation

Rx,c,min = 3Rx,p,min . (28)

Equation (28) follows from RS*,C min = RS*,p,min and equatlions (5)
and (6). Equation (22) cen then be written’ as

2 2 '
35<_3- RX:C - T 5RX;]:'J)lifl.'l.n) - S<Cl RX’P - clsz,p,min) *

%) e
1 (US O,e , 1 1 Rx,c -0
08¢ ot + 5 OZe =
(U_) B VRx,p
8/0,p

or, after rearranging the terms, as

<Rx,c) + 1 (Rx,p,mii)loge Bx,e _ 1+ 2<szE,mif) _

Rx,p MSClERx,p,min Rx,p 3Rx,p Rx,p
_ 1 /Rx,p,mii)loge U?)O c By,c 2 Bx,c,min (29)
u_
5C1 Rx,p,min\ x,p (Ua)o 5 Bx,p 2 Bx,p,min
>

If the amplitude of the frequency that has had the maximum growth
to Rx.c is the same asg the amplitude of the frequency that has had the

maximuﬁ growth to Rx,p’ when each frequency first crosses the lower
. branch of the neutral curve, then

Us/o,c  \Us/o,p

"4
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and equation (29) becomes

(2&) + 5 1 Rxf{p,min loge R;zc -1 4 2<sz;ezmin (30)
X,D LsCy Ry, p,min X, D 3Rx,p By,p

R
Equation (29) is a relation between ( X’c) and (EX:_I%EE) with

2

7 .
(US)O P

parameter SC1°Ry p min. It is noted that 1f the Reynolds mumber Ry ,

the parameters SClERx,p,min and Equation (30) has the single

becames so large that the ratio R—x-f-hm—ir—l is near zero, then equation (29)

R
R X,P
indicates that the ratio —2% approaches unity for all finite values
(u') 2P
U
of loge T?M.
(UB)O,p

If, in the absence of other data, the value of the parameter
SClERx,p,min is calculated from Schlichting's results (ref. 5), the

R
equation (30) can be solved explicitly for i}_ﬁ as a function of
x,P

Rx},{_p,mﬂ. A convenient approach is to write equation (30) as
X,P
R
R, 1 - X8
,D,min Bx,p (31)

R
X 1 c
»P [ loge —’——3Rx - {l
J-I-SC]_afix’ p,min »P

R R
and to calculate ZX,p,min for various values of —2S. The result is
X, P X,D
shown in figure 4. This result can be represented by the simple form

( i’z:;)= 1+ 2<R——x§§:r;in> (32)
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without introducing much more of an approximetion. (See fig. L4.) Equa-
tion (32) can also be written as B

Rx,e = Rx,p = 2Rx,p,min (33)

In order that equation (32) or (33) be a good epproximation to
equation (30), it follows from equation (31) that it is sufficient that

R - R
1 loge —2S << 2 - (% <X < 1>
uSClQRx,p,min 3Ry, p 3Ry, p

When this inequality i1s satlgfied equation (30) is essentially inde- -

pendent of the value of = SCy Rx,p,min - ) ) R i
The basgis of the relations between the cone and plate Reynolds num- > -

bers 1s the assumption that the measure of the closeness to transition ’

1s the ratio of the shear caused by the osclllations in the leminar

boundary layer to the viscous shear. It 1s interesting to note that if .

this basis is replaced by the requirement that the amplitude of the

disturbances on the cone and plate must be equal for equal closeness to

transition, it can be shown that the relations (23) and (24) are replaced

by

2 2 -~ =
(EﬁL) 1, g@i@i&@) 1 /Raz,min) Log, /0,
Re*,p 3 3\ Rex,p 58(35*, min)2\ Rex,p (u_')o ;

2

Us
(34)
and _
2 2
(RB* c) -3 g guntn (35)
RS*,p 35 RS*,p

The relations (29) and (30) are replaced by

R R R Ug
x?c -1 +2 X,p,miny 5 1 : ( X,p,min log, : )
& .2 8C1%Ry,p,min\ Fx,P (E—s)o
s P
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and
szc =1 +2 -szzmin (37)
Bx,p Ry,p

Fquation (35) is noted to be the same as equation (26) and equa-
tion (37), the same as equation (32). Therefore, if Schlichting's data
are used, the same result is obtained whether the ratio of shears or the

amplitude is used as a criterionm.
DISCUSSION

A general relation (eq. (20)) between the Reynolds number on a cone
and that on a plate for equal closeness to transition has been obtained.
The relstion is based on the linear stabillty theory and on the assump-
tion that the ratio of the laminar shear to the shear caused by the
velocity fluctuations is an indication of the closeness to transitionm.

In order that equation (20) be valid it is also necessary that equation (1)
be correct. The use of equation (1) for a cone is based on the assumption
that the ratio of the boundary-layer thickness to the cone radius is so
small that the linearized equations of continuity, motion, and energy are
the same for the cone as for the plate. Consequently the values of a,

cp; and c; at a point on a cone are then the same as at a point on &

plate when the pertinent properties of the boundary layer at the two
points are identical. It is also assumed that the amplification or decay
of a disturbance as it moves downstream can be calculated in the same way
as on a plate; that 1s, that although the effect of the dowmstream change
in surface area of the cone becomes more lmportant as the ratio of the
boundary-layer thickness to the cone radius increases (and also as the
ratio of the cone radius at transition to the cone radius at the beginmming
of amplification increases), the effect is not important enough to change
the main conclusion; namely, that when Rx,p is small, the ratio

R R
X:& is near 3, but that when Rx,p is very large the ratio e TI =

x,P X,p
near unity.

