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TECHNICAL NOTE L4295

REFLECTION AND TRANSMISSION OF SOUND BY A SLOTTED
WALL SEPARATING TWO MOVING FLUID STREAMS

By Raymond L. Barger
SUMMARY

The reflection and transmission coefficients have been determined
for a plane sound wave incident on a2 slotted wall separating two moving
fluid streams. This acoustics problem is related to the serodynamic
problem of determining the tumnel-wall interference on an oscillating
airfolil in a slotted-throat wind tunnel in that the same boundary condi-
tion is involved with one of the two streams at the boundary having zero
velocity. 1In the anaslysis the wall with discrete slots is replaced by
an equivalent homogeneous boundary.

INTRODUCTION

The tunnel-wall interference in a closed wind tunnel containing an
oscillating airfoil in two-dimensional, subsonic, compressible flow was
discussed in reference 1. §Strong pressure peaks were shown to occur in
the tunnel near critical combinations of wing frequency, tunnel height,
and Mach number. The effect of this resonance condition on the aero-
dynamic force and moment measurements is such that the wind-tunnel data
are rendered inappliceble to airfoils in free air.

In view of the fact that much flutter testing is conducted in
slotted- or perforated-throat wind tunnels and in small open jets,
extending the work of reference 1 to such cases is important. The prob-
len now becomes much more difficult, however, since acoustic energy is
transmitted through the boundary in the form of waves set up in the out-
side air by the unsteady perturbation of the boundary. Several papers
(for example, refs. 1, 2, and 3) appear to neglect the possibility of
the transmission of sound waves through the boundary.

Unsteady-state boundary conditions which appear to be correct for
the case of the free boundary are discussed in references L4 and 5. The
purpose of the present analysis, which is a generalization of that of
reference 4, is to discuss an approximate treatment of the unsteady-
state boundary conditions at a slotted-wall boundary. The approximation
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should be reasonably accurate, provided the wave lengths are long rela-
tive to the slot geometry and to the boundary-layer thickness, and pro-
vided the computation is concerned with conditions at a location far
enough from the wall that the separate effects of individual slots can
be neglected and the effect of the boundary cén be considered approxi-
mately "homogeneous." Since an exact mathematical treatment of the
actual physical phenomena occurring at this kind of boundary sppears to
be prohibitively difficult, the present treatment should be useful In
obtaining approximate solutions of unsteady-flow problems involving a
slotted~wall boundary. The simplest problem of this kind, that is, the
reflection and transmission of a plane sound wave, is discussed in this
paper. In addition, there 1s some discussion of the possibility of
applying the boundary conditions to the problem of tunnel-wall inter-
ference in a two-dimensional wind tumnel cortaining an oscillating
airfoil.

SYMBOLS
c velocity of sound
d dlstance between slots
k wave number, %%
kR wave number of ripple moving along boundary
o 7t
1 ==10 cse =1
18 Ee 2 °
P perturbation pressure
R reflection coefficlent
Tro ratio of width of slots to distance between slots (open
ratio of wall)
T transmisslon coefficlent
t time
U phase velocity at boundary

v free-stream velocity
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X,y Cartesian coordinates fixed in space
o angle of incldence
B angle of refraction
L= pecez
P11
A wave length
o} density
P velocity, potential
P = exp[%kR(x - Ut{]
Subscripts:
i incident
r reflected
t transmitted
1 conditions below boundary
2 condltions above boundary
ANATYSTS

Consider an infinite, uniformly slotted wall separating two fluid
streams moving at different velocities in & direction parallel to the
slots. (See figs. 1 and 2.) The perturbation veloclty potential of a
plene sound wave of unit amplitude incident from below on the boundary
at the angle o 1is

P; = exp {ikl[y cos @ + (x - Vyt)sin o - ct:[} (1)

The perturbation velocity potentials for the reflected and trans-
mitted waves, respectively, have the forms
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R exp{ikl[}y cos o + (x - Vlj)sin o - cﬂ} (2)

¢ =T exp{ikg[y cos B + (x = Vg‘lz:-)_-sin B - cﬂ} (3)

vhere B 1s the angle of refraction and the amplitudes R and T are,
in general, complex. The following analysis concerns the problem of
determining R and T:

Two relationships which follow from Rayleigh's discussion of the
refraction of plane sound waves (ref. 6) and which are applicable to
the slotted boundary as well as to the free boundary are

cesca+Vy=ccscB+Vo=10 (B)

k) sin o =k sin B = kg - (5)

where U and kR are, respectively, the phase velocity and wave number
of the ripple moving along the boundary.

Reference T shows that, when the waves are long compared with the
distance between slots, the streamlines of an unsteady flow normal to a
slotted wall resenble those of a steady flow. (See fig. 2.) It may be
expected that when there 1s a relative motion parallel to the slots,
the normal component of the "perturbation" flow will resemble that of
figure 2. - .

