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The minhd.zatlcnof imviscidfluiddrag is studtedfor tMn
aem@nmic shapessubJectto ~sed constraintson lift,pitching
mcunent,base mea, or volume. The problemis tremformed to one of
determininga two-dhansionalptmtlal flow satisfyhg eitherLaplaceis
or Poissonfsequationswith boundaryvaluesfixedby the hposed condi-
tions. m~ of KelviJl~s mininnmenergytheoremfor hmmmnic fLelils,
a =thod is givenfor approximatedragminimizatlcmin the caseof given
Ilft. For supersonic-edged_ with straighttraildngedges,perfect
aalogies em establishedbetweencasestivolvingliftingend ~a
shapes. Particularlysimpleresultsare derivedfor a familyof wings

h with curvedleadingedgeswith lift specifiedand centerof pressure
fixedat the 60-percent-chordpositton. Generalrelationslnvolxhg
spenload distributionand integratedloadimgalongobliqpectitinglines

8 are derived. The minlmm drag for otherplan formsis determinedsnd,
in the caseof nonllftx wings,difficultiesassociatedwtth unreel
shapesare discussed.

INTRODUCTION

The c$id-culationof supersonicdrag of whgs or lmddessad the
reduction of the mhhization problemto one of detemlning a harmonic

function of the lateralcoordinateswas reportedby Nikolslqin refer-
ence 1. DetaiU of thismethodwere not given,but a procedureleaddng
to the sameend thatmakesuse of controlsurfaceswhich = emrywhere
incldnedat the Mach angleto the streamwisedirectionwas givenby Werd
in reference2. Furtherwork on the stiJectcan be fomd h references3
through 6. TIW tiag is expressedby a surfacetitegrd over a surface
that envelopsupstresm-facingMach conesspringingfrcunthe tralldng
edge of the wYng or body. Drag mfn5mizationcan thenbe re-qssed
as a ~timel isoperimetricproblemonce the desiredconstraints,
suchas, lift,Pitcmng mment, base area,or volume, are represented

b In ternsof titegraM over the ssme controlsurface. V@ous foms of
theserepresentationshave been givenpreviously;for conveniencethey
=e givena@n here in uniformnotatim.
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The severalpossiblevariationalproblemsexe set up h the form
of partialdifferentialequations(Lapl.ace’s.orPQiSSm’ S) ~ f=- of .
the latersLvariables. The regionin whichthe solutionis ta hold is
determinedby the originalwing (orbody),and the boq condltims
to be a~lied are detemdned by the constraintsof the particukr prob-
lem treated. Thus,althoughthe problemhas men reducedby one d3men-
sion,solutim is usuaUy not easybecausethe shapeof the regionsin
whichLa@acets eqpationis to be solvedis not generallysuitedto
UPPX techniqus, md the regions-$ mem=~ m s@@ c~*d ●

Numerical.and approximatemethodsstilla@y, however,end pa-titular
fsniliesof solutims are readilyfound.

An approximatemethodfor the problemof minimm dragwith given
Mft is developed,basedon Kelvinlsprticipleof ndnimm energyof
potentialflows● The resultsIIYvolrethe apparentarea (ormass] of the
bouud~es, so in realltyreqpireknowledgeof ~entisll flowsabmt such
shapes. In practice,the procedureoffersa taeem for rationalapproxi-
mationby enabllngone to substituteknown solutionsfor apparentarea
for the mlmown cmes of the problemat hand, end someexemplss=e given.

~ any control-surfacemethodof calculationof integratedforces,
etc., a certainamountof detailedinformationis lost. Thus,in the
presmt case,localsurfaceshapeis not en elementof the problem,
exceptinsofaras it influences~ Say$the base == or the VO1=.
Thereforeit is not, strictlyspesking,possibleto give assursncethat
a real.wing can achievethe ndxdmm dmg givenby a solutionto the
vmiational problem TlxLscan happenwhen the conditionsof the problem
sJlowa solutlonthat resultsin a crossing0$ the streamsurfacesthat
formthe wing. An exsqpleof the occurrenceof this is given;namely,
the yawedelllptlcwing of givenvolume,with zerobase mea.

Whea the vexiationalproblemswith the variousconstraintsare
listed,thereis noted a EdMlsrity betweenthe problemsfor givenbase
-a and for givenMft, end thosefor givenml- end for givenpitch-
- ~t. Conditionsunderwhichthe mnstrahts are interchengekble
in eachof thesetwo casescan be found;the resultbeingthat,for cer-
tainwingswtth supersonicedges,base area can be replacedby lift (or
volumeby pitChingnmnent) withoutalterlngthe drag of the wing. Such
enalogresulfmhave alsobeen notedbetweenoptimm slenderbodiesend
o@hunn lifting-S ti subsmic ~.

A p@icuMrly E@& solutioncan be deternb~ exactlyfor one
femilyof plan forms. This femilyhas straighttrailingedgesend
supersonic-typeleadingedgesthat me formedby sectionsof a hyperbola
asynxptotic to Mach lines. The cmstrahts specify13ft end centerof
pressure(orpitchingmoment). This familyhas two interestinglimlting
cases;at one extremeit beccmesa sonic-edgedtriangle,and at the other
a two-dimensionalcase. The triangularwbg with sonicedgeshas been
treatedby @main (ref.4) end, by mems of a a~xixmtlm procedure,
in reference6, and c~arisons with theseresultscan be made. _ span
loaddistributionof theseoptimumwingsis founddirectlyfrrm Mormaticm
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derivedin the aual.ysis.It is alsopossibleto determine,lessdirectly,
additionalknowledgeof *rcdynmi c 10- integrated&Longoblique

● lines. So long aa the obliqultyof the =S is suchthat the coqponent
of streemvelocitynormalto them is supersonic,the -ation of the
titegratedload@g in the stresmdirectionis obtainable.The so-calkd
chordload distributionIs a specti case of theseresults.

