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TECHNICAL NOTE 4345

SIMIIAR SOLUTIONS FOR THE COMPRESSIBLE BOUNDARY LAYER
ON A YAWED CYLINDER WITH TRANSPIRATION COOLING

By Ivan E. Beckwith
SUMMARY

Heat-transfer and skin-friction parameters obtained from exact
numerical solutions to the laminar compressible-boundary-layer equations
for the infinite cylinder in yaw are presented. The chordwise flow in
the transformed plane is of the Falkner-Skan type. Solutions are given
for chordwise stagnation flow with both a porous and a nonporous wall.
The effect of a linear viscosity-temperature relation is compared with
the effect of the Sutherland viscosity-temperature relation at the stag-
nation line of the cylinder for a Prandtl number of O0.7. The effects of
pressure gradient, Mach number, yaw angle, and wall temperature are inves-
tigated for a linear viscosity-temperature relation and a Prandtl number
of 1.0 with a nonporous wall.

The results indicate that compressibility effects become important
at large Mach numbers and yaw angles, with larger percentage effects on
the skin friction than on the heat transfer. The use of the two different
viscosity relations gives about the same results except when large changes
in temperature occur across the boundary layer, as for a highly cooled
wall. The present solutions predict that a larger amount of coolant would
be required at a given large Mach number and yaw angle than would be pre-
dicted from solutions of the corresponding incompressible-boundary-layer

equations.
INTRODUCTION

The so-called similar solutions of the laminar-boundary-layer equa-
tions are obtained by imposing certain restrictions on the external flow
and the wall temperature and assumihg that the dimensionless profiles of
velocity and temperature are functions of a single variable. The governing
partial differential equations then reduce to ordinary equations, and the
qualitative effect of various parameters on the boundary-layer character-
istics can be investigated with much less computing labor than for the more
general case. The similar solutions are also useful as a check on the
accuracy of approximate integral methods and as the basic information for
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constructing approximate methods of the piecewise type, such as those of
references 1 to 3. Furthermore, the similar solutions are exact for a
few physically real flows, such as those which occur on flat plates, the
stagnation region of cylinders and bodies of revolution, and wedges in
flows with constant fluid properties.

Similar solutions for constant-property flows are given, for example,
in references 4 and 5, where the effects of pressure gradient on the
velocity profiles and skin friction are considered. Solutions for the
corresponding temperature profiles and heat transfer are given by Squire
and Sibulkin for stagnation-type flows (refs. 6 and 7) and for various
pressure and wall-temperature gradients by Schuh and Ievy (refs. 8 and 9).
The effects of transpiration cooling in constant-property flows are given
in reference 10.

In references 11 and 12 the fluid properties were assumed to vary as
powers of the temperature; solutions with transpiration cooling were
included, but the results apply only to low-speed flows. In references 13

and 14 the product pp of density and viscosity was assumed to be constant
in accordance with the perfect-gas law and a linear varlation of viscosity

with temperature. These solutions are not restricted to low-speed flows
when the Prandtl number is 1.0. Several solutions with transpiration
cooling were included in reference 13. The effects of transpiration
cooling on the heat transfer at the stagnation point of cylinders and
bodies of revolution is presented in reference 15 for a constant value
of pu and a Prandtl number of 0.7.

The boundary layer on infinite cylinders in yaw can also be treated
by the methods of similarity; and, in fact, for constant-property fluids
the chordwise flow is independent of the spanwise flow, which can then be
calculated by using the solutions already available for two-dimensional
cylinders. (See, for example, ref. 16.) When the fluid properties are
allowed to vary, the chordwise flow is no longer independent of the span-
wise flow and the equations for the two components must be solved simul-
taneously. This problem has been considered by Crabtree (ref. 17) and
Moore (ref. 18) for a constant value of pu, zero heat transfer, and a
Prandtl number of 1.0; solutions are given for small values of the yaw-
angle parameter A\ 1in reference 19. Solutions for finite heat transfer
and small values of A are given in reference 20. In reference 21 solu-
tions are given for the flow at or near the stagnation line with finite
heat transfer and large values of A for Prandtl numbers of 1.0 and O.7.
Solutions for the case of large suction but small values of A and a
Prandtl number of 1.0 are given in reference 22.

Fay and Riddell (ref. 23) present solutions for the flow of a real
gas, including the effects of dissociation, at a three-dimensional stag-
nation point. They conclude, for example, that, when the Lewis number 1s
near 1, a heat-transfer parameter in terms of a local Nusselt number and
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Reynolds number depends mainly on the total variation of pp across

the boundary layer. For high cooling rates the effect of fluid properties
becomes more important. Thus, for a ratio of wall enthalpy to local
stream enthalpy of 0.05, the heat-transfer parameter 1s about 65 percent
of the value predicted by reference 15 for a constant value of pu.

In the present paper the effects of wall temperature, Mach number,
fluid properties, and transpiration cooling on the heat transfer and skin
friction of yawed infinite cylinders are considered. The external flow
in the transformed plane is required to vary as a power of the chordwise
distance from the leading edge or stagnation line; the injected gas is
the same as the boundary-layer gas, that is, the gas is homogeneous
throughout; and the wall temperature is constant. The density variation
is given by the perfect-gas law, and the specific heat and Prandtl num-
ber are assumed to be constant. Solutions are presented for Prandtl num-
bers of 0.7 and 1.0, for ratios of wall temperature to stagnation temper-
ature from O to 1.0, and for values of the yaw-angle parameter up to 11.0.
For a Prandtl number of 1.0 and a linear-viscosity-temperature relation,
the pressure gradient is varied from the infinitely favorable to the value
for chordwise separation. For the flow at the stagnation line of the cyl-
inder, solutions are calculated by using both the Sutherland and the
linear viscosity-temperature relations. Numerical examples are given to
illustrate the effect of yaw angle and viscosity relation on the quantity
of coolant required to maintain a given wall temperature.

SYMBOLS
ALBoK arbitrary constants
a speed of sound
a,b constants in interpolation formula for t,. (eq. (48))
C constant in Falkner-Skan velocity distribution (eq. (1a))
cp specific heat at constant pressure
£ chordwise velocity function; related to stream function by
equation (All)
g spanwise velocity profile function, v/ve
H stagnation enthalpy, cpT + Eg—%—zg




NACA TN 4345

d .

heat-transfer-coefficient parameter (eq. (40))

static enthalpy

thermal conductivity

reference length

Mach number based on resultant or total component of flow
exponent in Falkner-Skan velocity distribution (eq. (la))

local Nusselt number, hx/kw

Prandtl number, cpu/k

pressure . 3
heat-transfer rate per unit area
constant in perfect-gas law (eq. (A3))

PyleX

W

local Reynolds number,

recovery factor (eq. (43))

Sutherland constant (eq. (A2))

temperature , °R

chordwise and normal velocities, respectively, in transformed
plane (eq. (B1l))

chordwise, spanwise, and normal velocities, respectively, in
physical plane
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U, resultant velocity component, (ue + v2>l/2
X.7 transformed coordinates (eq. (AT))
Xy Vi, chordwise, spanwise, and normal boundary-layer coordinates,

respectively, in physical plane
a,é,y constants in interpolation formula for h (eq. (47))

a acute angle in chordwise plane between line tangent to surface
and free-stream direction

2m
= m+ 1
7 ratio of specific heats
C T tS 5 i due
Lo (8
R i 1(3&) Py
s 2 \8t
1 similarity variable (eq. (A10))
, . H - H,
S enthalpy profile function, —*—
H -H
e W
9*,8*,G,E,®,®* integral-thickness parameters in transformed plane
(eas. (B13))

A angle of yaw (complement of acute angle between free-stream

flow direction and cylinder axis)
A yaw-angle parameter; ratio of total stagnation temperature to

stagnation temperature of flow component normal to cylinder
W viscosity coefficient
v coefficient of kinematic viscosity, u/p
P mass density
) shear stress
g'o Bl
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\s stream function
w coolant mass flow per unit area, B
- . . . prW
w dimensionless coolant-flow ratio,
Pocly oo
Subscripts:
e local flow outside boundary layer (unless otherwise noted)
15 total stagnation conditions in free stream
W wall
5 external flow at stagnation line of cylinder
o0 ahead of bow shock
aw adiabatic wall
© coolant
e transformed similarity plane
P physical plane
st static

A prime denotes differentiation with respect to 7.
EQUATIONS AND CONDITIONS FOR SIMIIAR SOLUTIONS

The general boundary-layer equations for the infinite cylinder in
yaw reduce to ordinary differential equations when the dimensionless
velocity and enthalpy profiles are assumed to be functions of a similarity
variable and when certain restrictions are imposed on the external flow
conditions and the gas properties. (See appendix A.) The external flow
in the transformed coordinate system is restricted to the Falkner-Skan

type:
. = e (1)
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where C and m are constants. In terms of the physical flow this
relation may be expressed as

m

W alg B i by By g o (1p)
e~ Capl/, PP

from the definitions of U, and X. The local speed of sound 8y may
be written as
g = 1fue\
S st (g%) (2)

from the definition of t, and the use of the adiabatic-energy equation
in the external flow. The parameter tg depends on the stream Mach num-
ber and yaw angle as given by the expression

-1
L4 M 2coszA
tg = . (
g = = 3)
7"1M

2 0

The so-called similar solutions can be classified into two general
categories depending upon the additional restrictions used. In the first
of these categories (subsequently referred to as class I flows), the

chordwise velocity u, 1is zero or negligible in comparison with the

speed of sound. Such flows exist at or in the vicinity of a stagnation
point or line and on a cylinder at very large yaw angles. The second
category (class II flows) is obtained when the value of U, 1s arbitrary.

Further restrictions and assumptions which, in the present investi-
gation, apply to both categories are

(1) Prandtl boundary-layer equations for the steady flow of a homo-
geneous gas

(2) Perfect-gas law
(3) Constant specific heat and Prandtl number

(4) Constant wall temperature
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Class I Flows

The final ordinary differential equations for class I flows subject
to the restrictions and assumptions listed previously are as follows
(see appendix A for derivation):

(ge") + £ = B (€)% - glg[(l - t)e - (1 - ts>g2 + tWJ (&)

(§e') + fg' =0 (5)

(go')' + Np.fo' = (1 - NPr)%—-:Lti@(gg)']' (6)

where the prime denotes differentiation with respect to the similarity
variable 7. The boundary conditions on equations (&) to (6) are, at

n =0,
T -1/2
L et Qi
f = WW(B - ) (7

where f = 0 for a nonporous wall and

Pli=8=g =0 (8)
As 1 - o,

f':e:g:l (9)

For zero aerodynamic heat transfer the additional condition required to
determine the wall temperature is that 6% = (05

The general expression for the viscosity function ¢ is

=
¢ =L tw[(l - g0 - (1 - t,)ef + tw:] (10)

which, after introduction of the Sutherland viscosity relation, becomes

1/2
g (b + S)':l : (-t];w ¥ l>8 g ts>g2] (10a)
T tprsr(1-t)e - (1-t)e
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If the viscosity is assumed to vary linearly with temperature according
to the relation

equation (10) is reduced to
gz (10b)

The functions f', g, and 6 are the dimensionless chordwise velocity,
spanwise velocity, and enthalpy profiles, respectively. The normal

velocity at the wall w is determined from equation (7), where f..

must be a constant.

Class II Flows

For class II flows the chordwise velocity may have any value so long
as equation (1lb) is satisfied and the additional restrictions of Npy = 1.0

and ¢ = 1.0 are imposed. (See appendix A.) The equations with these
conditions are

£ + £"¢ = p4 (') - %[(l - 1,00 - (1 - tg)8” + tWJ i

n

g" + fg' 0 (12)

0 (13)

8" + 8!

