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TECENICAL NOTE 4289

BOUNDARY-INDUCED DOWNWASH DUE TO LIFT IN A
TWO-DIMENSIONAL SLOTTED WIND TUNNEL

By S. Katzoff and Reymond L. Barger
SUMMARY

A solution has been obtalned for the complete tunnel-interference
flow for a lifting vortex in a two-dimensional slotted tunnel. Curves
are presented for the longitudinel distribution of tunnel-induced down-
wash angle for various values of the boundary openness parameter and for
various heights of the vortex above the tunnel center line. Some quanti-
tative discussion is given of the use of these results in calculating
the tunnel interference for three-dimensionsl wings in rectangular tun-
nels with closed side walls and slotted top and bottom.

INTRODUCTION

The problem of determining 1ift interference corrections for slotted-
throat tunnels by using an approximate "homogeneous" boundary condition
haes been treated by several authors (refs. 1 to 3). For both two- and
three-dimensional tunnels, results have been given for the vertical inter-
ference velocity at a lifting vortex located on the tunnel center line.
(See, for example, ref. 1l.)

This report extends the two-dimensional results of reference 1 by
giving the longitudinal distribution of this vertical interference veloc-
ity along the horizontal line through the vortex, for various vertical
positions of the vortex in the tunnel. The manifest aspplication of these
results is to the determination of the tunnel-induced asngle of attack
and camber in two-dimensional sirfoll testing. An important further appli-
cation i1s to the determination of the tunnel-induced downwash angle in
three-dimensional-model testing. The feasibility of the latter appli-
cation.was pointed out in reference 2 and will be further discussed in
the present report.

As in the previous tunnel-interference studies, the analysis is made
for Incompressible flow. For the present problem, which considers only
the tunnel-induced vertical velocity for glven 1ift, the compressibility



2 NACA TN 4289

effect can be taken into account merely by reading the induced angle at

x/Vl - M° 1instead of at x (G8thert rule).

The method of solution of the problem is considered to be of partice
uwlar interest. It uses a generallzed Fourler series in a form that
automatically satisfies the boundary conditions. The method has appar-
ently not been used in previous wilnd-tunnel interference studies, although
similer methods of solution have been used, for example, for problems
involving thermal diffusion (ref. 4) and stress diffusion (ref. 5).

SYMBOLS
An, Bn constant coefficients in the series expansion for o
=L

g=1%n

c chord of two-dimensional airfoil

cy 11ft coefficient of two-dimensional sirfoil

c area of tunnel cross section

Cr, wing 1ift coefficient

a slot spacing (distance between center lines of slots)

k helght of vortex ebove tunnel center line, expressed as
fraction of tunnel semiheight

h tunnel semiheight

1 apparent mass assoclated with flow normal to slotted
boundary, per unit area of boundary, % loge cse %g

M Mach number

Ty root of equation (2a)

Ry, root of equation (2b)

S wing area
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V' tunnel free-stream velocity

X, Z rectangular coordinates, expressed as fraction of tummel
-semiheight (fig. 1)

r vortex strength, positive clockwise (1ifting)

5] tunnel correction factor

So_dim two-dimensional-~tunnel correction factor

Sc that part of the total tunnel correction factor contributed

by the center row of images

25 error in tunnel correction factor incurred by using two-
dimensional vortices in place of the exact images in the
rows above and below the center row; defined only for
closed tunnels or for tunnels with completely open top
and bottom boundaries

€ tunnel-induced downwash angle

Q total perturbation potential (due to lifting vortex and
tunnel interference)

Py potential of 1lifting vortex

Py potential of tunnel interference

c open ratio of slotted boundary (ratio of slot width to

slot spacing)

BASTS OF METHOD OF SOLUTION

The boundary condition at & slotted wall, considered as sn equiva-
lent homogeneous boundary, is derived in references 1, 2, and 3 as

aq).
+1® .0
¢ dn
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where

) perturbation potential

§9 derivative of ¢ 1in the direction of the outer normsl
dn at the boundary

1= % loge csc %g

a slot speacing

c open ratio of slotted boundary (ratio of slot width to

slot spacing)

For the present problem of the two-dimensional tunnel it will be
convenient to make all lengths nondimensional by dividing by the tunnel
semiheight h; 1n other words, the tunnel semihelght will be taken as
unity. A sketch of this tunnel showing the coordinate system and the
1ifting (bound) vortex is shown in figure 1. The boundary condition
may be written