A

Q

%

C1,C2

D

● f(y,z)

b h

2

L

base

drag

IMKMTAm? SYMBOIS

area ofawing or body

coefficient

coefficiezrb

curves boundinga region in an x = const. plane
(seesketch(b])

dragofa wingorbody ti a supersonicflow

characteristicsurfacespringingfrom a traildngedge
(definedby x = f(y,z))

deviationof body frcuucontrolsurfaceat tre~g edge

streetwiseextentof wing or body

lift

()
Integralof local.loading g _ obliqw tie

tangentof the angleof sweepor yaw

Mach nmber in the free stream

pitching~t, ~sitive for a nose-upmoment,takenabout
theldne x= XQ, y=z=o

Innernozmelto a plane curve

innernormalto a surface

pressure

load coeffl.cient(upper-surfacepressureminus lower-surface
pressuredividedby free-streamdynemicpressure)



free-stream -c pressure, *“-pJJ~2

arc length

regionin an x = const.plane

C%rtesiancoordhates

x interceptof cuttingline (seeeq. (40))

NACA!EF/4227

speed of free stream,parallel&Q x e@s

volume of ELwing or tidy

&2-1 -—

spacecurve (definedin sketch(a))

Lagrangemultipliers(seeeq. (10))

snglebetweenobllqpeline and y axis (seeeq. (~))

density

characteristicsurfaces(seesketch(a))

velocitypotential

perturbationpotentialon surface x = f(y,z)(seeeq.

$ a2
two-dhenslonalLaplaceoperator,—

ay2+s

(2))

—

—

●“

#

ANALYSIS :. ..

Expressionsfor the Drag and for VariousConstratits

Consistentwith lhearlzed supersonictheory,the boundaryconditions
over a wing or body are specifiedon a cytiical controlstiace with
elementspemllel to the streamdirection. The positive x sxis is
alinedwith the free-streamdirection,and the perturbationvelocity
componentsU,V,W induced by the wing or body in the X,Y,Z directions
are givenby the gradientsof the perturbationvelocitypotential cp(x,y,z)
that is, w ~} ~} %“ The differentialequatiaugoverningthe flow A

fieldis
—

$%=-cpm-~zz=0

*

(1)
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where 132= &2-1. m Syzaol & z)~
denotesfree-stresmMach numberend, In

u g=eral, the subscript ~ wilL be used
to denotefree-streamconditions,for
example,U~-and pa G free-stream a
vel.ocltyand density. As shownin
sketch(a),the verticesof the dam-
streamfacingMach conestraceout the
leadingedge of the controlsurface ZO
and the verticesof upstresmfacti -Y
Mach conestraceout Its traildngedge.

&

The surface X. is ti ttis way Sketch(a)
enclosedby the envelopes Xl d ~
of two familiesof cones. The surfaces z
21 and Z2 intersectalongthe space
C~ rl. As shornin sketch(b),the t
projecti& of rl b a plaue - --
x= const.is the curve Cl. Shikly
the controlsurface 20 prqjectsonto
the curve C2, and the surface &
proJectsontothe two-d3menshu31
region S.

H the surface ~ be gfvenby
x . f(y,z) and the vd.ue of the pertur-
bationpotentialon z= be denotedby
X(y,z), that is,

X(y,z) = ql[f’(y,z),Y, ~l (2)

Y

Sketch (b)

Wave drag D (plusvortexdrag when lift occurs)is then given
expression(ref.2)

Du-~
J

(~=+xz=)Cos(x,N)a

&

by the

(34

(3b)

where cos(x,N)is the directioncosinerelativeto the x -S of the

* tier normal N to t~e surface ~, @ is the two-dimendcmal
Laplacianoperator(a J&) + (a2fiz2)and ~X/& is the gradientof
the function X alongthe tier normalto a curveh the yz @.ane.

*
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M the succeeding paragraphs, fo~ for base area,vol~, ~ft~
end pitchingnunnenttill be given. Theseresultsare applicableto any
case in whichthe obJectof interestdeviatesonly sI.i@tlyfrcm a cylirL-
dricalcontrolsurface. m reference3, applicationsinvolvingWth
@mer surfacesend qmsi-cylindricalbodiesof revolutionwere giva,
but h this report the examples till include plsnercasesexclusively.

u
.

Considera wing or body havingtldclmessbut withoutcamber. If the
thicknessis zeroat the leadingedge,a the Pm~ecti~ on a P~e
x . const.of the dev5ationIn -a betweenthe nose and tail of the body
is A, tt was shownin reference3 that this mea is given ~

1 J fV’%dydz+&
J

f&dsm—
urn an

s cl+c?~
8

When the aerodynamicshapeis a wing,.the curve C2 is a segmentof
the y exis.

