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TECHNICAL NOTE L227

DRAG MINIMIZATION FOR WINGS IN SUPERSONIC FLOW,
WITH VARTIOUS CONSTRATNTS

By Max. A, Heaslet and Franklyn B. Fuller

SUMMARY

The minimlzation of inviscid fiuld drag ie studled for thin
serodynemic shapes subJect to Imposed constralnts on 1i1ft, pitching
moment, base area, or volume. Tbe problem 1s transformed to ome of
determining a two-dlmenslonsgl potentlal flow satisfying either Lsaplace's
or Polsson's equations wlth boundsry velues flxed by the imposed condl-
tlons. By means of Kelvin's minimum energy theorem for harmonic flelds,
a method 1s given for epproximate drag minimizetion In the case of glven
1ift. For supersonlc-edged wings with stralght trelling edges, perfect
analogles are established between cases Involving 11fting and nonlifiting
shapeg., Particulsrly simple results are derived for a famlly of wings
with curved leading edges with 11ft speclfied and center of pressure
fixed at the 60-percent-chord position. Genersl relations involving
span loed dilstribution and Integrated loading along oblique cutting lines
are derived. The minimm drag for other plan forms is determined and,
in the case of nonlifting wings, difficultles assoclated with unreal
shapes ere discussed.

INTRODUCTION

The calculation of supersonlic drag of wings or bodles and the
reduction of the minimization problem to one of determining & hermonic
function of the lateral coordinates was reported by Nikolsky in refer-
ence 1. Detalls of this method were not glven, but & procedure leading
to the same end that mekes use of control surfaces which are everywhere
inclined at the Mach angle to the streamwise dlrectlion was glven by Ward
In reference 2. Further work on the subJect can be found In references 3
through 6. The drag 1s expressed by a surface integrel over a surface
that envelops upstream-facing Mach cones springing from the trailling
edge of the wing or body. Drag minimization can then be re-expressed
as & conventional lsoperimetric problem once the desired constraints,
such as, 1lift, pltchlng moment, base ares, or volume, are represented
in terms of Integrals over the same conirol surface. Varlous forms of
these representetlons have been given previously; for convenilence they
are glven agaln here in umiform notation.
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The several possible varlationsl .problems are set up in the form
of partisl differential equations (Laplece's or Polsson's) in terms of
the latersal variables. The reglon in which the solution 1s to hold is
determined by the original wing (or body), and the boundary conditions
to be applied are determined by the constraints of the perticular prob-
lem trested. Thus, although the problem has been reduced by one dimen-
slon, solution 1s usually not easy because the shape of the reglons in
which Laplace's equation 18 to be solved is not generally sulted to
mepping techniques, end the reglons are, moreover, not simply comnected.
Numerical and approximate methods still apply, however, and particular
families of solutions are readily foumd.

An spproximate method for the problem of minimm drag with given
1ift 1s developed, based on Kelvin's principle of minimm energy of
potential flows. The results involve the apparent area (or mass) of the
boundaries, so in reallty require knowledge of potential flowe about such
shapes. In practice, the procedure offers e means for ratlonal spproxi-
metion by emnsbling one to substitute known solutlons for epperent area
for the unknown ones of the problem at hand, and some examples are glven.

In any control-surface method of calculatlion of integrated forces,
etc., a certein amount of detalled information is lost. Thus, in the
present case, local surface shape 1s not an element of the problem,
except insofar as it influences, say, the base area or the volume.
Therefore 1t is not, strictly speaking, possible to glve assurance that
a real wing can achieve the minimm drag glven by e solutlon to the
variationel problem. This can happen when the conditioms of the problem
allow & solutlon that results ln a crossing of the stream surfaces that
form the wing. An example of the occurrence of this 1s glven; nemely,
the yawed elliptic wing of glven volume, wlth zero base area.

When the variational problems with the verious constralnts are
listed, there is noted a simllarlty between the problems for given base
area and for glven 1ift, and those for glven volume and for given pitch-
ing moment. Conditions under which the constraintes are interchangesble
in each of these two cages can be found; the result belng that, for cer-
tain wings with supersonic edges, base areas can be replaced by 1ift (ox
volume by piltching moment) without altering the dreg of the wing. Such
enalog results have also been noted between optimm slender bodles and
optimm lifting lines in subsoniec flow.

A particulexly simple solution can be determined exactly for ome
family of plan forme. This family has stralght trailling edges and
supersonic-type leading edges that are formed by sections of a hyperbola
ssymptotic to Mach lines. The constralnts specify 1ift end center of
pressure (or pitching moment). This family has two interesting limiting
cases; at one extreme 1t becomes & sonlc-edged trlangle, and at the other
a two-dimensionel case. The trianguler wing with sonlc edges has been
treated by Germain (ref. 4) and, by means of an approximation procedure,
in reference 6, and comparisons with these results can be made. The spen
loed distribution of these optimum wings is found directly from informetion
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derived iIn the analysis. It 1s also possible to determine, less directly,
addlitionel knowledge of serodynamlic loading integrated along oblique
lines. $So long as the obliquity of the lines 1s such that the component
of stream veloclty normel to them is supersonic, the varietion of the
Integrated loading In the stresm direction is obtelngble. The so-called
chord loed distributlion 1s a speclal case of these resulis.