An attempt was made to retain the radius of the cone in the linearized
partial differential equations of motion and continuity, but when the
radius of the cone was retained, the variables in the paertisl differential
equations could not be separated. This means that disturbences of the
type upon which the analysis is based, namely of the type ¢(y)ei“(x'Ct),
are not, in general, possible on & cone. For vanishingly small values of
%’ however, the radius disappears from the equations and the equations
become those for a plate; disturbances of the type '¢(y)ei“(x'Ct) are
then allowable.
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An anslysis based on the linear stability theory cammot, of course,
provide & relatlion between transition Reynolds numbers on cones and those
on plates because, when transition occurs, the disturbances are too large
for thelr behavior to be described by the linear stebility theory. The
relations for equal closeness to transition can thus be useful in a com~
parison of cone and plate transition Reynolds numbers only if the dif-
ference between the Reynolds numbers at which the relations for egual
shear ratio become inappllicable and the translition Reynolds numbers 1s
not apprecigble. There is no "a priori" method for determining whether
this difference 1s apprecisble, because there is no sharp dividing line
between those oscillations with magnitudes smell enough for their behsavior
to be described by linear theory and those with magnitudes too large to
be go described. Moreover, although the use of the shear ratio as an
indication of the closeness to transition seems reasonable, because the
shear caused by the velocity fluctuations varies from a negligible amount
in purely laminer flow to essentially the entire amount in turbulent flow,
it does remain an assumption.

The specific relations, equations (23), (24), (29), and (30), are -
obtailned from equation (20) by the use of the approximation glven by
equation (21). Although equation (21) represents Schlichting's data
almost exactly, 1t 1s possible that, for other Mach numbers and surface »
temperature ratios, the linear approximation (eq. (21)) will not be so
exact. In this case the lineesr approximation cen still be used if the
resulting decrease in accuracy ils not important; or else a parebolic or
higher degree approximation can be used. At present no data on the .
behavior of amplified oscillations in the compressible laminar boundary
leyer are avallable; therefore, Schlichting's date are used to find the
value of the parameter S 1in equation (21). Because Schlichting's data
on amplification are used, the minimum critical Reynolds number is taken
as 575, the value calculated by Schlichting.

In order to determlne whether equations (29), (30), and (33) are
useful in the comparison of cone and plate transition Reynolds nunbers,
the data in references 9§ and 10 are used. The conclusion from reference 9

R R
is thet the ratio [=X:C) is ebout 3. If the factor 2 —XsBaMiDn 4p
Rx,p RX:P
equation (29) is assumed to be negligible compared with unity and if the

value 0.555 X 10~2 is used for the term SClz, the result 1s that

(El) . 2350(2) for R__ =7 x 10%; that is, the initial disturb-
Us/o,p Us/o,c P

ances on the plates in the data cited in reference 9 would have to be very

much larger than those on the cones in order that the relation (29) predict
the behavior shown in reference 9. Reference 9 discusses this possibility.

On the other hand, the data of reference 10 behave in the manner
indicated by equation (33). It seems clear that a larger amount of
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comparable data 1s needed for cones and plates before a definite con-
clusion can be drawn concerning the usefulness of the aspproximate rela-
tions derived in the present analysis. At supersonic speeds the leading-
edge radius 1s noted to have an effect on the transition Reynolds number
on plates and cones; and this effect may be large enough to affect the
correlation between plate and cone transition Reynolds numbers.

In closing, it is remarked that although the present state of
development of the theory does not permit the calculation of the ratio

EELE » the indication is that the ratio 5513 will be near 3 only
Rx,p T X,p /T
when transition occurs near the minimum critical Reynolds number. When
transition occurs at a much larger Reynolds number, the indication is

R
that the ratio §§LE will be near unity. Because these remarks apply
X,p/T
only when transition is caused by the amplification of very smsll disturb-
ances, they are not applicable when locel surface imperfections or dis-
tributed roughness cause transition by generating large disturbances.

CONCLUDING REMARKS

The linear theory of boundary-layer stebility is used to derive an
approximate relation between the Reynolds number on a cone and the
Reynolds number on a flat plate for equal closeness to transition; the
assumption is made that the ratio of the laminar shear to the shear
caused by the fluctuations in the laminar boundary lsyer is an indication
of the closeness to tramsition. The fluctuations on plate and cone are
assumed to be of the same type and to be periodic in the direction of
Tlow. By use of Schlichting's calculated amplification ratios for incom-
pressible flow, the approximate relation is made specific. This specific
relatlon is roughly that, at equal ratio of oscillation shear to leminar
shear, the cone Reynolds number based on the distance to the apex exceeds
the plate Reynolds number based on the distance to the lesding edge by
twice the minimum critical Reynolds number on the plate. This relation
requires that the amplitude of the disturbance be equal on cone and plate
where amplification begins. The frequency on the cone is the frequency
that results in maximum amplification at a Reynolds number; the frequency
on the plate is the frequency that results in the meximum amplification
at the corresponding Reynolds number on the plate and is in general not
the same as the frequency on the cone.

Although an exact analysis of the transition problem is not given
nor even an exact analysis of the stability of the laminar boundary
layer on a cone, the indication 1s that the ratio of the cone Reynolds
number for transition (based on the distance to the cone apex) to the
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plate Reynolds number for transition (based on distance to the leading
edge) is not in general equal to 3, as has been suggested by other
investigators. The analysis indicates that the ratio varies from 3
when transition occurs at the minimum critical Reynolds number to unity
when transition occurs at & large multiple of the critical Reynolds
number. An examination of two sets of data does not lead to a definite
conclusion concerning the validity of the results obtained.

Langley Aeronautical Leboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., June T, 1957.
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