CP'I'ga—-?:O ) (Z=l) (l&)
dz

q)_gg—.go (Z=—l) (lb)
oz

where g =

B e

The boundery conditlon can be sutomatlcally satisfled by making
use of a. trigonometric Fourier serles of a more general form than that
commonly used. Consider the functions sin r,z and cos R,z

(n=1,2, 3 ...) vhere the 1, are the posltive roots of
s J J n —
ten r + gr = O (2a)

end the R, are the positive roots of

cotR - g =0 (2v)
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The functions sin rpz and cos Rpz form a complete orthogonal set
over the intervel =1 <z 1 (ref. 4). The series

(=2}

5 = }Z Ay, sin rpz + By cos Rpz

n=1

satisfies the conditions (la) and (1b) et 2z =1 and 2z = -1, respec-
tively, because

Bs]
s +g S8
[ dz -

E: Ay (sin vy + gry cos rn)h+ By (cos R, - &Ry sin Ry)

n=1

o0

}: Ap(-sin ry - gry cos rp) + Bp(cos Ry - &Ry sin Rp)

o |
1
m
"4
b
N
|
I
i_l
il

where the quantities in parentheses are all zero because of conditions (2&)
end (2b). Hence, any series of the form

5 = }; Apfy(x)sin rpz + ByFp(x)cos Ryz

n=1

representing a function in the xz-plene automatically satisfles the
boundary conditions (le) and (1b).

It is of interest to note that the arguments of the functions of =
Fourier-Bessel series can be similarly chosen so that each term satisfies

the boundary condition @ + g 3 = 0 on the boundary of a circle (ref. 6).
n

APPLICATION TO THE PROBLEM OF THE LIFTING VORTEX

Boundary conditions.- In reference 1 1t was shown that the total
perturbation flow (vortex flow plus boundary interference) in the tunnel
could be considered to have two parts: (l) an antisymmetric part
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characterized by & uniform upwash veloclty far upstream, an equal uniform
downwash veloclty far downstream, and zero downwesh along the vertical
axls (the z-axis) through the vortex itself, and (2) a flow with uniform
downwash velocity throughout the entire tunnel, of such magnitude that

it cancels the upstream upwash velocity of part (1) and thereby provides
zero net effect far upstream and uniform downwash veloclity-along the
z~axis. The value of this uniform downwash velocity (for the tunnel of

unit semiheight) wes shown to be Ez—IL-—su This value was derived in

g+ 1
reference 1 for the case of the vortex at the origin; however, the line
of reasoning is not altered by changing the vertilical locatlon of the
vortex in the tunnel, so that the same expression remains applicable in
the general offcenter case. Accordingly the potential along the z-axis is

given by - —LZ 4+ L above the vortex location snd by - ——td— - L

bg+ 1) &4 g + 1) &
below the vortex location. (The potential is here considered to increase
in the direction of flow, contrary to the usage in reference 1; salso, a
clockwise (lifting) vortex is here considered as positive.)

The problem wlll be solved for the upstream half of the tunnel:
x£0, =152z g1; the solution for the downstream half follows from
the known symmetry characterlistics. For the upstream half, then, the
problem, as given by the preceding discussion, 1s to find an expression
for @ +that satisfies Laplace's equation, satisfies equations (1a) and
(1b), epproaches zero as x approaches -«, and along the z-axis equals

I'z I above the vortex and - —I12  _ ﬁ below the wvortex.

T+ D b (g + 1)

Solution for total perturbation flow.- The total perturbation
potential is expressed in the form

= ThX X
P = ziJ.Ane ®sin rpz + Bnéﬁn cos Rpz (3)

n=1

where the r, eand R, are the positive roots of equations (2a) and (2b),
respectively. The coefficlents A, and B, are determined by matching
the expression with the known potential along the z-axis. That 1ls, let

-
| E (k <z2<1)
Ay sin rpz +.Bn cos Rpz = - -_—;E——— +4 O (z = k)
. (g '+ 1)
n= L (-1 < z < k)
L4
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Since the terms of the serles are orthogonsl in the range (-l, 1), each
Ap 1is found by multiplying both sides of the equation by sin rnz dz

and integrating from -1 to 1l:

