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SUMMARY

The flow and heat transfer about a rotating isothermal disk are re-
examined to include the effects of compressibility and property varia-

.tions. If viscous dissipation is neglected, the compressible problem is

correlated to the incompressible problem by assuming linear variations
of viscosity and thermal conductivity with temperature. Certain in-
accuracies in several previous incompressible solutions are noted and
corrected herein. The effect of compressibility appears as a distortion
of the normal coordinate and normal velocity component and as & multi-
plicative factor in the heat-transfer coefficient, the Nusselt number,
and in the expressions for the skin-friction components and torgque re-
quired to rotate the disk.

INTRODUCTION

The steady leminar motion of an incompressible viscous fluld about
an infinite rotating disk was considered by von K&rmén (ref. 1). The
Navier-Stokes equations were reduced to ordinasry differential equations
by separation of variables, and these were then solved by the K&rmén-
Pohlhausen integral method. Cochran (ref. 2) corrected several errors
that he noted in von Kfrmfn's solutlions, and using the corrected inte-
gral solutions as a first epproximation he obtained more accurate re-
sults by numerically integrating the differential equations. The flow
was shown to be similar to that gbout a centrifugel fan: The fluid
moves radially outward, especielly near the disk, and to preserve con-
tinuity there is an axial flow toward the disk.

The heat transfer from a uniformly heated rotating disk was first
considered by Wagner (ref. 3) who used von Kérmé&n's uncorrected results
to solve the energy equation neglecting dissipation and thereby derived
a heat-transfer coefficient. In reference 4 the heat-transfer problem
is also treated, but there Cochran's flow solutions are used and the
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energy equation including viscous dissipation 1s solved. However, the
snalyses (refs. 3 and 4) are restricted to apply to very small rotation

and very small temperature differences. For large rotations or heating
one might anticipate that the compressibility and property variations of
the fluid would be important. Therefore, the problem is reexsmined here-
in to include these effects.

BASIC EQUATIONS AND BOUNDARY CONDITIONS '

The configuration to be studied is that of an infinite clrcular disk
in the R,6 plane which is maintained at a uniform surface temperature
and can rotate about the Z-axis (see fig. 1). The equations in cylindri-
cal coordinates expressing conservatlion of mass, momentum, and energy for
an axlally symmetric compressible viscous flow are, respectively,

% 5 (oRU) + 35 (W) = O (12)

oW oW 2|1 o oW
( s—+Wa—)='32*52(“323—'3&&(3“)*52]0

o ZevB)- (B er2)-[362) 523680 0o

where the symbols are all defined in appendix A and where

- (@S o) G - @ - (B B -5
o 2]

1 908%
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For & disk rotating with an angular velocity @, the no-slip condi-
tion for viscous fluids requires that

U(R,0) = W(R,0) = 0; V(R,0) = R (2)
At large distances from the disk it is specified that
U(R,=) = V(R,») = 0 (3)
The thermsl boundary conditions for sn isothermal disk are
T(R,0) = T, T(R,») = T (4)

In order to nondimensionalize the basic equations and reduce them
to ordinary differential equations, let

R = (v./0)Y/2 x, 7 = (o_/a)2 ;
U= (00,072 r 2(2), v = (0.)Y2 r g(z), W= ()72 0(z) ) (5)

pcna.; T(Z) = (T = Too)/(Tw - oo)

P = PV (z); p

and assume the viscosity and conductivity laws

4 = O(a)ha/B; k= 52 = = o(a) (s)
Equations (1) then become _
2 @) + & () = o (72)
5(£2 + e’ - g?) = %[9%51 f’] (70)
o(2fg + hg') =-§’; %ﬂg' (7c)
ohh' = -g! +§§;[%@ (n' - f)] + % a%[cryz) er'] (74)
Pr p ht' - ggr;—:—f% ' = Ba;[c—%)- 'r':, pwc:fT:Q_ ») 5 (£ - n)?

+ ot 22(g2 4 £12) (7e)

where the primes denote differentiations with respect to z and where
cp/Pr 1s assumed to be constant.
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The boundary conditions (egs. (2) to (4)) become

£(0) =n(0) = 0; g(0) =1 (8)
f(=) = g(x) = 0 (9)
7(0) = 1; (o) = 0 (10)

If equations (7a) to (7c) were written in terms of the velocities
and their derivatives, they would be recognized as the three-dimensional
boundary-layer equations for compressible axisymmetric flow. The boundary-
leyer nature of the flow is also pointed out in references 1 and 4. Egqua-
tion (7d) is essentially an equation for the normal pressure gradient that
- 18 negligible within the boundary-layer approximation. The pressure in
this problem is therefore constant.