For equations (11) to (13) the boundary conditions are, at n = 0,

-1/2
v 7-]_112\6.11
£ = -w, ?¥ 1+ = e2 dxe (14)
8e’/
f' =0 =g=0 (15)

and, at 1 -,

f':e:g:l (16)
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Inasmuch as the spanwise velocity profile g 1is exactly the same as the
enthalpy profile 6, equations (11) to (13) reduce to a fifth-order sys-
tem. The normal velocity at the wall w_ 1is

/2

2
V. Y - 1u \du
= =f A% 1 + e - e 7%

from equation (14), where again f, must be constant.
GENERAL EXPRESSIONS FOR HEAT TRANSFER AND SKIN FRICTION

Transformation Relations Between 2z and 7

Since expressions for the heat transfer and skin friction involve
derivatives normal to the wall, it is useful to consider the trans-
formation from the physical xz-plane to the similarity plane Xn. From
appendix A the normal derivative is

lo”

P m+ 1 Ue o)

e Rt 2 wX Sﬁ

(18)

o

i
dz

Differentiation of equation (1b) written in the form

_[ 7—1%21/2)(111
B~ (6 ts - ——§——<5E>

and the use of the Stewartson transformation yield

a (19)

t <at>uutpt due
e

e DB
m
X WP, ax

Substituting equation (19) into equation (18) and evaluating at the wall
then give

1/2

(é_) 1 te -y due é_
oz W ¥ = 1(39)2 va o Bn =
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or for brevity

&), )

where { 1is a function of x only. Similarily, it can be shown that
for a given x-station the relation between 2z and 17 1is

S
tWJE \/; t dny (21)

where the temperature ratio t 1is, in general,

&p

t = (1-6,)0 - (1 - t5)e" + &y - I3 l(u—e)g(f'f (22)

Local Heat Transfer and Skin Friction

The heat-transfer rate per unit area at the wall is

2 BT>
a, = 5(&)
which, from the definitions of H and 6, may be written as

Q = kw(Tt P Tw)(%%>w

Then from equation (20)

o, - T, (@)

Combining equations (23) and (14) yields the relation

%y

i g _w_"x(rpt .7 )ew (23a)

which shows that for a given similar flow q. varies with x directly
as the coolant mass flow since e; and f_ are independent of x.
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From equation (23) the expression for the local heat-transfer param-

eter NNu/\ﬁRz is
1/2

"‘[——_— D1 fiNe pa, N
{E; PLUX/H ty - U - (;%) e aw w

Equation (24) may also be written in a form that does not include a
velocity-gradient term by using equation (18) directly in the expression
fon o preceding equation (23). After the definitions of B and X
are introduced, the result is

a.
Hiab Be 1

a
Nyu A 1 utpt t Ty - Ty 6' (Zha)

Vﬁg T /\X MyPy Be dx Togw - Ty ¥
Jo Py Ot

1/2

When x — 0, as at a stagnation line, equation (24a) reduces, in the limit,
to

T T el S (24D)
ﬁ 2-BTaw—TW o

A heat-transfer parameter'which for given stream conditions is
proportional to the heat-transfer coefficient h may be written as

1/2
hl /k, _ | Putw cos A._z__due tg Ty = Ty 5 o
e Pt B \Uw dx e Tawim Ty ¥
v i oo oo tg - L= =

from equation (24) and the assumption that kw/kco = pw/um.

The expressions for local chordwise and spanwise skin friction may
be written as

Ten © “w<§2>w = K% gfw (26)

= uwve\Eg;r (27)

=1
9]
Lo)
|
&
e
&
N
i:\/
|
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The total component of the local skin friction in the direction of the
free stream is then

T S Hwﬁ:@&,cos @ cos A + g 51n.A> (28)

where o 1is the angle in the chordwise plane between a line tangent to
the surface and the free-stream direction.

Simplified Heat Balance

In the absence of lateral heat conduction within the porous wall
and heat loss by radiation, all the heat transferred to the wall by the
alrstream must be absorbed by the coolant. If the coolant flow through
the porous wall is assumed normal to the wall throughout and the aero-
dynamic heat transfer is given by equation (23), the resulting heat
balance is

R ge; = Pt (Ty - Te) (29)

where TC is the initial temperature of the coolant before it enters
the porous wall. Rearranging equation (29) and introducing fw from

equation (14) and ae from equation (2) give a relation between the
pertinent temperatures and the parameters 6; and f involved in the

similar solutions. This relation is

1

T, - T.6

o 3 i ﬁﬂ_ = -f (30)
T, - T, Np,

which, if any two of the three quantities Tw’ Tc’ or fw are known,

determines the remaining unknown value since 6; depends only on t.

and f, for given stream conditions and yaw angle. Typical problems
utilizing equation (30) would be to find the wall temperature from given
coolant temperature and mass flow or to find the coolant flow required
to maintain a given wall temperature. The latter problem is considered
in some detail in the section entitled "Results and Discussion."

If radiation and conduction are included, a more general heat bal-
ance, such as that given in references 1 and 15, must be used.
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BOUNDARY-IAYER-THICKNESS PARAMETERS

Transformed Plane

In various applications of the present results it is convenient to
have available certain boundary-layer-thickness parameters which are
obtained from integration of the velocity or enthalpy profiles over the
boundary-layer thickness. These parameters are defined in the XZ-plane
since transformation to this plane results in considerable simplification
of any compressible-boundary-layer calculation. The particular parameters
included in the tabulated results of the present report are those that
appear in the integral boundary-layer equations which are derived in
appendix B.

Transformation from the general Stewartson variable Z +to the
similarity variable 7 (see appendix A) requires that any thickness
parameter in the XZ-plane can be obtained by multiplying the corresponding
parameter in the similarity plane by the quantity

2 WK ‘

m+ 1 Ue

Thus, for example, the displacement thickness 6* in the XZ-plane is '

defined as
(o0}
6*=f -—T‘l-dZ
0 Ue

or, after transformation to the similarity variable,

* v X # v+ X
5% = flnd jats f (3 = gl ™
m+ 1 Ue 0 m+ 1 Ue 1P

Performing the indicated integration then yields the following expression
for the displacement thickness 6£; in the similarity plane:

* T]e 5
5, = lim (L - f£')dy = 1lim (n -f +f> (31)
tr e c W

e 0 D ™

Similarly, the momentum thickness is defined as
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* n n
6 = lim e&'-(ﬂ)ﬂ&]=]ﬂn% e -\f Wff%q
GL = w
ne—aw 0 L= ©)

which, after integration of the last term by parts and introduction of
ff" from equation (4), becomes

" T]
Kppew ]2 Ak e )
0" 2 1im PO Pres e i -B(—-l)f 1-g?)an -
tr Mg it ] W Y ( w1 e) tg o ( ) N

B 3—S(tw - 1) fone(l - 8)ay (32)

A spanwise parameter Gtr is defined as

n
Gy, = lim e(l - gE)dn (33)
R 0

which is the sum of the spanwise displacement and momentum thicknesses.

The thermal thickness is defined as

* Tle
® = 1lim (1L -0)a (34)
fo 1

BT
ne=

The final form of the momentum thickness is then obtained by sub-
stituting equations (31), (33), and (34) into equation (32), which becomes

"
* i

- f * *
s et S - . N
2 T B + <ts 1)(}tr F (tw 1>etr (35)

The remaining parameters appearing in the integral equations (appendix B)
may be considered as convection thicknesses when the analogy between g
and 6 (for Hp, = l) is considered. The spanwise convection thickness

or "mixed" momentum thickness is defined as




16 NACA TN 4345

T e
EL,l= lim f £1(1 - g)dn =" 1im e A f gf'dn
e 0] Masto 0

Integrating the last term by parts and using equation (5) result in
P (36)

Likewise, the enthalpy convection thickness is

= : T]e £ (l 0 - W
8, = lim - 0)dn = = ol (37)
Haaee v 0 Pr:

from integration by parts and equation (6). Equations (35), (36), and

(37) show that 67X, E., and ©g. can be written in terms of the

derivatives of the profiles at the wall and the other three integral
thicknesses 6{;, Gy, and eg;.

Physical Plane

The momentum and displacement thicknesses in the physical plane can
be expressed in terms of the thickness parameters in the similarity plane.
The chordwise momentum thickness in the physical plane is defined as

Zg 2
6% = 1lim l-<ul> £ az
P z.»w JO Ve € i

which, from equation (21) and the perfect-gas law, may be written

| t n
| HE iR 11y f e - (£')2|ay
p thz T]e_)oo 4 O [ ]

*
since -+ = f'. Then, from the definition of 6,
Ue tr

gL ke

. *
D thE tr

(38)
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According to reference 24, the physical displacement thickness on
a yawed infinite cylinder is not affected by the spanwise mass-flow
defect. Hence, the displacement thickness is defined in the usual way
as

* o pu
5. = 1lim 1l - dz
p Zg— @ 0 peue

#*
which, from equation (21), the definition of 8y, and the perfect-gas

law, may be written, after some rearranging, as

t ! *
5 = 1im = f e<-£1 - l)dn .5y
n - eltft Jo \e

Substituting equation (22) for t and using equation (32) and the
definition of et’; then yield

ko]

* t = 2 14plw L. =~%
B e e = Uer >e il W (39)
S iy R

COMPUTING PROCEDURE

More than 200 solutions to equations (4) to (6) and (11) to (13)
have been obtained by means of the IBM type TO4 electronic data pro-
cessing machine. The numerical integration procedure of reference 25
was used, and the procedure described in reference 21 for obtalining con-
vergence to the correct boundary conditions was included in the automatic
programing for the machine. A step size of 0.2 in % was used for most
of the solutions; however, a step size of 0.1 was used in a few solutions
which are included for comparison in the tabulated results. The accuracy
of the present solutions, except for B> 1.0 and f < -0.5, 1is believed

to be as good as or better than the accuracy of the solutions in refer-
ence 21. The boundary conditions at large values of n on f', g,

and © were satisfied to within 0.0001. The solutions were carried out
to sufficiently large values of 1 that the absolute values of the
derivatives of the functions f", g', and ©' were <0.0005. For
negative values of B the absolute values of the derivatives at large
values of 1 were <0.00005. In all solutions it was found that these
requirements could be satisfied for 7 < 8. For negative values of B
there is a problem of uniqueness (see, for example, refs. 4 and 14%) which
is discussed in relation to the present solutions in appendix C.
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RESULTS AND DISCUSSION

] 1 - * * *
The values of fw’ g, ew, lals 8tr’ Gi.» ©i,, and 6, which

constitute the principal results are presented in tables I to IV for
most, of the solutions in the present investigation. All heat-transfer
and skin-friction coefficients or parameters as well as most of the
boundary-layer-thickness parameters can be derived from these tabulated
values as described elsewhere in this report. The solutions included in
each table are summarized as follows:

Teble B |Npr| ¢ s £ e A
950 058055, 4% 0
i 1.0 1.0 | ====m- 0, -0.5, -1.0 120 RIG6 3 0N6R5
0.7 0580:5, 1505t
0.2 0, =0.5, =1.0
II 1.0 0.7 | #.0 0:05; 35, 1.0, Ha l-g:ﬁl-ii 3-0,
0.02 |0, -0.5, -0.75, -1.0 PP
0.015, 0.050, 0.070,
0.005 0.100, 0.150, 0.200,
0.250, 0.300 &
II1I(a) 0.5 0.7 |#1.0| 0.02 0 0.06, 0.20, 0.50 150
0.0625 0.1875, 0.627 -
0.2 0.05, 0.50
0.015, 0.050, 0.100, 1.0
0.200, 0.300 :
0.005 0.015, 0.050, 3.0
0.200, t :
III(b) 250 0.7|#.0 0 aw
0.015, o%?o, 0.200, 11.0
. aw
0.0625 0.1875, 0.625 1.0
Iv(a) 2'2’ 2'2’ 1.0| 1.0| -==--- 0 0, 0-5,01.0 1505012650 3.0, 65
B B
v(Db) <0 2.0 1:0] ====== 0 0,80-5; 1.0 15 0N126 1150165

Velocity and Temperature Profiles at the Stagnation Line

Typical profiles of the chordwise and spanwise velocity ratios and
the stagnation-enthalpy difference ratios are shown in figure 1. These
results are for stagnation-line flow (B = 105 ¢ = 1.0, Np,. =0.7,

and t,; = 0.5. Note that a given change in the transpiration-cooling
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parameter f, has a larger effect on the g and 6 profiles (figs. 1(Db)

| and 1(c)) than on the f' profiles (fig. 1(a)) and that these effects
tend to diminish as A 1is increased. Inspection of tables I and II shows
that the same trends are present in the derivatives of the profiles at the
wall. Comparison of figures 1(b) and 1(c) shows that the g and 6 pro-
files are nearly identical for Np, = 0.7. According to previous discus-

sion these profiles are identical when Np. = e

The temperature profile at the stagnation line (x = 0) depends only
on the spanwise profile g and the enthalpy profile © as given by equa-
tion (22). The resulting variations in the ratio of local static tempera-
ture to total stagnation temperature are shown in figure 2 for
A =1.6 and 6.5 and for t,; =0, 0.5, and t,,, and fy =0, -0.5, and -1.0.

This figure illustrates the large changes in temperature distribution that
occur as the yaw angle is increased. The reduction in heat-transfer rate
and recovery temperature with increasing coolant flow are also evident.

In regard to the possibility of dissociation or other real-gas effects, it
is of interest to note that for large cooling rates (small values of tw)

the maximum temperatures in the boundary layer are much lower at large
values of the yaw parameter than at small values of the parameter.