IMPORTANT SYMBOLS

A base area of g wing or body

Cp drag coefficilent

C1, 112t coefficlent

C1,C2 curves bounding e reglon In an x = const. plane
(see sketch (b))

D drag of & wing or body in a supersonic flow

£(y,z) characteristic surface springing from a tralling edge
(defined by x = £(y,z))

h devigtion of body from control surface st tralling edge

1 streamwlise extent of wing or body

L 11t

5’%&&) integral of local losding (-%) elong oblique line

m tangent of the engle of sweep or yaw

My Mech number In the free stream

M pltching moment, poslitive for a nose-up moment, taken about

the line x=xo,y=z=0

n inner normel to a plene curve

N Inner normal to a surface

ys) Ppressure

AP- loed coefficlent (upper-surface pressure minus lower-surface
%0 pressure divided by free-stream dynamic pressure)
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free-stream dynemic pressure, %"pwaa

arc length

region in an x = const. plane

Cartesian coordinates

x intercept of cutting line (see eq. (40))
gpeed of free stream, parallel to x axis
volume of & wing or body

Mo2-1 -

space curve (defined in sketch (a))
Legrange multipliers (see eqg. (10))

angle between oblique line and y axils (see eqg. (40))
density

characteristic surfaces (see sketch (a))
velocity potential

perturbation potential on surface x = £(y,z) (see eq. (2))

2 2
two-dimenslonal Laplace operator, gy—z- + -5—2-
2

ANALYSIS

Bxpressions for the Drag and for Various Constraints

Consistent with linearized supersonic theory, the boundary conditions
over a wing or body are specified on & cylindrical control surface with
elements peresllel to the stream directlon, The positive x axis is
alined with the free-stream direction, and the perturbation velocity
components u,v,w Induced by the wing or body in the x,y,z directions

are glven by the gradlents of the perturbation velocity potentlal cp(x,y,z)

thet 18, by o, Pys Pye The differentiel equation governing the flow

fleld is

qu):nc'q)yy-q)zz =0 (1)



NACA TN L4227 >

vhere P2 = M 2-1. The symbol M,
denotes free-stream Mach number and, in
general, the subscript o will be used
to denote free-stream conditions, for
example, Uy, and p,, are free-stream
velocity and density. As shown in
sketch (a), the vertices of the down-
stream facing Mach cones trace out the
leading edge of the control surface ZZo
and the vertices of upstream facing
Mach cones trace out 1ts tralling edge.
The surface X, 18 in this wey
enclosed by the envelopes Z; and XL,

of two famlillies of cones. The surfaces
Z; and X, Intersect elong the space
curve I';. A4s shown in sketch (b), the
projection of F; I1n a pleme

x = const., 1s the curve C;. Simllarly
the control surface X, proJects onto
the curve C,, and the surface X,
proJects onto the two-dimenslonal
region S.

Let the surface Z; be given by
x = £(y,z) and the value of the pertur-
bation potentlal on &, be denoted by
x(y,z), that is,

X(y,2z) = olf(y,2),¥,2] (2)

Wave drag D (plus vortex drag when 1ift occurs) is then glven by the
expresslon (ref. 2)

D= - ﬂ_;o ﬂ“(Xyaﬂ(za) cos(x,N)az (3a)
o
.-°_2°° XVEXdydz-p—e""-fX%ds (3b)
S Ca

vwhere cos(x,N) 1s the directlon cosine relative to the x axls of the
Inner normal N ‘o the surface _X,, V2 1p the two-dimensional
Leplaclen operator (3°/3y2) + (3%/3z2) end 3X/dn 1is the gradient of
the function X along the inner normal to a curve In the yz plane.
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In the succeeding paragraphs, formulae for base area, volume, 1ift,
end pltching moment will be given., These results are applicable to any
case In which the object of interest deviates only slightly from & cylin-
drical control surface., In reference 3, applications involving both
plener surfaces and quesi-cylindrical bodles of revolution were gilven,
but in this report the examples will include planar ceses exclusively.

Consider & wing or body having thickness but without camber. If the
thickness 1s zero at the leading edge, and the projection on a plane
x = const. of the deviation in esrea between the nose and tell of the body
is A, 1t was shown Iin reference 3 that this area is glven by

Am Elo_o L/]‘(xyfy-l-xzfz)cos(x,N)dZ (ha)
>
1 1 of
.mg‘xﬁwdz+m£2x$u (4b)
1 s X
-aﬁfW@dz+a f & as (4e)
8 C1+C2

When the aerodynamic shape 1s a wing, the curve Cp 18 & segment of
the y axis.

In reference 3 the volume enclosed by a nonlifting wing or body was
expressed in the form

1 2 1 af2
v -L fh(f,s)ds - —2_[—]: ﬂX(2B +V‘2f2)dy dz - E‘: ‘/(; p 4 o ds
2 ] 2

(5)

where h(f,s) is the deviation from the control surface at the tralling
edge. Equation (5) thus glves the volume of aerodynamic shapes that ere
elther open or closed at the base. In two gemeral cases, however, the
first integral on the right in equation (5) can be deleted: first, when
the wing or body closes, that is, when h(f,s) = O; second, when the
trailing edge 1s normal to the stream direction, and the origin of coordi-
nates is elther on the trailling edge, or the base area ls zero, that is,

elther £ = 0 or f h(f,s)ds = 0. In these cases the volume formula 1is
Cz
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§

1 1 PeY
£ = seshem x 2 2f2 - a— _—d_s 68.
v arwﬁ (282 +V3£2)dy dz an (6a)

1 p202y _ B2 o1 X
8 s C1+Cs
(6v)

The base area or volume cennot be affected by the fore and aft placement
of the orlgin used In the analysis; proper posltioning cen, however,
sometimes be uged to econmomize In algebralc manipulation.