In order that equations (7a) to (7c) and (7e) be a consistent set,
it is necessary that the last term of (7e) be neglected because of 1ts
r-variation. To find the conditions under which this term can be omitted,
it is noted that the coefficient appearing in equation (7e) is essentially
given by (v - 1)PrM2/Re[(T,/Tw) - 1]. Since the r is not of unit order

but actually equal to the square root of the Reynolds number Re, the last
term of equation (7e) can be neglected if . L

(r - 1)Pr -
T <1l (11)
7 - 1

o0

This condition is obviously satlsfied for relatively moderste rotations
and large temperature ratios. The second-last term of equation (7e) is
even smeller then the last terms and therefore is also negligible if in-
equality (ll) 1s satisfied. These terms are neglected in the remainder
of the report.

Equations (7) can be reduced to the incompressible equations for
this problem as given essentially in reference 4 by taking C(z) to be
a8 constant, C (implying a linear viscosity-temperature law) and letting

z
+/Cc Jo
f=F,g=G,h=:§H >~ (12)
T=8, t = I = constant

2087
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Equations (7) then become

2F+H' =0 (13a)
F° + HF' - G2 = F" (13b)
2FG + HG' = G" (13c)
I'=0 (134)

PrEHS' = 8" (13e)

vhere here the primes denote differentiation with respect to {. The
boundery conditions are

F(0) = E(0) = 0; G¢(0) = 1 (14)
F(w) = G(x) = 0 (15)
5{0) = 1; 8(w) = 0 (16)

Equations (13a) to (13c) with the boundary conditions (eqgs. (14) and (15))
were solved in references 1 and 2. Equation (13e) was solved in refer-
ence 4 with the boundary conditions (eg. (16)), where S =Q; and

Pr = yo. Thus, once the solutions of equations (13a) to (13e) are known,
the solutions can be transformed beack to the compressible solution by
means of equations (5), (6), and (12). The effect of campressibility,
therefore, is to distort the normal coordinate and normal velocity.

SOLUTIONS

After F was eliminated by means of equation (13a), the dependent
varisables G and H were determined by numerical integration of equa-
tions (13b) and (13c) along with the boundary conditions (14) and (15)
on an IBM 650 high-speed computing machine. The problem was treated as
an initial-value problem, and & forward integration technique similar to
that described in appendix A of reference 5 was employed. Five-point
integration formulas were used throughout. The recalculation of these
functions was made here to extend them to large values of the independ-
ent variable. This extension is necessary for an accurate calculation
of the tempersture distribution and hence the heat transfer.

The dependent variable S was then calculated from equation (13e)
on a desk computer for Pr = 0.72 wusing the results for H as calcu-
lated herein.
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RESULTS
Velocities

From equations (5) and (12) it can be seen that the velocities are
given essentially by the functions F, G, end H. The functions H, H',
H", G, and G' are listed in table I. H and G d4differ slightly from
Cochran's results (ref. 2) with H(w) tending to the value -0.8845 as
compared to -0.886 for Cochran (ref. 2). The velocities, which are
plotted 1n figure 2 against £, tend to thelr limits very rapidly, as
they should for a boundary-layer flow.

Temperatures

From equations (5) and (12) it can be seen that the tempersture is
essentially equal to S. The function S 1is plotted in figure 3 sgainst
{ along with the function Q; for o = 0.514 (Pr = 0.72 for air) from

reference 4. The function S, as calculated in the present report, is
more accurate because the H function is known to four decimal places
for all ¢, while in reference 4 the values of H were taken from ref-

erence 2, where H was tabulated for values of { to 4.4.

Heat Transfer

The average heat-transfer coefficient is defined as

o
_ a { k“'<§)2=o T
=TT, - T A=~ AT, - T,) G Pa

However, because of equation (6),

E= -0 K, (—g—i—) o (%)1/2 (17)

The constant C (from the viscosity and conductivity laws) can be chosen
for best correlation. .