1 1 k 1
Anf sinarnzdz=-—r—-—f zsinrnzdz—zf B:Lnrnzd.z+£f sin rpz 4z
-1 g+ 1) J-1 Y v b Ji
1 1
= -1 zsinrnzdz+-I-‘f sin r,z dz
g+ 1) Joo 2 Jx

Applying the same procedure to the cosine term glves

1 k 1
B, f cosean dz = - E- cos R,z 4z + E f cos R,z dz
=1 -1 k

k
=-£f cos Rpz dz
2 Jo

Performing the indicated integrations and simplifylng the results by
means of equations (2a) and (2b) yields

A T cos rpk
= or 2
nl+ g cos<ry

T sin Rnk
2Rn 1 + g sineRn

By =

Substituting these expressions for the coefficlents in equation (3)
completely determines ¢@ in the region x < 0.

Tunnel-interference velocity.- The potential ¢ Just derived is
the sum of the potential ¢ = = % tan~t -Z—;{-]—‘- of the lifting vortex

and the potential ¢, of the tumnel interference: @ = @1 + @Po. The

desired tunnel-Iinterference upwash velocity ?-q—)g 1s found by subtracting

oz
Bcpl 9.
dz from oz
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P . i
oz oz dz
© frapX Rpx
_T zg: e © cos rpk cos rpz . 8 sin Rpk sin Rpz .
2 2
=l 1 + g cos“rp l+g sin.2Rn
T X

an x2 + (z -~ k)2 <9

The entire model mey generally be considered with adequate accuracy to
lie In one horizontal plane. Then, since the interference is of inter-
est only in this plane, 2z may be set equal to k in the preceding
equation to give

(x < 0) (&)

00
X, T }: e " cosPr k . Bn¥g1nR K LT
Jz

L \1+ gcosPry, 1+ gsinfRy anx

Equation (4) glves the tunnel-lnduced upwash velocity in the
upstream part of the tunnel. At x = 0, the upwash velocity is
r
4(g + 1)
in the downstream part of the tunnel follows from the symmetry charac-
teristics previously described; that is,

.= _acvz] =a_¢g] I
(g + 1) Oz X, dz %,z (g + 1)

zZ

, &8s slready mentioned. The tunnel-induced upwash velocity

or

§_¢_2} ___r _Bq)gil
dz x 2(g + 1) oz

,Z . —X,Z

where the symbol..] means the value of the derlvative at the point
indicated by the subscript. '
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Calculated results.- The tunnel-induced verticasl velocities were
computed for points along the horizontal line through the bound vortex,
for ranges of values of g &and k that are considered to more than
cover the likely ranges of slot designs and airfoil locations. The

results are plotted in figure 2 in nondimensionsl form as E%X, where

€ 1s downwash angle and V 1s tumnel speed. For direct application
to two-dimensionsal airfoll testing, the equivalent expression in terms

of chord c¢ and section 11ft coefficlent c, %&%, is also shown. The

expression corresponds to the usual three-dimensional-tunnel correction
factor & defined by

where S 1s wing area, C 1s the area of the tunnel cross section, and
Cr, 1is the wing 1ift coefficient.

The two limiting cases - the closed tunnel (g = ) and the open
tunnel (g = 0) - are not included in figure 2 because closed expressions,
readlly derived by the method of imasges, are availeble for these cases.
For the closed tunnel,

cosh X cos2 zh
5 _1 s 2 _1
2-dim 8 5 >
ginh X <sinh ZX 1+ cos EQ) ax
y i 2 4
For the open tunmel,
X 2 XX
cosh sinh
5 1.1 L A I _ 1
2-dim "} " 8 nx X xh nx
sinh T sinh? + cos@ 1= T

ESTIMATING CORRECTIONS FOR THREE-DIMENSIONAI. MODELS

Suggested correction as the sum of two parts.- In reference 2 it
was suggested that two-dimensionsl results such as those derived in the
preceding section could be applied in determining corrections for three-
dimensional models in rectangular wind tunnels with closed side walls
and slotted upper and lower boundaries, provided the height-width ratio
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of the tunnel is not too small. BSpecifically, the tunnel-induced angle

at any point would be the sum of two parts: (1) that due to the infinite >

row of images of the model in the vertical walls, and (2) the two-
dimensional corrections of figure 2, determined as for a two-dimensional
wing of the same 1ift at the same longltudinal locatlon in the tunnel.
The purpose of the present section 1s to review the theory of this method
and to provide some quantitetive discussion of the method end of the tun-
nel height-width ratios for which 1t can be considered satisfactory. For
the swmaller helght-width ratios, for which the method 1s not quite wvalild,
a further suggestlion is given by which the method might still be used
wlith an addltional modification.