Consider next a wing or body of zero thickness and carrylng a load
distribution by virtue of 1ts cember and angle of attack. The 1lift L
and. pltching moment 1M &about the lJine x & xn, £z = O can be expressed
in texrms of integrals over the control surface I, (see gketch (a)) in a
mammer directly. analogous to that used for the evaluation of base area

and volume. The 1i1ft formula (ref. 2) follows from the application of
linearized theory to the force relstion

-f--ffp?dﬂ- ff 02 (3 W)az
545 53450
where

f? vectorial force on configuration
3 local veloclty vector

¥  unit inner normal to Z

P loceal pressure

p local density

The desired expression 1s

L= -pe [[taty oz (7e)
S
= oull [ X cos(z,m)as (7o)

Ca
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The general moment Integral is

—_ "
M = ff p (W) (Tux Yaz + ff p(F x¥)az
By o Ly
vhere -I"m is the vector distance between the moment center and an

integration element on the control surface. When IM 1s positive for
& nose-up pitching moment, linearlzed theory ylelds

M = Mwﬂx v2(zf)dy dz + Mw£ XF%Q- - xmcos(z,n)]d.s (8)
3 2

When 1ift L 4is zero, or the pltching moment is calculated about the
origin, one gets

o(z£)
= a —_—i a4
M ngx va(zf)dy dz + mewL:x el (92)
.pmumﬁzfvaxdydz+pmvw'fzf§;—‘as (9m)
8 CxtCa

Solutions of Variational Problems

The problem of minimizing drag under the constraint of given base
area, or volume, or lift, or pitching moment can be set up with the aid
of equations (3;, (&), (6), (7), and (9). It is only necessary to apply
standard variational methods to any one of the expressions

~
I; = D-M
Iz = D4V
Is = D-oL

r (10)

I4 = D-TM -—
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where A,u,0,T7 are Legrange multipllers. The sign of p 1is taken
differently so that all quantities A,pn,0,7 can be identified as char-
acteristic parameters in the so-called combined flow fleld. Thus, p 1is
1dentiflied with pressure gradlent in the combired field, & negatlve quan-
tity. Any of these problems can be combined with another. For example,
if 1t be required to f£ind minimm drag with glven bese area and 1ift, the
quantity to be minimized would be D-Ai-ol: and so forth., The results
found by applylng the varistionel procedure to the expressions (10) w111
be glven next. Each is a two-dimensional potentlal-~flow problem in the
lateral varlables y,z.

Glven base &area:

v2x+——7‘—)=o in s
PedUeo
o) A
3-_nx+me°°f>-o on Cp ) (11a)
X=0 OII.GJ_
y
D=%A ~ (11m)

Given volume (zero base area):

v2<x+72,5U:f2>=-323£U—m in é 1
%X+ﬁf2>=0 am Cz ) (122)
X = 0 on Cy

J
D=-Lv (12v)

Glven 1if%:
VX = O in 8
o)
5; (X + Upoz) = O on Co (13a)
X = 0 on 01
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DaFL - (230)

Gilven pitching moment (zero 11ft, or moment center at origin):

j
V(X + Ugr2zf) = 0O in 8
-Béﬁ (X + Ugrzf) = 0 on Cp » (1ka)
Xm0 on Cjy
Duit M (14p)

In each of the problems listed as equations (11) through (14), the
possibllity of obtalning & solution depends primarily on the boundary
curve C;. Several cases where exact results could be obtained were dis-
cussed In reference 3., However, recourse to approximate methods is
usuelly indiceted. One such epproximstion, in which the wing 1s distorted
by small amounts in order to achleve a solvable boundary curve C,, is
discussed in reference 6. Germsin, reference Y4, has used development in
series. Another method, for the pa.rbicular case of finding minimm drag
et given 1lift, is discussed in the next section. :

An Approximstion of Minimm Drag Due to
Lift by Energy Theorems

From equations (3), (7), and (13b), minimm drag for given 1lift takes
the form

1
Dﬂ-]é'-pm_ﬂ(xyai.xzz)dydz--Epm‘/;zxs%ds
8

= Bl [* o cos(z,n)ds = 2 L, (15)
2 Ca 2 :

The first integral can be interpreted as the kinetic energy of & two-
dimensional, incompressible fluld field (p,, = density) occupying the
region 5. 8Since the flow field 1s alsc irrotational, ome 1s therefore
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prompted to use classlcal methods of approximation to estimate the dreg.
Lord Kelvin's minimmm theorem provides one such approach. It is stated
by Lamb (ref. T, p. 57) as follows:

The 1rrotational motlion of & liquid in a multiply-
connected region has less kinetic energy than any
other motion conslstent with the same normal motion
of the boundary and the same value of the total flux
through each of the several independent channels of
the reglon.

Consider, as in sketch (c¢), the minimm
dreg problem that arises when the wing trace ' B
lies well within the curve Cj. The poten- we=Uyo
tial field X(y,z) will be assumed laterally
symmetric, The boundery condition along the
wing trace calls for & constent value of
downwash. On the exterlor curve C; the
potential X is & constant so that the —_—Yy
stream lines of the dlsturbance fleld are
normel to Ci. When C; 1s far distant
from the wing trace, the flow fleld corre-
sponds to the case of & two-dimensional flaf
plate moving downward in & fluld field of Sketch (c)
Infinite extent. When C; 1s at a finite
distance, an additional conditlion is lmposed and, as a first approximetion
to the effect, one might assume that the flow In the vieinlty of the plate
i1s similar to the flow near a plate moving downward, at & different and
slightly increassed veloclty in en unrestrained field. The megnitude of
the difference in velocitles must be determined by the boundary condition
on Ci.