As shown in reference 8, for example, such a slotted boundary may,
for the purpose of estlimsting the boundary effects at a distance, be
effectively replaced by a homogeneous boundary having a certain virtual
nmass per unit area. This virtual mass represents the change in kinetic
energy occurring with the isentropic flow through the slots. The vir-
tual mass is denoted by ol per unit area for each side of the wall
where . .

o~
ﬂl@

log, csc % T, (6)

The difference in pressure per unif ares across the wall can be
shown to be the product of the virtual mass of the unit area and the
normal acceleration. This 1s expressed by the equation
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o ( 1 o0 | 1
Py - (Py +Pp) =01 %("5 pt> el -;(pi + Py (7)
The incident perturbation pressure is given by
o
p; = -pi<a—i> (8)
vy, %Vt

where the subscripts y and x - V3t denote that in taking the partial

derivative these variables are held constant. This is equivalent to
taking the substantial derivative wilth respect to +t; that 1s, equa-
tion (8) gives the pressure on & particle fixed with respect to a coor-
dinate system moving with stream velocity. Similar expressions hold for
Py and Dy

A genersl boundary conditlion that is used when the boundery is dis-
placed by the perturbation flow is obtalned by equating the slopes of
the streamlines on the two sides of the boundary. This condition should
remain valid when the boundary i1s slotted, insofar as the boundary can
be replaced by a homogenecus sheet having the mass per unit ares obtained
from equation (6). With respect to a frame of reference moving along the
boundery with veloclty U, the boundary 1s at rest. The stream velocity
in the lower medium is ~(U - V3) with respect to this system, and in

the upper medium it is -(U - Vz). The condition that the slopes of the

streamlines are equal on the two sides of the boundary then yilelds the
equation

of @,
(U - vl)'l M = (U - vz)'l a_q)t. (9)

dy

The reflection and transmission coefficients R and T, respec-
tively, are found by substituting the expressions from equations (1),
(2), and (3) into boundary-condition equations (7) and (9) and solving
them simultaneously. The méithematlcal detalls, which are elementary
but tedious, are summarized in the appendix. The results are

s - sin 2a + 1ilkp(sin 28 cot @ + sin 20 cot B) - sin 2B (20)
sin 2o + 1lkg(sin 28 cot @ + sin 2z cot B) + sin 2




6 NACA TN 4295

4 cos o sin B (11)
sin 20 + 11kg(sin 2B cot o + sin 2a cot B) + sin 2

T =

The reflection and transmission coefficients for the perturbation
pressure p are, respectively,

R, = R (12)
and
2 sin 2q
Tp = ko g = : (13)
ky sin 20 + ilkR(sin 28 cot a + sin 2a cot B) + sin 28

No actual mathematical difficulties are introduced by generalizing
the analysis to the case where p and c¢ are different on the two
sides of the boundary, as was done in reference 4. Algebraic details
have been omitted, but the results in this case are

I' sin 2a + iZkR(sin 28 cot a + I’ 8in 2o cot B) - sin 28

I sin 2o + iZkR(sin 28 cot @ + I' 8in 2a cot B) + sin 28
and
2
4 == cos a sin B
T, = L (15)
I' " 1 sin 2a + i1kg(sin 28 cot a + I' sin 2« cot B) + sin 28
where
2
oo e
2
P1%1

CAMPARISON WITH PREVICUS RESULTS

The velocity potential undergoes & change of phase at the boundary
as attested by the fact that R and T are complex. This effect is
consistent with the known “"inductance" effect of a slotted wall (fig. 8
of ref. 9). The fact that this change of phase is due entirely to the
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virtual mass at the boundary can readily be demonstrated by setting
1 =0 in equations (10), (11), and (13). This glves the real quantities

R _ 8in 2a - sin 28
1=0  g5in 29 + sin 28

_ b cosasing
=0 = gin 2q + sin 28

2 sin 2a
sin 20 + sin 28

TP: 1=0 =

which are the results obtained in references 4 and 5 for the free-
boundary problem. When 1 approaches o« (the condition for a closed
tunnel), R approaches 1 and T approaches O.

When there is no relative motion at the boundary, the quantities
sin 2o and sin 28 are equal. 1In this case, equations (lO) and (11)
become, respectively,

- ikl cos o
=B 1 4 1kl cos a

and

1
a=f 1 4+ ikl cos «

where k =k) =k,. For o =0 (normal incidence), these equations
become, respectively,

R =—j‘k—7’—
=0 " 1 + ix1

and

T I S
a=0 = 1 4+ ix1

which are the coefficients obtained by Lamb {(ref. 7) for a plane sound
wave Incident normally on & slotted wall.
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The energy reletionship at the boundery of a moving fluid stream
in terms of the intensities of the incident, reflected, and transmitted
waves (provided the transmitted wave exists) is given by the equation

sin 28

L- lRlE = |TP|2 sin 2o

(16)