A complete analysis should include comparisons between induced angles
determined by this suggested method end those determined by some exact
method similer, say, to those outlined in reference 1. Such exact three-~
dimensional calculations would be very leborious, however, for the case
of the tunnel with slotted upper and lower boundaries. Accordingly, the
present approach will be to make exact calculations for the cases of com~
pletely open and completely closed top and bottom boundaries, which are
the two limiting cases of slotted boundaries, and then to epply arguments
of plausibility in extending the results to the case of slotted boundaries.

Formuilation of problem for the two limiting cases.- Figure 3(a)
shows the croes section of & closed rectangular tunnel (heavy outline)
with ite nearest images. The plus sign in the center of the tunnel
represents the semi-infinite doublet line (or horseshoe vortex of zero
span) trailing downstream from e point concentration of 1ift in the cen-
ter of the tunnel. The image doublet lines are indilcated by plus or
minus signs according as they are the same as or the reverse of the cen-
ter one. The tunnel-induced downwash or upwesh velocity at any point in
the tunnel (say at the lifting element itself or at some downstream point
representing the tail location) is the net induced velocity due to all
the images. The concepts underlying this figure and the application of
this theory have been widely used in wind-tunnel-correction analysis (for
example, refs. T and 8) and will not be further discussed here.

As pointed out in references 7 and 8, the field of a doublet line
at a point sufficiently distant from it is practically the same as the
field of a narrow horseshoe vortex having the same moment (same product
of vortex strength and span - in other words, the same 1ift). Suppose,
then, 1t were valid to replace all the image doublet lines in the rowe
above and below the center row by horseshoe vortices of span equal to
the tunnel width. The tralling vortices would s8ll cancel in palrs and
only the bound vortices, now Joined to form continuous infinitely long
vortlces, would remaln, as indicated in figure B(b). This set of jolned
bound vortices, however, will be recognized as identical wlth the set of -
image bound vortices that are used to calculate corrections for a closed
two-dimensional tunnel (ref. 9). If the image system of figure 3(b) were



NACA TN L4289 11

indeed an accurate epproximation for the image system of figure B(a),
it would follow that the tunnel-induced angle for this case is the sum
of (1) the effect of the images in the center row and (2) the two-
dimensional correction, just as suggested in the opening paragraph of
the preceding section.

The corresponding image diagrams for the tunnel with open top and
bottom are shown in figures 4{a) and 4(b). The argument 1s essentially
the same as for the closed tunnel and will not be repeated.

The problem now is to determine for what height-width ratlos the
image systems of figures 3(b) and 4(b) satisfactorily approximate the
exact image systems of figures 3(a) and 4(a), respectively, so that the
suggested calculation procedure would be accurate.

Calculations of the error.- In order to investigate this problem,
calculations were made of the error in the induced-angle factor B along
the tunnel center line that would result from using the image systems of
figures 3(b) and 4(b) instead of those of figures 3(a) and 4(a), respec-
tively. The calculations were made for tunnel height-width ratios of 0.6,
0.75, 1.0, and 1.2. These calculations for the zero-span horseshoe vor-
tices (or point concentrations of 1ift in the center of the tunnel), how-
ever, represent the least favorable case. In order to investigate the
problem for conditions more nearly representative of typilcal wing tests,
calculations were also made for horseshoe vortices of span equal to 0.4
the tunnel width. As a somewhat extreme case, some calculations were
also made for horseshoe vortices of span equal to 0.8 the tunnel width.
For the limiting case, for which the horseshoe vortex has a span equal
to the tunnel width, the exact image system would be ldentical with the
two-dimensional image system, and thus the error would be zero for any
height-width ratio.

The calculated errors are plotted in figure 5 as the error A in
the usual tunnel correction factor & 1in the equation

S
€=8-50L

Specifically, 45 1is the induced downwash factor glven by the exact

image system minus the induced downwash factor given by the approximate
Image system. The approximate image system glves too small a downwash
angle (too small a factor) for the open top and bottom and too large a
downwash angle (too large = factor) for the closed tunnel. In other
words, &8 1s positive for the tunnel with open top and bottom, and is
negative for the closed tunnel. The value of 25 at x = 0 represents
the error at the 1liffting element itself; values at positive values of x
represent the error in downwash behind the wing. The upstream.(negative x)
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parts of the curves are not shown, since the curves all heve the same
type of symmetry as the curves of figure 2.