In reference3 the volme enclosed by a nwlifting wing or body was
expressed in the form

v. J’f%(f,s)ds - ~
J

X(2~2+@#) dy dz - ~
J

x~ds
c= 2um 2U* ~2

s
(5)

where h(f,s) is the deviationfromthe controlsurfaceat the trailing
edge. Eq,tion (5)thus gives the volsaneof aero@nemL c shapes that are
either open or closedat the base. In two g~eral cases,however,the
firstintegral.on the rightin eqpation(5) can be deleted: first,when
the wing or body closes,that is, when h(f,s) u O; second,when the
trailbg edge is normalto the streemdirection,end the originof coordi-
nates is eitheron ~tietrailingedge,or the base area is zero,that is$

either f=Oor j“ h(f,s)ds = 00 In these casesthe volumefomula is

%?
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(6a)

The base ma or volme cannotbe affectedby the fore and aft placement
of the origjnused in the analysis;properposltlonlngcan,hmrever,
scnnetimesbe used to economtzein algebraicma@nilation.

Considernext a w3ng or body of zerothtcknessand ~ a load
distribution~ virtueof its cemberand angleof attack. The J3ti L
and pitchingmment M abowtthe line x=~, z=O cmte~essed
in termsof titegralsover the controlsurface 22 (seesketch(a))in a
mannerdirectly<anslogousto that used for tie evaluationof base area
and volume, The lift formula(ref.2) fo12m7sfrom the applicationof
Mnetized theoryto the forcerelstbn

7?

8
ir

P

P

vectorialforceon configuration

localvelocityvector

tit innernomal to X

localpressure

lacaldensity

desiredexpessicm is

L = -p=Uw
J

Xzdy dz

s

= Pcoum
J

X cos(z,n)ds
c=

(7a)

(m)
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The generalnumentIntegralis
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ii? - j“ ,(am(%)ca)dx+ J“ mnxm~

%+% %+%

where ?mis the vectordistancebetweenthe lllcmentcenterand m
integrationelementon the controlsurfaoe. When M is positivefor
a nose-uppitchingmoment,linearizedtheoryyields

b

IM=PJJCO
[

x Vyzf)dy dz + plyy. N (Zf)

s
1

~ax ~ - %cos(z,n) ds (8)

When l.iftLis
origin,one gets

zero,or the pitchinglmmentis calculatedaboutthe -—

J J’~a(zf)~s ●

lM=PJJal X @(zf)dy dz + Q. — (9a)

s
(J2 ~

●

J J

&
- PJOO zfV%dydz+pJJ~” zf — de

&
(9)

s cl+c~

Solutions of V~atlonal Problems

The problemof zdnlmizlngdrag underthe constraintof @ven base
area,”or volume or lift,or pitching numen~”can be set up ~th the tid
of eqpattons(3$, (4), (6), (7), * (9)●

standard variational.methodsto any one of
It Is onlynecessssyto apply
the expressions

.

.

11 = D-AA

Iz m WV

IS = D-uL

14 = D-TM .—1 (lo)
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● where ~,~,6,T

dlfferentl.x so

Lagrangemultipliers.The si~
all qwtities A,v,u,T can be

9

of p is tsken
identifiedas db?-

acteristic-parametersin‘theSO-+” c~bined flow fIeld. Thus,p is
d M.entlflediith pressuregradient in the conitdned field, a negativeqpen-

tity. Any of theseproblemscan be ccaiblnedwith another. For emuqple,
if It be requiredto findmbxblumdragwith givenbase area end l.lft,the
quentityto be ndmlmizedwouldbe D-M-uL end so forth. The reml-ts
foundby applyingthe variatimel procedureto the ~ssims (M) will
W givennext. Each is a two-dimensionalpotential-flowproblemin the
lateral.variables y,z.

Givenbase area:

Givenvolume (zero base erea):

GivenIlft:

&

.

on C2

}
‘.0 on c1 J

1)=+

v=%. o in s 1

$#x+wz)=o a C2

%.0 on c1
1

(ha)

(lsb)

(la]

(la)

(13a)
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Given pitch- moment (zerolift,or nmment center at origin):

W(X + ucoTzf)= o in s

1

(u-a)a (x + umTzf)= o
z

on C=

X.o on Cl
1

D=i~lM (lhb)

In each of the problems listed aO equations (12) through (14), the
possibilityof obtaininga solutiondependsprlmaJ3Q on the bmndary
curve Cl. severalcase6whereexactresultscouldbe obtdned were dis-
cussedin reference3. However, recourse to approdmte methods is
usually indicated. One such a~ tion,in whichthe wing is distorted
~snleJIlemmnts in orderto achi~e a solvableboundarycurve Cl, is
discussedin reference6. Gemain, reference 4, has used developnmt h
series. Anothermethod,for the particularcaseof findingndxdmm drag
at givenlift,is discussedin the next section. .

An Approximationof Minlmm DragDue to
Lift by EnergyTheorems

From equations (3), (7), ~ (13b)J
the form

s

J-rbJJc#” X cos(z,n)ds= ~
2

G

The first integral can be interpreted as

minimumdrag for givenW takes

1

J’
*gd8

-~%
~ an

L

the kineticenergyof a twO-
dlmensimal, ~ccmpressiblefl~d field (~ = density)oc@ying the
region S. Sincethe flow fieldis also Irrotatfonal,one is therefore .

.
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prcqted to use classtcsJ-methodsof spprcndmation to estimatethe drag.
ImxlKeltits ndmlnumtheoremprovidesone such approach. It is stated
w - (ref.‘r,p. 57) as follows:

drag
Ides
td.al

- Lcrotatlonal mtlon of a llquld in a multipW-
connected region has less kinetic ener~ then any
other motion consistent with the same nolmal-motion
of thelmmend theseme veJueoft hetotsLflux
tbrou@ each of the several ~ ent channels of
the region.