Heat-Transfer Coefficients and Recovery Factors
in the Stagnation Region
Effect of yaw parameter and transpiration cooling.- Equation (25)
shows that for given stream conditions, wall temperature, and yaw angle

the heat-transfer coefficient depends only on the parameter h, which is
defined as

e ks AN, (40)

W
Taw i Tw

h

| In figure 3(a), h is plotted against A for Prandtl numbers of 1.0
and 0.7 and for f, =0, -0.5, and -1.0. The figure shows that the
parameter h  (and hence also the heat-transfer coefficient) is reduced
considerably by increasing the magnitude of the transpiration-cooling

parameter fy,, with the largest reductions being obtained for small values
of N and for Np, = 1.0. A change in the value of the transpiration-

cooling parameter, however, would generally imply a change in the coolant
mass flow and wall temperature. Equation (23a) can be written in coef-
ficient form as

| h=-P @ (41)
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where = PV Thus, for a finite normal velocity at the wall, the

heat-transfer coefficient is determined solely by the coolant mass flow -

and the parameters f  and h. The parameter f, 1s related to the

coolant mass flow by means of equation (7), which may be written as

¢

P adeddBeoi . 42
¥ [Py Pe due i
T, R ax

Then since the quantity J“w/TW is nearly constant for relatively large
changes in wall temperature (for example, a change in Tw of 400° R

causes only a -percent change in \/“W/Tw)’ equation (42) indicates that
an increase in coolant mass flow  would cause a corresponding increase

in the magnitude of fw’ and hence, from figure 5(&), a reduction in h.

It then follows from equation (41), as would be expected, that increasing
@ decreases the heat-transfer coefficient h. This effect is shown

directly in figure 3(b) where the ratio of h with transpiration cooling
to h for a nonporous wall is plotted against A. The ratio of the heat- 4
transfer coefficients is proportional to the ratio of the values of h
for a constant value of pwpw. Figure 3(b) is not to be interpreted as

indicating an increase in heat-transfer coefficient with yaw angle at a
constant value of w, since an increase in yaw angle causes a large
decrease in the local density Py and velocity gradient due/dx. Con-

sequently, for given stream conditions and a constant value of w, an
increase in yaw angle decreases the heat-transfer coefficient.

The effect of Prandtl number on the heat-transfer coefficient is
shown in figure 3(c) where the ratio of h for Npr = 0.7 to h for

Np,. = 1.0 1is plotted against AN. This figure shows that the approximate

expression

=2

0.

—

2 (NPr)O.LL

=g

AL

@)

suggested in reference 21 is adequate for a nonporous wall but is in con-
siderable error for transpiration cooling.

The recovery factor or recovery temperature must be known before
heat-transfer rates can be calculated from heat-transfer coefficients.
The recovery factor r defined at the stagnation line as
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Taw . Ts
rem e (13)
5 Ts

is plotted against the coolant parameter fw in figure 4. The variation

of the recovery factor for a flat plate from reference 1 is also shown for
comparison. Increasing the coolant flow decreases the recovery factor on
both the yawed cylinder and the flat plate. On the yawed cylinder, larger
decreases in the recovery factor are obtained for small values of A than
for large values of A. The recovery factor on the flat plate is, of
course, independent of the yaw parameter.

Effect of viscosity assumption.- The ratio of the heat-transfer param-

eter h from the solutions calculated by using the Sutherland viscosity
relation to the corresponding value of h for @ = 1.0 48 plotted
against A in figure 5 for Np, = 0.7 and B = 1.0. Three parameters

must be considered: the transpiration-cooling parameter fw, the ratio
of wall temperature to stagnation temperature t,, and the ratio of the
Sutherland constant to stagnation temperature s =_S/Tt. If the value

of S 1is taken as 200° R, then s = 0.2 corresponds to ordinary wind-
tunnel conditions with Tt = 1,000° R or to flight conditions with

% 400° R and M, = 3, while s = 0.02 corresponds to T, = lO,OOOO R
or to flight conditions at M = 11.0.

All results from the solutions for tw = 0.5 fall within the shaded
band in the center of figure 5. For A > 3 and tw.z 0.5, the linear

viscosity relation gives practically the same results as the more accu-
rate Sutherland relation. For A< 3 and tw.g 0.5 the linear vis-

cosity relation results in heat-transfer coefficients that are as much
as 15 percent larger than those obtained with the Sutherland relation.
From a comparison of the values of h listed in tables I and II, the
largest deviations are seen to occur when s = 0.02, which for t, = 0.5

is beyond the range of practical wall temperatures. For s = 0.2
and t, = 0.5 the maximum differences resulting from the use of the two

viscosity relations is about 10 percent.

For t, = 0.05, a value corresponding to large aerodynamic heat-

transfer rates, the viscosity relation has a large effect for both values
of s. When s = 0.2 with ¢t, = 0.05, the use of the linear viscosity

relation results in heat-transfer coefficients that are from 10 to 50 per-
cent smaller, with the differences increasing as the transpiration-cooling
rates are increased. For s = 0.02 and tw = 0.05 the linear relation

has the opposite effect in that the heat-transfer coefficients are from
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20 to 80 percent larger, with the largest deviations occurring again at
the largest values of f ;. At some intermediate value of s the vis-

cosity assumption might be expected to have little effect even for the
large heating rates. For all conditions except s = 0.2, L 0205,

and f, =0 and -0.5 the effects of the viscosity assumption tend to

become smaller as the yaw-angle parameter N- is increased.

The effect of viscosity assumption on the variation of heat-transfer
coefficient with yaw angle or yaw-angle parameter may be obtained from
figure 5 by noting that

A/hA=O i h/h¢=l [ ﬁ/ﬁ¢=l

(h/hA= )¢=1 : (h/h¢=1) =0 — (H/E¢=l)x=o

since from equation (25), h 1is proportional to h, for given stream
conditions, wall temperature, and yaw angle. This relation and figure 5
then indicate that (except for s =.0.2 and fiy = -1.0) when the

Sutherland viscosity relation 1s used the predicted decrease in heat-
transfer coefficient with yaw angle is somewhat smaller than when the
linear viscosity relation is used.

The ratio of recovery factor r from the solutions computed by
using Sutherland's relation to r for ¢ = 1.0 1is plotted against A
in figure 6. This ratio is found to be essentially independent of the
transpiration cooling inasmuch as all results are within the narrow
bands shown in the figure. The viscosity relation has at most a 2-percent
effect, which depends only on the temperature level (that 15, on Tt) and
is a maximum for s = 0.02 and for large values of A.

Real-gas effects.- The assumptions of constant specific heat and
density variation according to the perfect-gas law would be expected to
limit the application of the present results to relatively low temperature
levels where real-gas effects and, in particular, dissociation effects .are
not important. An indication of the limits of applicability of the present
solutions may be obtained by comparison with the real-gas solutions of Fay
and Riddell (ref. 23).

Since the solutions presented in reference 23 are for the stagnation
point of a body of revolution, any results from the present calculations
must first be transformed to the corresponding axisymmetric configuration
before a valid comparison can be made.

At the stagnation point on a body of revolution, Tg.

= T¢, and from
the Mangler transformation the heat-transfer parameter NNu/Jﬁg g
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Jg-times the corresponding parameter in two-dimensional flow with the
velocity-gradient parameter B = 0.5. The heat-transfer parameter at
the stagnation point on a body of revolution is then obtained from equa-
tion (24b) as

(NNu> By (e : )
w 3
V"e/3_dimensional 2-dimensional

where 9; is taken from the solutions for the unyawed cylinder (A = 1)

with B = 0.5. The principal results of these solutions are given in
table III(a), and the resulting values of the heat-transfer parameter for
the stagnation point on a body of revolution are plotted in figure T

against the ratio géﬁi. Also shown in figure 7 for comparison is the
wowW
correlation given by Fay and Riddell (ref. 23) for their real-gas solu-
tions of the equilibrium boundary layer with a Lewis number of 1. In
reference 23, the Sutherland viscosity relation was used and the Prandtl
number was assumed to be constant at 0.71l. Since the effects of diffusion
disappear from the differential equations for a Lewis number of 1.0 (see
ref. 23), the only differences between the present solutions and those of
reference 23 would be caused by the different assumptions for the varia-
tion of density and specific heat. The close agreement between the
results of the present solutions and those of reference 23, as shown in
figure 7, therefore indicates that the heat transfer at a stagnation
point is not sensitive to the effects of dissociation on density and
specific heat within the boundary layer. For equilibrium dissociation
and a lLewis number of 1 the heat-transfer rate at a three-dimensional

stagnation point can then be calculated from the equation (ref. 23)

du H, - H, /N -
Gy = pw“'w< e) e W/ Nu> (4k)
S

dx Np.. \\@

where all quantities would be evaluated for the real-gas conditions

except NNu Jﬁ;, which may be taken from the appropriate solution of the
boundary-layer equations for a perfect gas with a constant value of Cp

and Sutherland viscosity law. The appropriate perfect-gas solution,
according to the correlation of figure 7, would be the one for which the
total variation of pp across the boundary layer is the same as in the
required real-gas conditions.

Whether this procedure can be extended to the stagnation line of a
yawed cylinder is not known since the corresponding real-gas solutions



2k NACA TN 4345

for this case are not yet available. Such an extension would appear
reasonable, however, if the perfect-gas solutions for the yawed cylinder
could be correlated in a form similar to the results for a three-
dimensional stagnation point. In order to investigate this possibility,
several additional solutions for the yawed cylinder (B = 1) were obtained
for the range of conditions used in the solutions for B = 0.5. These
results are presented in table III(b), and the heat-transfer parameter is
plotted in figure 7. For small values of s the heat-transfer parameter
for B=1 and AN =1 to 1ll 1is correlated within about 4 percent by the
expression

0.4k
Nyu _ o.5<psus> (45)
Jﬁ; Pyt

The values that are not correlated by equation (45), that is, the values
for A =6.5 and 11 with s = 0.2, are not representative of flight con-

ditions since such values occur at large Mach numbers and large yaw angles

but with T{ = 1,000° R. By analogy with the results for a three-

dimensional stagnation point, it may be assumed that the heat transfer at
the stagnation line of a yawed cylinder in a real-gas flow (with equi-
librium dissociation and a Lewis number of 1) can be calculated from
equations (44) and (45) with H, replaced by the adiabatic wall

enthalpy Hg,. From equation (43), the value of Hy, would be

Haw = r(He - 15) + il

where, from the adiabatic-energy equation, i, is defined as

The effect of the viscosity relation at a three-dimensional stag-
nation point can be obtained from figure T by comparison of the results

Psks

of reference 15 for = 1 with the present solutions. The use of
WW

the Sutherland viscosity relation for the range of t, and s in the

present solutions predicts smaller values of the heat-transfer parameter
than those given by reference 15 for a linear viscosity relation. The
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maximum effect is found again for small values of t  and s; for
example, with tw = 0.015 and s = 0.005 the heat-transfer parameter
is about 50 percent of the value given by reference 15.

Variation of Coolant Flow and Wall Temperature With Yaw
Angle at the Stagnation Line of a Cylinder

Interpolation formulas for h.- The problem of calculating the wall
temperature from given stream conditions, coolant temperature, and coolant

mass flow may be solved by means of equations (30) and (42) and graphical
interpolation for h and taw. The general procedure would be to assume

a wall temperature and calculate a first approximation for fy from equa-
tion (42). This value of £, together with the assumed wall temperature

and stream conditions, is used to determine h and Cyyy from interpola-
tion in figures 3(a) and 4. The corresponding value of 6& is then used

in equation (30), which is solved for T_. Only one or two iterations

would normally be required because the quantity p.w/Tw is such a weak
function of T.

A problem that is perhaps of more interest is to determine the
quantity of coolant required to maintain a given wall temperature. Since

9% is a function of f_, equation (30) has to be solved by a trial-and-

error process for f,, after which the corresponding coolant mass flow is

determined from equation (42). This trial-and-error process, however,
would be tedious and inaccurate since interpolation for 6; as a function
of t, A\, and . fy would generally be required. The limited number of
solutions available, as well as the behavior of 9; for T, - T, , makes
such an interpolation impractical. On the other hand, the function h

is in the form of a coefficient and hence remains finite for all values
of t,. Thus, in order to facilitate interpolation, equation (30) is

written in terms of h as

f = TaW-TW h ()4-6)

w T, - To Npr

and h 1is assumed to have the form

=il @ Lis . M- o g I
h = <a.otw + Bot,, + 7O>fw + <altw + Byt + 7l>fw 2 <a2tw SR 72)
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where a, E, and 7 are constants for any given set of N Np,., and s

or ¢. In general, nine exact solutions at a fixed value of A would be
required to evaluate the nine constants in equation (47). For Np,. = 1.0,

the required nine solutions are available, but for Np,. % 1.0 (see

tables I to III), only six solutions are available for evaluating the con-
stants since the limiting value of h for B 'I‘aw apparently cannot be

calculated from the zero-heat-transfer solutions. However, for Np,. # 1.0,
the same form of equation (47) was retained by assuming that at tw =it

<§%;>NPr¥l.O : (%%;>

Npr-1.0

aw

The resulting values for the constants in equation (47) for both Np.. £ 1.0

and Np, = 1.0 are given in table V. For Np. # 1.0 the recovery tem-
perature taw is assumed to be linear in f (for Np, = 1.0, t,. = l.O)
since from figures 4 and 6, r 1is linear in fw to within about 0.25 per-
cent. Hence, for the application of equation (46), t is given by the

aw
equation

Y o=la e BE. (48)

The constants & and b are also listed in table V. Combining equa-
tions (46), (47), and (48) gives a quadratic equation in f. for

Npy. = 1.0, and for Np, # 1.0 there is obtained a cubic equation which
can be easily solved for fw by standard graphical methods. The inter-
polation formulas (47) and (48) are also convenient in the first type of

problem in which the wall temperature is calculated from given coolant
mass flow.