To compare with the previous work in which only small temperature
differences were considered, C can be taken to be unity. Therefore, in
the present case

h = 0.329 k_ (15&)1/2 (18)

o0
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Wegner in reference 3, defining h as in equation (18), obtained
_ a\1/2
h = 0.339 k, |5~ (19)
>}

By means of an enthalpy balance, Wagner also found

h = 0.335 k_ (&)1/2 (20)

vhere in equations (19) and (20) he assumed Pr = 0.74. The difference
between the present results and Wagner's (ref. 3) may be due to two
things: (1) Wagner used von Kf&rmén's (ref. 1) uncorrected velocity pro-
files in his calculations, and (2) Wagner used a larger value of Pr
than is used herein; this would tend to give & larger initial slope for
the temperature function according to figure 7 of reference 4. If the
results of reference 4 were used to determine h, the coefficient would
be 0.286. The difference occurs because an incorrect energy equation
was used in reference 4, which led the. paremeter Pr/y Etaken as 0.514
there) to eppear rather than the Prandtl number itself (see eq. (13e)).
This point was first noted in reference 6 and is discussed in detail in
appendix B. ’

The heat-transfer data of references 6 and 7, along with the analyses
of references 3 and 4 and the present report, can all be expressed in
terms of an average Nusselt number defined as

ERO
Nu = £— (212)

=]

where
2

R 1/2

for the present report. In figure 4, the ratioc of the Nusselt number to
the square root of the Reynolds number from various analyses and experi-
mental studies is plotted against the angular velocity, where, for the
present analysis, it is assumed that C = 1. If the mean of the heat-
transfer data as correlated in reference 6 is used, only the experimental
results of reference 7 vary with . The data in reference 7 give re-
sults that are much higher than any others, while the mean of the data
for reference 6 are in good agreement with the present analysis. Refer-
ence 6 points out that the results of reference 7 are too high because

of heat losses through the insuletion and that the results are also
affected at low rotational speeds by free convection (due to gravitational
force). The latter effect is clearly shown in figure 4. The value of
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h, as given by equation (20), is used in equation (2la) to plot the anal-
yeils of reference 3 in figure 4, while the value of h corresponding to
Pr/y = 0.514 is used for reference 4. The latter is used in order to
illustrate the importance of using the correct form of the energy equa-
tion. ZIf the results for Pr/T = 0.72 from reference 4 are used, the
value of Nu/-/Re is 0.35.

Skin Friction and Torque
Because of angular symmetry and the form of the normal velocity

component (eq. (5)), the expressions for the camponents of tangential and
radial skin friction are

Radial skin friction =f (Tyr)g—p GA = f My <?—ag)z=o da (222)

Tangential skin friction = / ("za)z=o dA = f T <%)Z=O aA (22p)

where A equals the area of & finite disk of radius RO. Thus, if equa-
tions (5), (6), and (12) are used, these expressions can be written as

Redial skin friction = 2 p Q-/CO.0 R%F'(O) = 1.069 p,0~/C0Q B3

3
(23a)

Tangential skin friction = % 7p, 2+/C0_0 RgG'(o) = -1.289 p/C00 RS
(23b)

The torque, or the rotational moment necessary to turn the disk,
is

R
° 2
Torgque =.//.(TZ6)Z=O RdA = 2=x u/ﬁ (TZG)Z=O R“aR (242)
0
Again, if equations (5), (6), and (12) are used, this equation becomes

Torque = 5 P0~/CO.8 REG'(0) = -0.98 p,0~/Co0 RS (24p)
2 00 (8) oo 00’ 0

Von Kérmén (ref. 1) derived a similar expression using the angular mo-
mentum leaving the cylindrical surface formed by the disk and the gaseous

9087
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boundary layer. The coefficient in reference 1 was 0.92. Again, the
results are affected by the compressibility as evidenced by the 1/5
which appears in the equations.

SUMMARY OF RESULTS

The flow and heat transfer about a rotating lsothermal disk have
been reexamined to include the effects of compressibility and property
variations. For flows in which a relatively highly heated or cooled
disk is rotating with a moderate velocity so that viscous dissipation is
negligible, the compressible problem is correlated to the incampressible
problem by assuming linear varietions of viscosity and thermal conduc-
tivity with temperature. Certain inaccuracies in several previous in-
compressible solutions have been noted and corrected herein. The effect
of compressibility appears es a dlstortion of the normal coordinate and
normal velocity caomponent and as a multiplicative factor in the heat-
transfer coefficient, the Nusselt number, and in the expressions for the
skin-friction components and torque regquired to rotate the disk.

