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TECHNICAL NOTE 4289

BOUNDARY-INDUCED DOWNWASH DUZ TO LIFT IN A

TWO-DIMENSIONAL SLOTTED WIND TUNNEL

By S. I@tzoff and Raymond L. Barger

SUMMARY

A solution has been obtained for the complete tunnel-interference
flow for a lifting vortex in a two-dimensional slotted tunnel. Curves
are presented for the longitudinal distribution of tunnel-induced down-
wash angle for various values of the boundary openness parameter and for
various heights of the vortex above the tunnel center line. some quanti-
tative discussion is given of the use of these results in calculating
the tunnel interference for three-dimensional wings in rectangular tun-
nels with closed side walls and slotted top and bottom.

INTRODUCTION

The problem of determining lift interference corrections for slotted-
throat tunnels by using an approximate “homogeneous” boundary condition
has been treated by several authors (refs. 1 to 3). For both two- and

● three-dimensional tunnels, results have been given for the vertical inter-
ference velocity at a lifting vortex located on the tunnel center line.
(See, for example, ref. 1.)

.

This report extends the two-dimensional results of reference 1 by
giving the longitudinal distribution of this vertical interference veloc-
ity along the horizontal line through the vortex, for various vertical
positions of the vortex in the tunnel. The manifest application of these
results is to the determination of the tunnel-induced angle of attack
and camber in two-dimensional airfoil testing. An importsmt further applic-
ation is to the determination of the tunnel-induced downwash angle in
three-dimensional-model testing. The feasibility of the latter appli-
cation.was pointed out in reference 2 and will be further discussed in
the present report.

As in the previous tunnel-interference studies, the analysis is made
for incompressible flow. For the present problem, which considers only
the tunnel-induced vertical velocity for given lift, the compressibility
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account merely by reading the induced angle at

x (G?5thertrule).
}

The method of solution of the problem is considered to be of partic-
ular interest. It uses a generalized Fourier series in a form that
automatically satisfies the boundary conditions. The method has appar-
ently not been used In previous wind-tunnel..interferencestudies. although
similar methods of solution have been used, for
involtiingthermal diffusion (ref. 4) and stress

SYMBOLS

example, for problems –
diffusion (ref. 5).

c

c1

c

%

d

k

M

‘n

Rn

s

constant coefficients in the series expansion for cp

chord of two-dimensional airfoil

lift

area

wing

slot

coefficient of two-dimensional airfoil

of tunnel cross section

lift coefficient

spacing (distance between center lines of slots)

height of vortex above tunnel center line, expressed as
fraction of tunnel semiheight

tunnel semiheight

apparent mass associated with flow normal to slotted

Q loge Csc yboundary, per unit area of boundary, ~

Mch number

root of equation (2a)

root of equation (2b)

wing area
.

.
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v

X9 z

r

8

52-dim

lent

3

tunnel free-stream velocity

rectangular coordinates, expressed as fraction of tunnel
semiheight (fig. 1)

vortex strength, positive clockwise (lifting)

tunnel correction factor

two-dimensional-tunnel

that part of the total
by the center row of

correction factor

tunnel correction factor contributed
images

error in tunnel correction factor incurred by using two-
dimensional vortices in place of the exact images in the
rows above and below the center row; defined only for
closed tunnels or for tunnels with completely open top
and bottom boundaries

tunnel-induced downwash angle

total perturbation potential (due to lifting vortex and
tunnel interference)

potential of lifting vortex

potential of tunnel interference

open ratio of slotted boundary (ratio of slot width to
slot spacing)

RASIS OF METHOD OF

The boundary condition at a slotted
homogeneous boundary, is derived in

9+1:-=0

-.