In order to use Kelvin's theorem it is
convenient to start with the flow about the
plate moving downward at a veloclty of mag-
nitude, say, oUg-k. Sketch (d) indicates
the stream lines and the curve C; 18 shown
dashed. The perturbatlion potential 1s

01(7,2) = -(oUx-k)91(y,2)

where @:(y,z) is the perturbation potential
for unit translastional veloclty. 8So long as
the conditlons in the flow are unchanged Sketch (d.)
aelong the plate and at Infinity, the kinetie

energy of this irrotational fleld is & minimm. Consider, now, the
following three potential flelds:

(a) The one in sketeh (e) with X(y,z) sa.tisfy:l.ng equa-
tione (13a). Set X = ~Uedp.
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(b) A flow with uniform vertical velocity Xk within the
boundexry Ci;. Its perturbation potential is &5 = kz.

(¢) The flow assoclated with a downward velocity -k!
of the boundary Ci. Its perturbation potential
1s 03 = -k'¢qg, vhere ¢s corresponds to unit
translationsl velocity.

The sum of these three fields, see sketch (e), can be generated by
imposing constraints along Ci in the field of sketch (d) so long as k!

X | X
we=-Ugpo wek
TN
Sketch (e)

is chosen consistent with the flow conditions at Infinlity. In order to
meet this demend one uses the fact that, far distant, the induced field
of a solid in pure translation behaves as a doublet (ref. 7, p. 165).
When the body 1s laterally symmetric, the axis of the doublet coincides
wlth the exis of translatlion and the doublet or field strength is propor-
tional to A+Q vwhere A 1s the additlonal aspparent area of the body
end Q 1ts geometric area. For ¢, and 03 +to behave alike, therefore,
the relation

(0Uum) A oo = K (45 00t0) (16)
must hold, where
Aw’w epparent area of wing or plate in an infinite reglon
AB,oo apparent area of the boundary C; in rigld vertical motion

Equation (16) thus establishes one linear relation between X end k!,
end 1t remeins to establlish one more,

In the originsl fleld of sketch (d) no dilscontinuity in normel or
tangentiel veloclity occurs along C, whereas the combined fleld of
sketch (e) has discontinuities in both quantities. These discontinuities
are a measure of the aidded constraints imposed on the original field.
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Suppose, now, that k and k' are fixed so that the average value of the
conmblned potential vanishes., Defining this average difference as

[ (ostg)ay = 0
Ca
one has
: ' %%
kQ + k'qg cos(z,n)ds = kQ + k s — 48 = O
Cy c, om
or
kQ = k! 'A‘;B,oo (17)
Equation (17) furnishes a companion relation to equation (16).
Kelvints theorem glves

J1E&) G b= fl[(3) -6 b

where the Integration extends over all two-dimenslional space and the
right-hend member evaluates the contribution of X, 0,, and ®,. By means
of Green's theorem, one has

(ww-k)afml%d52f<os%ﬁ+x%+ aa%ﬂc%‘f + o2%>ds

Since &, and X &are harmonic functions, the final two terms in the right
integrand are equal. The Ineguality thus becomes

(oUx-k) E-A‘W,oo Skt g+ 0RUps"Ay,p + K°Q - 2kolehy 5

vwhere Ay B 18 the apparent area of the wing-boundary region with the
potentisl’ X(y,z). Rearrangement of terms ylelds

(k) A o < K1 2(8p Q)% (k%-x12)Q2
M. Mee @

If one divides by (oUx-k)ZAy oAy p and uses equations (16) amd (17),
the result is ’ ?

+ [(oUu-k) *-x2]18y,5
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(520 (G i) - ) ]

The sign of the bracketed term on the left cannot be esteblished in
general but, 1f the inequelity supplied by the minimum energy princlple

1s used merely as an approximation formule, the relatlion can be simplified
to glve

1,1 1 1
Fon 8 Tpd Ry (18)

Since from equation (15) minimm drag is

g Poo 2
DBEL-E—%GZW,B

one hes

2 B/ 1 1
> £ G55 AW’m) (19)

R. T. Jones (ref., 8) has shown that the equality sign holds in this
relation when the curve C; 1s an ellipse and the trace of the wing
extends between the foel of C,, a situstion that always spplies when the
plan form of the wing is an ellipse. PFurther tests of the usefulness of
equation (19) will be given in later sectioms.

APPLICATTIONS

In this division some particular gpplications of the methods dlscussed
ebove wlll be glven., The first example, the elliptlec wing, serves to
11lustrate g dlfficulby that can arise In the control-surface method for
calculating drag. Next, some analog results are glven, and, then, &
femily of wings with supersonlc leadlng edges, having some interesting
limiting forms, 1s treated. The concluding section shows how loading,
integrated along oblique cutting lines, can be determined from general
integral relatlions that apply to supersonlc flow flelds.
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The Elliptic Wing of Glven Volume

A wing of elliptic plan form leeds to a f—2c—+
boundery curve C, that 1s also an ellipse.