This equation was derived by Ribner (ref. 5) under very general condi-
tione and is applicable to the slotted boundary. In this connectlon,
it should be reasserted that there 1s no increase in entropy at the
wall, as the wall has no "resistive" effect but is a pure "inductance."
It is not difficult to show that equations (10) and (11) are consistent
with equation (16) if the notation is first simplified by the following
substitutions:

A = sin 2a
B = sin 28
C = 1kg(sin 28 cot a + sin 2a cot B)

With this notation, using the expression for R given in equa-
tion (10) to solve for 1 - ‘R|2 gives

(82 4+ 20+ 82+ )% - (42 - 82 4+ &)° - 1532

EA + B)2 + 02]2

l-|R|2=

2
[(Az _ B2+ 2) + oB(A + Bﬂ (a2 - B2 4 02)2 - 4B2c2

[(A + B)2 + 02]2

¥B(a + B)(A2 - B + 02) + 4B2(A + B)Z - 4B2C2
[(a + B)2 + cB]°

4aB[(4 + B)2 + 2]
[(a + B)2 + c2]°

ITP‘Q sin 2@

sin 2a
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LIMITATIONS OF THE THEORY

This analysis of an idealized physical situation is not likely to
yield highly accurate quantitative results. An important difference
between a real physical flow and the idealized flow is the mixing region
that develops at the interface. This analysis should yileld good quali-
tative results, however, when the sound waves are long compared with the
thickness of the mixing region (ref. 5). The use of equation (6) to
approximate the virtual mass of the boundary has been shown in refer-
ence 10 to glve accurate results in predieting the resonant frequencies
of slit resonators.

It should also be reasserted that the only intended purpose of this
analysis relative to the problem of tunnel-wall interference on an oscil-
lating airfoil in a slotted-throat wind tunnel is to dlscuss the boundary
conditions, which should be the same for both the acoustics and serody-
namic problems. Perhaps the greatest mathematical difficulty in the
wind-tunnel problem lies in the fact that the angle and emplitude of the
incident waves vary along the boundary. The difficulties involved in
correlating the results of a solution of the idealized mathematical
problem with the actual flow would be increased by the fact that a wind-
tunnel test section has limited rather than infinite length. This fac-
tor is believed to be of more significance in unsteady flow than in
steady flow. Furthermore, the sound waves transmitted through the
boundary would be reflected back to the boundary from the walls of the
tank surrounding the test section.

The fact that there 1s, in genersl, a considersble temperature
difference across the wind-tunnel wall does not complicate the problem.
As long as the differences in density p and velocity of sound ¢ on
the two sides of the boundsry are due solely to the temperature differ-
ence, the value of the expression I in equations (14) and (15) is
unity, since the temperature ratio is directly proportional to the ratio
of the squares of the sound veloclities and is inversely proportional to
the ratio of the densities.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 17, 1958.
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APPENDIX

DETATLS OF CCMPUTATION (F REFLECTION AND
TRANSMISSION COEFFICIENTS
The expressions given in equations (10), (11), and (13) are obtained
from the boundery conditions as follows:

Substituting the relationships given in equetions (4) and (5) into
equations (1), (2), and (3) yields, respectively,

@y = exp ELkR(x - Ut)] exp(ikRy cot or.) (17)
®. =R exp ELkR(x - Ut)] exp(—ikRy cot a,) (18)
¢, = T exp [ikR(x - Ut)] exp (ikRy cot B) (19)

Solving equation (4) for sina and sin B gives

e h

U-v,

sin o

sin B

Then,

1/2
<U-Vl>2 /
cot g = -1

UU -cvg)e L (21)

cot B

cos o = s8in o cot o

cos B

sin B cot B
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If the quantity exp[;kR(x - Ut[] be denoted by ¢, the incident
pressure at the boundary can be written, from equations (1) and (8), as

Pi = -p = 1k, pcQ
]y:O St ¥,X-Vit ; 0

=0
Similarly,
= Rik-pc
Pr] y=0 1P%%
Pt] oo = TLkppen,

Equation (7) can now be written as

-ipccpo[kl(l + R) - kQT} = pcquOEcla(l - R)cos o + k22T cos ;3] (22)

and equation (9) becomes

sin o sin
(11 cos a)(1 - R)g, = B(ik2 cos B)Tg, (23)
Reducing equations (22) and (23) and solving for + R yield
1 -R
1+R_Xpcosa Ky
= + 11|ky cos o + —= cos « (2k)

1 -R kl COSﬁ kl

Substituting the relationships given in equation (5) into equation (24)
yields

1+R_sin2a i1kgp(sin 28 cot o + sin 2a cot B)

(25)
1 -R s8in 2B sin 28

Solving equation (25) for R gives equation (10). Then, T as given
in equation (11) mey be found by substituting the relationship given in
equation (10) into equation (23).
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Tigure 1.- Slde view of boundary with velocity vectors end ccordinate system fixed In space.
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Figure 2.~ Section of wall showing streamlines of normsl flow through slots.
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