Typical examples.- Equations (46), (47), and (48) have been used to
calculate the coolant mass flow required to maintain a constant wall tem-
perature in the following three examples:

Example Ty, E S Te M,
1L 10,000 1,500 500 10
2 1,800 800 500 10
5 2,000 1,500 500 ¥
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Examples 1 and 2 represent flight and wind-tunnel conditions, respec-
tively, at M = 10. Example 3 represents flight conditions at M, = T.

The results are shown in figure 8(a) where the parameter (from eq. (42))

£l
e

@ e :
= =|[— cos A £
( by Tw)l/E ﬁm e

Pellr b Tw

which is directly proportional to the coolant mass flow, is plotted
against yaw angle for ¢ = 1.0 with Np,. =1.0 and O0.7. Examples 1

and 2 have also been calculated for @ # 1.0 with Np,. = 0.7 and
s = 0.02. The values used for the velocity-gradient parameter <&& %;9>

were taken from reference 21 for a circular cylinder.

Figure 8(a) shows that the coolant mass flow required to maintain a
given temperature decreases with increasing yaw angle, as would be
expected from previous discussion. At small yaw angles considerably more
coolant is required for NPr = 0.7 than for Np, = 1.0; however, the
effect of Prandtl number is not so large for large yaw angles. The
curves calculated for examples 1 and 2 with s = 0.02 indicate that the
use of the Sutherland viscosity relation predicts that less coolant is
required than when the linear viscosity relation is used. The variation
with yaw angle is about the same for both viscosity relations. Note that
in example 1 the curve for ¢ $510, Np,. = 0.7 1is almost the same as

the curve for @ = 1.0, Np,. = 1.0.

In figure 8(b) the corresponding variation of f, with A 1is shown

for these examples. This variation is essentially an effect of compressi-
bility in the boundary layer since for an incompressible boundary layer fy
would be independent of yaw angle. The present solutions predict, there-
fore, that at large Mach numbers and yaw angles the coolant requirements
would be some 50 percent larger than for an incompressible boundary layer
with the same wall temperature and external flow conditions.

Effect of Pressure Gradient and Yaw-Angle Parameter on
Skin Friction and Heat Transfer

The effects of the pressure-gradient parameter f and the yaw-angle
parameter A on the heat-transfer and skin-friction parameters for three
different ratios of wall temperature to stream temperature are shown in
figures 9 and 10. These solutlons are for the conditions of @ = 1.0,
Np, = 1RO and fw = 0. The heat-transfer and skin-friction parameters,
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as well as other pertinent data from these solutions, are also given in
table IV.

Figure 9 indicates that the effects of pressure gradient on the heat-
transfer parameter ew or the spanwise skin-friction parameter gw (for

Np, = 1.0, 9; = g;) become larger as the wall temperature and yaw param-

eter are increased. For negative or favorable pressure gradients (posi-
tive values of B) the values of 6; and g& are increased as the yaw
parameter A and the temperature ratio t, are increased. For adverse

pressure gradients, corresponding to negative values of B, the values of
6& or g& decrease considerably with increasing A or t,. For zero

pressure gradient, 6; or g& is independent of both A and t,- The

effect of these changes on the actual heat transfer or skin friction
would have to be calculated from equations (23) or (27) for any given set
of flow conditions and wall temperature.

The chordwise skin-friction parameter f: is plotted against B

for three wall-temperature ratios and four values of A 1in figure 10. -
The trends shown in figure 10 are the same as those Just discussed for
6; or g&; however, the percentage variations in f; are much larger

than in the other parameters. These large variations are particularly
noticeable for large values of A and t,- The local skin friction

must again be calculated for any particular case from the appropriate
equations (eq. (26) or (28)).

The value of the pressure-gradient parameter f required for
"
fw = 0, implying separation of the chordwise flow, is plotted against

AN 1in figure 11. This figure indicates that decreasing the temperature
would delay separation, while increasing the yaw angle (at a sufficiently
large stream Mach number) would move separation forward.

The ratio of the chordwise skin-friction parameter to the spanwise
skin-friction parameter f;/%; is indicative of the degree of secondary

flow in the boundary layer, as discussed in reference 21. The values of
these skin-friction parameters listed in table IV show that the

ratio f;/é; is a maximum for B = 2.0, unity for a flat plate (B = 0)

where there is no secondary flow, and zero for chordwise separation
where the "surface" streamline is exactly in the spanwise direction.

The problem of uniqueness for the solutions with negative B 1is
discussed in appendix C. The particular solutions presented in table IV -
were obtained by application of the convergence procedure of reference 21
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at 7 =08. The tabulated solutions also satisfy the boundary conditions
on f' and 6 at n =8 to within 0.00001 with the absolute values of
£* and 6' < 0.00005. It was found that f£' < 1.00000 throughout the
boundary layer when these conditions were satisfied and that application
of the convergence procedure of reference 21 to values of n > 8 resulted
in no appreciable changes in f; or 9;.

CONCLUDING REMARKS

General equations for the heat transfer and skin friction in the
laminar compressible boundary layer on infinite cylinders in yaw are
presented for the case in which the velocity and enthalpy profiles are
functions of a similarity variable. By means of numerical solutions of
the boundary-layer equations, the effects of transpiration cooling,

Prandtl number, and viscosity relation were obtained for stagnation-line
flow. The effect of chordwise pressure gradient was investigated for a
nonporous wall, a Prandtl number of 1.0, and a linear viscosity-temperature
relation.

Transpiration cooling reduces the skin-friction and heat-transfer
coefficients by large amounts, with the largest percentage reductions
occurring at small yaw angles and for a Prandtl number of 1.0. The effect
of Prandtl number Np. on the heat-transfer coefficient is given approxi-

mately by (NPI.)O'LL for a nonporous wall; however, for a porous wall this

expression is in considerable error.

Because of an overall reduction in heat-transfer coefficient with
yaw angle A, the quantity of coolant required to maintain a given wall
temperature decreases with increasing Aj; however, this decrease is not
so large as that which would be predicted from solutions of the
incompressible-boundary-layer equations.

Comparison of solutions computed by using the Sutherland viscosity-
temperature relation with solutions computed by using the linear viscosity-
temperature relation indicates agreement in heat-transfer coefficients to
within about 10 percent when the ratio of wall temperature to stagnation
temperature Tw/Tt 2 0.5. When Tw/Tt = 0.05, the heat-transfer coeffi-

cients from the two sets of solutions for a cylinder differ by 50 to
150 percent depending on the temperature level and yaw parameter.

The values of the heat-transfer parameter at the stagnation point
on a body of revolution obtained by the present method with the Sutherland
viscosity-temperature relation and a Prandtl number of 0.7 are in close
agreement with the corresponding results of Fay and Riddell for a real
gas. This close agreement indicates that the ‘heat-transfer rates at the
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stagnation point of a body of revolution or at the stagnation line of a
yawed cylinder in a real-gas flow at equilibrium dissociation may be cal-
culated by using the Sutherland viscosity-temperature relation, the
perfect-gas equation, and constant specific heat in the solution of the
boundary-layer equations. The flow variables appearing in the final

expression for the heat rate must be evaluated at the real-gas conditions.

The effects of pressure gradient on the heat-transfer and skin-
friction parameters become larger as the yaw parameter and wall tempera-
ture are increased. Calculations for an adverse pressure gradient indi-
cate that at sufficiently large values of the stream Mach number the
separation line of the chordwise flow would move forward as the yaw angle
is increased.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., June 25, 1958.
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APPENDIX A
DERIVATION OF SIMPLIFIED BOUNDARY-IAYER EQUATIONS

The equations solved in the present report are essentially the same
as the equations of reference 21 except for the boundary condition on the
normal velocity at the wall and the assumption used for the viscosity-
temperature relation. The normal velocity at the wall is herein assigned
a finite value to simulate a porous wall. The injected gas is therefore
assumed to be the same as the gas in the boundary layer; that is, the equa-
tions apply only for a homogeneous gas throughout. Numerical solutions to
the present equations are obtained for both a linear viscosity-temperature
relation of the form

b= (A1)
and for Sutherland's relation

"

™ (A2)

E; TEs

ol

In both equations (Al) and (&2); K, Wwould be evaluated as a function of
T, from the best viscosity data available.

Since the basic equations for the compressible boundary layer on
the infinite cylinder in yaw are given elsewhere (for example, ref. 21)
they are not repeated herein. The assumptions and restrictions used to
obtain the following equations are

(1) Prandtl boundary-layer equations for the steady flow of a homo-
geneous gas

(2) Perfect gas law
p = PRT (A3)
(3) Constant specific heat and Prandtl number
(4) Cylinder of infinite length (spanwise derivatives vanish)
Introducing the stream function and the Stewartson transformation in the

same manner as in reference 21 then results in the following system of
equations in the transformed coordinate system XZ:
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Chordwise momentum equation:

oy ¥ dv Py _ Ug dUe (1
OZ X dZ OX oz2  ts X

Energy equation:

Oy 30 _ v 0 1 -0 Oy dty
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(Ak)

vk _, jl(? 9&) (A5)

X OZ tz\” a2z

0z 0X o0X 90z 1 - t,; 0z dX

The Stewartson transformation
defined as

Lyt n bl L - Mer o 4w
Npp 0Z |02 1 - t, 0Z\ 2c,T,
(A6)
used in equations (A4) to (A6) may be

ik ks ]
Py Pu Be dax
o PLPE AL

a—ej;z—p—dz L (A7)

and the stream function is defined by

v _ p
= -ep"
N __p
ox Py Ly

The viscosity function ¢ may be written as
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¢ -L ¥ (48)
My T
on account of the perfect-gas law and the fact that gg =N inNas thin
Z
boundary layer. In general, T may be expressed as
2 2
_ 2 y - 14 u
T =T f(1- )0 - (1 - te)e® + t, - I3 ;?(ﬁe—)

from the definitions of H, 6, and g and the use of the adiabatic-
energy equation for the external flow. The quantity tg depends on the
spanwise velocity and can be written in terms of the stream Mach number
and yaw angle as

S Y e L MmecoseA

tg=3-1- 122k - 2 (49)

which indicates that ts is simply the ratio of the stagnation tempera-
ture of the flow component normal to the cylinder to the total stagnation
temperature. Note that the yaw parameter t  as defined here is the

reciprocal of the Mach number--yaw-angle parameter used in reference 218

Similar solutions to the system of equations (A4) to (A6) are
obtained by first assuming that the dimensionless velocity and enthalpy
profiles U/Ue, g, and 6 are functions of a single similarity varia-

ble n and then determining the additional conditions required to reduce
the system to ordinary equations (see, for example, ref. 14). The simi-
larity variable is defined as

i (A10)

and the assumptions for the profiles are

i
¥ = "m f = v UXE(n)

(A11)

@
I
(e
T

-
~
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where U =a, =& and & = f' = &, Then, if the extermal flow is of
e t 8 Ug u,

the Falkner-Skan type
Up = CX* (A12)

the system of equations (A4) to (A6) is reduced to the following form:
AR e e | g 2 |
Sﬁ(¢f ) + £"f = (') - 52111 - tw)e = (1 = ts>g + tw] (A13)

2(s’) + g = 0 (AL4)

O(ge') + N Ll - Sipkf’ 1 -0 Aty _

3 P m+ 1 1-t,d&
: e e : .
e e o B

where the primes denote differentiation with respect to 17, and

B = —2 . The boundary conditions on equations (Al3) to (A1l5) are
now, §t+ % =0
-1/2
f=4ﬁ%é+7;1:3$e (826)

where w, =0 for a nonporous wall and

f' =0 =g=0 (ALT)
A5, | S,

f'=0=g=1 (A18)

For zero aerodynamic heat transfer, the wall temperature in equa-
tions (Al§) to (A15) is replaced by the adiabatic wall temperature Taw‘
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Since Taw is then an additional unknown, an additional equation or
condition is required in order to evaluate T_. This additional condi-
tion 1is
Co N (A19)
on
%

from the definition of 6. Since t, and u, are, in general, func-

tions of X, equations (Al3) to (A16) are not yet consistent with the

original assumptions for the profiles as given by equations (A2x). A
consistent set of equations cannot be obtained when t, 1is a variable

except for incompressible flow (tw ~1.0, tg =1.0, u, < ae) for which

t, may take the form (see ref. 9)

n
t, =1+ AX
For compressible flow it is necessary to specify that t. 1is constant.