Sketch (f) shows the wing, the boundery curves
Cy and Cp, and region 8. Let C; be gilven

by 20 r -y
ﬁ -+ -z—a = 1 J‘ I
BE c2 x l
The solution of the problem vwhere minimm dreg z I
with given volume is sought is eased by the G
fact thet by manipulation of equation (6b), T .
using the first of equations (12s), the 26 | y
expression for volume can be put in the form J_ S
2 e [
v=-%ﬂ<x+2piu f2>dydz (20) ' 28 -
S ® Sketch (f)

Thus, the explicit determinastion of X from equations (12a) 1s avoided,
and the complicated expression for f mneed never be used - only the fact
that 1t vanishes on the outer boumdsry C;. It is found that

08 B23202
t o " B 32+c2<§ _'l) (21)

setisfies equations (12s). Substitution in equation (20) ylelds

X+

4 B3c4s

Ve -
8d,,  BA(C2

vhere S 18 the areea enclosed by Cj; S = #BC. Now, with the ald of
equation (12b), the drag can be evaluated:

24*!3%;,3 (228)

Finally, in terms of the originsl wing parameters a,c (see sketch (f))
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B2 = a2 + c2/p2

c2 = c2/ﬂ2

D __ 2 B2r2 5
% (nac)e? (p2ioz/az)®/2

(22b)

which agrees with the result of Jones
in reference 9.

l

|

|

I KNext suppose thet the elliptic
I wing 1s yawed. Then, as shown, in
|

reference 3, the bounding curve I3
lies in & plene x = m;y. Equa-
tions (12a) can be solved by the same

device as used Just above in the
l ' unyawed cese, and the result 1is
I
4 1.1
-] T e 2 2
G, % B pE, | my2 (3 + B
.
- (23)
[N ol
v 28 Bk which reducés properly to equation (22a)
Sketch (g) vhen m3y = 0. In this case, the expres-

slons for m;, B, C i1n terms of the

wing paremeters a,c end the yaw angle ¥ (Bee sketch (g)) are, if the
wing eccentricity is e2 = 1-c2/a2 :

My = (ezsin 2-.#)-1 [T-(T2-32e4s:l.n22¢) 1/2]

B2/a2 = (2p2)~* [‘I‘+(T2-Bae4sin22\y) a/ 2] ? (2k)

C2/e2 = B2/a2 - (l-e2cos2y)

where

T = p2(1l-e2cos2y) + (1l-e2sin2y)



NACA TN Lo27 17

In this solution, the additiomel constralnt of zero base ares is enforced,
as 1t was In the unyawed case (eq. (22b)) where the result checks that of
Jones. The latter result epplies to an elliptic wing that hes zero base
area, and, In fact, is closed all along the trailing edge, being of bicom-
vex section. Jones also deduced, from considerstions based on Hayes!
principle of equivalent source position and the resultent eveluation of
wave drag,that the optimm yawed elliptic wing has & biconvex section.

Let the wing in unyawed position have upper and lower surfaces glven by

t [ x2 y2
—x i1 2.
® 2( a2 o=

vhere t 1s the maximm thickness. The volume of this wing is

If this wing is yawed through an engle V¥ (see sketch (g)), its drag can
be found by a single integration (ref. 10):

21
2 - t2a2c2 '.é‘ .ng__ (25)
o L*“(6,¥)

with m = ten ¥ and
LE(0,V) = % [(a.az-m2c2) -2pm(a2-c2)cos 6+p2(m2a”+c2) cosae]
I+m

For the present purpose, it will be sufficient to consider the case where
the minor axis 2c¢ 1s small relstive to the mejor exls 2a. Then

x
D . 8V (1 a2 f a8 « B2 (p2)2 _2t307p2
%W "~ p2ad o (1L-mB cos )* mat (1-m2g2) 7/2

(26)

and this formuls holds for mf<l. For mB>1, or when the wing is yawed
outside the Mach come, the drag is infinite, Equation (26) shows thet
the drag curve has a strong singularity as mp->1,

Now consider the limiting form of the drag given by equation (23)
es e2->»1, or c/a=>0., It is
_ Ly2 2(1+m2) Z(2-m2p2)

D
Qo - ad (2-|-2m,2ﬁ2_31n4ﬂ4) (l_maaa) 1/2 (27)
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Comperison of this result with that of equation (26) shows the latter to
be the greater except at m = O vhere they are equal. Thus, two minimum
drags heve been found, ostenslbly for the identical constraints, end one
1s larger then the other. Thus 1t can be concluded that the larger drag
results from a strilecter comstraint. This is certainly the case since
pointwise tralling-edge closure is indeed more restrictive than zero base
area, for the letter condlition can be met by wings whose upper and lower
surfaces cross to glve an arees distribution of changing sign at the

tralling edge.

The present method for minlmum drag celculation has thus led to a
difficulty. The closure of a tralling edge is not an easy condition to
express in terms of the control-surface integrals, so 1t does not seem
.Peasible to force polnt-by-polnt closure by added constraints of the sort
evallable. The element of uncertainty introduced by this situation, as
to whether a determined minimum is achievable with a real wing, is cer-
teinly undesirable. However, the questlon only erlses in nonlifting cases,
-since a negetive ordinate on a cambered surface causes no unreality.