SOLUTION

wall, considered as an equiva-
references 1, 2, and 3 as
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where

‘? perturbation potential

& derivative of CP in the direction of the outer normal
an at the boundary

d slot spacing

G open ratio of slotted boundary (ratio of slot width to
slot spacing)

For the pqesent problem of the two-dimensional tunnel it will be
convenient to make all lengths nondimensional by dividing by the tunnel
semiheight h; in other words, the tunnel semiheight will be taken as
unity. A sketch of this tunnel showing the coordinate system and the
lifting (bound)
may be mitten

where g . ~.
h

vortex is shown in figure 1. The

*
‘+gG=o

T-g ??2=0
az

boundary condition

(z = 1) (la)

(Z =-1) (lb) ●

The boundary condition canbe automatically satisfied by making
use of a.trigonometric Fourier series of a more general form than that
commonly used. Consider the functions sin rnz and cos ~z

(n= 1, 2, 3, . . .) where the rn are_the positive roots of

tanr+gr=O

and the Rn are the positive roots of

cot R -gR=o

(2a)

(2b)

.

.

.
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The functions sin rnz and COS Rnz form a complete

over the interval LIs z ~ 1 (ref. 4). The series

co

6=
I

An sin rnz + ~ cos Rnz

n.1

satisfies the conditions (la) and (lb) at z = 1 and
tlvely, because

5

orthogonal set

z = -1, respec-

%-g% s~%l)

— — co

where the quantities in parentheses are alL zero because of conditions (2a)
and (2b). Hence, any series of the form

s = ~ ~fn(x)s~ rnz + B#n(x)cos RnZ
b
n=l

representing a function in the xz-plane
boundary conditions (la) and (lb).

It is of interest to
Fourier-Bessel series can

the boundary condition I?I

APPLICATION TO

note that the

automatically satisfies the

arguments of the functions of a
be simi.1.srlychosen so that each term satisfies

+ g ~ .0 on the boundary of a circle (ref. 6).

THE PROBLEM OF THE LIl?TII?GVCRTEX

Boundary conditions.- In reference 1 it was shown that the total
perturbation flow (vortex flow plus boundary interference) in the tunnel
could be considered to have two parts: (1) an antisymmetric part
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characterized by a uniform upwash
downwash velocity far downstream.

velocity
and zero
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far upstream, an equal unifwm
downwash along the vertical k

axis (the z.axis~ through the vortex itself. and (2) a fiow with uniform
downtish velocity throu~out the entire tun6el, of such magnitude that
it cancels the upstream upwash velocity of part (1) and thereby provides
zero net effect far upstream and uniform downwash velocityalong the
z-axis. The value of this uniform downwash velocity (for the tunnel of

unit semiheight) was shown to be r This value was derived in
h(g + 1)”

reference 1 for the case of the vortex at the origin; however, the line
of reasoning is not altered by changing the vertical location of the
vortex in the tunnel, so that the same expression remains applicable in
the general offcenter case. Accordingly the potential along the z-axis is

given by - r + ~ above the vortex location and by - ~ - ~
4(g:l) 4 4(g+l) 4

below the vortex location. (The potential is here considered to increase
in the direction of flow, contrary to the usage in reference 1; also, a
clockwise (lifting) vortex is here considered as positive.)

The problem will be solved for the upstream half of the tunnel:
x~o, -1 ~ z ~ 1; the sol~tfon for the downstream half fo~ows from
the lmown symmetry characteristics. For the upstream half, then, the
problem, as given by the preceding discussion, is to find an expression
for (p that satisfies Laplace’s equation, satisfies equations (la) and
(lb), approaches zero as x approaches -w, and along the z-axis equals

rz - ~ below the vortex.+ C above the vortex and -
4(g+l) 4 h(gr: 1) 4

Solution for total perturbation flow.- The total perturbation
potential is ewressed in the form

where the rn

respectively.

the expression

n.1

and Rn are the positive roots of

The coefficients & and ~ are

with the known potential aloqg the

.

&-

(3)

equations (2a) and (2b),

determined by matching

z-axis. That is, let
.