Consider, as in sketch (c), the ndnimum
problem that sises when the wing trace

~
x

welL within the curve C~. The poten- W“-uau
field X(y,z) will be aaiumedla%ersUy

Smtric . The Mundary Conditicmalongthe
wing tracecalM for a conatsatvalue of Alh
downwash. On the exteriorcurve Cl the
potential X is a constantso that the ~Y
streamties of the disturbancefieldare
normalto CZ. When C= is far distant
fromthe wing trace,the flowfield corre-

d s-s to the case of a two-dimensionalflat
platemmlng downwsz’din a fluidfieldof sketch(c)
infiniteextent. When Cl Is at a fin~te

b distance,an additionalconditionis imposedand, as a firstapproximation
to the effect,one might assme that the flow in the vicinityof the plste
is similarto the flownear a platemovingdownwti, at a differentand
slightlyincreasedvelocityh en unrestrainedfield. The magnitudeof
the differencein velocitiesmust be determinedby the ti-indmycondition
m CL.

In orderto use Keltils theoremit is
convenientto startwith the flow aboutthe
platemovingdowrrwtiat a velocityof mag-
titude,SW, m-k. Sketch(d) indicates
the streamties and the curve Cl is shown
dashed. The perturbationpotentielis

(#x(y,Z) = -(uU~-k)cpl(y,z)

where q)=(y,z) is the perturbationpotential.
\

for unit translationalvelocity. & low as
the Cotitbns Im the flow -- unchanged–
alongthe plate and at infinity.the kinetic

Sketch(d)

energyof
& folloulng

%s Irrotationslfiiid is a mirdnum. Ccm3ider,now, the
threepotentialfields:

. (a) The one in sketch(c)with %(y, z) satisfyingeqpa-
tlons (Isa). Set X s -uu~.

..
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(b)

(c)

*8%

A flowwith uniformverticalvelocity k wtthlnthe
boundsry cl. Its perturbationpote@is2 is 02 = kz.

The flow associatedwith a downwardvelocity -kt
of the boundery CX. Its perturbationpotential
is ~ = -ki@, where ~ COZTeS_ to Unit
translationalvelocity.

sum of thesethreefiel.ds,see sketch(e),canbe generatedby
constraintsalong CL h the field“ofsketch(d) so long as k’ . .

t

x
W8k \ Ix A-k’

is

/l\
Sketch(e)

chosenconsistent with the flow conditions at tiinlty. ~ order to
meet this demandone uses the factthat,fex distant,the Inducedfield
of a so13din pure trsnsl.ationbehavesas a doublet(ref.7, p. 165).
When the body is laterallysymmetric,the axis of the doubletcoincides
with the axis of translationend the doubletor fieldstrength1s propor-
tionalto A+Q where A is the additionalappm?entarea of the body
and Q its geometricarea. For 41 @ 09 to behavealike,therefore,
the relation

(uU~-k)~,a= k’(~,~Q) (16)

must hold,where

%,00 appmmt area of wing or platein an Mlnlte region

%6,00 a=ent area of the boundary Cl in rigidverticalmtfon

Equation(16)thus establishesme IJnearrelationbetween k end k~,
and it remainsto establAshone mme.

In the originalfiel.dof sketch(d)no discontinuityin normalor
tangentieJvelocityoccursalong C= whereas.the cmiblnedfieldof
sketch(e)has discontinuitiesh koth qpmtittes. Thesediscontinuities
- a =asure of the addedconstraintsimposedon the orl@nal field.

.

—

.
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Suppose,now, that k snd k: axe fbcedso that the averagevalue of the
Conibineapotential.Verlishes● Definingthis averagedifferenceas

J (&.@.)ay = o
c1

one has

IKQ+J J’ %+3kt~ C06(Z,n)d.S= I&J+ kr —as. o
c1 c1‘b

or

l!@lation(17)

Kelw5ntS

fumlshes a ccmpanion relationto equation(J@.

theoremgives

(17)

. wherethe integrationextendsover a31 two-dimensiond.spaceand the
right-handmemberevehates the ccmtributionof X, 02, end O=. By means
of Greenrstheorem,one has

Since 0= end X are harmonicfunctions, the final two terms In the right
Integrand ere equal. The fiequallty thus becomes

(aUa-k)2A#~

Au,=

* If one dividesby
the resultIs

1

the wing-boundaryregion with the
terns yields

(k2+~ 2)Q2

Q
+ [ (d&#S)2-@]~,B

and uses equations(M) and (17),

—
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*[(* -+J-a’[(i-+Y-(*J] ●

b

The sign of the bracketedterm on the left cannot be establishedin
generalbut, if the inequalitysuppMed by the Mnimm energyprinciple
is usedmerelyas au approximationformula,the relationcan be siqd.ified
to give .

#l--—
+ Q &+Q + & (M)

Since frcuneqyation(15) minimum dreg is

one has

L2

(
L2 1D=— —--—

~,B”% Q %;e+~m )

R. T. Jones (ref. 8) has shown that the equelity sign holds In this
relationwhen the curve Cl is en ellld.yseend the traceof the wing
extendsbetweenthe foci of Cl, a sttuationthat alwaysapplieswhen
plan fom of the wing is an ellipse. Further.tests of the usefulness
eqpation (19) will be given in later sections.

