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SIMMARY

An examination of the effects of compressibility, variable proper-
ties, and body forces on ftiy developed laminar flows has indicated
several limitations on such streams.

In the absence of a pressure gradient, but presence of a body force
(e.g., gravity), an exact fully developed gas flow results. For a liquid

y this follows also for the case of a constant stresmwise pressure gradient.
g These motions sre exact in the sense of a Couette flow. In the liquid

case two solutions (not a new result) csm occur for the ssme boundsry

k conditions. An approxhate anslytic solution was found which agrees
closely with machine calculations.

* In the case of approximately exact flows, it turns out that for
large temperature v~iations across the channel the effects of convec-
tion (due to, say, a wsll temperature gradient) and frictional heating
must be negligible. In such a case the energy and momentum equations
are separated, and the solutions are reaiUly obtained. If the temper-
ature variations are small, then both convection effects and frictional
heating can consistently be considered. This case becomes the constant-
property incompressible case (or quasi-incompressiblecase for free-
convection flows) considered by many authors.

Finally, there is a brief discussion of cases wherein streamwise
variations of all quantities are snowed but only in such form that the
independent varisbles are separable. For the case where the stresmwise
velocity varies inversely as the sqwre root of distance slong the chan-
nel, a solution is given.
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INTRODUCTION
8

Among all possible fluid flows, one of the most useful is the fully
developed (i.e., independent of streamwise distance) channel flow. The
flow is taken to be the motion generated by a constant pressure gradient
(the familiar Poiseuille flow) or bya body force (ref. 1). In either
case one usually considers only an incompressible or quasi-incompressible
flow with fixed fluid properties. This is in marked contrast to the case
of Couette flow where two parsllel wsdls move with respect to each other.
In such a case there is no need to limit oneself to a perfect gas or to E
w pafiic~ar variation of the transport properties (ref. 2 is a ease P

in petit).

The crucial difference between the Couette and the Poiseuille flows
is that the former admits a stresm wherein nothing depends on the stresm-
wise distance, while the latter requires that the pressure vary in the
flow direction. Hence, to some small degre=, at least, the other fluid
properties will also vary in that direction if the state equation in-
volves the pressure. The present study is an examination of the general
circumstances under which there can be a fully developed lsmlnar flow
past fixed boundaries.

One special problem considered is an unusual situation foundby
Ostrach (refs. 1 sad 3 to 6).

4
He discusses the flow of a fluid in a two-

&bnensionsJ_channel under the influence of gravity. Incompressible flow
is assuued except as is.required to generate a varying body force, smd >
the fluid transport properties are assumed not to vsxy. Under these
assumptions, the surprising result is found that there are two solutions
to the flow in question for a certaim range of vs.kes of the flow parsm.
eters. The first corresponds roughly to the neglect of frictional heat-
ing, while the other is near the (nontrivial)solution for homogeneous
boundary conditions.

There may be some dmibt as to the staid.li.tyof one of the solutions,
presumably the second one. In any case, a question arises about the ef-
fect of considering a red fluid having variable viscosity and thermsl
conductivity as well as being truly compressible.

Accordingly, the present paper treats the consequences of such gen-
eralizations. However, to reiterate, one serious restriction is made on
all the flows considered herein: The flow is slways fully developed,
with the result that the effects of conditions near either end of the
channel are ignored.

.

“,
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ANALYSIS

Consider a two-dimensional flow of a viscous compressible fluid
acting under the influence of an axial body force such as gravity. Var-
iable viscosity and thermsl conductivity are admitted. The configura-
tion is shown in the fo120wing sketch:

T=

“

= %1

The equations of motion are

(Pu)~+ (Pv)y=o (1)

P(U% + Vy) + Px=
[ ]Y-:~(%+wjx (2,

-pf + 2(PujJx + I.&y + @

P(uvx + Vvy) + Py
[ IX-$[’(++V4Y ‘3)

= 2(wy)y+ 14uy+vx)

PCV(UTX + ~) + P{% + Vy) =
[

OqJx + (kTy)y + v 2+ + < + v; +
Y

2V: + ,u@x
I

-:(q+vy), (4)

(Symbols are defined in appendix A.) Consider, in addition, two possible
forms of a state equation, one applying for a gas, the other, for a
liquid:

P = PRT (Gas) (5a)
r 1
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In equa~ion (5b~,~ is the (smeJl) volumetric expansion coeffi-
cient, and p smd T are reference values. The significant difference
between the two state equations is that the second is independent of
pressure.

The boundary conditions on the channel walls sre

u(X,O) = u(X,d) = v(X,O) = v(X,d) = O \

T(X,O) =~o(X) I

T(X,d) =%l(X)
/

(6)

where d is the distance between the channel walls. The temperature
boundary conditions could, of course, be replaced entirely or in part by
a heat-transfer condition but, for the purpose of this report, such a
change is unimportant.

Equations (1) to (6) sre sufficient to define the fully developed
flow in a channel provided the viscosity and conductivity variations with
temperature are known and provided further:.thatthe forced-flow pressure
gradient, if any, is specified. In seeking solutions of these equations
for flows in a very long channel (i.e., fully developed) we are led to

.“

consider three approaches: first, exact solutions entirely independent
of distsnce (X) along the channel; second, solutions approximately Mde- .
pendent of X; and third, solutions wherein the variables are separable.
In each case the results can be expected to differ according to which of “-
the state equations applies. In this connection, it is important to ob-
serve that the viscosity and thermal.conductivity vary differently in
liquids and gases. In particular, the viscosity rises with temperature
for a gas and falls for a liquid.

The phrase “exact solution” should perhaps be defined. In this re-
port it is understood to mean a solution which satisfies equations (1)
to (6) rigorously. However, no consideration is given to conditions
near the ends of the channel. There =e two relatively simple circum-
stances under which such exact solutions can be found. For a gas nothing
can vary with X, not even the pressure. For a liquid this restriction
is moderated to the extent that only the gradient of the pressure need
be independent of X. This relaxed condition occurs because of the
pressure-independent state equation (eq. (5b)) for a liqpid.

Exact l?low of Gas

If nothing depends on X, equations (1) to (5a) and (6) become

v= o (7a)
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.
(W@y = Pf

Py=o

(k’Ty)y= -v<

P = pRT

u(o) = u(d) = O

T(0) = %0

T(d) =
%. I

(7b)

(7’2)

(7d)

(7e)

(8)

Thus, suppose

k ‘2= bT
\

5

Assume that the viscosity and thermsl conductivity VSXY as powers
of temperature, and also, for convenience, change the independent
variable (Y).

and let

.Y

-1

or

(9)

(lo)
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where the constant B is as yet
become

NACA TN

undetermined. Then equations (7)

P= Constant

r

4319

*

.