[

—

~

4
(k<z<l)

4An sin rnz + ~ cos Rnz . - rz

I

o (Z = k)
4(g--+1) +

n= r-- (-l<z<k)
4
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Since the terms
An iS found by

and integrating

.

h j-: “i&nZ dz =

=

7

of the series are orthogonal in the range (-1, 1), each
multiplying both sides of the equation by sin rnz dz

from -1 to 1:

r J
1

J
k

J
1

zsinrnzdz-~ sin rnz dz + ~ sin rnz &z
k(g+l) -I 4 -1 &k

J

1

J

1
r zslnrnzdz+~

k(g+l) -1
sin rnz dz

k

Applying the same procedure to the cosine term gives

J
k

r=-- COS Rnz dz
20

Performing the indicated integrations and simplifying the results by
means of equations (2a) and (2b) yields

An=~
cos rnk

an 1 + g COS2rn

%1=-~ sin Rnk

%~nl+gsin n

Substituting these e~ressions for the coefficients in equation (3)
completely determines P in the region x < 0.

Tunnel-interference velocity.- The potential Q Just derived is

the sum of the potential ql = - ~ tan-l & of the lifting vortex
a

and the potential. 92 of the t~el fiterference: L?= PI
%2

desired tunnel-interference upwash velocity —
az

iS found

Ml *a *:-

+ Cpa. The

by subtracting

dz dz
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.C 1(e cos rnk cos rnz +

2 1 + g cos2rn
n=l

r x
‘x2.+ (z - k)2

The entire model may generally be
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Rnx
e

\
sin Rnk sin Rnz +

J1 + g sin2Rn “

.

b

(x < o)

considered with adequate accuracy to
lie in one horizontal plane. Then, since the interference is of inter-
est only in this plane; z
eqwtion to give

Eq~tion (4) gives the
upstream part of the tunnel.

msy be-set equal to k in the preceding

~nxsin~nk \

1 + g sin%$.J
(x ~ o) (4)

tunnel-induced upwash velocity in the
At X = O, the upwash velocity is

r

4(g + 1)’
as already mentioned. The tunnel-induced upwash velocity

in the downstream part of the tunnel follows from the symmetry charac-
*

teristics previously described;

r 1*4(g+l)-z-xz
?

that is,

‘*I-X z - [-4(;+ 1)1
)

or

1M2 . r 1*,2-—
Xi_ ‘2(g+l) az

x, z -x, z

.

where the symbol I means the value of the derivative at the point

indicated by the s~bscript.
.

.
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Calculated results.- The tunnel-induced vertical velocities were
computed for points along the horizontal line through the bound vortex,
for ranges of values of g and k that sre considered to more than
cover the likely ranges of slot designs and airfoil locations. The

results are plotted in figure 2 in nondimensional form as —ehV where
r’

e is downwash angle and V is tunnel speed. For direct application
to two=dimensional airfoil testing, the equivalent expression in terms

of chord c and section lift coefficient Cz, ~, is also shown. The

expression corresponds to the usual three-dimensional-tunnel correction
factor

where
CL is

5 defined by

e = @L

S is wing area, C is the area of the tunnel cross section, and
the wing lift coefficient.

The two limiting cases - the closed tunnel (g + w) and the open
tunnel (g = O) - are not included in figure 2 because closed expressions,
readily derived by the method of images, are available for these cases.
For the closed tunnel,

. r cosh ~ COS2 g .7

For the open tunnel,

ESTIMATING CORRECTIONS FOR

sinh2 ‘ix-r )11-—

sinh2 =4+COS2K E
2 4

THREE-DIMENSIONAL MODELS

Suggested correction as the sum of two parts.- h reference 2 it
was suggested that two-dimensional results such as those derived in the
preceding section could be applied in determining corrections for three-
dimensional models in rectangular wind tunnels with closed side walls
and slotted upper and lower boundaries, provided the height-width ratio
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of the tunnel is not too small. Specifically, the tunnel-induced angle
at any point would be the sum of two parts: (1) that due to the infinite .
row of images of the model in the vertical walls, and (2) the two-
dimensional corrections of figure 2, determined as for a two-dimensional
wing of the same lift at the sam longitudinal location in the tunnel.
The purpose of the present section is to review the theory of this tithed
and to provide semi quantitative discussion of the method and of the tun-
nel height-width ratios for which it can be considered satisfactory. For
the smaller height-width ratios, for which the method is not quite valid,
a further suggestion is given by which the methcd might still be used
with an additional modification.