While the chordwise velocity U, must always satisfy equation (A12),

the specific value of this velocity required to make equations (A13) to
(A16) consistent with equations (All) depends also on the viscosity
assumption and the value of the Prandtl number Np,. For arbitrary

values of ¢ and Np,., ue must be either zero (or negligible) or a

constant other than zero. The first term on the right in equation (A15)
and @ then become functions of n only. When wue 1is constant, B = 0,

and the equations reduce to the flat-plate case, which is not considered
further herein. At X =0, u, = 0 and the equations describe the flow

at the stagnation point on a body of revolution (where B = 0.5 and
tg = 1.0) or at the stagnation line on a cylinder (B =1). Equations

(A1%) to (A16) then reduce to
(ge") ' + £'¢ = pi(£')? - t—i—l:(l - ;)8 - (1 - ts>g2 + tw:l (A20)
(fg') + fg' =0 (A21)
y 1l - tg 2y '
(do') + Np,fo' = (1 L, NPr>——[¢(g )] (A22)

Y [ﬁ d_u_‘%]-l/z (A23)
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with the remaining boundary conditions the same as equations (Al7) to

(Al9). Equations (A20) to (A23) apply approximately when U, << ay,

which occurs, for example, in the neighborhood of a stagnation line
where B = 1.0. Small chordwise velocities would also be expected over
the entire cylinder for large yaw angles when the value of B may be
arbitrary. Note that equation (A23) specifies a chordwise distribution
of w, since f,; must be a constant.

In general, when ug # 0, a consistent set of equations can be
obtained only for the condition of Np,. = 1.0 and @ = 1.0. The condi-

tion ¢ = 1.0 1is obtained by substituting the linear viscosity relation
given by equation (Al) into equation (A8). The equations (Al3) to (Al5)
then reduce to

£y £ = pd(£1)° - £Z'Kl -t Jo - (1= ts)92 - tw] (A2k)

8" + £0' =0 (A25)

where for these conditions 6 = g, from the boundary conditions (A1l6) to
(A19) and equation (AlL4) with ¢ = 1.0. The boundary conditions applying
to equations (A24) and (A25) are the same as equations (Al6) to (A18).
Since f; must be a constant, the normal velocity at the wall varies
according to

1/2

2

ot (| g y =1 Eg_xdue

Wit ey B B+ 2 %/dx
e

or in terms of the transformed coordinate

a -1
o s Sw Se m o+ 1, eof® (A26)
W WM 8y 2 t
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APPENDIX B

INTEGRAL EQUATIONS IN TRANSFORMED PIANE

A large group of approximate methods for calculating laminar-
boundary-layer characteristics are based on the integral equations
which are obtained by integrating the partial differential equations
across the boundary layer normal to the wall. After suitable assump-
tions are made for the velocity and temperature profiles, the problem
is thereby reduced to the solution of a set of ordinary differential
equations. Even though the original boundary-layer equations are satis-
fied only on the average, these methods are usually considered to be
sufficiently accurate for practical purposes. (For a general review of
integral methods, see ref. 26.)

Some of the "piecewise" methods (for example, ref. 1) which use
basic information from the similar solutions are also found to satisfy
the integral momentum or energy equations.

In the application of integral methods to the compressible boundary
layer, substantial simplifications are obtained by transforming to the
XZ-plane. The velocities in this plane are defined in terms of the
stream function V¢ as

3 3
i L
oz
( (B1)
SO
X |
so that the continuity equation is
UL, (82)

X oz

Substituting equations (Bl) into equations (A4) to (A6) of appendix A
yields

L A P 3 (52
& - - [(1 tw>e (1 ts>g +tw}+v‘°az@82> (B3)
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%,y wXE_, Ok

W T az(¢ az> B4}
¥, % 10 adty_ v d(®
U8X+W8Z+l-thdX NPraz(¢az)

Npr 1 -t, o2

th'NPri¢tB_t iga_. + (1 -t ig2 (B5)
e) 5 3z

where the adiabatic-energy equation for the external flow has been used
in the last term of equation (A6). The boundary conditions for equa-
tions (B2) to (B5) are, at Z = 0,

Us 0= gi=0 (B6)

W=, (BT)

where W, = O for a nonporous wall; and, at Z —,
U=U (B8)

g=06-=1 (B9)

The conventional boundary-layer assumptions also require that all
derivatives of U, g, and © Dbecome negligible for large values of Z.
For zero heat transfer the additional condition (BG/BZ)w = 0 1is used

to determine the adiabatic wall temperature T_. Combining equa-

tions (B2) and (B3) and integrating from Z = O to o with boundary
conditions (B6) to (B9) then yield

[o0] 2 (e} (o0}
&[T e 2 [ ﬂ.-vf.éd“f <1-L>dz+
X Jo Ve U, e e KX o Ve U 0 U,

Ll-t) [T as(o-2) [Ta- om0

(B10)
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Equations (B2) and (B4) can be combined in the same manner to give

o8} o«
U ( W 1 dUe U vi[og
=] = g)d? ~ g =ies =—(1 = g)dz = =S8 (B11)
g/; Ue Ue Up ax o Ue Ue \0Z/y;

g0 W du
d U(l-e)dZ—U—W+-L—e Sapre s i
dt 5 v
L B - ejaz 5 bS8 (B12)
1-ty ax 0 Ue NPrUe 0Z W

The integral-thickness parameters are defined as follows:

2y mU U2
0 - —1dZ
u[; GE; Ué2>
* 4 U
- —|dZ
Jﬂ; ( Ue>

o
]

¢ (B13)

Substitution of these parameters into equations (B10) to (B1l2) then gives
the final form of the integral equations as
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(B14)
dE 4 & EHQ = Zi(ég) St Eﬂ (315)
ax Ue d&X U \0z/y, Ue
8, ofL We _ 1 atw)_ Yt (o) , M (B16)
dxX U dX 1 - t, aX NpUa\0Z/,,  Ue

The normal velocity at the wall in the transformed plane is related
to the corresponding velocity in the physical plane by the relation

B
Ty

from equations (A7) and the definitions of U and W.




NACA TN 4345 . b1
APPENDIX C
UNIQUENESS OF SOLUTIONS FOR NEGATIVE VALUES OF B

In order to discuss the uniqueness problem for negative values of
B (see refs. 4, 5, and 14) it is useful to consider the asymptotic
solutions to equations (A24) and (A25). These equations apply for

¢ =1.0 and N, =1.0 and are as follows:
e " 1 2 2
£ o4 £ = BY(£')° - %: Bl S RO R LR tw] (c1)
8" + f0' =0 (c2)

The boundary conditions are, at n = O,
£l (c3)
£ == 0 (ck)

and, at 1 -,
£' =8 = 1.0 (c5)

The functions f' and © may be written as
(cé)

where, at large values of 1, f and 6 are small quantities because
of boundary conditions (C3) to (C5). Substituting equations (C6) into
equations (Cl) and (C2) and retaining only the linear terms in 1

and 6 result in the equations

B PP = 2pF 1 Bé(% Sy ) (cT)

ts

8" + f8' =0 (c8)
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| which are valid only at large values of 1. The boundary conditions
for n -« are now

£=0

@i

=0

The function f may be written by definition as

0
f=fe+f £'dn
Tle

which, from equations (C6), becomes

n
f=fe+f (1 - £)an
ne

If the quantity u/\ £ dn 1s assumed to be negligible, the asymptotic
Nle
| expression for f 1is

f=1f +n-n (c9)
Introducing the variable 7 defined as
n=n+ (£ - Te ) (c10)
and substituting equation (C9) into equations (C7) and (C8) then result
in
. i
(b - daf = = (1 +
7+q—_-=2;3f+36<——31- (c11)
a5 dn b
2— -
d“8 . - a8
—=+1—==0 (c12)
an an
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since from equation (C10) ﬁe = fe. For large values of 17 this rela-

tion may be expressed as (see ref. 27)

(g 252
g =8 ee( i n) (c13)

5 )
Thus at 7 = Ne> where 7, 1s such that (C9) is satisfied, the asymptotic
solution for 6 as given by equation (C13) requires that approximately

8, ~ 1 - ?f (C1k)

which may be verified for B = 1.0 from the tabulated results for
Npr = 1.0 in reference 21.

Substituting equation (C13) into equation (Cll) results in the
linear differential equation

i 2_-2>
°f F = 1+ 1 E(fe !
—2+ﬁif_——2sf=a<—T—t—W-2>eee————— (c15)
an dn s !
A particular integral of this equation wvalid for large values of ﬁ is
=2
" 4
f=AAE8 - (Cl6)
n
where, by substitution in equation (C15),
P ) Folh SR (c17)
Z0E e

The general solution to the homogeneous part of equation (C15) for large
values of n 1is (see ref. k&)

P = B s quﬁ (c18)

where for B > 0, K =0 1in order to satisfy the boundary condi-
LllonMEIN=—NONfor n — .,
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For B < O this boundary condition can be satisfied with any
finite value of K and the general solution to equation (C15) then
becomes

3.
z 1 L £itylot e B =2B
Tl g e | (R B 0 + K i
1-2< 2tg )e 7 ol {eao)
2‘71 n
(=5

which is valid only for large values of 7 and B < O. Since equa-
tion (C19) is a solution for any value of K, further restrictions must
be imposed before a unique solution can be obtained. Hartree (ref. k)
sets K = O for reasons of continuity and consistency with the B> O
case. Cohen and Reshotko (ref. 14) state further that for B < 0 it
is necessary to set K = 0 to avoid infinite displacement thickness.
For K = O the constant B may be obtained from equation (C1l9) evalu=-
ated at 7 = 7§ . The final asymptotic forms for f' and 8 may then
be written as

1 2 '

il 9 o Regenl fe T E_t_E! 92 4 (£2> 5 Qi < s < = E_i_EE 92
%ﬁz‘f82> T 2tg s n e 2tg fe

(c20)

1%
B(E-1e%) @

Equations (C20) and (C21) are now unique solutions for all values of B,
and a study of their properties for B < 0 may be used as a gulde to
obtain by numerical methods the corresponding unique solutions of the
original nonlinear differential equations (A24) and (A25).

8 =1 - (ca21)

For purposes of comparison, consider first the cases for B > O
and B = 0. For B> O the first term in the braces of equation (c20)
dominates so that for very large values of 1 there remains approximately

g 1+
f'“l'—l"%'Tg-g(l"zT‘ty'>
E(ﬂ -fe ) 1 5
e
Hence for 8; >0, f' =1 from above or below according to whether

1+
_EE_EE is greater or less than 1.0. All numerical solutions (whether
s
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unique or not) obtained in the present investigation for NPr = 1.0
show that 6; 2 0 for both negative and positive values of B. The

asymptotic solutions for B = 1.0 are discussed in detail in refer-
ence 2l1.

For B = 0, equation (C20) reduces to

oL R 1 fe(l-f'>

3@ T

which shows that for fé < 1.0, f' -1 from below.

For B < 0, the second term in the braces of equation (C20) dominates
so that for very large values of 17

' 2p+l 1+ t)e,
£~ 1 - 7= 2f78 l-f'—<l-——‘-jf—e
E(n S ) 0 . s =
e
which shows that f' - 1.0 from below if

(1 - f;> > ( L Mré (c22)

L b
This inequality would always be satisfied for 6; >0 and fé <IN

1 .4
——tw->= 1. On the other hand f' — 1.0 from above if

T

AT W
(1 e f') 2 i T e (c23)
S BHEVHEL

which is always satisfied for 6_> O and f_> 1 if
1+t L+t
w =
2t R 2
B 1 1l + tW
velocity overshoot (fe > l> occurs if — A< 1.0 and equation (c21);

¥ A€ 1.0. Apparently a unique solution is possible when

as well as all boundary conditions, 1s also satisfied. (The situation
for negative values of P, or adverse pressure gradient, is the exact
opposite of that at positive values of P, or favorable pressure gradient,

ik
where velocity overshoot occurred for ——%—Eﬂ A > l.O.) In the present
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solutions for negative values of B the smallest value of }—%—EK A

is 0.8, a value corresponding to t,=0 and A= 1.6. (Solutions for

A = 1.0 are given in ref. 14.) If a valid solution with velocity over-
shoot is possible, it would be expected for these values of tw and A.

A series of solutions were then obtained for t =0, A\ = 1.6, and

B = -0.2 for different values of 71, say n*, at which the convergence
procedure as described in reference 21 was applied. Pertinent values
from these solutions are presented in table VI. Examination of the tab-

6, 6
ulated values of (1 - £,) and <1 - 21 W 5)-€ = 0.2 ;& shovs that when
e e

inequality (c23) is satisfied the boundary conditions on f' and 6 at
large values of 1 are not satisfied. Furthermore, equation (C2l) is
not satisfied since Oé always remains positive even when 6 > 1.0.