APPIJCMIONS

the
of -.

m this divisiczl someparticular qplicathls of the methodediscussed
abovewill be given. The firstexsmple,the elllpttcwing, servesto
illustratea difficultythat cm tise h the control-surfacemethodfor
calculatingdrag. Next, scmeanabg resultsare given,d, then,a
familyof wingswith sqersonic leaddngedges,havingsanetiterest~
Mniting forms,Is treated. The concludingsectionshowshow I.oad.lng,
integratedalongobllqpecuttinglines,cen be determinedfrm general
Integralrelationsthat applyto supersonicflow fields.

.

.
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Awingof
boundarycurve
sketch(f)
cl SJldC2,
EY

elMptic plen form lesdsto a
Cl that Is also en e~pse.

showsthe wing, the Mundary -&rves
amd regton S1- Let Cl be-gtven

JE+2E=1
B2 C2

The solutionof the problemwherendmbnlmdrag
with givenvolumeis soughtis eased~ the
factthat by manipulationof eqpation(6b),
usingtie fIrst of eqyrk!.ms(12a),the
~ession for VOIUM c- h put in the form

Thus,the explicitdeterminationof X
and the complicated~ssion for f

● that It vanisheson the outerMnmdery

(20)

t-2c+

t’I--2B -j

Sketch(f)

fmm equations(12a)is exoided,
neednwer beused- onllythefact
c~. It IS foundthat

(21)

satisfiesequations(12a). Substitutionin eqyation(20)yields

v. -J&@
8%

where S is the area enclosedby Cl;

B2C?3

B%C2

S = ~C. Now, with the aid of
equation (Mb), the drag can be ev~ted:

‘=~(++a%0
(22a)

Finally,in termsof the ortgimslwing ~ameters a,c (seesketch(f))

e
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x=mly

I

T
Ec

1

where

I
lx il
II

II
I ‘i

I t
I

~Y

k— ~B -—-

Sketch (g)

whichagreeswith the resultof
in reference9.

. .

(22b)

Jones

Next supposethat the elliptic
wing is yawed. Then,as *, In
reference3, the bounding curve rz
lies in a -plane x = mfl. Equ-

.-

tions (12a) caa be solved by the ssme
device as used just above in the
unyawed case, end the result Ls

&
D svZ~ j$+c2

——
—=7d3cp42+m#%3

()
3+$~

—

“

W!tcLch
when
Sions

~ers a,c and the yaw angle
eccentricityis ez . L-czjaz

(23) w

redu-s pimperl.yto egpation(22a)
ml = O. In this case,the eqres-
for ml, B, C

—
in termsof the —

* (seesketch(g))are, if the
.-—.

L

&/e2 . B2/a2 - (1-ezcos~)

-l

J
(1-e2sin~)
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Ih this solutia, the additional constrtit of zero
as it was in the unyawed case (eq. (22b)) where the

17

base srea is enforced,
resultchecksthat of

Jones. The latterresultappliesto en elllpticwing thathas zerobase
area,and, in fact,is closedall alongthe traildngedge,being of bicon-
vex section. JonesSZSO deduced,from considerationsbasedcm ~sl
principleof equivalentsourcepositionand the resultantevaluationof
wave drag,thatthe optimumyawedellipticwing has a biccmvexsection.
Let the wing in unyawedpositionhave ~er and lower surfacesgivenby

where t is the

(zu*2”l ___ ):5
2

maximum thickness. Thevolmleoftaliswingts

xtacV.z

If thiswing is yawedthroughen single~ (seesketch(g)),its drag can
be foundby a s5nglehtegratian (ref.Ml):

D

L

2YC
= t2a2c2 de

G ~4(e,*)
(25)

L2(e,*] -
[

-& (@+m+2) -213m(a2-cq cos

.

For
the

1

the presentpurpose,it wC(Z be stiicient to considerthe casemere
minor axis 2C is small.relativeto the major axis 2a. Then

(26)

this f~ holds for E@<1. For m@>l. or w= tie
outsidethe Mach ccme,the dr& is infinite. i@ation (26)
the drag curvehas a strongsingularityas @+l.

wing is yawed
showsthat

Now considerthe Mmiting form of the dzag @v= by equation(23)
as ez+l, or c/a+O. It is

4P 2(1+*) 2(2-mz~z)
(27)% = = (2+2m2p2-*4p4) (1-m2p2)~iz
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-h~ Of this resultWith that of equation
be the greaterexceptat m = O wheretheY are
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(26) shows the latter to q
eqpaL Thus, two ZrLnhmlm

dragshave keen found,ostensiblyfor the identicalconstr~ts, end one
is largerthen the other. Thus it can be concludedthat the largerdrag
resultsfrom a stricterconstreAnt.This is certahly the case since
pointyisetrailing-edgeclosureis indeedmore restrictivethan zerobase
erea,for the latterconditioncan be met by wingswhoseupper end lower
surfacescrossto give an -a distributionof chenghg sign at the
traillngedge.

The presentmethodfor minhmm drag calculationhas thus led to a
difficulty.The closureof a trailingedge is not en easy conditionto
expressin termsof the control-surfaceintegrslls,so it does not seem
.feasibleto forcepoint-~-pointclosureby addedconstraintsof the sort

.

—

available. The ehmnt of &certainty iut~uced by this
to w’hethera &termined minimm is achievablewith a real
taizilyundesirable.HoweVer,the questiononly arisesin
sincea negativeordinateon a cmhered surfacecausesno

AnalogousVariationalProblems

situation, as
wing, is cer-
nonllfting cases,
unreality.

.