A complete analysis should include comparisons between induced angles
determined by this suggested method and those determined by some exact
method similar, say, to those outlined in reference 1. Such exact three-
dimensional calculations would be very laborious, however, for the case
of the tunnel with slotted upper and lower boundaries. Accordingly, the
present approach will be to make exact calculations for the cases of com-
pletely open and completely closed top and bottom boundm?ies, which me
the two limiting cases of slotted boundaries, and then to apply arguments
of plausibility in extending the results to the case of slotted boundaries.

Formulation of problem for the two limiting cases.- Figure 3(a)
shows the.cross section of a closed rectangular tunnel (heavy outline)
with its nearest images. The plus sign in the center of the-tunnel
represents the semi-infinite doublet line (or horseshoe vortex of zero
span) trailing downstream from a point concentration of lift in the cen-
ter of the tunnel. The image doublet lines we indicated by plus or
md.nussigns according as they are the same as or the reverse of the cen-

.

ter one. The tunnel-induced downwash or upwash velocity at my point in
the tunnel (say at the lifting element itself or at some downstream point -
representing the tail location) is the net induced velocity due to all
the images. The concepts underlying this figure and the application of
this theory have been widely used in wind-tunnel-correction analysis (for
example, refs. 7 and 8) and will not be further discussed here.

As pointed out in references 7 and 8, the field of a doublet line
at a point sufficiently distant from it is practically the ssme as the
field of a narrow horseshoe vortex having the same moment (same product
of vortex strength and span - in other words, the same lift). Suppose,
then, it were valid to replace all the image doublet lines in the rows
above and below the center row by horseshoe vortices of span eqyal to
the tunnel width. The trailing vortices would all cancel in pairs and
only the bound vortices, now joined to form continuous infinitely long
vortices, would remain, as indicated in figure 3(b). This set of joined
bound vortices, however, will.be recognized as identical with the set of .
image bound vortices that are used to calculate corrections for a closed
two-dimensional tunnel (ref. 9). If the image system of figure 3(b) were

.
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indeed an accurate approximation for the image system of figure 3(a),
it would follow that the tunnel-induced angle for this case is the sum
of (1) the effect of the images in the center row and (2) the two-
dimensional correction, just as suggested in the opening paragraph of
the preceding section.

The corresponding image diagrams for the tunnel with open top and
bottom are shown in figures 4(a) and 4(b). The argument is essentially
the ssmieas for the closed tunnel and will not be repeated.

The problem now is to determine for what height-width ratios the
image systems of figures 3(b) and 4(b) satisfactorily approximate the
exact image systems of figures 3(a) and 4(a), respectively, so that the
suggested calculation procedure would be accurate.

Calculations of the error.- In order to investigate this problem,
calculations were made of the error in the induced-angle factor 8 along
the tunnel center line that would result from using the image systems of
figures 3(b) and 4(b) instead of those of figuzes 3(a) and 4(a), respec-
tively. The calculations were made for tunnel height-width ratios of 0.6,
0.75, 1.0, and 1.2. These calculations for the zero-span horseshoe vor-
tices(or point concentrations of lift in the center of the tunnel), how-
ever, represent the least favorable case. In order to investigate the
problem for conditions more nearly representative of typical wing tests,
calculations were also made for horseshoe vortices of spsm eqyal to 0.4
the tunnel width. As a somewhat extreme case, some calculations were
also made for horseshoe vortices of span equal to 0.8 the tunnel width.
For the limiting case, for which the horseshoe vortex has a span equal
to the tunnel width, the exact image system would be identical with the
two-dimensional imge system, and thus the error would be zero for any
height-width ratio.