Anslogous Varlational Problems

In the previous section entitled "Solutions of Variational Problems”
wvere listed the differential equetions and boumdery conditions that are
satisfied by the optimizing potential X(y,z) on the rear enveloping sur-
face Ip (see sketch (a)). If attention is limited to wings with super-
sonic leeding edges, and the lift-area and moment-volume problems are
considered in pairs, a similarity thet shows up can be exploited. By
virtue of the supersonic leeding edges, the variationsl problems cen be
analyzed in the upper helf-plane z 2 0, remembering, of course, that the
flow and wing have vertical symmetry in the thickness case and that the
flow fleld is antisymmetric in the 1ifting case. Consider, nov, equa-
tions (1la) and (13e). The curve Cp will be & portion of the axis z = O
and the two problems will yield the same X for z = O, and hence the same
minimm dreg if }

Vef = 0 end Mgl = 2qp (28)

It is found that a straight supersonic trailing edge ylelds s rear
envelpping surface obeying equations (28). Iet the trailing edge have
the equation

x-ky = & ; k<Bp

The Zp surface is an inclined plane, and
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£(y,2) = ky(p2-k2) 2
£21,_ = £(B2-k2)M/2

Bquetions (28) glve

A = £2q,(B2-k2) -ia,

Since drag 1s a qusdratic fumetion of X, and since, from eguations (11b)
and (13b), equal drag occurs if

1t suffices merely to set

=-1/2
/A

L = +2q,(p2-k2) (29)

Thus, if the minimm drag of a supersonic-edged wing with a straight
trailing edge parallel to x = ky of given bese area 1s known, then it
1s also the minimm drag of the same wing consldered es a lifting wing
with 1ift determined by equation (29).

In this cese, one needs to establlish agreement between t];e relations

p(23+f VBF) = 2qu7(z VRF+2Fy) (
30)
u(ffz)z_=o = 2%T(f+Zfz)zm

Equations (30) are satisfled by the seme wing as in the previous case,
except that k must be zero; that 1s, the tralling edge is normal to the
free stream. In such a case

2QeT

=+t
" B

M=i."‘_22v (31)
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This equstion gives the pltching moment (at zero 1ift) of an optimum wing
having the same optimm drag as the same wing carrying volume V with
zero base area. The wings have supersonic edges and a stralght trailing
edge normal to the free strean,

Results of this sort have prevliously been noted between optimum drag
configurations in subsonlic ‘lifting line theory and optimum slender bodles
vhose wave drag is given by the von Kérmén formula. A summary of such
results cen be found In reference 11.

A Famlly of Wings With Supersonic Edges

Conslder the famlly of wings vhose plan forms are all portions of
the hyperbola asymptotic to Mach lines through the point (-d,0,0). The
equation of the leading edge is

B3y2 = 2dx + x2
Up
J and the traliling edge 18
AT
// \\\ X = 1
x+d--3y~ S\ -*t+d=8y
S Y vhere the quantities 4 end I are shown
1 \\\ in sketch (h). The root chord of the
J / s resulting wing is 2. If 4->0, the wing
- l becomes & triangle with sonlc edges 9
l 1f 4/1 >> 1, the wing has very la.rge spen

compared with its chord.

]
| g
l z The purface I, (sketch (a)) is
| c composed of a palr of inclined planes
\c.s |y x = £(y,z) = 1-B|z| (32a)
and the boundery curve Ci. (sketch (h)) is
Sketch (h) made up of two parebolas
B%® = (24 4+ 7)(2-28]z]) (32v)

If minimum drag for fixed 1ift and cemter of pressure 1g sought for.
the wings of this family, the varletlon leads to the problem

VE(X+Ugrzf) =0 1In 8

Sa; [X+Um(o‘-xm'r) z+Um-rzf] =0 on Co (33)
X =0 on Cy
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vhere xy 1s the coordinate of the center of pressure. A simple, exact
solution of equations (33) follows directly if

xm=d+-g-l
in vhich case
3 __ UuBL
- - [82y2+(2a + 2) (28]2]-1) ] (34)
16 [3(2a+2)1°/2 | l *
In this event, the drag 1s glven by
( ) d.+— 1 ( )
% %o/ [y(2a+ 7.)]‘?"‘a

whe.are L 1is tue glven 1ift. Since the wlng area is
% [(d+z) Ji(2a + 1) - d%cosn™* a-;z]

the drag perameter is, written in terms of { = d/2

2
op 9 t+3¢ 2 -1
ForE " o (L) [(1+g) N1r2f - tZcosh (1+_t,)] (36)

Sketch (1) shows the varia-
tion of the dreg with (.
This latter parameter is,
:Ln geometrical terms,

p,/1, Where p, 1g the
ra.d.gus of curva:bure of the
leading edge at the apex, 240
and 1 1s root chord. ‘
As { wvariles from O to =,
the plan form ranges from
& sonic-edged triangle to 235
& wing that hes nearly a
parabolic leading edge.

In the Hmit t->0,
vhen e sonlc-edged trlan-
gular wing results, the 2255 I 2 3 7 5 s
value of the drag param- . ¢
eter given by equation (36) Sketch (1)
is

.250r

oot

245}

ak

230
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E‘% =025 (31)

Thig value is in sgreement with the result of reference 4 for center of
pressure at 60 percent of root chord. Also, the approximaste result for
given 1ift alone from reference 6 is quite close to that of equation (37),
belng 0.223. This would indicete that the center of pressure is near

the 60-percent-chord position for glvem 1lift. In fact, from the results
of reference 4, it is found thet the center of pressure for given 1ift
alone lies at 63 percent of the chord. The drag of the sonlc-edged wing
can also be celculated by the use of the approximstion formula, equa-
tion (19). If the boumdary C; 1s taken as an ellipse as & first crude
epproximation one gets

Cp
pcr2
which differs from the result of reference 4 by ebout 5 percent.