4

In the pRvious sectionentitled“Solutionsof Variatima3.Problems”
were listedthe differentialeqpationsend bomdary conditionsthat are
satisfiedby the optimizingpotential %(y,z) on the rear ammlaping sur- 9
face & (seesketch(a)). If attentionis Mmlted to wingswith sqer-
sonicleadingedges,end the lift-areaand

—
mment -volumeproblemsare

consideredin pairs, a similaritythat showsup caQ be eqloited. By
8-

virtue of the supersonicleadingedges,the v~ationel problemscan be
analyzedin the upperhalf-plane z ? 0, remembering,of course,that the
flow and wing have verticalsymmetryin the thlclmesscase end that the
flaw fieldis antisymetricIn the liftingcase. Consider,now, eqya-

=

tfons (ha) and (lsa). The curve C2 will beaportion of thesxj.s ZEO
and the two problemstill yieldthe seineX for z~O, endhence theseme ‘“ -
minimumdrag if

@f=o end %124 = 29 (*)

It is foundthat a straightsupersonictrailtigedgeyieldsa rear
envelopingsurface obeying equations (28). Let the trailing edge have
the equation

X-ky. a; k<$ .

The > surfaceis en ticllnedplane,end
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f(y,z) a

.
fzlz4 =

Egyations(28)give

h = *2qJp%3 -=’2U

Sincedrag is a quadraticfunctionof X, and since,frcm eqmttons (lLb)
and (lgb),equaldrag occursif

>A=~L

it sufficesmerelyto set

L = *2~(~2-kz)‘2/2A (29)

m Thus, if the minimumdrag of a qpersonic-edgedwtng with a stral~t
tralllngedge perallelto x = ky of givenbase area is knom, then it
is sMo the minimumtiag of the S- wing consideredes a liftingwing

● with liftdetemined ~ equation(2g).

In this c.aae,one needs to establishsgreementbetweenthe relatiaus

Equations(30) exe satfsfted by the ssme wing as in
except that k must be zero; that is, the traildng
free stresm. ~ such a case

*

I (30)

the previous case,
edge is nomal to the

(31)

*



20 NACA TN ti~

This equation gives the pitchingmoment (at zeroldft)of an qptimum*
havingthesellleoptilmmldragas theslxllewislgcaxryingvolzmlev with
zem base area. The -s have eupersonlcedgesand a straighttrailing
edgenormalto the free stream.

Resultsof this sorthave previouslybeen notedbetweenopt- drag
configurationsh subsonic“liftinghe theoryand c@hum slenderbodies
whosewave drag is given~ the vm K&m& formula. A S~ Of SUCh
resultscan be found In reference

A Familyof w-s

Consid= the familyof wings

SL.

With SupersonicEdges

whoseplan fores =8 eJl portions of
the hyperbolaasymptoticto Mach ldnesthroughthe point (-d,O,O). The
eqyation of the le-x edge is

— .-.

n,\%0

-f ,/ \\
d / \\

+

x+d*-~7° ‘\Hx+d=$y
,/’

I ~x

Sket@ (h)

py=2dx +x2

aud the trailing edge is

wherethe
in sketch
resulting
becomesa

Xnz

quantities dand2 are shown
(h). The root chordor the
wing is 2. If d+O, the-
trianglewith sonicedges,and

if d/g >> 1, the wing has very W&e span
comparedwith its chofi.

The surface X2 (sketch(a))is
cmposed of a pair of ticltnedplanes

x = f(y,z) = 2-PIZI (*)

and the boundarycurve Cl (sketch(h))is
made up of two pmabolas

●

.

w = (2d+?)(z-2Ppq) (a)

If ndnlmumdrag for fixedlift and centerof pressureis soughtfor --
the wtngsof this family,the v-atfon leadsto the problem

-----_

v2(%+&TZf)

x

=0 ins

=0 on c=

=0 on c1 I (33)

-.



.
where ~ is the coordinateof the centerof pressure. A sin@e, exact
soluttonof equattons(33) fo~ws directly If

.

%= d++

in which case

M thts event, the drag 3s givenby

whire L iS tue @Veil~. Sincethe w5ng qxea is

the drag parsmeter is, writta in tams of ~ = d/Z

(34)

(35)

%

Sketch (f) showsthe varia-
tion of the dragwith ~.
This latterpamuneterIs,
in gemnAa5.c_ terms,
B2P /2, where Po is *
rad?usof curvatureof the
leadingedge at the apex,
and z Is root chord; - . II

[
(1+!)Gz - Fcoeh-yl+c)

1
(36)

.250

r

[~on

.245
L.I.5

@+--

.240

As ~ veriesfrom Otom, ~
the plan form rangesfrm B&L /

a sonic-edgedtrimgl.eto .235

a wing thathas nearlya
~abollc leaddngedge.

.230“

In the limit g+o,
t~o

when a sonic-edgedtrim- [A
x ~ results, the .2250

\
I 2

(

V&Lue of the drag parsm- 3t 456
eter givenby eq=tion (36) sketch (i)
is

.-
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% .
= 0.225

a
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(37)
—

.

This vslue is h agreement with the result of reference 4 for center of h

pressureat 60 percent of zwot chord. A180, the approximateresultfor
givenMft done - reference6 is quite c~se to that of equation (37),

:.

behg 0.223. This would Indicate that”the center of pressure is near
the 60-percent-chord position for @van lift. M fact, from the res~ts
of reference 4, it is found that the center of pressure for given lift
abne ~es at 63 percent of the chord. The drag of the sonic-edged wing

—

csu also be calculated by the use of the approMmation formula, eqpa-
tion (19). If the m- Cl Is taken aq an ellipse as a first ctie .. _
approximaticm one gets

%
— = o.211
m’L2

whichdiffersfroIuthe resultof reference4 by about5 percent.