The calculated errors are plotted in figure 5 as the error & in
the usual tunnel correction factor 5 in the equation

Specifically, &
image system minus
image system. The
angle (too small a

is the induced downwash factor given by the exact
the induced downwash factor given by the approximate
approximate image system gives too small a downwash
factor) for the open top and bottom and too large a

downwash angle (too large a factor) for the closed tunnel. In oth~r
words, & is positive for the tunnel with open top and bottom, and is
negative for the closed tunnel. The value of & at x = O represents
the error at the lifting element itself; values at positive values of x
represent the error in downwash behind the wing. The upstream (negative x)
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parts of the curves are not shown, since the curves all have the sme
type of symmetry as the curves of figure 2. “

As an indication of the order of magnitude of the error that might
arise, consider the largest value of LM in figure 5, 0.0$)2,for the
tunnel with a height-width ratio of 0.6. If the wing area S is one-
tenth the tunnel cross-sectional area C and the lift coefficient ~

is 1.0; the correspondi~ error intunnel-induced angle Is
0.092 x O.lx 1.OX 57.3 = 0.53°. The error decreases rapidly with
increasing height-width ratio and with increasing span of the horseshoe
vortex, and it is well within usual experimental accuracy for height-
width ratios of about 1.0.

Application to the slotted tunnel.- For those tunnel height-width
ratios for which the results show no practically significant differences
between the field of the true image system and the field of the system
of infinite line vortices that approximates it, it would seem reasonable
to suppose that the effect of slotted top and bottom boundaries would
be similarly two-dimensional. In those cases in which the difference
does become practically significant (for example, for tunnel height-
width ratios less than 1.0 with the larger lift coefficients and wing
areas) the matter is less obvious. A suggested approach is as follows:

.

,

.—

Let the curves of figure 5 be considered as correction curves rather
than as error curves. That is, suppose that the tunnel-induced angle
(for the completely open or completely closed top and bottom) is con-
sidered to be the sum of the following three’components:

(1) That due to the images in the center row

(2) The two-dimensional induced angle8 corresponding to the infinite
line vortices of figure 3(b) or4(b)

(3) me correction indicated by figure 5, which, essentially, cor-
rects the two-dimensional values of component (2) to the correct three-
dimensional value corresponding to figure 3(a) or k(a).

Then a parallel procedure for the tunnel wilh slotted top and bottom
would be to suppose the tunnel-induced angle to be the sum of the fol--
lowing three components:

(1) That due to the images in the center row

(2) The two-dimensional induced angles given by figure 2 for the
appropriate value of g

(3) A correction detemned by interpolating between the closed
and open cases of figure 5. The interpolation could be according to

.

.

—

.

— . .
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the “degree of openness” of the slotted boundary as indicated, say, by
.

the factor ~ that determines the two-dimensional correction at
g+l

x= o. This factor is zero for the closed tunnel
open tunnel (g . O). According to this suggested
dure, the contribution of this third component to

interpolation
b is

for the
proce-

~closed + g i 1
( )‘open - ‘closed

where ~closed ti ‘open are the values of & given by figwe 5

for the closed &d open cases, respective~. Wthermore, s~ce, as
figure 5 shows, &oxn and &closed are almost equal, except for

sign, this expression may be approximated as

‘&open + g ~ ~ ‘open

or

1 -i3B

l+g open

If the slot design is
approximately zero.

h order to help
component 5C, due to

such that g = 1, this third component will be

in the application of this procedure, the first
the images in the center row, has been plotted in

figure 6. The net induced downwash factor, finally, is

5 = bc + b2-d~+ 1 -g&
l+g open

where 5C is givenby figure 6, 82-d~ is given by fi~e 2, and ‘open

is given by figure ~ (positive values).