The boundary condition on 6 was not satisfied to a high degree of
accuracy until fé < 1.0 for all values of 1 whereupon the inequality

(c22) was satisfied at 17 = 6 and 8. It is therefore concluded that for
the particular convergence procedure used herein it is not possible to

1+
—z—t"’)\gl.o

and velocity overshoot occurs. In other words, while equation (c18)
permits a unique solution with velocity overshoot, the required boundary
conditions on 6 and 6' cannot be obtained when velocity overshoot is
present.

satisfy equations (C20) and (C21) simultaneously when

The results shown in table VI also indicate that increasing n*
from 6.8 to 10.4 resulted in no change in f; and 9; and very little

change in any of the tabulated values at comparable values of 7. The
same behavior was noted in several other sets of solutions at different
values of t_, A, and negative B.

In view of the preceding discussion congerning the asymptotic solu-
tion and also because of the tendency for £ and 9& to approach con-

stant values as 1% is increased, it was assumed that, in general, unique
solutions could be obtained by using n* = 8.0 provided that f' <1 for
all values of 17 and the boundary conditions at 1 = 8.0 were satisfied
to within 0.00001 on 6 and f', and to within 0.00005 on 6' and f".
All final solutions for negative values of B as presented in table IV
satisfy these conditions to this degree of accuracy.




NACA TN 4345 L7

10.

REFERENCES

. Eckert, E. R. G., and Livingood, John N. B.: Method for Calculation

of Laminar Heat Transfer in Air Flow Around Cylinders of Arbitrary
Cross Section (Including Large Temperature Differences and Trans-
piration Cooling). NACA Rep. 1118, 1953. (Supersedes NACA TN 2733.)

. Smith, A. M. O0.: Rapid Laminar Boundary-Layer Calculations by Piece-

wise Application of Similar Solutions. Jour. Aero. Sci., vol. 23,
no. 10, Oet. 1956, pp;, 901-912.

. Stine, Howard A., and Wanlass, Kent: Theoretical and Experimental

Investigation of Aerodynamic-Heating and Isothermal Heat-Transfer
Parameters on a Hemispherical Nose With Laminar Boundary Layer at
Supersonic Mach Numbers. NACA TN 334k, 1954.

. Hartree, D. R.: On an Equation Occurring in Falkner and Skan's

Approximate Treatment of the Equations of the Boundary Layer. Proc.
Cambridge Phil. Soc., vol. XXXIII, pt. 2, Apr. 1937, pp. 223-239.

. Smith, A. M. 0.: Improved Solutions of the Falkner and Skan Boundary-

Layer Equation. Rep. No. ES 16009 (Contract No. NOa(s)902T), Douglas
NinerattHCoR, Mine, i Mar s S 515 952

. Fluid Motion Panel of the Aeronautical Research Committee and Others:

Modern Developments in Fluid Dynamics. Vol. II, ch. XIV, sec. 270,
S. Goldstein, ed., The Clarendon Press (Oxford), 1938, p. 631.

Sibulkin, M.: Heat Transfer Near the Forward Stagnation Polnt of a
Body of Revolution. Jour. Aero. Sci. (Readers' Forum), vol. 19,
noLe8; tAug. 1 1952, pp. HT0=-5T1L:

. Schuh, H.: Laminar Heat Transfer in Boundary Layers at High Velocities.

Reps. and Translations No. 810, British M.A.P. VOlkenrode, Apr. 15,
1947.

. Levy, Solomon: Heat Transfer to Constant-Property Laminar Boundary-

Layer Flows With Power-Function Free-Stream Velocity and Wall-
Temperature Variation. Jour. Aero. Sci., vol. 19, no. 5, May 1952,
pp. 341-348.

Donoughe, Patrick L., and Livingood, John N. B.: Exact Solutions of
Laminar-Boundary-Layer Equations With Constant Property Values for
Porous Wall With Variable Temperature. NACA Rep. 1229, 1955.
(Supersedes NACA TN 3151.)




L8

il

1120

5

1k,

115

16

11705

18.

110G

205

215

22.

NACA TN 4345

Brown, W. Byron, and Donoughe, Patrick L.: Tables of Exact Laminar-
Boundary-Layer Solutions When the Wall Is Porous and Fluid Properties
Are Variable. NACA TN 2479, 1951.

Brown, W. Byron, and Livingood, John N. B.: Solutions of Laminar-
Boundary-Layer Equations Which Result in Specific-Weight-Flow Pro-
files Locally Exceeding Free-Stream Values. NACA TN 2800, 1952.

Levy, Solomon: Effect of Large Temperature Changes (Including
Viscous Heating) Upon Laminar Boundary Layers With Variable Free-
Stream Velocity. Jour. Aero. Sci., vol. 21, no. 7, July 1954,

pp. 459-LTh.

Cohen, Clarence B., and Reshotko, Eli: Similar Solutions for the
Compressible Laminar Boundary Layer With Heat Transfer and Pressure
Gradient. NACA Rep. 1293, 1956. (Supersedes NACA TN 3325.)

Reshotko, Eli, and Cohen, Clarence B.: Heat Transfer at the Forward
Stagnation Point of Blunt Bodies. NACA TN 3513, 1955.

Cooke, J. C.: The Boundary Layer of a Class of Infinite Yawed
Cylinders. Proc. Cambridge Phil. Soc., vol. 46, pt. 4, Oct. 1950,
pp. 645-648.

Crabtree, L. F.: The Compressible Laminar Boundary Layer on a Yawed
Infinite Wing. Aero. Quarterly, vol. V, pt. 2, July 195k,
pp. 85-100.

Moore, Franklin K.: Three-Dimensional Boundary Layer Theory. Vol. IV
of Advances in Applied Mechanics, H. L. Dryden and Th. von Kdrmdn,
eds., Academic Press, Inc. (New York), 1956, pp. 159-228.

Tinkler, J.: Effect of Yaw on the Compressible Laminar Boundary
Iayer. R. & M. No. 3005, British A.R.C., 1957.

Lew, H. G., and Fanucci, J. B.: Effect of Yaw on Boundary Layers at
High Speeds. Tech. Rep. No. 9 (Contract No. AF 18(600)-5T5), Dept.
Aero. Eng., The Pennsylvania State Univ., Nov. 1956. (Also avail-
able as AF OSR-TN-57-221, ASTIA Doc. AD-126519.)

Reshotko, Eli, and Beckwith, Ivan E.: Compressible Laminar Boundary
Layer Over a Yawed Infinite Cylinder With Heat Transfer and
Arbitrary Prandtl Number. NACA TN 3986, 1957.

lew, H. G., and Fanucci, J. B.: Heat Transfer and Skin Friction of
Yawed Infinite Wings With Large Suction. Tech. Rep. No. 8¥(Con~
tract No. AF 18(600)-5T75), Dept. Aero. Eng., The Pennsylvania State
Univ., Nov. 1956. (Also available as AF OSR-TN-57-63, ASTIA
Doc. AD-12040k.)




NACA TN L4345 49

25

2k.

25)

26.

240

Fay, J. A., and Riddell, F. R.: Theory of Stagnation Point Heat
Transfer in Dissociated Air. Jour. Aero. Sci., vol. 25, no. 2,
Feb. 1958, pp. T73-85,121.

Moore, Franklin K.: Displacement Effect of a Three-Dimensional
Boundary Layer. NACA Rep. 1124, 1953. (Supersedes NACA TN 2722.)

Gill, S.: A Process for the Step-by-Step Integration of Differential
Equations in an Automatic Digital Computing Machine. Proc. Cambridge
Phil. Soc., vol. 47, pt. 1, Jan. 1951, pp. 96-108.

Morduchow, Morris: Analysis and Calculation by Integral Methods of
Laminar Compressible Boundary Layer With Heat Transfer and With
and Without Pressure Gradient. NACA Rep. 1245, 1955.

Feller, William: An Introduction to Probability Theory and Its
Applications. Vol. 1, John Wiley & Sons, Inc., ¢.1950, pp. 129-131.



TABIE I

BOUNDARY-IAYER PARAMETERS CALCUIATED AT STAGNATION LINE OF A YAWED

CYLINDER BY USING LINEAR VISCOSITY-TEMPERATURE RELATION

Npr = 1.0 “Pr =
S " ' . *
8 t, | A or .. T £ o, B Gip 6, .. 04r
&
1.0 5067 1.5792 | 1. 1.0 0.6071 0.4362 | 0.4362 1.6075 | 1.3240 0.4376
1.6 5248 15310 | 2. 1.6 .6870 hoo6 A4S 1.5635 | 1.2507 =3
< 3.0 5603 10510 10 0 3.0 8617 4o62 k72 1.4823 | .1.1563 3097
6.5 6254 1.3089 . 6555 1.2526 4582 5184 1.3489 | 1.0324 .0833
1.0 5h21 1.4933 | 1. 1.0 .9362 4696 4696 1.5036 | 1.2435 . 3669
1.6 5728 1.4236 | 1. 1.6 .1824 4386 4935 1.4316 | 1.1070 .2831
0 8lEs 16 .6280 1312 | . -5 3.0 7009 4350 | L5377 1.3165 | .o5k2 | .0856
6.5 .7213 1581 6.5 8164 Rk 6145 1.157Th 7935 -.397h
150 S5 4305 1.0 350 1.2326 0 1.4305 4793 .2923
1.0 1.6 L6094 3503 Lokl | 1.6 1.5724 0 1.354L .ho21 1753
: 3.0 L6770 2298 L9045 | 3.0 2.2902 0 1.2361 .2906 -.0978
6.5 .T8TL 0720 .8838 | 6.5 3.8392 0 - 1.0T2 .1602 -.7569
1.0 0.2031 | 1. P SR 1.0 0.2966 0.2103 enlos o S 2.3626 | 1.9052 0.5725
1.6 ,2221 1% 2.18;+ ds o 1.6 .3639 .2087 2248 | 1. 2.2376 | 1.7883 L5143
° 3.0 L2678 : 1.9705 | 1. 3.0 .5105 .2229 29560 1. 2.0370 | 1.6106 .3813
6.5 .3392 1.6898 | 1. - 6.5 .8401 .2627 L3067 . 1.759% | 1.3732 .06k
1.0 .2580 210350 | 1< 1:0 .6610 .2600 .2600 2.0470 | 1.6601 4592
1.6 L2945 1.8/1 | 1. .5 q56 .8999 .2469 .2884 1.8880 | 1.4827 3337
=0.5 51 3.0 .3558 1.6572 | 1. 3.0 | 1.3962 2560 | .3379 1.6674 | 1.2571 .0530
6.5 U537 1.3986 | 1. 6.5 2.4575 .2990 2ol | - 1.4031 | 1.0108 | -.5904
1.0 .2950 1.8781 | 1. 1.0 1.0 .9692 0 1.8781 | 1.159% L 3kk1
1.0 | 1.6 .3390 g aal .9280 | 1.6 1.2850 0 1.7349 | 1.o0042 .1803
: 3.0 4115 1.5053 | 1. .8789 | 3.0 1.9550 0 1.5316 .7883 | -.1859
6.5 5249 1.2622 . .8566 | 6.5 3.4115 0 1.2856 5429 | -1.0250
1.0 .0211 L.27h6 | 3. 1.0 0.0705 0.0496 .0u%6 | 2. 3.9909 | 3.2712 | 0.7800
1.6 L0371 3.6041 | 2. 0 1.6 .1120 .0579 L0634 | 2. 3.5413 | 2.9003 .6879
o 3.0 .0699 2.9185 | 2. 3.0 .2101 .0783 .0916 | 1. 2.9773 | 2.4200 4902
6.5 .1298 227650 N 1% 6.5 .4500 .1180 .1422 : 2.3714 | 1.9011 0546
150 .0823 2.8171 1.0 4551 1112 S2A928 | i 2.8174 | 2.2846 .5842
1.6 .1126 2.4836 3.6 .6700 L1148 .1390 g 2.4968 | 2.0042 3984
S B i 1652 2.0915 5 5.0 | 1.2211 321 | 1864 2.1078 | 1.6498 | .0OGk
6.5 .2520 1.6851 6.5 .0998 .1738 2634 1.6961 | 1.2775 | -.8260
a
150 .ushg .hsgz = -0999 a0
1.6 o o 1.0 1.0 | .7566 0 2.4589 | 1.8625 | .hos8
B0 5.0 -218% 1.6304 .0128 | 1.6 | 1.03k2 0 2.2151 | 1.6075 | .1822
6.5 -3213 1.4780 B5kk | 3.0 | 1.6355 0 1.892h | 1.2125 | -.2%9
8299 | 6.5 2.9719 0 1.5313 L9046 | -1.3397