At the otherextreme,~+00, the wing plan form is very nearlya
stilfc segnent. The centerof area of sucha parabolicsegmentlies
at 60 percentof the chord,whichindicatesthat the loedhg Is mif orm
overthe wing. This Is the correctresultfor minhum dragwith given

●

lift In two-dimensionalflow,and the wing is indeedbecomingnearlya
two-dlmendmnalcaseas {+m. r

TriangularWingsWith Subsmic Edges

T -dF_y The approximation derived above as
equation (19) can be used to predict drag
of triangularwingswith subsonicedges.

1 w,/” -\\

1
/ The curve (3x for suchwings is shownin

,/ ‘ y=mx
/ \, sketch(~). It is made up of a parakd.ic/ centersectionfairedintoelMpses. The

/“
‘\~. equationto the upper parabola is

lX1
I I

12-2PZz = $-

1
I

end the ellipses

(@m2/2)’

(2/2$)2 +

exe givenby

7.2

Sketch (~)
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. The curve Cl
8~e?lt -8;

.

.

.

23

will be consideredas an e3Mpse h orderto firedits

4B,CG= ( W)24,=

The othernecessaryq~tlties are

= (2/2@ 23r(LH@)2

%,00= (@B)24 ,m = (Z/2P)24Ym%Z

Q = (@&Q*

[
u (Z/2P)2 2 ~’ Cos-%$ + ~ n@(9-mz&)

1

Then,from eqpation(19), 1.0

[1 — Optimum(GI.(38))

t\
(w .5 \

\
The resultsof equation(38)EUX3
Sho’w?lptittedin sketch(k). fiO
shownis the drag curvefor a flat-
platewing. when mp+o the pre-
dictedminhlm is exactto -the
orderof lineartheory;when @l+ 1
the approximationsused fittiuce an
unconservatlveerror,as was found
in the last sectionin connection
with the sonic-edged@.

L-
00

, !
.5 1.0m~

Sketch(k)

htegrd. Relationsfor Iaading

.

The solutionof the minhum dragproblemprovidesa knowledgeof the
perturbationpotentislover the rea Mach smface ~; the vsLue of tie
perturbaticmpotentialat the trailinnedge is thereforeknownand the
spanwiseload distributicmfollowsdirectly. m the fsmilyof plan forms
with hyperbolicIeedingedges,for example,equation(34) yields
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[Pv-2(2d+2)l (39)

end the spare loadingremains~abolic for dll menders of the femily.

It is alsopossibleto relatethe chotiwisedistributionof loadto
imfomati~ suppliedby %(y,z),and the folbwimg developmentwill derive
resultsof thisnature. The firstob~ectivetill be to determdnethe
_tude of tie bad ~stribtii~ titegrated_ an obllqpeMe that
lies in the planeof the wing. The Mne may be assumedto pass through
the point (~,0,0) and is to be inclinedeLwaysat suchen anglethat
the componentof the free-streamvelocityvecturnormal.to it is super-
sonic;it thus lles In the so-cdhd supersoniczoneof silencethat
extendslaterallyfrom the point (~,0,0). The methodto be used is
general b nature but, to avoidcomplication,attentim will be directed
principeJly towti the ~icular family of wfngs treated P*OUSIY.

i

x

-Y

sketch (2)

IiLsketch(Z)let OAB
representa supersonic-edged-plan
form (notnecessarilya triengle)
sndletthe trail.bgedge ABbe
normalto the x axis. The cutting . -
line C!D is denoted

X-ytenvo=% (40) s

*re V. Is the _ betweenthg
lines.d-the y sxis and tm~~fl.

Two regionsof interestneed to be distinguished.The first (ReglcmI!,
which correspondsto the geometryshownin the sketch,correspondsto the
rengeof v. ~ % for whichthe cuttingline doesnot intersectthe
trailingedge. The second(RegionII) ariseswhen an intersectionwith
the trailingedge does occurwithinthe confhes of the plan form.

RegionI.- Throughthe llme CD pass two planesthat are tangent
to the dcnible Ma& conewith vertexat (~,0,0). The forwti and rear-
ward inclinedplanesare,respectively,23 and ~ and sre represented
by the linearequaticms

x-~ Cos *2P Sk e = % (41a)

X-H COB 6-2$ Sill 6 mQ (hlb)

where -..

tan~o=pcose

- notation used h eq~lons (41) is a canmcm me in supersonic
ae~cs and was introduced first by W. D. -s in his treatment of
equivalent sourae and doublet distributions (ref. 13).
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*
If Greenis

region enclosed

. relation

theorem for equation(1)
by a continuoussurface

is
z,

25

appliedto an arbttrery
the fmdamental integral

(42)

results. The derivative hb is the gradientof potentialalongthe. . —
conormal v wtth directioncosines v1, V2, V3 thai are related G the

directioncosines nl, n2, * of the innernormalto the surface X ~
=ans of the rehtions

-nfi2= Aovl > n2 = AOV2 ~ % “ M% (43)

&msider now the region enclosed by the srmfaces ~L$ %# ~~ and ~4.
Each can be generatedas the envelopeof a fsmi~ of Wch cones. Ih every
case,therefore,& = ~, the conormalsMe alongthe surface,and the
elementofsreacan reexpressed as dX=dvds wherethe elementof

da is normal to dv- and lies on the surface.
cones and the orthogonal curves to the conormels
Carlst.plane. The line CD may be Writtecl

x u x&py COB e

z-o
1

theldne~is

IciceUy, the surfaces
lieal~tian

(44)

An titegration
notingthat Cp

x = (z sin (M&3-y Cos 6)/(1+ sin e) 1

~

(45)
z = (z-x&py Cos e)/p(l+ sin e)

with respect to v in eqpation (45) then gives, after

H. l+sti e F z sin 8twpY cos e
9

d

z-q-py cos e
sine ~ Msin e ‘ “ 13(l+sti e

If this equatfanis differentiatedwith respectto ~, the desired
inte~al relation is obtained
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J’
D F
u(~fly C!ose,y,o)ay = - A

J’
XZ(y,z)dy

c 2j3 E
(46)

.