(11)

If the viscosity varies linearly with temperature (nl = 1), then these

equations are separated. If n2 is also unity, the solution is

()u= * (7J) (12)

o

TWo + %1

()

%1 - %@
T=

2 +11 --
2 : (%)%+ ’13)

Finally, B can be found from the second fo?m of equation (10). Thus

or

-L(5--J&!&dJ’-l+(!!&l.l
where

TWo + TW1
Tm =

2

(14)

(14a)

?
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The quantity in brackets is essentially the parsmeter K defined
in reference 1. ~is is always positive. Under these circumstances
equation (13) has only one real root, that root being such that

mm

O<ql

For exsmple, for air under standard conditions, if d= 3 and f is
gravitational acceleration, eqution (14) yields I?T~~O= 0.904. A

convenient st~tid for comparison of the present solution with more
approximate results is given by the mass flow. T!hisis

I
d

pudi=

o

=

I
+1

BP
mqo U dq

-1

-(%0s(!=?(15)

* The corresponding result for incompressible flow with constant fluid
properties, or for compressible flow with variable properties, but ne-
glecting frictional heating, is

.

[dputi= (~)

For the case cited prior to equation (15), where %J%o = 0.904, the

actual mass flow is about 25 percent below the incompressible value.
Unfortunately, the mean flow velocity is about 6W feet per second. This
high velocity would probably preclude the possibility of lsminar flow
even existing. If,an exsmple leading to slower flow were considered, the
difference between the two results would have been smsll. This demon-
strates that the variation of viscosity is unimportant.

A finsl connuent: If the viscosity is not assmned to vary linearly
with the temperature, the momentmn and energy equations cannot be sepa-
rated. As this circumstance (lack of separation} led Ostrach (refs. 1
and 4 to 6) to find two solutions for the flw rather then one, it is.
perhaps worth exsmining further. Define

●

H=
J

‘k
;m (16)

o
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Then equations (11) become
.

(

-(l-nl)/(1-n~+n~)
. S..B%f ~(n2 - nl + 1)

‘T-l 2 b
)

(17a)
&vwo

P= Constant

2
‘m = -’h (in) E

P

For gases, one expects that nl< 1 and n2> O; thus the right side of

equation (17a) is a decreasing fumction of_~H. In this case there can_
be at most one solution of the problems. The argument goes this way.
Suppose one solution is known. If a second solution has larger H, then _
by equation (17a), unq is smaller. Hence, for a reasonable profile,

5
is reduced. Then, by equation (17b), HqV is of lesser magnitude. Hence

for a reasonable case, H must also be small, which is a contradiction.

It should be emphasized, however, that this case of no pressure gra-
dient whatever has no connection with the work reported in references 1
and 4 to 6.

This completes the solution for the exact fully developed flow of a 0

gas. There are two generalizationswhich csn readily be made. These in-
volve the addition of a body force transverse to the channel and the ad-
dition of heat sources in the fluid. The solutions are given in appendix ~
B.

Exact Flow of Liquid

Here it is assmned that there is a pressure gradient such that, at
least, PX and Py sre independent of X. No otherX-dependence is ad-

mitted. Then the system is that given in equations (7) and (8), except
for the X-momentum equation, which can conveniently be written as

(W-_@y= -=(T - ~)f+ (Px +~f) =fif(T - T*)

where

(18)

(19)

.
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It is worth observing here _&at, if the reference
equation (5@ (i.e., a new T), this has no effect
value of T*. This is because the state equation
of the form p= A-BT,
equation (19) is really

Hence T* is a function

9

point is changed in
whatever on the
(eq. (5b)) is really

where A and B are fixed. In that case

P~+Af
T* = Bf

only of Px, f, snd the material. Then if q

and H, defined by equations (9) and (16), respectively, replace y and
T, the nmmentum equation becomes

(20)

while the appropriate energy eqmtion is, again, equation (17b).

y Now the forcing term (the right side of eq. (20)) should be consid-

g ered. According to its definition (eq. (16)) H is an increasing func-
tion of T. Hence, at least for constant viscosity, the forcing term is

+ an increasing function of H. If p and k sre constant, then the
forcing function is linear in H and, for this case, it has been shown
(refs. 1 and 6) that two solutions occur under certain conditions. In

M the present situation things are not that simple, aud the results depend
on how w and k vary. For msmy liquids the conductivity varies only
moderately over a fairly wide range of temperature, while the viscosity
may change severalfold. Two cases, water and liquid sodium, are illus-
trated in tables I and II. In the present discussion the variation of
conductivity is neglected. The tiscosity can be written to good approx-
imation as

P . &a (21)

where s and Ta are constants (for water s = 0.36 (centipoise),

and Ta = 20°C! if T is in°C). This expression is compsred in tables

I ~d II with qerh.entd”values. It is to be expected that
(T + Ta) >0 in the range where the fluid remains a liquid. Under these

circumstances, equation (16) yields

(22)
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and equation (20) becomes

%-l = -

From equation (17b),
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.
.-

it is seen that, if %2 is large, H must

.

(23)

vary more or less parabol~cally upward across th~ channel. Then it fol-
lows (eq. (23)) that, when H - H(T*) has a lsrge msgnitude, the forcing
term increases only slowly with H, while for small H - H(T*), the
forcing term is linear in H. The latter reduces the problem to the
ususl ~ee-convection situation (ref. 1), while the former (l~ge
H- H(T )) approaches the usual Poiseuille case, wherein the forcing
term is constant. This circumstance at least restricts the range of
flow parameters for which two solutions, as found in reference 1, can
exist.

Stated more explicitly, if (T - ~o)/ (Two + Ta) remains small, the

viscosity is essentially constant and the system becomes that solved in
reference 1.

Had the variation of conductivity been allowed for, a small mod3.fi-
cation of the foregoing argument might occur. If the conductivity drops
as the temperature rises, the forcing term would move toward a more lin-
ear variation with H.

In general, the solution of the system givenby equations (23),
(17b), and (8) is not simple. However, after two Mmiting cases are dis-
cussed, the,genersl case csm be described. The first such case is that
of small frictional heating; the second is for smsll temperature varia-
tions, ahd therefore viscosity can be considered constant.