= 0.211

At the other extreme, {—>»x, the wing plan form is very nearly a
parabolic segment. The center of area of such & pareholic segment lles
at 60 percent of the chord, which indicates that the loading is uniform
over the wing. Thils 1s the correct result for minimum dreg with given
1ift in two-dimensional flow, and the wing is indeed becoming nearly a
two-dimensional case as § —>w,

Trianguler Wings With Subsonic Edges

-y The approximetion derived above as
equation (19) can be used to predict drag
of triangulsr wings with subsonic edges.
The curve (i <for such wings is shown In
N sketch (J). It is made up of a parsbolic
N center sectlion falred into ellipses. The
N equatlion to the upper parabola 1s

| |

I l 12281z = B3y2
! iz i and the ellipses are glven by
l I

\<x-By

N

(yim2/2)% 22
(1/28)%  (1-m2p2)(1/2p)*
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The curve C; wlll be conslidered es an ellipse in order to find its
apparent area;

B, = (1/28)%88 o, = (1/28)"x(14mp)®
The other necessary quantitles are
B0 = (1/2B)285 o = (1/28)2ham?p2
Q = (2/2p)%Q*

= (1/28)2 [2 NIm=p2 cos~imp + %mg(g-maga)]

Then, from equation (19), Lof
Optimum {Eq.(38))
G! —— Flat plate
% _pafil ___t ,_1 [
* %, AN ¥*
B2 CCET
(38) s

The results of equation (38) are
shown plotted in sketch (k). Also
shown 1s the drag curve for a flat-
plate wing. When mB—>0 +the pre-
dicted minimm is exmct to the

order of linear theory; vhen mp—=>1
the epproximations used introduce en O 5 10
unconservetive error, as was found mg

in the last section in connection

with the sonic-edged wing. Sketch (k)

Integral Relatlons for Loeding

The solution of the minimm drag problem provides a knowledge of the
perturbation potential over the rear Mach surface ZI,; the value of the
perturbation potentlel at the tralling edge 1s therefore kmown and the
spanwise load distributlion follows dlrectly. In the family of plan forms

wlth hyperbolic lesding edges, for example, equation (31|-) ylelds
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X(7,0) = - S —ET____ [p2y2 (03 4 7)] (39)

16 [1(2a+ 1) 13/2

and the span loading remains parabolic for all members of the family.

It 1s also posslble to relate the chordwlse distribution of loasd to
informetion supplied by X(y,z), and the following development will derive
results of this nature., The first obJective will be to determine the
magnitude of the load distribution integrated along an oblique line that
lies In the plane of the wing. The line may be assumed to pass through
the point (x,,0,0) and 1s to be inclined always at such an engle that
the component of the free-stream velocity vector normal to it is super-
sonic; it thus liles in the so-called supersonic zone of silence that
extends laterally from the point (x5,0,0). The method to be used is
general in nature but, to avold camplicatlion, attentlon will be directed
principally towerd the particular family of wings treated previously.

In sketch (1) let OAB
represent a supersonlic-edged plen
form (not necessarily a triangle)
and let the tralling edge AB be
x normal to the x eaxis. The cutting -
line CD 18 denoted

X-y ten pg = X (40) .

Sketch (1) vhere o 18 the angle between the
line and the y axis and tan p §B.
Two reglons of interest need to be distinguished. The firet (Regiom I? ’
which corresponds to the geometry shown in the sketch, corresponds to the
renge of end x5 <for which the cutting line does not intersect the
tralling edge, The second (Region II) arises vhen an intersection with
the tralling edge does occur within the confines of the plan form.

Region I.- Through the line CD pass two planes that are tangent
‘to the double Mach come with vertex at (x,,0,0). The forward and rear-
ward inclined planes are, respectively, Zg and %L, and are represented
by the linear equetlions

x-yB cos 6+2B sln 6 = xo (41s)
X-yB cos 6-z8 sin 0 = xo (41p)
where
ten o = B cos 6 )
The notation used in equations (lil) is & cammon one in supersonilc X

serodynamics and was introduced first by W. D. Hayes in his treatment of
equivalent source and doublet distributioms (ref. 13).
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If Green's theorem for equation (1) 1s applied to an arbitrary
region enclosed by a contlnuous surface Z, the fundamentel integral

results. The derivative J¢/dv is the gradient of potential along the

conormal v with direction cosines v,, vp, vg that are related to the
direction cosines n;, np, ng of the inner normal to the surface I by
means of the relations

n18% = Agvy , DNamAvz, Ng = Agvs (43)

Consider now the reglon enclosed by the surfaces ZX;, 5, Lg, and I4.
Each can be generated as the envelope of & family of Mach cones. In every
case, therefore, Ao = B, the conormals lie along the surface, snd the
element of area can be expressed as QX = dv ds vhere the element of
arc ds 1s normal to dv and lies on the surface. Iocelly, the surfaces
are cones and the orthogonal curves to the conormels lie always in an
X = const. plane. The line CD may be written

X = Xo+By cos 8
(L4)

% = O
end the line EF 1s
x = (1 sin 64+x+By cos 6) /(1+ sin 6)
z = (1-%5-By cos 6) /B(1l+ sin 8) (3)

An integration with respect to v in equation (L45) then gives, after
noting that o = O on X,

o D
\/; @(xs+By cos 8,y,0)dy

gin o
_ Lisin efF [Z sin G+xo+By cos 6 1-Xo-By cos 6 ay
sin 6 Jg 1+sin @ ? %2 "B(1+sin 6)

If this equation 1s differentiated with respect to x,, the desired
integral relation 1s obtained
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D F
f u(xo+By cos 8,y,0)dy = - -J-'-f X (y,2)dy (46)
¢ 28 Jg

In linearized theory, the local aserodynamic loading on & wing is given by
2/ = lLu(z‘ﬂo,'_) [Upe If the integrated loading along the line CD of

equation (40) is demoted by L(x5,60) /0w, equation (46) assumes the

convenlent form

Lixo,0) . . ﬁ;vérxzay (47)

Region II.- The cutting line now intersects the tralling edge.
Equations (41) again represent the forward and rearward inclined plenes

T <8
i R

through CD and these planes intersect

the surface X, along two lines.