In U.nearized theory, the local aero@eml Clmddngonawillgisglven by
4?/9ul= 4U(ZO) /%2. If the integratedloadlngalongthe line CD of

equation(@) is denotedby L(~, e)/%, equation (M) assumes the—. -. —-.
convenient fox!m

—

L2ik@L-& ‘X*
%m fwm

RegionII.- The cuttinglinenow intersects
Eqyations(41) again represent

Sketch(m)

(47) .

the trailing edge.
the forwardand rearwardiml.inedplanes
through CD IX@ these planesintei%ect
the surface ~a albmgtwo Mnes.
Sketch(m) Indicatesthe gemetry and shaus,
above,the plane z = O and,below,the
proJectlonof the figureas viewed in the
directton of the negative x axis.

Eqpatlon (42) is again ~lled to the
reglcm enclosed by the surfaces ~, ~,
X- and ~, titegratian with respect to v
is c~ied out end fold.owedby differentia-
tion wtth respectto

%)%%%%%relationsto equations
w= in the fomll

J’
D D H
u(x&py Cos e,y,o)dy . - L

J
Xzdy+ &

c 2i3E 1

% The aknre results can
directlyto the particular

*“

Sketch (n)

Xzdy (w

(49)

now be applied
familyof plan

roms cmsiaerea previously.Foraflxed
cuttingangle PO, the rengeof ~ In
RegionsI sad II is as shownIn sketch(n).
The values X0, Xl, and & 81’e-$
respectively,by the titersectionof the
-r s ~s of s-try end threepaeX1.el
cuttinglines. The firstof theselhes

—

.

.
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is tangent to the leading edge of the plan form ad the other two pass
thin@ tie titersection potits of * leading and trailing edges. One—

has & = -d(h3ti 13),Xl = 2-(22+2@’2cos 8, ~ = 2+(22+22d)z’2cos8,
and the fo~ definitions

RegionI:

Region II:

When b z Xl, RegionI c-es to
satisfiesthe ineq~ty

ten y. >

IT&2mequation(+),

and the integration
titersectim potits

D: y=

E: y=

F: y=

H: y=

X&c/sx=

x=sqs&

exist and this occurs when the @e P.

fJ(z2+2@~/2

of eqpations(47) and (49) Is inmediate once the
D,E,F, and H ere calcukted. Thesepointsare:

(Z-XJ /p cos e

{

1/2
(Z+2d)cos e-

}
2(z+2a)(l+sti e) I&+d(kti e)]

13(I+sti e)

1/2
(z+2d)cos e+{2( z+2d)(I+sin8)[~d(l-sti @ 1)

p(k3ti e)

1/2
(2+2d)cos e- {2( z+ 2d) (Mm 8) [~d(l+sin e)]}

13(hh e)

The tite~ated loadings become, ~,
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RegionII:
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-3L1

[

-(~+ 2d)

1

+ [3w@-siII e)]1’2+bW@+SiII e) ]1’2———
m %0&/2 [2(2+ ad) ]z/2C.S e ~(~s~ e)zl= 2(1-sfa e)z’2

(m)

1.5

k

I f~

*8? ‘0
.5 ,

I

o mm
J!l!iL

1-1o

At=15

0 -\.

-1.0 0 102030
W

4$——-
HJ-—
4Y –-–

1
-2.0-IQ o U2203.04D50

sketch(o)

h sketch(o),theseloadingse drawnfor the threememb~s of the
familycorresponding to ~ = d/Z = O, 1.5, 52 with ~ = 1 end W. = 0°,
17, 30°, 45° h each case. The dimensionless qyentities plotted ~

It iS to
to exist. In
load d.istrlbutionof the ulng. One then getsthe parabolicM.stributim

be observedthat when v M 0, e = x/2 and RegicmII ceases
this casethe integratedLxdlng is pNcisely the chord

For all other cuttfng angles the loaddistrlbutlm falM to zeroat the
two end potits. In the case of the triangularplan form (&O), the
stremse gradientof L(~,e) has a sqyare-rotisingubrityat ~=0
for all cuttingangles. This,in turn,reqyiresa square-rootsinguhxity
Intheslope of thewlngat XO=Oe

AnotherIntegralrelation betweenthe loadingand geometryof
,

supersonic-edgedwings can be found..If equation(42)16 applledto the
wing surface,the forwardMach surface,and the planegivenby eqpa-
ticm (kla),one finds,for RegionI,

.
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e,yl)*1 (51)

end a similar result can be derived for RegionII. Equation(51) csn
also be writta

(52)

Thus the
value of
confined

titegrated kmding across the wing is proportion to the average
the whg slope along the same direction. This result is not
to optimum whgs but is of interestin connectionwith the

.

problemof fhdlnn the surfaceshapeto supportthe optimumload
M.stribution.
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