Smell Frictional Heating

First consider the case of small frictional heating. The formu2.a-
tion involving q and H (eqs. (23) and (17b ) is not convenient for
this case. (?Hence, consider equations (18), 7d), and (8). The viscosity
is defined by equation (21), and the conductivity is assuned constant.
When the frictional heating is smell so that the right side of eqmtion
(7d) is negligible, one obtains --

(24)

—

e

●
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Then equation (18) can be integrated to give

where

Two - T*

%L=ql-qo

T + Ta
‘o

“2=%1-%0

I

(25)

(26)

1.2qq + 4(% + 2LL1)+ 3

%3= (1 + 2a#2)
J

and T* is defined by equation (19). From these, the walL shear is

(~uy)y+ = ~f~d(~l - ~o) (c@2)

(27)

(~~)y=d = ~f~d(~l - %.) (~/12 - q - 1/’2)

The net mass flow is

/

d
’23–

puu=

[

‘3:.7 (%1 - %.)2 1 +

o

5(1 + 2cLJ(l + &2 + &L;)

1+% 1(28)

These results can be compared with those for constmt fluid properties.
(This case is given on p. 10 of ref. 1.) In such a case, the temperature
is again given by equation (24). The velocity distribution, wsJJ shear,
and mass flow are given, respectively, by

mfd(ql - T#
u=-

12s [
(V%) :(:-1)(:+1+%

)]
(29)
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J
d

&3%~ (T
pudlt=~ WI - TWO)2[(1 + ~) (1 + %! (31)

o

In these last equations the viscosity has been taken as that correspond-
ing to the average temperature; that is,

w
2s

= Twl + Two + 2T8
(32)

A comparison of the results obtained for the cases of constant and
variable properties is given in figure 1. The fluid is liquid sodium,
and the temperatures of the two walls (100° and 900° C) differ enough
that the viscosity varies by a factor of about 4. In spite of this there
is no significant difference between the results for the two cases. That
is, the effect of variable viscosity is unimportant even though the tem-
perature variations are large.

It is interesting to observe the csse when T* = (Two + ~1)/2, the

average fluid temperature. Then al = -1/2, a3 = -1, and the shear is

not only the same at each well, but is the ssme in the constant- and
variable-viscosity cases. However, the velocity profiles differ slight-
ly, and, while the mass flow is zero for the constant-property case, it
is not for variable properties.

.

.

P

E
F

(

*.

“

Smsll Temperature Variation

In the case where the frictional heating is considered but where the
temperature variations are small, the fluid properties can be considered
constant. This case has been solvedby Ostrach in some detail (refs. 1
and 6), by machine methods. However, mother method of getting the ssme
results is now presented that has the advantage of giving the parametric
dependence simply. The ssme method is applied later to the genera3 case
(large temperature variations). However, the justification of the pro-
cedure is most convincingly displayed by comparison with the foremen-
tioned machine solutions. *

In this case of smsll temperature’differences,it is again conven-
ient to work from equations (18), (7d), and.(8). If the temperature d
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chsnges are small.
.

the viscosity and

enough that (T -

conductivity can

Two)/(%o + Ta) is S=

be considered constsnt.

The following dimensionless q~tities

13

everywhere,

are defined:

J
where

(33)

(34)

is the parsmeter defined in reference 1. In terms of the new variables,

* equations (18), (7d), and (8) become

u7q = -’c (35)
.

‘m
= -u; (36)

U(Q) = o

T (+1) =$~:;.@6,sayl
(37)

An approximate solution of this system can be found by iteration. The
velocity profiles are usually parabolic. Thus, suppose

u(o) = A(l - q2) (38)

where A is m undetermined parameter. Then equation (36) yields, sub-
ject to the boundary conditions,.

(39)
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If this is put into equation (35), the resulting velocity distribution
is

—
L—

(40)

This process could be continued, assuming convergence, but is stopped
at this point. If equations (39) and (40) are put into ’equation(36) ~

and the result is integrated across the channel, a q~atic equation
for the udmown parsmeter A2 follows. This is

.

(17,325 ~ K(m+ 1)
608 Zlo

] [ 1+G:;%~(m+1J121-qm:,)2 = 0
.

(a)

Real solutions exist if

210

~ ,.~-<K{m+l)<,+@&J-J(42)

The boundaries defined by equation (42) are plotted in figure 2 for
‘>0. Some limiting values found in reference 6 by machine methods are
shown for comparison. Agreement is excellent.

The two solutions can be exsmined generslly in the following manner.
If K(I.u+ 1) is moderate (say, in the range O to 40), then equation (41)
yields, approximately, the two results

[ ]1A’- 0.016K(m+l) 2
or (41a)

= 42

The mass flow and heat transfer tothe walls are, respectively,

or (43)
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1

.

;

or

(44)

The first (smsller) solution is one in which there is negligible friction-
al heating and, hence, heat transfer, while the second is quite the oppo-
site. The second case is, as is pointed out in refere~ce 4, one of regen-
erative heating. There is a large smount of heat transfer to the walls
(eq. (44)); this heat is supplied by frictional.heating of the fluid
occasioned by large mass flow (eq. (*M)) and the resultant high shesr.
Notice that even when %1 Y=NO = T , so that the problem is an homoge-

neous one (K= O in eq. (37), although ~(~o - T*) in eq. (33) is not

zero), this second solution does not vanish. For that matter, the second
solution is virtually independent of K and m, provided K and m take
on moderate values.

The range of validity of these results is Mnitedby the condition
that (T - ~O)/(TwO + T*) be small so that the viscosity variation is

negligible. ‘In th= case of the second solution (large A2) the maxtium
of T occurs near the center of the channel, and thus equations (38),
(44), and (46a) yield

%ax-%o=2m%o-T*
~o+Ta —K Two + Ta

If, for exsmple, K = 10, then TWO - T* is limited to a few degrees.

This @lies also that the wall temperatures must be virtually e ual. On
8the other hand, for ~plications of the first solution (small A ), the

only restriction is that (TWO - Twl)/(Two + Ta) be small. However, if

the viscosity is that for some suitably defined average, the error due to
larger temperature variations shouldbe unimportant. This conjecture is
based on the example discussed after equation (32).

Before giving a nwerical exsmple, it is worthwhile to examine the
order of magnitude of the numbers one obtains in physical problems for
the present case of smsll temperature Ufferences. From equations (33),
(34), (40), and (4La), one has, very roughly,
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or

or

.(n=o)-+im-(SmalSolution)1
= 25w (Large solution)

I

T(q = O) ()m-- Two = J (%0 - T*)2 (EhlsU solution)

= (~ -1, ‘Two -
T*) (Large solution)

J

.