Sketch (m) indicates the geometry and shows,
above, the plane 2z = O and, below, the
projection of the flgure as viewed in the
direction of the negative x saxis.

Equation (42) is egain spplied to the
region enclosed by the surfaces I, L,

D Zg, and %,, integration with respect to v
' is carried out and followed by differentia-
tion with respect to . The analogous
Sketch (m) relations to etma.'bionsx?llé) end (47) then
appear In the form
D 1 P 1 PE
f u(xo+By cos 6,y,0)dy = - —f Xz dy + —»4' Xzdy (48)
c 2B B 28
D H
Lxo®) .. 2 f Xgly + o f Xpdy (49)
Qo BUoVE BUeo D

The above results can now be applied

y directly to the particular family of plan

forme comsidered previously. For s fixed
cutting angle u,, the renge of x, in
Reglons I and II is as shown in sketch (n).
The values Xo5, X3, and Xy are fixed,
respectively, by the intersection of the
wing's exis of symuetry and three parallel
cutting lines. The first of these lines
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i1s tangent to the leading edge of the plan form and the other two pass
through the intersection points of the leading and tralling edges. One

has Xo = -d(1-ein 8), X1 = 1-(12+218)* 2cos 6, Xz = 1+(12+213)* 2cos o,
and the following definitions

Reglon I: X, Sx0SX
Reglon IT: X3 $x, 93X

When X, 2 X1, Reglon I ceases to exist and this occurs when the angle pg
satlsfles the lnequality

B(12+241)1/2
14

tan p, >

From equation (34),
382 L 1
8 %o 3/2(1429)%/2

and the integration of equations (47) and (49) i1s immediate once the
intersection points D, E,F, and H are calculated. These points are:

D: v = (1-x5) /B cos @

/2
(1+2d)cos 6 -{2(l+2d)(l+sin 8) [x0+d(1-s1n 6)]
By B(1rsin 0)
/2
(1+24d)cos 9+{2(1+2d)(1.+sin 6) [x5+d(1-8in 6)]
F: =
v B(1+sin 6)
1/2

(1+2d)cos e-{2(1+ 24d) (1-sin 6) [x5+d(1+sin 6)]

H: ™
v B(1-sin 9)

The integreted loadings become, finally,

[x+d(1-sin 6) 1%/ 2

.3 L
= 2 (50e)
%o -,ra_ Qo 7,3/2(l+sin 9) 1i/2
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Region II:

L(%0,6)
90

3 L 1 ~(xo+28) [xo+a(l-sin 0)1*'2  [xo+d(l+sin 6) 1%
N2 %0 33/2] [2(7423)1"3%c0s 0  2(1+sin 9)*/2 2(1-sin 0)%/2

(50p)

W A Ue
ST - Sl & ;;5;

L.O
. =
) 30° ——
Pef) ' a5 —— N
| - —A\ ) B -
| ' 11 e T M | \ﬁwﬁ'\g
0 0 20 -0 © 10 20 30 -20 -0 © 1o 20 30 40 50
xg X' x$
Sketch (o)

In sketch (o) s these loedings are drawn for the three members of the
femily corresponding to § = d./Z =0, 1.5, 5, with B =1 and p, = 0°,
15°, 30°, 45° in each case. The dimensionless quantities plotted are

L(xo,0) Aol 2 Xo
* = — L] 4 * = e——
P(xo sH) 1 I Xo 2

It is to be observed that vhen p = 0, 8 = :t/2 and Region IT ceases
to exist. In this case the integrated loading 1s preécisely the chord
load distributlion of the wing. One then gets the parabolic distribution

Lxg,n/2) 3T <2‘.2>”2
o " BT \3

For &ll other cutting angles the load dlstribution falls to zero at the
two end points. In the case of the triangular plan form (d=0), the
streamwise gradient of L(xo,0) has & square-root singularity et x5 = O
for all cutting engles. This, in turn, requlires a square-root singulerity
in the slope of the wing at xg = O.

Another Integral relstion between the loading and geometry of
supersonic-edged wings can be found. If equation (42) is applied to the
wing surface, the forward Mach surfece, and the plane given by equa-
tion (4la), one finds, for Region I,
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D D
j; W(Xg+By1cos 0,¥1)dyy = B ‘/; u(xo+By1cos 6,y1)dys (51)

and & similer result can be derived for Region IT. Eguation (51) can
also be written

L(x5,6) - L
Ao BUc

D
o W (xgtBy1c08 6,¥y1)dya (52)

Thus the integrated loading ecross the wing is proportional to the average
velue of the wing slope along the same direction. This result 1s not
confined to optimum wings but 1ls of interest in connection with the
problem of finding the surface shape to support the optimm load
distribution.

Ames Aeronsutlical Laborabtory
Natlonal Advisory Committee for Aeromsutlics
Moffett Fleld, Calif., Nov. 29, 1957
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