Lewis Flight Propulsion Ieboratory
National Advisory Committee for Aeronautics
Cleveland, Chio, June 2, 1958
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APPENDIX A

SYMBOLS
surface area of disk
function in viscosity and conductivity laws, eq. (6)
specific heat at constant pressure
specific heat at constant volume
"incompressible" dimensionless velocity functions
campressible dimensionless velocity functions
average heat-transfer coefficient, q/A(T, - T.)
coefficient of thermal conductivity
Mech number, QR/—J?EE;
Nusselt number, hR,/k,
pressure
Prandtl number, qpu/k

dimensionless temperature function defined in ref. 4
equal to 8(¢)

total heat flux

cylindrical coordinates, Z2 normal to dlsk surface
gas constant, P = PRT

Reynolds number, SRZ/v_

dimensionless cylindrical coordinates
"incompressible" dimensionless temperature function
temperature

radial, tangential, and normsl velocities
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Subscripts:
W
0

oo

Superscript:

ratlo of specific heats, cp/cv
dimensionless axial coordinate
absolute-viscosity coefficient
kinematic-viscosity coefficient
dimensionless pressure functions
density

Pr/y

dimensionless compressible temperature function,
™(z) = (T - To)/(Tyr - Too)

radiel shear per unit area on planes parallel to the
disk

angular shear per unit area on planes parallel to the
disk

dissipation function

angulsy disk velocity

disk surface
disk edge

undisturbed region

denotes differentiation with respect to z in egs.
(7) end with respect to € in egs. (13)
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APPENDIX B

COMPARTSON COF ENERGY EQUATIOQNS

To understand the difference between the energy edquations used in
reference 4 and herein, the two forms of the energy equation will be
considered neglecting dissipation for axially symmetric boundary layers.
These are

t
pcv<Ug%+W§rZ—)=§-i<kg%)-P(g%?I-g+%g) (B1) ¢
pcp<Ug—§-+w%§-)=a%<kg—§-)+(Ug§+W§§) (B2)

Equation (Bl) was used in reference 4 and (B2) was used herein. The

last terms on the right were omitted in both cases so that the remaining
equations are identical except for the different specific heats. Clearly,
for gases the two equations give different results (as has already been
pointed out). The question then arises whether the omission of these
terms is really justified in both cases. If the state equation

P = pRT

is applied to equation (B2), there results

p(cp-§)<U§+W%TZ)=§E(kg%)+§T(U%+Wg—;)

or

pcv(U%T§+Wg%)=§Z-(k%TZ)+§T(U%+W§T§) (B3)

Equation (BS) is identicel with (Bl) except that the last terms are in
a different form. From equation (B3) it is evident that the last term
is of the same order of magnitude as the convection (left side) term.
Therefore, with the c, form of the energy equation it is not correct
to omit the last terms of equation (Bl) for gases as was done in refexr-
ence 4. Looking at (B2), however, it can be seen that within the
boundary-layer assumptions the last term can be neglected relative to
the convection terms as was done herein.
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TABIE I. - DIMENSIONIESS EOLDTTCNS