For exsmple, for water a. 0° C, if K = 25,–T - T* = 0.25° C, sndw,
m= 1, the numbers for the various cases are

small Large

U(q = O), ft{sec 25

T(q= O) - ~o, ‘C o 2

.

This case corresponds to a channel width of 14.6 inches. A more gener~ .

idea of the orders of the numbers involved in the
obtained as follows. From equation (33)

U2 kU2

T-Tg=~y

However, from equations (39), (40), and (41.a)the
for the second solution usually occur near q = O

.
values of about ~ snd 14. Hence, for the second

second solution can be

(46)

maximums of U and r
and have the respective

solution,

(46a)

Actually there is no combination of K and m such that equations (41),
(39), and (40) yield U&/TM< 1. For water, 3k/~ is of the order

v
104(ft/sec)2/oC!,and hence if T - T* is 10 C, the veloci.y.axtium is

100 feet per second. For liqtid sodiun, 3k/p is about 107(ft/sec)2/~C;
x
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4
Ln
C$

0 C corresponds to a maximum ve-thus a temperature difference of only 1
locity of?3,~0 feet per second. It therefore appears that, if the ve-
locity is to be kept moderate to maintain lsminar flow, the temperature
variation must be smell. Hence, the assumption of constant fluid prop-
erties is a good one.

To compare the present method of calculating the velocity and tem-
perature profiles with the mme exact solutions obtainedby machine meth-
ods (ref. 1), a single exsmple is shown in figure 3. Remember that this
is a constmt-fluid-property situation. The exmple is that of water
flowing in a chsnnel 14.7 inches wide and for which ~. - T!*= 1/10° C.

The wall temperatures are 20.Oo and 20.1° C. This leads to K = 10. The
agreement is within 10 percent for the second solution and, not surpris-
ingly, virtually exact for the smaller one.

Before ending the discussion of exactly fully developed flows, it
should be observed that the iterative procedure used to get solutions
here can be applied in the other cases considered in references 1, 4, and
6, nsmely those involving wdll temperature gradients sad heat sources in
the fluid.

As is stated earlier, the present iterative procedure can be applied
directly b the original.problem wherein the frictional heating is con-
sidered and large temperature ch~es sre contemplated. The solution for
such a flow is given in appendix C for the case of equal.wall temperatures.
The only difference from the case just discussed is that some of the in-
tegrsls are rather involved and the equation for the amplitude is more
complicated. However, as is observed previously, if the velocities are
to be kept moderate in the second solution, the temperature variation will
be negligible.

Approximate Solutions

The results thus fsr presented have the beauty of being exact within
the limitations of fully developed flow. However, several cases arise in
which such a limited view is unacceptable. The simplest such case is the
flow of a gas with a pressuxe gradient, the ordinary Poiseuille flow. An-
other case of some interest is that involving a wall temperature gradient.
The extent to which such flows can be considered fully developed is ex-
amined in what follows.

.

We seek solutions of equations (1) to (6). Again, along channel is
assumed and end effects are neglected. k such a case, any gratients in
the X-direction (in the flow Mrection) must be small. Hence, write the
variables as follows:
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P=
[ 1

zl+eg(x) +...

P =

[

15 PO(Y) + ~Pl(&Y) + “ ● “

T= ~ TO(Y) + ~T~(x,y) + . . .

v =
[G WJY) + 5WJX,Y) + . . .1

k=
[~ ko(Y) + ~kl(x>y) + “ “ ●1

U=
Iii: O(Y) + 5U1(X,Y) + “ ● ●1 1

(47)

v=-
[ 11::O+5V1(X,Y)+. . .

x= X/L

Y = Y/d
J

where d/L is small, d being the wall spacing and L being a length
of flow, as yet undefined. The other two parameters, e sad 5 are
small but unrelated at this the. For a gas 5 must be at least as
large as ~ for the state eqmtion (eq. (5)) to make sense, while for
a liquid the number 5 is determined by the -erature boundary condi-

W

tions. The barred quantities are, except for u, given parameters ch~sen
so that PO) ~J lJoyand so forth, are of unit order. The vslue of u .

is initially unknown because there is no characteristic velocity for in-
ternsl flows of this kind.

—

Had the term g(x) in the pressure (the first of eqs. (47)) been
considered as a function of y also, then added terms would be intro-
duced because of the y-momentum equation (eq. (3)). However, these are,
analogously to the usual boundary-layer anelysis, of higher order than
what i.sretained in the other equations of mt~on.

If equations (47) are
the dominant terms of each

Po%,x +

[ 1
P&&l,x+ “J1%,Y)

put into equations (l), (2), and (4) and only
kind are retained, there follows

‘l,y
)+p

O,yvl + %)xuo = 0
(48)
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Finslly the state equations (eqs. (5)) yield

)
po’o = 1

\

(Gas)

Po’l + P1’o = (@)g(x)

PO-1= -~(’o - 1)

}
(Liquid)

P1 = -Tml

(50)

(51)

(52)

Now observe that the terms in the braces in equation (49) describe
the driving forces of the flow and must therefore be of the ssme order
of magnitude as the tiscous terms (which contain the highest deriva-
tives). The following fou cases will.be considered in turn:

Case

I

II

III

Iv

Body force

Yea

No

Yes

No

Large temperature variation
(~ variable)

Yes

Yes

lfo

Case I - ‘o Variable, wee Convection

For case 1, terms of order 5 can be neglected as compared to cor-
responding zero-order temns. ‘JIUs>PI can be set eqpsl to zero in equa-

tion (49), as can kl and T1
%0

in equation (5o). Assming PO and
9

~(x) b be of unit order, the) dy force and pressure gradients must be

of shil.ar size so that
.

FE—=~f
L

(53)
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Actually, it is only necessary that
?6
~s Ff in order to have the body

force matter. However, it can be assumed Mat equation (53) holds, and
e can be discarded later if it is smsll enough.

Then, using equations (51) ~d (52), the driving term in equation
(49) is

[ 1
* gx(x) + Ff(po) = Ef 1 + gx(x) - ~

or

[

1 + gJx)
= ~f~ - (TO - 1)

~ .

(Gas)

(Liquid)

*

.

For a mixed flow, gx(x) = O(1) for a gas or gx(x) = -1 + 0~) for a

liqtid. A pure free-convection flow might arbitrarily be defined as one
for which gx(x) = -1, but, for convenience any flow tivolving body
forces is henceforth referred to as a free-convection flow.

Definitions of the btired ref~rence v~ues in equatiom (47) are all
straightforward, except that for_ u, and a selection of values can read-
ily be made a priori. However, u must be chosen such that ~ is of .

unit order, and there is no way of Mowing ahead of time how big the
flow will be. Hence, for the moment, let us beg the question and define
simply

.