Asymmetric locations of the model in the tunnel.- A sting-mounted
model might, at high angles of attack, be considerably above the tunnel
center line. Figure 7(a) shows the image system for such an asymmetric
case, for a point concentration of lift in a closed tunnel. The corre-
sponding approximation by means of infinite vortices is shown in fig-
ure 7(b). No calculations were made for this case, but it is apparent
from the image system that the error is very ne~l.y the average of that
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for a tunnel whose height is the distance ml to the nearer row and that

for a tunnel whose height is the distuce ~ to the f=ther row. ExcePt “

for this one modification, the discussion for the slotted-boundary tunnel
follows as before.

Yawing a sting-mounted model also tends to increase the error. Fig-
ure 8(a) shows the image system for an extreme case in which the point
concentration of lift has been brought close to one of the side walls.
The image system in this case is very nearly the same as fo’ra centered
model in a tunnel of half the height-width ratio (fig. 8(b)), for which
the error is greatly increased. Fortunately, lateral displacement of
the lifting point to the extent shown in figure 8(a) is far in excess
of what might be considered a realistic displacement due to yawing a
model in a wind tunnel.

CONCLSJDINGREMARKS

A practical mathematical method is described for determining the
flow in a two-dimensional slotted wind tunnel containing a lifting wing.
Calculated results are given for the longitudinal distribution of tunnel-
induced angles for various slot geometries and for various vertical loca-

—

tions of the wing in the tunnel. Some quantitative discussion is given
of the application of these results to the testing of three-dimensional
lifting models in a tunnel with closed side walls and slotted top and
bottom.

.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics, .

Langley Field, Vs., Wrch 6, 1958.
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Figure l.-

1
●

.
Sketch showing two-dimensional slotted tunnel of unit semi- _ ._
height, coordinate axes, and vortex location.
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Lmgltudind dlstomce fran vorte~ tumel ssmihsights

(a) ~= 0.9.
g+l

.

Figue 2.- Longitudinal distribution of tunnel-induced downwash angle
for a lifting vortex in a two-dimensional slotted tunnel.
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a

Longitudinal dietmce from vorfq turmel eernihelghte

(b) ~ = 0.8.
g+l

Figure 2.- Continued.

—
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(b) Approximate image system. Doublet llnes above and below the center
have been replaced by horseshoe vortices of spaa equal to the tun-
nel width.

Figure 3.- Image systems for a doublet line in a closed
rectangular tunnel.

.

b

.

●



——

+

.——.

+

.-—

+

——

+

.—— —

+

.——.

——.

+

.——

+

+

,——.

+

+

.—

+

——.

+

+

+

——.

+

-—.

+

.——

+

—— -

+

.—— -

+

———

+

——-

——

+

-—

+

——

+

——. —

+

.——. .-

+

——- .-

(a) Exact image system.
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(b) Approximate image system. Doublet lines above and below the center
have been replaced by horseshoe vortices of span equal to the tun-
nel width.

Figure 4.- Wge systems for a doublet line in a rectangular tunnel with
closed side walls and open top and bottom.
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Figure 5.- Plots of B (correction factor given by the exact image
system of fig. 3(a) or 4(a) minus correction factor given by the
approximate image system of fig. 3(b) or_ 4(b)). Positive values are
for the tunnel with open top and bottom,,and ne@ive values are for
the closed tunnel.
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(a) Exact image system.

(b) Approximate image system. Doublet lines above and below
have been replaced by horseshoe vortices of span equal
nel width.

Figure 7.- Image systems for a doublet line above the center
rectangular tunnel.
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(a) Doublet near the sidewall.
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(b) Doublet at center of a tunnel having twice the width,. ,
diagramed above.

Figure 8.- liuagesystem for a doublet nesr the side wall
rectangular tunnel, and comparable image system for a
center of a tunnel twice as wide as the first.
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