As an indicatlon of the order of megnitude of the error that might
arise, conslder the largest value of & in figure 5, 0.092, for the
tunnel with a height-width ratio of 0.6. If the wing ares S is one-
tenth the tunnel cross-sectional area C and the 1ift coefficient Cj

is 1.0; the corresponding error in tunnel-induced angle is

0.092 x 0.1 x 1.0 X 57.3" = 0.53°. The error decreases rapidly with
increasing height-width ratio and with increasing span of the horseshoe
vortex, and 1t 1s well within usual experimental accuracy for helght-
width ratios of about 1.0.

Application to the slotted tumnel.- For those tunnel height-width
ratios for which the results show no practically significant differences
between the field of the true image system and the field of the system
of infinite line vortices that approximates i1t, 1t would seem reasonable
to suppose that the effect of slotted top and bottom bounderies would
be similarly two-dimensional. In those cases in which the dlfference
does become practically significant (for example, for tunnel heilght-
width ratios less than 1.0 with the larger lift coefficlents and wing
areas) the matter is less obvious. A suggested approach is as follows:

Let the curves of figure 5 be consildered as correction curves rather
than as error curves. That 1s, suppose that the tunnel-induced angle
(for the completely open or completely closed top and bottom) is con-
sidered to be the sum of the following three components:

(1) That due to the images in the center row

(2) The two-dimensional induced angleg corresponding to the infinite
line vortices of figure 3(b) or 4(b)

(3) The correction indicated by figure 5, which, essentially, cor-
rects the two-dimensional values of component (2) to the correct three-
dimensional value corresponding to figure 3(a) or u4(a).

. Then a parallel procedure for the tunnel with slotted top and bottom
would be to suppose the tunnel-induced angle to be the sum of the fol-
lowing three components: -

(1) That due to the images in the center row

(2) The two-dimensional induced angles given by figure 2 for the
appropriate value of g '

(3) A correction determined by Interpolating between the closed
and open cases of figure 5. The interpolation could be according to
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the "degree of openness" of the slotted boundary as indicated, say, by

the factor 3 T that determines the two-dimensionel correction at

g +
X = 0. This factor is zero for the closed tummel (g = =) and 1 for the
open tunnel (g = 0). According to this suggested interpolation proce-
dure, the contribution of thils third component to & is

25 (Aﬁ -5

1
closed * g+ 1 open closed)

where ULBajpgeq and Aﬁopen are the values of A5 given by figure 5

for the closed and open caseés, respectively. Furthermore, since, as
figure 5 shows, Asopen and Asclosed are almost equal, except for

sign, this expression may be approximated as

2
‘Abopen + E + 1 Aﬁopen

or

If the slot design is such that g = 1, thls third component will be
approximstely zero.

In order to help in the application of this procedure, the first
component 8,, due to the images in the center row, has been plotted in

figure 6. The net induced downwash factor, finally, is

l-8g
3 = SC + Bz_dim + m Eopen

where 3. 1is given by figure 6, 85_gim 18 glven by figure 2, and Aaopen
is given by figure 5 (positive values).

Asymmetric locatlons of the model in the tunnel.- A sting-mounted
model might, at high angles of attack, be considerably above the tumnel
center line. Figure 7(a) shows the image system for such an asymmetric
case, for a point concentration of 1ift in a closed tunnel. The corre-
sponding approximation by means of infinite vortices is shown in fig-
ure T7(b). No calculations were made for this case, but it 1s apparent
from the image system that the error 1s very nearly the average of that
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for & tunnel whose height i1s the distance m; to the nearer row and that
for a tunnel whose height 1s the distance s to the farther row. Excep

for this one modification, the discussion for the slotted-boundary tunnel
follows as before.

Yewing a sting-mounted model also tends to lncrease the error. Fig-
ure 8(a) shows the image system for en extreme case in which the point
concentration of 1ift has been brought close to one of the side walls.
The image system in this case is very nearly the same as for a centered
model in a tunnel of half the height-width ratio (fig. 8(b)), for which
the error 1s greatly increased. Fortunately, lateral displacement of
the 1ifting polnt to the extent shown in figure 8(a) is far in excess
of what might be considered a realistic displacement due to yawing a
model in a wind tunnel.