—

(55)

where C2 is unlmown smd, for a gas, E= 1. It is shown later that
—

C2 is a number in the range 10 to 50. Then equations

(50) can be written

Pok,x + Vl,y) + Po,yvl + Pl,x% = o

(46), (49), smd

(56)

(Liquid) J
(57)
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b

(k&y)y =

(~To,y)y =

(Gas)

1
J(58)

The system whose solution is sought is givenby equations (56),
(57), (58), and (51) or (52) plus the boundary conditions (eq. (6)).
Assuming that gx(x) is given, the unknown dependent variables remain-
ing sre seven in number, ~, Ul, Vl, PO, pl, To, smd T1. With five

eqmtions and seven dependent variables, some further restriction must
be made. The difficulty arises mainly in the terms U1 and V1. For

a g= it appears PI~ UI~ ad VI ~e of the s~e order as T1 ad
hence that the inertia term in equation (57) is of the same size as the
convection term in equation (58). Hence, it follows that, in order for
the solution to be determined, both of these terms must be negligible.
The ssme result follows for liquids, although perhaps not so obviously.
In this case (eq. (51)), PI is very smsll, of the order of ~, where

~ is the volumetric expansion coefficient. However, for liquids the
viscosity is a very strong function of temperature, and thus !-LI= O(T1).

Hence, there is no particular reason to assume that U1 and V1 sre

not the same size as T1. Accordingly, if these terms matter, the pres-

ent formulation is useless.

For these terms to be negligible two courses ~e open. One is to
have everything x-independent as in the exact solutions described ear-
lier. The second is that the parameter C2ti=/fI~ be small. This is

not simple. For example, if equation (55) is used and a chsnnel 1 inch
wide and having a characteristic length L
under standard conditions and gravitational

c@/fzD= 66,000 @2

of 10 feet is assumed, then
acceleration

(For water)

)

(59)
(For air)
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*

Consider C2 = 1. For the air case, 5 must be as large as e, which iS
about 1/3,000 here. For water 5 can be chosen by an applied wsll tem-
perate gradient. In either case it seems difficult to mske C25~/fL~
small, in fact, unless C!2 is a large nwber.

If this question is ignored for the moment, it can be observed for
a gas that, if 5 = e (and 5 must be as large as e), the coefficients
of,the inertia or convection terms and of the dissipation terms are

and (60)

(where % is a Prandtl number) which are both essentially the squares
of a Mach number and are the ssme size if C2 = 1. Hence, for the gas
case, at least, the frictional heating must slso be negligible because,
as is shown later, c~> 1.

For a liquid it can be seen, by trying some cases, that the fric-
tional heating must again be very small provided 8/~ is not virtually
zero.

Now to return to the question of a vslue for C2. Suppose that equa-
tion (55) is used together with its subsequent consequences. Then, for
the sake of an exsmple, let gx(x) = -1 and assume a gas. The different-

ial equations become

(POW,Y)Y= CZ(l - T())/To

(Js&o,y)y = o

The boundary-conditions are

TO(0) = Two

To(l) = Twl



.

.

4319

make the point about orders of magnitude, consider that ~

proportional to the temperature (i.e.> P. = ~ = To)” Then

23

snd

the

equations csn be solved very readily. Max= speeds have been computed
for seversl cases and are shown in the following table:

%
Two Twl ~ -

l/4 1 0.12

1/2 3/2 .01

1 2 .03

men 1%1 _ iS of tit order if C2 is, SW, 40. TWs for the con~-

tions cited in connection with equation (59),

C25~2/fLw = 1,6505 (For water)

or

= 1605 (For air)

which, particularly for the air case~ C= re~lY be made s~~” In a
case (such as eqs. (35) b (37)) where two solutions occur, the ssme con-
clusion about C2 follows, although the argument is rather tortuous.

FinsJ-lv,then, the inertia tirms must be ne@@ible for the flow to
be fully de~&loped: In that
dissipation are negligible.
convection flow in a channel
C2 = 1)

case the themal convection and frictional
The eqwtions for fully developed free-
are (eq. (55) is assuned to apply with

1- TO
(V@qy}y = ~ + 1 + % 1(Gas )
(~To,y)y = o

l+gx
(IJ(yqy)y = 1- % + ~

I(Liquid)

(~To,y)y = O

(61a)

(61b)
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.

C2 = 1 is used here and slso in equation (55) because C2 was intro-
duced only as an aid in determining what matters in the equations of
motion.

.
With these smsll terms eliminated, C2 can be dropped.

It should be remembered that these equations correspond to cases
where the temperature variations across the channel can be large. The

solutions are valid provided only that &u/@! is small. For con-

sistency, of course,“gX(x)must be constant. -It
[

The system is readily solved by first integrating the energy equa-
tion. The result in parametric form is

1

T
kom

Wo
Y=

J
(62)

~wl

k. dT

Two

where R is the right side of the first of equations (&la) or (61b).

This then is the solution of a free-convection flow wherein large
temperature variations across the channel are admitted. The effect of
lo~itudinal wall temperature variations would
by considering that these were local profiles,
Results of the kind in reference 4 would apply
later on, wherein smsll temperature variations

presumably be allowed for
by a sort of strip theory.
to case III, discussed —
are assumed throughout.

Case II - To Variable, Forced Convection

This is a flow in which the body force is considered to be negligi-
*

ble. In such a case equation (53) no longer applies, but one assumes
that f = O and that e is given. Without loss, take gx(x) S 1. .
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Equation (55) is replaced by

Then equations
with the right
by unity. The

(61) and
sides of
solution

25

(63)

(62) with their accompanying conditions hold, but
the first of equations (61a) and (61.b)replaced
is that given in equations (62) but with R = 1.

The analysis thus fsr given applies to the case where large temper-
ature differences are allowed (T. # 1). If only small,differences are
permitted, a somewhat different fom.nulationresults.

Case III - To = 1, Free Convection

If To sl,then po=~=l. Also, equation (53) stilJ applies,

and hence the driving term in equation (49) is (compare with eq. (54))

1.. J

[ IJ

(64)
1 + gx(x)

=~fi~ -Tl + (Liquid)
b~

Then,

Under
order

for a free-convection flow, it is required that

g.,Jx)= -1 +o(15~) (65)

such a condition the driving and viscous forces are of the ssme
provided (compare with eq. (55))

:f8~ =~~d2 (66)

If these last equations and equations (51) and (52) sre used, equations
(48), (49), and (50) become

Ul,x + v~,y = -Pl,x% (67)

ti-
1 + gx(x)

%,yy+T1- ~ = 2 (Uolll,x+ “l%,y~ (68)
b~ fL~

.
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where the terms involving e/5 do not appear if the fluid is a liquid.