a
An = 0.1,

06

Ghehr NI VOVN



TABLE II

BOUNDARY-IAYER PARAMETERS CALCULATED AT STAGNATION LINE OF A YAWED CYLINDER BY USING

SUTHERIAND VISCOSITY-TEMPERATURE REIATION AND PRANDTL NUMBER OF 0.7

s =0.2 s =0.02

" ] ' - * * * " ' ' - * * *

Ty | & |2 fy &y S 3 4. S | Ger | Or Sr f T | W A fy & Oy B g B r | Gtr | Or Oty
1.0[0.6891|0.5347 |0.4661[0.4661 [0.9317| 1.1244|1.7259(1.4278| 0.4605) 1.0[0.4576|0.3444 |0.2969[0.29690.3069| 0.8627|1.2475|1.0566| 0.2993
1.6| .8095| .5656| .463k| .4927 |1.0714| .9998|1.6871|1.3501 .hz‘;ﬂ 1.6| .5551| .3743| .3046| .3241| .3837| .7835|1.2332[1.0139| .286k
0.05 3.0[1.0547| .6132| .4768| .5322|1.2103| .7565[1.6030(1.2kk5) .31 0.05 3.0| .7ho8| .k1g3| .3251| .36k0| .5115| .6178[1.1880| .9MT5| .2282
6.5(1.5840| .689% | .5188| .5947 [1.2393| .3221[1.4553|1.1043| .0384 6.5(1.1584| .4862| .3651| .h220| .7063| .3041[1.0964| .8510( .0395
11.0[2.1821| .7569| .5636| .6506 |1.1588| -.0581(1.3361(1.0038| -.3156 11.0|1.6121 .5413| .ko1g| .u693| .8510| .0145|1.0176( .T778T| -.2200
1.0| .9109| .5158| .4u84| .44B4| .8250| .B8105 1.4596|1.2119| .3532 1.0| .8894| .u978| .4317| .4317| .7210| .7981|1.4232|1.1853 3420
1.6(1.1641| .5563| .u286| .4832| .9486| .6370|1.4066|1.090%| .27TT| 1.6|1.1463| .5hb1| .b1o1| .473L| .901k| .6308[1.3825|1.07h1| .2726
0 +5) 3.0[1.6857| .6205| .4311| .5372[L.0716 3237|1.3092| .9468| .0819f O o) 5.0|1.6696| .6160| .4271| .5360[1.2016| .3187[1.3024| .9392| .OTTH
6.5(2.7976| .720k| .4702| .6207[1.0973| -.1899|1.1608| .790k| -.k139 6.5|2.7743| .72ko| .4681| .6293(1.6592| -.2220|1.1737| .78T5| -.4k9T
11.0|4.0350| .80u7| .5158| .6913 [1.0260| -.6139[1.0520| .695T(-1.0223 11.0|3.9985| .8129| .5130| .7055[1.9992| -.6972|1.0750| .6929|-1.1219
1.0 1.0[1.2326( .5705|0 1.0 .6479(1.4305| 4789 .2923) 1.0 1.0/1.2326( .5705|0 1.0 L6479|1.4305| 4789 .2923
L9435 1.6(|1.5771| .6143|0 1.1281| .4436[1.3688| .4o2k| .1743 .9429| 1.6[1.5794| .6184|0 1.2154| .4h27|1.3767| .4028| .1T3T
.9012| 3.0[2.2956| .6865|0 1.2557| .0819|1.2637| .2899| -.1139 .898L4| 3.0[2.2963| .696k|0 1.5833| .0700[1.2838| .2886| -.1267
.8787| 6.5(3.8408| .8010|0 1.2756 | -.5026|1.1114| .1561| -.8230 .8719| 6.5|3.8245| .8176|0 2.1551| -.5642[1.1456| .1484| -.8942
.8730|11.0(5.5679| .8979|0 1.1903 | -.9819(1.0029| .0809(-1.6832] .8635(11.0|5.5255| .9187|0 2.5847|-1.1171|1.0438| .0631(-1.8504
1.0/0.3858|0.2391 |0.24520.2452 1.5820(2.4425(1.9830| 0.5938) 1.0/0.19490.0888 |0.1025|0.1025 1.5623|2.2485|1.8857| 0.4620
1.6| .h925| .2713| .2521| .2730 1.3456(2.3065 [1.8441| .5330) 1.6| .2760| .1151| .1165( .1263 1.2972|2.0564|1.7066| .4195
0.05 | 3.0| .7201| .3221| .2746| .3158 .9564|2.1003|1.6510 | .3792] 0.05 3.0| .4ho7| .1570| .1k19| .1637 .9178[1.8132| 1.4796| .3066
6.5(1.1805( .ko29| .3238| .3837 .3560(1.8190(1.4054 | -.0008 6.5| .7913| .2215( .1846| .2206 .3920|1.5%26| 1.224k2| .0L46
11.0(1.7151| .4729| .3717| .M42T -.1215(1.6233 [1.2u23 | -.45TH 11.0[1.1857| .2752| .2221| .2676 -.0123(1.3551| 1.0677| -.3477
1.0| .6430| .2386| .2430| .2430 1.0680|2.0167|1.6442| 4486 1.0| .6276| .2247| .2295| .22% 1.0632[1.9917(1.6300| .4397
1.6| .8860| .2807| .2384| .2790 .7832(1.8682[1.4716| .3296) 1.6| .8723| .2706| .2302| .2698 .7803|1.8493[1.4607| .3255
-0.5| .5 3.0[1.3833| .3472| .2522| .3355 .3382|1.6613|1.2513 | .0497||-0.5 | -5 3.0[1.3695| .3423| .2482| .3325 J3347| 1.6557| 1.2454 | LO4ST
6.52.4399| .4492| .2969| .4220 -.3072|1.4068 (1 - 6064 6.5|2.4185| .4503| .20u3| .L26k -.3%76|1.4198|1.0071| -.6398
11.0|3.6174| .5341| .3435( .kok1 -.8018|1.2426| .8656 |-1.3730) 11.0|3.5834 | .5387| .3403| .5030 -.8834|1.2658| .8648|-1.46T5
1.0 1.0f .9692| .2%0|0 .7809|1.8781(1.1596 | .3441 1.0 1.0 .9692| .2%50(0 .7809|1.8781| 1.1596( .3k441
.9271| 1.6(1.2868( .3382|0 L9771, Th6k [1.0029| L1791 .9267| 1.6/1.2876| .3409|0 4968 1.7529| 1.0027| .1783
.8759| 3.0{1.9549| .4102{0 .0368|1.5559| .7876| -.2002) .8732| 3.0|1.9527| .k172|0 .0264]1.5743 .7815 -.211k%
.8519| 6.5|3.4045( .5247(0 -.6514|1.3172| .5410|-1.08k0| .8u51| 6.5]3.3846| .5369|0 -.7093|1.3507| .5366[-1.14T5
.8476[11.0(5.0371| .6212|0 -1.1875(1.1628( .3987|-2.1174 .8382{11.0[4.9909| .6370|0 -1.3179|1.2037| .3863|-2.7013
1.0(0.1572|0.0553 [0.08190.0819 2.4491|3.7002|3.0163 | 0.786T| 1.0[0.1114 |0.0274 [0.04320.0432 2.2475|3.1553|2.6887| 0.5841
1.6| .2368| .0786| .0968| .1067 1.9551(3.3077|2.6822| .68T0| 1.6| .1759| .o4k5| .0568| .0621 1.7593|2.7358|2.3090 | 5174
0.05 | %.0| .4O75| .1194| .1243| Tk 1.2890(2.8303(2.2697| .4633|-0.75|0.05 3.0| .314k| .0758| .0802( .0939 1.1702|2.2795|1.8929| .3650
6.5| .7934| .1892| .1737| .2128 4377/2.3058(1.8210 | -.0k406) 6.5| .6226| .1294 | .1193| .1450 .4753|1.8289|1.4859| .0070
11.0[1.2465| .2521| .219%| .2700 -.1678|1.9900(1.5548 | -.6186 11.0| .9783| .1769| .1540| .1886 -.0075|1.5736|1.2601| -.4161
1.0| .4458| .otkof .1010( .1010 1.4353(2.8048|2.2907| 5779 1.0/0.43800.0673 [0.0932/|0.0952 1.4401|2.7948|2.2952| 0.5728
1.6| .6616| .1051| .1092| .1325 .9799|2.4845]2.0016 | .3961 1.6| .6534| .0992| .1039| .1262 .9812[2.4731(1.9992| .3938
-1.0| .5 3.0[1.1128| .1585| .1291| .1836 .3603|2.1041|1.6469 | .0068] 0.5 3.0/1.1020| .1546| .1259| .1805 .3582|2.1012| 1.6434 | .0033
6.5(2.0855| .2463| .1717| .2640 -.1380(1.7006(1.2761 | -.8410 6.5[2.0687| .2456| .1692| .2655 -.4680|1.7143| 1.2758 | -.8729
11.0{3.1845| .3225( .2139| .3320 -1.007T7|1. 4644 |1.0687 -1.7872# 11.0[3.1571| .3242| .2107| .3370 -1.0899|1.4882| 1.0688 [-1.8783

-1.0

1.0 1.0| .T966| .1168|0 .9450|2.4589(1.8625 | L4058 1.0 1.0| .T566( .1168|0 .9450(2.4589| 1.8625| .4058
.9118| 1.6[1.0343| .1499|0 .5638|2.2246|1.6074 | .1811 L9115 1.6(1.0342| .1513|0 .5631|2.2300| 1.6073| .1804%
.8514| 3.0|1.6%25| .2092(0 -.0130(1.9140(1.2731 | -.307T] .8488| 3.0/1.6290| .2130|0 -.0217|1.9313| 1.2746| -.3168
.8253| 6.5[2.9609| .3095|0 -.8140|1.5607| .9059 |-1.390L .8185| 6.5|2.9407| .3171|0 -.8679|1.5939| .9052|-1.4450
.8222|11.0|4.4810| .3973|0 -1.4089|1. 696k |-2.6140) .8127|11.0|4.4356 | .4078|0 -1.5339|1.3891| .6897|-2.7503
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52 NACA TN 4345

TABLE III

BOUNDARY-IAYER PARAMETERS CALCULATED FOR STAGNATION FLOWS BY USING SUTHERIAND VISCOSITY~TEMPERATURE

REIATION AT PRANDTL NUMBER OF 0.7 WITH NONPOROUS WALL

(a) Body of revolution; B = 0.5

" 1 1 N, * * *
£ tw fw gw ew ¢e (_ER_R> 6tr Gtr etr etr
Ve /3-dimensional
0.015 | 0.2951| 0.2518 | 0.2168 | 0.1625 0.3066 0.7717 | 1.0416 | 0.892% | 0.2325
.050 L3654 | L3041 | L2623 | .2hhT .3709 .858211.1872| 1.0093 | .2772
.070 Aokk | 3240 | L2797 | .2821 .3955 .8839 | 1.2366 | 1.0481| .293%2
0.005 .100 A304 | L3472 L3000 | L3304 RITI] .9081 | 1.2889 | 1.0887| .3109
: .150 L7921 35S | 3253 | L3982 k6ol .9288 | 1.3461 | 1.1325 | .3308
.200 5201 | .3976 | .3uh6 | 4561 4873 L9371 | 1.3836 | 1.1606 | .3439
.250 5562 4152 | .3602| .5075 5094 .9388 | 1.4103 | 1.1803 | .3529
.300 .5890 | 4301 | .3734| .5541 .5280 L9366 | 1.4301 | 1.1946| .3593
0.06 0.4115 | 0.3414 [ 0.2950 | 0.3202 0.4173 0.9172 | 1.2882 | 1.0889 | 0.3098
0.02 .20 5292 4055 | .3517| .4823 49Tk L9466 | 1.4021 | 1.1746 | .3505
.50 Lok 4757 | WMkl L7210 .5856 L0104 | 1.4779 | 1.2281| .3706
0.0625 0.1875| 0.544k4 | 0.4223 | 0.3668 | 0.5434 0.5187 0.9712 | 1.4448 | 1.2068 | 0.3661
2 .625 L7681 | .4980 | .4341| .8185 .6139 L8877 | 1.4950 | 1.2395| .3711
a5 0.05 0.613k4 | 0.5220 | 0.4558 | 0.9317 0.6446 1.1925 | 1.7611 | 1.4552| 0.4722
: .50 .Teko | Jho3h | 4305 | .8250 .6088 L9248 | 1.5144 [ 1.2546 | .3835
(b) Yawed cylinder; B =
" 1 t - * * *
s A b g &, 8, h ¢e Bir Gy 8. 0 r
0.015 0.3321 | 0.2582 | 0.2218 | 0.2218 | 0.1625 | 0.7352 | 1.0197 | 0.8744 | 0.2291
.050 Ja77 | 3125 | L2689 | .2689 | .2bhT L8116 | 1.1603 | .98T4 .2720
LSO 100 5010 | .3578 | .3084 | .3084 | .3304 .8508 | 1.2566 | 1.0628 .3033
.200 6225 | 41181 .3558| .3558 | .u561 .8628 | 1.3438 [ 1.1289 .331h
.300 .T206 | 4471 | .3870| .3870| .5541 L8482 | 1.3844 | 1.1585 L3417
.015 5373 | 316k | 2459 | .2Th3 | 2787 5560 | .9763| .T934 .1866
.050 6912 | .3833| .2970| .3327| .4197 .5872 ] 1.1069| .8878 .2103
0.005 | 3.0| 200 1.0963 | .5074| .3850| .ihiz2| .7822| .5250|1.2616| .99k | .1993
.8981 2.2964 | .69751 0 1.6262 L0687 1.2860| .2883 | -.1281
.015 1.1372| 4099 .3058| .3555| .513h4 L0985 | .8411| .65T7 | -.1235
11.0| 920 1.4952 | .4980| .3695 ! 4321 .T732 .0272| .9507| .7310 | -.2005
i .200 2.5024 | .6647| .4780| .5TTH| 1.4411 | -.2593 | 1.0682| .782T7 | -.5160
.8622 5.5196 | .9211{ o 2.9361 [ -1.1371| 1.0494%| .0600 |-1.8733
06 1.0 0.1875 0.6463 | 0.4366 | 0.3782| 0.3782| 0.5434 | 0.8959 | 1.4051| 1.1755 | 0.3528
0.0625 | 1.01 ~ ¢o5 9850 | .5208| .hsho| .h5ho| .BiB5 | .7624 | 1.4358| 1.1933 | .3350