CONCLUDING REMARKS

A practical mathemstical method is described for determining the
flow in a two-dimensional slotted wind tunnel containing a lifting wing.
Calculated results are glven for the longltudinal distribution of tunnel-
induced angles for various slot geometries and for various vertical loca-
tions of the wing in the tunnel. Some quantitative discussion 1is gilven
of the application of these results to the testing of three-dimensional
lifting models in a tunnel with closed side walls and slotted top and

-bottom.

Langley Aeronautical Laboratory, -
National Advisory Committee for Aeronautics,
Lengley Field, Va., March 6, 1958.



NACA TN k289 15

REFERENCES

Davis, Don D., Jr., and Moore, Dewey: Analyticel Study of Blockage-
and Lift-Interference Correctlons for Slotted Tummels Obtained by
the Substitution of an Equivalent Homogeneous Boundary for the
Discrete Slots. NACA RM L53EOTb, 1953.

Maeder, P. F.: Theoretical Investigation of Subsonic Wall Interference
in Rectanguler Slotted Test Sections. Tech. Rep. WP-11 (Contract AF 18
(600)-664), Div. Eng., Brown Univ., Sept. 1953.

Guderley, Gottfried: Wall Corrections for a Wind Tunnel With Longi-
tudinal Slots at Subson:!.c Velocities. WADC Tech. Rep. 5422,
Wright Air Dev. Center, U. S. Air Force, Jan. 1954.

. Byerly, William Elwood: An Elementary Treatise on Fouriler's Series and

Spherical, Cylindrical, and Ellipsoidal Hermonies. -Ginn and Co.,
c.1893.

Mansfield, E. H.: The Effect of Spanwise Rib-Boom Stiffness on the
Stress Distribution Near a Wing Cut-Out. R. & M. No. 2663 s
British A.R.C., Dec. 1947.

Watson, G. N.: A Treatise on the Theory of Bessel Functions. Second
ed., The MacMillan Co., 1944, ch, XVIII.

Kaetzoff, S., and Hannsh, Margery E.: Calculation of Tunnel-Induced
Upwesh Velocitles for Swept and Yawed Wings. NACA TN 1748, 19L48.

Theodorsen, Theodore: The Theory of Wind-Tunnel Wall Interference.
NACA Rep. 410, 1931.

Glauert, H.: Wind Tunnel Interference on Wings, Bodies and Alrscrews.
R. & M. No. 1566, British A.R.C., 1933.



16 NACA TN 4289

Flgure 1,- Sketch showing two-dimensional slotted tunnel of unit semi-
height, coordinate axes, and vortex location.
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(a) Exact immge system.

+
+
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+

(b) Approximate image system. Doublet lines sbove and below the center
have been replaced by horseshoe vortices of span equal to the tun-
nel width.

Flgure 3.- Image systems for & doublet line in a closed
rectangular tunnel.
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(a) Exact image system.
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(b) Approximate image system. Doublet lines above and below the center
have been replaced by horseshoe vortices of span equal to the tun-
nel width.

Figure 4.- Image systems for a doublet line in a rectangular tunnel with
closed side walls and open top and bottom.
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Figure 5.- Plots of 25 (correction factor gilven by the exact Image
system of fig. 3(a) or 4(a) minus correction factor given by the
approximate lmage system of fig. 3(b) or 4(b)). Positive values are
for the tunnel with open top and bottom, and negatlve values are for
the closed tunnel.
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!

(a) Exact image system.

+|1QO | O

VO

(b) Approximate image system. Doublet lines sbove and below the center
have been replaced by horseshoe vortices of span equal to the tun-
nel width. '

Figure 7.- Image systems for a doublet line above the center of a closed
rectangular tunnel.



NACA TN 4289 31

+|+ + |+ + |+
+|+ +|+ + |+
+|+ + |+ + |+

(a) Doublet near the side wall.

+ + +
+ + +
+ + +

(b) Doublet at center of a tunnel having twice the width of the tunnel
diagrammed above.

Figure 8.- Image system for a doublet near the side wall of a closed

rectangular tunnel, and comparable image system for a doublet at the
center of a tunnel twice as wide as the first.

NACA - Langley Fleld, va.