In distinction to the result for the case of large temperature vari-
ations, in equation (68),

or

for the circumstances of

= 66,c0052 (For water)

= 6,40082 (For air)

eqwtion (59). In the case for air, if 5 = e,
thiB is a very small number and should, indeed, be negligible. The con-
vection term in equation (69) is of order 5 larger, as is the friction-
al heating tea, and shouldbe retained.

Then equations (68) and (69) are

1--+F3x(x)
%,Y-y+ ‘0= -T~ +: g(x) + tjz (70)

where again the terms involving e/5 in equation (70) and gx in equa-

tion (71) appear only for a gas.

Now to determine what form the temperature variations cm take. It
was assumed at the outset that ~ is independent of x. For this caee

it is readily shown that the most general forms allowable for the temper-
ature and pressure gradient are

T1 = al. + a2 + T2(Y)

gx(x) =
[

-1 -t5= (6/5 + al). + a2
1

Then equations (68) and (69) become

%,yy = -T2

(72)

(73)

(70a)

D

.

.
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where the term F2/t@ ~ [I]} disappears for a liquid. &ese equations

require small temperature variations but admit substantial.mass-flow
rates.

Then, in terms of uo md T2(Y)I equations (70a) snd (71a) are a
pair of ortinary differential equations and are nonlinear only if the
frictional heating is important. Solutions in the linear case sre quite
simple (ref. 4) and in the nonline= case csn be found by the iterative
method given esrlier foJlowing equation (37). Ostrach discusses this
system extensively in reference 4, where among other things, some machine
solutions are given.

Case IV - TO s 1, Forced Convection

For case IV equation (63) still applies, and equations (70) and (71)
are replaced by

%,yy = .f3Xbd (74)

The temperature variation must have the form

Tl= (a1+a2y)x+T2(y)

while gx(x) is a constsnt.
the dependent variables are
fsmiliar Poiseuille flow.

These eqyations are easily solved because
separated. The result is, of course, the

Other Gas Flows

The flows discussed thus far have ticluded only those cases wherein
the velocity is essentially independent of distsmce along the channel.
If this restriction is lifted, the problem becomes vastly more complicated.
Therefore, only one class of solutions is exsmined here. These solutions
are ones in which the tidependent variables are separable. Such a flow
is out of the question for liqtids unless it can be assuned that the tem-
perature is a function of y only. This is because of tie form of the
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state equation (eq. (5b)). It can be shown that this MmrLtation to T
independent of x leaves only the fully developed cases discussed
previously.

First recall that, to have a fully developed flow in any sense, the
channel must be very long and the dependence on x must be much weaker
than that on y. Then equations (1) to (5) can be approxhated as —

(Pu)x+ (Pv)y=o (76)

P(U% + ~) + Px= -Pf+ (W@y (77)

Py=o (78)

PCV(UTX + VTy) + P(q +

P= pR’r

P [- F(T -T]=;1

Vy) = (kTy)y + P+ (79)

(Gas) (80a)

(Liquid) (80b)

These equations can be derived formally in the seinemanner as they are
derived for externs3 boun@ lsyers. The only difference is that the
Reynolds number of boundary-l~er analysis is replacedby a ratio (L/d)2,
where L is a characteristic flow length and d is the channel width.

If the fluid
and the viscosity
as

is a gas (eq. (&Ja)) and
and thermal conductivity

w = flK

k= ~T~

then the permissible separated forms are

u/ul(Y) = (X/L)o or

+-l (y) = (X/L)‘-1 or

p/P~(y) = (X/L)‘(2~-1)+1 or

T/T1(Y)= (X/L)20 01’

P/Pl = (X/L)e(2~+1)+1 or

where 0 is sm arbitrary constant.

the body force
each vary with

is negligible,
the temperature

(81)

@L
e

eOX/L

e(2&l)0X/L

1
(82)

e20X/L

e(2~+l)OX/L

J

u

.

*

.
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It is interesting, though perhaps irrelevant,
variations of free-stresm velocity are allowed for
the external-boundary-layer equations (ref. 7).

29

that exactly the ssme
similar solutions of

The exponential fom in equations (82) is valid for the complete
Navier-Stokes eqwtions, while the other fozm depends critically on the
assumption of a very long channel..

Several other somewhat unrelated comments about this result are per-
haps in order. First, for a liquid the requirement previously stated,
that &C/& = O, leads ta the condition that nothing varies with X.
This case has eil.readybeen exsmined. Second, for a gas, if the viscostty
and conductivity do not have the same variations with temperature (eqs.
(81)), only the trivial X-independent separation results. The
X-independent solution corresponds in equations (82) to the exponential
variation with 19= O and was discussed starting with equations (7).
Finally, if the body force is important (-pf in eq. (77)), the forms
given in equations (82) apply, but only with 6 = O (exponential and un-
interesting) or 0 = 1/2 (power of X).

The forms given in equations (82) have two other properties of in-
terest. The throu@-flow Mach nmnber, which is proportional to uj~,
is independent of X. Also, ~ess there is flow through the channel
walls, all the solutions except 0 = O (exponential) and 8 = -1/2~
(power of X) must be flows with zero net mass flow. This is because
the mass flow is

f

d

JPufi=(d~)2~w1dpJY)u~(Y)dY
o

or

-.
‘o

. e2~OX/L

which must not vsry with X unless

J
d

PJy)uJy)fl
o

(83)

I

there is flow through the wtis.
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.
If equations (82) are put into equations (76) to (80a) the result

iB -7

‘1 = PIRT1 I
J

used and A = 1 if thewhere A = O if the exponential variation is
variation is as a power of x. Also, the term plf can appear only if,
as already mentioned, f3. 0 (exponential)or (3= 1/2 (power of x). kl
and U1 have the obvious definitions.

Now anew space variable, q, is introduced from equation.. Then
equations (84) bec”ome .-

[1BP1(2ge +A)
u~ + &~(P1vJv = o (85)

2RLT$(-1)

(86)

(87)

(88)

.—

.
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Observe that equations (85), (86), and (87) form a set of three ordina~
differential equations for three variables (u1, Tl, and PIv1). One
curious feature of the system is that it is of fifth order and there are,
in general, six boundary conditions to be applied (one each to u1, Vl,
and T1 at each wall). Hence some restriction must be placed on the
combinations of boundary conditions for given values of the paraeters,
particularly P1 and 8. Actually this is no different from what hap-

pens in anslysis of the external lsminar boundaxy layer. In that case,
however, the boundary condition on v (or VI) at the outside of the

boundary layer is not satisfied, nor is there any particular’reason for
it to be. For channel flows such au omission is probably not sXlowable.
In general, this means simply that there must be a flow through at least
one wall, and this flow cannot be prescribed if similarity is to be
maintained.