E! H G’ a st a 3 H" H H ar
0 [} —0.6152 | 1.0000 |-0.3286 | 1.c000f 11.0| 0.0001(-0.0001| -0,8844| ~0.0001
~.1675 | -.0179| -.5987 8760 | -.3276 | .e%43] 11.2| .0001| -.0001 ~,0001
~.27:7 | -.0828| ~.6577] _7621 | -.3285 ] .8REB[ 11.4{ .0001| -.0001 -
-.5320 | —.19%9| ~.5048| .&557 | -.3282{ 8038 11.6] .0001| -.0001
-.3578 | -.1934 | -. 4478 .5605 | ~.3145 1 .7401[ 11.8( .o000p| -.0001
-.3605 | -. -.3911 .4786 | ~.3047 .8781) 12.0 -, 0000
-.5475 | -.5565| -.3361| .4038 | -.2917 | .6164] 12.2
- -.4038| -.2898( . ~-.2766 | .5818] 12.4
~-.207% | -.4861| ~.2470| .2875|-.25%8 | .5078] 12.6 - 8B45
-. 2677 | -.5207| -, L2419 | -.2¢19 | .4B77] 12.8
~.2007 | -.5006 | -.1882| .1905 |-.2168 | .3955] 15.0 !
-.41986 | -.63%1| -.140L| ,1589 |-.1984 | .35558f 1.2
-~ 1728 | -.6202) 1178 .1342 |-.1807 | .3157f 1%.4 -
-.2491 [ - 7028 | -.0881] 1325 |-.1659 | .2813] 15.6 -
-.1281 | - . 0832 | ,0944 | -.2477 | .2502f 15.8 -
~.2096 | -.7557| -.0688| .0791 |-.1327 | .22€2| 14.0 -
-.0954 | -.7740| -.0365| .0663 |~-.1.89 | .1970| 14.2 -
-.0794 | -.7912| ~.0481| . -.1062 | 17461 144 -
~.0874 | -.8069 | —.0412 | ,DAB6 | ~.0947 | .1545% 14.6 -
-.0570 | -.8183( -.0345| .0390 | -.0843 | .13868| 1¢.8 -
-.0482 | -.8288| ~.0R69 | ,0327 [~.0748 [ .1207] 15.0 -
~ 0407 | -.8377 ~-.0242 | .0274 | ~.0664 | .1066] 15.2 -
- - -.0205| . -.0587 | 0953 16.4 -
-.0208 | -.8514 | ~.0270| .0192 |-.0520 | .0B26| 15.6 -
~.0243 | -.8587 | -.0143{ .0161 [-.0450 | .0728] 15.8 -
- -.8612( ~.0119 | .0135 |-.0408 | .0844| 18,0
-.0172 | ~.8849| ~.0200( .011% |-.0358 | .0B8EB| 1.2
~.0Ll44 | -.8881| -.0084 | .0095 [-.0516 | .0201]| 25.4
-.0121 | -.8707| -. 0079 | -.0279 | . 16.6
-.0102 | -.68750 | -.0058 | 0087 | -.0246 | .0%69] 15.8
- -.8748| -.0048| . - . 17.0
o o R e - B
- -~ BITT[ =, 0039 [ -.0169 | .o2s8] 17.4
-.0050 | -.87868 | —.0028 | ,008% | -.0L40 | 0254 | 17.6
~.0042 | -.8797| ~.0024| .ov27 |-.0027 | .o0208f 17.8
~.0085 ) -.8806] -.0020| ,0023 |~.0115 | .01g2| 1&0
-.0030 | -. -.0017 0019 | -,0102 .0150] 18.2
«.000% | «.8617| -.00L4| .0016 |-.0090 | .olelf 1s.4
-.0021 | ~. ~,0012| .0013 |-.c079 | .0124] 18.6
-.0017 | -.8825| -.0010] .0011 |-.0070 | .0108] 18.8

8.0 ~.0015 | -.8828| -.0008 0009 | - .0081 .Q035] 18.0

8.2 -.0013 | -.8830( -.0008{ .0008 |-.0058 | .0089] 19.2

8.4 -. -.885p| -.0006 | .0007 [-.0080 | .0078] 19.4

8.5 ~.0008 | ~.8834| -.00c5| .oo0e |-.c044 | .o088] 1.5

a.8 - -.86%6| -.0004| ,.0005 |-.0059 | .c081]19.8

2.0 -.0006 | -.8857| -.0004| .0004 |-.0054{ .0083f 20.0

9.2 ~.0008 | -.8839| -. .0003 | -.0030 | .0047] 20.2

9.4 -.0005 | ~.8840] -.c008 | .0008 |-.0026 | .0041] 20.4

9.8 -.0004 | -.8840] -.0002| .0002 |-.0025 | .0056] 20.8

9.8 -.0003 | -.8841| -.0002| .o00z |-.0020 | 0032

10.0 -,0003 | -=.8848 | -.0002| .0002 |-.0018 | .o02m

10,2 -.0002 | -, -.0001| .0Q0 |-.0008 | .002S

20.4 ~.0002 | -.8845| -.0001| .000L1 |-.0024 | .0022

10.8 —~.000G | -.a84% -.gg; L0001 | -.0012 | .oalp !

20.4 -.0001 | -.8843] -.0001| .o00n, |-.0011 | .0017

FL
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Figure 1. - Schemgtic sketch of configuration considered.
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Dimensionless velocities, ¥, G, -H
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Dimensionless temperature, S = (T ~ T,)/(Ty - Te)
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Flgure 5. - Dimensionless temperature distribution.
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Ratio of Nusselt number to square root of Reynolds number, Nu/-\/Re
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