BOUNDARY-IAYER PARAMETERS CALCULATED FOR ARBITRARY PRESSURE GRADIENT BY USING LINEAR

TABLE IV

VISCOSITY~TEMPERATURE REIATION AT PRANDTL NUMBER OF 1.0 WITH NONPOROUS WALL

(a) Negative pressure gradient; B > 0

" * * * " 1 * * *

B tw A fw s gw 6t'.r <}'tr etr 6*cr B tw A fw O &y 5tr Gtr 8t’.r etr
1.0 ] 0.5233 0.4821 1.1306 | 1.6479 | 1.1882 | 0.4457 1.0{ 0.6987 0.5147 L9349 | 1.5583 [1.1215 0.3914
o 1.6| .5543 4891 1.0837 | 1.6274 | 1.1730 | 4314 o 1.6| .8233 .5362 .8061 | 1.5037 |1.0811 3he2
3.0| .6237 .5039 .9852 [ 1.5852 [ 1.1418 | .3981 3.0 | 1.0907 5772 .5682 | 1.4088 [1.0112 .22l9
6.5 .7839 5349 .T852 | 1.5032 | 1.0813 | .3158 6.5 | 1.6773 L6507 L1634 | 1.2643 | .9052 -.0688
1.0| .6070 L4951 1.0530 | 1.6116 | 1.1611 | .42T71 1.0 1.1090 55Tk L7200 | 1.4596 [1.0478 3259
0.2| .5|1.6| .6836 .5082 L9TL | 15757 | 1.1344 | Lholk 1.5| .5|1.6[1.4348 .5928 5313 | 1.3834 | .9915 2330
i 3.0| .8506 5341 .8121 | 1.5082 | 1.0844 | .3418 3.0| 2.1149 .6555 .2120 | 1.2658 | .9051 L0144
6.5 | L2 5845 5215 | 1.3935 | .9999 | .1958 6.5 | 3.5669 L7592 .2850 | 1.1079 | .T7900 -.5178
1.0| .6867 5069 .9841 | 1.5801 | 1.1376 | .4082 1.0 | 1.4772 .5906 5579 | 1.3904 | .9963 .2562
1.6 .8047 5248 8762 | 1.5333 | 1.1029 | .3712 1.0 1.6 | 1.9737 .6350 23345 | 1.3050 | .9334 .1190
1.01 3.0 1.0578 .559% 6753 | 1.450k [ 1.0416 | .2855 Y 13.0] 2.9997 . 7107 .0296 | 1.1800 [ .8421 [ -.1984
6.5 | 1.6111 .6221 .3300 | 1.3199 | .9456 | .07T76 6.5]| 5.1729 .8323 S oM2 N R -02151[ 7268 -9k
1.0 0.5811| O.4oh2 | 1.0531(1.6130 | 1.1623 | 0.4238 1.0 0.7386 0.5206 .90kk | 1.5438 [ 1.1106 | 0.3837
o |1-6| -6438 -5070 L9T0k | 15773 | 1.1358 | .3961 o |1:6] -8837 Skl L7651 | 1.4849 | 1.0671 3287
3.0] 7811 5328 .8072 | 1.5095 | 1.0857 | .3311 3.0| 1.1939 .5891 L5114 | 1.3847 | .9932 .1972
6.5 1.0889 .5828 5057 | 1.3930 | 1.0000| .1703 6.5 1 187> L6682 L0861 | 1.2356 | .8841 | -.1332
1.0| .T609 .5185 L9168 | 1.5498 | 1.1151| .3875 1.0| 1.2405 .5686 L6703 | 1.4364 | 1.0304 .3101
1.6 .9167 5410 L7846 | 1.49371 1.0735 | 3371 5.0 1.6} 1.6289 .6073 .hegg | 1.3565 1 L9714 .2051
0.5 5| 3.0] 1.2479 .5833 .5455 | 1.3985 | 1.0031| .2195(12:C| 7| 3.0| 2.4366 6749 1348 | 1.235h | .8825 | -.ok23
6.5| 1.9665 65T L4821 1.2557| .8985( -.0671 6.5| 4.1561 . 856 .3816 | 1.0760 | .T7666 -.64hT
1.0 .9277 .5390 L8045 | 1.4999| 1.0780| .3503 1.0| 1.6871 .6052 otk | 1.3632( .9760 .2308
of 1-6] 1.1648 5684 6396 [ 1.4322( 1.0279| .2769 1.6 2.2804 6533 262k | 1.2749 | .9111 .0752
1-01 30| 1.6623 6215 3550 | 1.3237| .ok81| .1o07k 1.0 3.0/ 3.5031 .T345 L1170 | 1.1480| .8184 | -.2850
6.5| 2.7281 el -.0955 1 1.1724 [ .8374 | -.2989 6.5| 6.0876 I ~8O3T. -.6837 .9893 | .7033 | ~1.1k2k
6.5|%6.089%5 & 8636 .6835 | %.9893 | ®.7033 | ®-1.1817

®An = 0.1.
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TABLE IV.- Concluded

NACA TN 4345

BOUNDARY-IAYER PARAMETERS CALCUIATED FOR ARBITRARY PRESSURE GRADIENT BY USING LINEAR

VISCOSITY-TEMPERATURE RELATION AT PRANDTL NUMBER COF 1.0 WITH NONPOROUS WALL

(b) Positive pressure gradient; B < O

" 1 * * »*
P tw A fw oL gw 5tr Gtr 9‘t:r e’cr
-0.3264 3L(6) .2478 3.4567 | 2.9751 | 2.2048 [0.606T
~.2800 .22%3 .39%2 1.8257 | 1.9707 | 1.4282 | .5912
~ 2T 1.6 .2580 3.2636 | 2.8691 | 2.1119 | .6083
~.2000 .3318 31l 1.5050( 1.8272 [ 1.3139 | .5580
-.2000 | © <IUBT .3616 2.0953 | 2.1154 | 1.5370 | .608k
~.1943 3.0 .2688 3.0713 | 2.6987 ( 1.9809 | .6093
=~ 31600 3567 430k 1.4395| 1.7878 | 1.2921 | .5229
~.1094 6 2770 2.9338 | 2.6255 | 1.9261 | .5963
~.1000 S | 1782 3789 | 1.9268 | 2.0%07 | 1.k737 | .5887
-0.2623 .3076 2.5861 | 2.4071 | 1.759% [0.6067
~.2500 150 B il 5 3778 1.9224 | 2.0314 | 1.4747 | .5837
-.2000 2501 4152 1.6136 | 1.8747| 1.3572 | .5472
~-.1913 6 L3164 2.4665 | 2.3463 | 1.7140 | .5923
~-.1500 1. .2115 Lose | 1.6905| 1.9151 | 1.3877 | .5541
0.5
=155 <5255 2.3733 | 2.2993 | 1.6789 | .5802
-.1000 30|l .3834 1.8526 | 2.00221 1.4534 | .5653
-.0500 L3345 4393 1.4266 | 1.7854 | 1.2906 |. .5133
~.0575 6 .3279 2.3175| 2.2711| 1.6579 | .5726
-.0500 2 | .1242 3792 | 1.8795| 2.0191 | 1.4663 | .563k4
-0.1988 1.0 .3258 2.3588 | 2.2870| 1.6694 [0.5854
~.1366 .3316 2.2858 [ 2.2507 | 1.6423 | 5752
-.1000 1.6 | .2098 .4086 1.6479| 1.8970 | 1.37hk | .54k27
-.0500 .3561 LU5T 1.3786| 1.7630 | 1.2740 | .5030
1.0
-.0783 o L3361 2.2308 | 2.2234 | 1.6219 | .56T1
-.0500 2 2407 4179 1.5755| 1.8610| 1.3475 | .5322
= OB .3388 2.1979( 2.2071| 1.6098 | .5623
-.0200 6.5 | ".2805 4283 | 1.4989| 1.8228| 1.3188 | .521k




TABLE V

CONSTANTS IN INTERPOLATION FORMULAS FOR h AND Caw

AS GIVEN BY EQUATIONS (47) AND (48)

ON N L
U o oNO

O\W H
U o N0

x:O\\.NI—‘I—'
oo oo

e N
oW O NO

[

% T B Bo By P2 % L 7 & E

.0048 10.04668 |-0.01396 [-0.0509% |-0.12598 0.07776 |0.24070 |0.72755]0.50667

L0104k | .05554 | -.02252 -.05734 | -.13559 | .10708 | .21902 | .T0699| .52i85

.01452 | .06118 | -.03756 -.05850 [ -.13697 | .15428 | .18900 | .67936| .56027

.01420 | .06014 | -.06010 -.05106 | -.12669 | .22183 | .15380 | .64936| .62539
-.02142'| .02512 | -.01127 .00147 | -.08285 | .07237 | .12590 | .51503| .43625 |1.0 0
-.01479 { .04090 | -.02156 | | -.01229 | -.10065 | .10276 | .12118 | .50587| .4h7hg | .9hk43 .03162
-.00524 .| .05727 | -.04113 -.02620' | -.11h0k | .15357 | .11113 | .4oo72| 47123 | .90kkT | .05008

.00119 | .06505 | -.07135 -.03140' | -.11345 | .22776 | .09456 | .47074| .51843 | .88384 | .05393
-.04720 | .01520 .06139 .05276 | -.06336 |-.0729% | .11252 | .50233| .46955 |1.0 0
-.04480 | .0224%0 .06209 .0k26k | -.07212 |-.05513 | .10488 | .49636| .4g52T| .943k9 | .0%163
-.03800 | .03040 .05428 .03050 | -.07672 |-.01867 | .09435 | .48431| .53297 | .9012k | .o4ko8k
-.02760 | .03440 .03639 .01798 | -.07212 | .03767 | .0T961 | .46586| .59276 | .8787k .05348
-.02224 | .03648 .01810' .01263 | -.06686 | .08060 | .06974 | .4s5ko1| .64652 | .87%0% .0508%

.07856 || .00692 | -.17234 -.19850 | -.0u6LkT | 39452 | .21182 | .49208| .27758 [1.0 0

.08808 | .03050 | -.2014k4 -.19490 | -.06577 | .Wh192 | .19489 | .49148| .30249 | .oLk293 .03147

.08852 | .05326 | -.24295 -.1799 | -.08105 | .51571 | .17094 | .48562| .33884 | .898kk . 0496k

.07904 | .06656 |. -.30069 -.15457 | -.08570 | .62598 | .14149 | .47390| .39145 | .87192 .05337

.06884 | .0TO94 | -.35068 -.13502 | -.08400 | .71785 | .12305 | .46555| .L43428 | .86353 .05080
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TABLE

VI

TYPICAL RESULTS ILLUSTRATING UNIQUENESS PROBLEM FOR POSITIVE PRESSURE GRADIENT

[Mpr = 2.0 A = 1.65 &, = 0; £, =0; p = -0.2]

NACA TN 4345

1 3 ] b 8 ' 127 0.2 & 1 £ [} ' 8 ™ S ) 0.2 %
] o [} (] 0.439372 0.345204 1 ® (] (] [} 0 0.431366 0.331800 1 ©
®5.8)2.356271| 1 1 18365 x 2071 | 27782 x 10-1| 0  |0.15588 x 10-2| k.0f2.497505|0.995654]0.992425 | .12254 x 1071 | .20539 x 1071 |0.0075T5 | 0.98130 x 10-3
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Ppenctes value of 7 at which £" first became negative.
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(c) Stagnation-enthalpy-difference ratios.

Figure 1l.- Concluded.
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(a) Variation of heat-transfer parameter with yaw-angle parameter.

transpiration cooling on heat-transfer coefficient at stagnation line.

g =1.0; B =1.0.

Figure 3.- Effect of yaw angle, stream Mach number, Prandtl number, and \
\
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(b) Variation of ratio of h for transpiration cooling to h for non-
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Figure 3.- Continued.
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