If, on the other hand, one exsmines the case where 2{6 + A = O
(eq. (85)), it is permissible to set V1 = O. Then the system is of

fourth order with four boundary conditions. The condition 2~e + A = O
corresponds exactly to the two cases mentioned in connection with equa-
tion (83). These are the only ones in which V1 can vash at tie

Wslls. Of the two cases definedby 2~8 + X = 0, nsmely, A = 0, 8 . 0
(exponential x-variation) and h = 1, ~8 = -1/2 (xc-variation), the first
has been solved earlier. In the second case, for I_ineaxviscosity-
temperature variation, eqyations (86)

where the

snd (87) become

)

T:(-~) ul,qq

(-2e=g=h=z)

(89)

[ST,(-1).[->)]U,(RT,)=0%),,++$,,
boundary conditions are

(90)

Ul(Al) = o

,1(-1) = Constant (91)

,1(+1) = Another constant

The solution of this system is more difficult to obtain than is the solu-
tion of equations (35) to (37), although a similar procedure cam be
followed.

.
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If the flow is fairly
a few tenths, the profiles
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.

slow, with the Mach number limited to, say,
are, to good accuracy

T1.+
[ 1
Tl(+l)+ Tl(-l) +

[

Pld2
ul = ))1[++

SL(T1(+l) + Tl(-l

[
: Tl(+l) - Tl(-l)j

( J II

(92]
Tl(+l) - Tl(-~) ~(1 - r12)

Tl(+l) + Tl(-l 12

)

where use has been made of equation (10) to determine B. It maY be ob-
served that the distance L can be defined by

which follows
peratures are
ieulle one.

directly from the last of equations (82).
equal, the velocity profile is exactly the

If the wall tem-
familiar Pois-

A final remark: It can be seen that the system described by equa-
tions (90) and (91) will probably admit pairs of solutions just as the
free-convection flow of equations (35) to (37) does.

&_

CONCLUDING REWRK8
.

When fully developed channel flows are considered, the cases that
can be solved exactly are very ltiited. For a gas a constant pressucre
is required, or at least one which doesnot vary in a stresmwise direc-
tion. This case is sxml.ogousto Couette flow in that no approxtiations
need be made in arriving at a relatively stiple mathematical problem.
In the case of a liquid, one can solve the exact case of constant pres-
sure gradient in the streamwise direction. For both the gas ad the
liquid, the wall temperatures must be constmt. In the gas case nothing
astonishing happens. However, in the liquid case a surprising result
arises. There appear to be (except for certain singular cases) either
two or no solutions for the flow. This result, which has been discussed
extensively by Ostrach, has one solution for which frictional heating is
negligibly small. The second is one in which the frictional heating is
large, and thus the temperature is raised agd the buoyancy effect is in-
creased. In the present report an approximate analytic solution of this
probl~ is given. The results agree very well with Ostrachrs machine
calculations.. Although an analysis is given for the case of variable
viscosity, it turns out that for the cases of interest, wherein the fluid
velocity is kept within reason, the temperature variations are small and
there is no reason to consider variable viscosity or conductivity.
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These so-called exact solutions,,particularlyin the case of a gas,
do not cover all the flows of interest. Hence, consideration is given
to cases in which there are streamwise temperature and pressure gradients
but in which the flow velocity is virtually independent of distsnce along
the channel. For a gas the mere presence of a pressure gradient requires
a temperature gradient, while for a liquid the presence or absence of a
streamwise temperature variation is governed by the wall temperature
conditions.

In these cases one of two situations occurs. If the temperature
variation across the channel is of the order of the temperature level,
then in order that “channel fTowlrbe maintained, the convection terns in
the energy equation mwt be negligible. This implies that the mean flow
Mach number is small and also that the frictional heating is negligible.
For such circumstances the equations are separated and can readily be in-
tegrated for any case of interest. Only one solution exists.

On the other hand, if the temperature variations are small, more
complicated effects occur. This situation of very small tenrperatuxe
changes admits very large flow velocities (see the discussion following

In eqs. (46)). Then both the frictional heating and the thermal convection
< effects can be significant. In such cases (when the frictional heating
o matters) two solutions can occur. These flows qualify as quasi-

incompressible in that the only place where compressibility effects mat-
ter is in the buoyancy term in the streamwise momentum equation.

. The forced flow perhaps deserves an added remark. When the tenqer-
ature varies only slightly across the channel, the velocity profile must
be the usti parabolic one. When the variation b temperature is large,
the profiles can still.be found in closed form but are more complicated.

If stresmwise v=iations of velocity are allowed, the flow is more
complex. A description is given of the circumstances under which the in-
dependent variables sre separable. These forms can yield new results
only for gas flows and show that the stresmwise variation must be either
as a power of x (stresmwise coordinate) or exponentially with x. With
two exceptions, only one of which admits x-variations, these flows re-
quire that the body force be negligible. The exponential cases apply to
the full Navier-Stokes equations, while the other ones require an expan-
sion of the equations of motion in terms of the width-to-length ratio of
the channel. For all these cases, the streamwise Mach number is inde-
pendent of x. All.but one of these possible flows lead to difficulties
with boundary conditions and require a flow through the wslls. The lone
exception has stresmwise velocity proportional to l/+. For smell flow
Mach nunibersthe solution is similar to that for Poisieull.eflow but al-
lows for temperature variations across the chsmnel.

. Lewis Flight Propulsion Laboratory
National Advisory Comittee for Aeronautics

Cleveland, Ohio, June 5, 1958
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APPENDIX A

W1A2

a,b

B

c!

f,fl

g(x)

H,H1

K

k

L

m

P

R

s,Ta

T

T*

U,ul

u,v

X,Y

SYMBOLS

parameters defined in eqs. (41) and (C5)

parameters defined in eqs. (9)

parameter defined ineqs. (10)

parsmeter defined in eq. (C9)

specific heats

wall spacing

body forces in X- and Y-directions, respectively, considered
positive in the minus X- and Y-directions

pressure perturbation, eq. (47)

temperature functions, eqs. (16) or (22) and (Cl)

parsmeter defined in eq. (34)

thermal conductivity

characteristiclength, eq. (47)

parsmeter definedin eq. (37)

pressure

gas constant, eq. (5a)

parameters defined in eq. (21)

tarperature

reference temperature defined in eq. (19)

dimensionless velocities h eqs. (33) smd (Cl), respectively

velocity components in X- and Y-directions .

Cartesian coordinates X being in the main flow direction
.
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6,G

IJ

P

a-

Subscripts:

.
X,r,x,y,q

0,1

X/L and Y/d, respectively

parameters defined in eqs. (26)

volumetric e.qxmsion coefficient (see eq. (5b))

small parameters introduced in eqs. (47)

dhwnsionless distance across channel in eq. (lo)

parameters defined in eqs. (81) and (82) and after eq. (84)

viscosity

(%ensi&

dimensionless temperature difference in eq. (33)

mean

wall

wall

value corresponding to

conditions at Y = o

conditions at Y = d

average of wall temperatures

psz%ial derivdive with respect & that variable

zero-order and first-order solution in eq. (47)

Superscri@s:

(0),(1) f3Jn3ttwo

bars reference

a~mximations

values in eqs. (5b)or (47)

.



36 NACATN 4319

.

APPENDIX B

A GENERALIZATIONOF EQUATIONS (7)

If a transverse body force f~ and a distribution of heat sources

PQ~ where Q is a constant, is included, equations (7) become

v = o 1

(Puy)y = Pf

%= -pfl

(Idry)y = +<

These equations can be solved in exactly
The results are; for linear variation of
temperature, fl ~ O, smd Q = 0,

I
(Bl)

- PQ
[

the ssme manner as eqwtions (7).
viscosity and conductivity with

P= Poe
-a~

u=
[ 1

~ (q-l) ea - (q+l)e-o+2e-a7

1

~wl + Two
()

Twl - Two
T=

2 +T 2-

1

(B2)

{

$ (ea - e-a)2
;

-~(ea-e ‘U)e-all+ e-2an +(5POR2aff

(e2a - e-2u) - (e2a + e-2a) + 1 +
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where u = Bfl/~~O is

ZT# &

()

fPoR 2
0
‘q-— ~fil q

g
end, for fl = O and Q

deftied by

[
(ea - e-~)2(1/3 -

+ o,

P= Constsnt

37

1

where

+%i--r&i3d+(%)kia
If Q is positive, there
root being such that

is only one real root of this eqmtion, that

If Q is sufficiently negative, there can be three resl positive roots.

Other solutions can readily be obtained for the case where neither
fl nor Q vanishes or where other distributions of heat sources occur.

.
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APPENDIX c

.

EXACT SOLUTION FOR LIQUID

The problem at hand is to solve equations (27) smd (17%), subject
to equati&s (8). Define

()kT~+ 2sH(T) = T +Ta 2
H1 =

kT:+ 2SH(T*) T* -tTa

r

2s
U1 =U .-

W: + 2sH* T* + Ta
1

In terms of these variables the problem is

UJ=Q)= o

[
(%0 + Ta)/(T*

)-—k

1

2
+ Ta) I

(cl)

(C2)

(C3)

(C4)

where, to keep the problem from getting out of hand, equsl wall temper-
atures are assumed.- For convenience, define

A~=[(~o+Ta)/(T*+Ta)]2)

A2 = B%&s~2s/k

4(T* + Ta)

It should be remembered that the parsmeter B,
undetermined (recall eq. (10)).

The solution is found in exactly the ssme
equations (35), (36), and (37). Thus assume

I
(C5)

sad hence A2, is as yet

manner as the solution of

.

Jo) = A(l - q2)
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Then equations (C3) and (C4) yield

HI = Al + A2(1 - q4)/3 (C6)

If this is put into equation (C2), that expression becomes

(1)= -A2[-4_] (C7)‘~)~n

If this is integrated and the appropriate boundary conditions are satis-
fied, the result is

where

(L--L-+-(%%)
(C8)

C4 = 1 + 3A1/A2 [C9)

If equations (C8) and (C6) are put back into equation (C3) and the result
is integrated across the channel, the result is

Before using this equation to determine A, something has to be done about
B, which is as yet undetemnined. If eqmtions (21), (Cl), and (C6) are
used, the second of equations (10) @elds

dA(T* + Ta)

J.’r T (Cll)
~sB = C4d- ~4

.

.
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If this is put into the first of equations
the result is put into equation (C1O), the
is, finally,

NACA

(C5), eliminating B,
defining equation for

288skr(&&y
[ 1~d2f(T* + Ta) 2

This canbe solved to veti good accuracy by

=0

A=

[

1

%!2
2

0

+

‘W=&&-)
~fd2(T* + Ta)

TN 4319

and
A

(cl’)

(C13)

The second root of equation (C12) is never a significant one. This equa-
tion csm readily be solved for A in terms of C (which is itself a
function of A; see eq. (C9)) smd the parsmeter

where K is defined in equation (34).
erties, two possible values for A are

The various integrals appearing in
evaluated as follows (ref. 8):

As in the case of constant prop-
again found.

eq~tions (C8) and (C13) can be

.

“-

5
r
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(C14)

where F(cp,l/~) and E(q,l/@ are the respective elliptic integrals
of the first snd second kind of smplitude (p and modulus l~fi. Two

of these integrals can be approximated as follows

which is correct to 1 percent if C >1.3, snd

/ ( )l&J@l=A l+A+*
0F7’2 70C4

which is correct to 1 percent if C >1.0.
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.

TABLE 1. - VISCOSITY AND CONDUCTIVITY

OF LIQUID SODIUM

Temper- 1 Conductivity,

k
ature,
T, Watts/?&l)(Oc)
Oc

Experi-

(rSt9)

2CXl

400
500
600
700

900

0.815
.759
.712
.668
.627
.590
.547

-----

1117
1170+ T

0.815
.760
.712
d668
.636
.598
.567

-----

Viscosity,
w)

centipoises

&cperi- Eqia\21)

(r%t9)

().450
.345
.284
.243
.210
.186
.165

0.450
.350
.286
.242
.210
.185
.166

.150 .150

‘%a = 1500 c; s = 158(centipoises)(°C)=

.

.

TABLE II. - VISCOSITYOF WATER

UNDERA!IWSPHERICCONDITIONS

.

Tem.per- Vfscosity,
ature, P)

1

0 1.79 1.79
20 1.01 .90
40 .66 .60
60 .48 .45
80 .36 .36

100 .28 .30

%a = 200 c;

s = 36(centipoises)(°C).
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Figure 1. - Effect of propert variation on velocity profiles.
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