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SUMMARY 

An approximate t h eory i s developed for predicting the rate of heat 
transfer to the stagnation region of blunt bodies in hypersonic flight . 
Attention is focused on the case where wall temperature i s small compared 
to stagnation temperature. The theoretical heat - transfer rate at the 
stagnation point of a hemispherical body is found to agree with available 
experimental data . The effect of yaw on heat t r ansfer to a cylindrical 
s t agnati on region i s treated at some length, and it i s predicted that 
large yaw should caus e s i zable reductions in heat - trans fer rate. 

INTRODUCTION 

It has been suggested ( see refs . 1 and 2 ) that blunting or rounding 
the l eading edges of wings and bodies might substantially alleviate aero ­
dynamic heating of these regions in hypersoni c f light . There is, of 
course, the added advantage that round l eading edges are structurally 
more practical than sharp l eading edges , especially when the problem of 
absorbing heat is considered . Another consequence of blunting may be 
increased pressure drag . I n the case of ballistic vehicl es , this conse ­
quence is often an advantage (see ref. 1). In the case of glide vehicl es , 
however, or more generally any vehicles required to operate for sustained 
periods in more or less l evel hypersonic f light, increased drag may be 
viewed as a disadvantage . 

Now, to be sure , rounding or blunting the nose of a body does not 
a l ways increase drag . Indeed, small amounts of blunting may reduce the 
drag of a body (see, e .g ., refs . 3 and 4). The same, however , cannot be 
said for blunting the leading edge of a wing . Even small blunting causes 
a sizable increase in drag . I t is natural, then, to l ook for methods of 
minimizing this drag penalty , and the possibility of yawing or sweeping 
the l eading edge comes to mind . Impact pressures should be , according to 
simple - sweep theory, decreased in proportion to t he cosine squared of the 
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angle of sweepj hence, as is intuitively obvious, large 
substantially reduce the drag penalty due to blunting . 
possibility it is important to inquire of the effect of 
heat transfer to a blunt leading edge . 

sweep should 
In view of this 
yaw or sweep on 

The purpose of this paper is to investigate theoretically the heat 
transfer to the stagnation regions of bodies in hypersonic flight, includ­
ing the effects of yaw , by a simplified method which is suited to take 
account of real gas effects such as dissociation . This method, which was 
previously given limited distribution, is used along with recent estimates 
of transport properties for high temperature air, and the solutions are 
compared with some heat transfer results for blunt shapes. 
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SYMBOLS 

integration constants 

specific heat at constant pressure , ft - lb/slug oR 

specific enthalpy, ft - lb/slug 

coefficient of thermal conductivity, ft - lb/ft - sec oR 

Mach number, dimensionless 

exponent of temperature in thermal conductivity and viscosity 
functions ( see eqs. (37) and (38)), dimensionless 

Nusselt number based on a length 2Rb and stagnation tempera­
ture conditions, dimensionless 

static pressure, lb/ft2 (unless otherwise specified) 

Prand tl number , dimensionless 

heat flux per unit area, ft - lb/ft2 - sec 

heat flux per unit area at zero yaw, ft - lb /ft2 
- sec 

heat flux per unit area at yaw angle A, f t - lb /ft2 - sec 

gas constant, ft - lb/slug OR 
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Re 

r,8,cp 

T 

radius of curvature of body at the stagnation point, ft 

radius of curvature of the shock wave at the stagnation stream­
line, ft 

Reynolds number, based on twice the radius of curvature of the 
body at the stagnation point, dimensionless 

spherical coordinates, feet , degrees , and degrees, respectively 

static temperature, OR 

tempera ture of the body, OR 

temperature at the interface, x 

temperature at the interface, x 
A, OR 

0 , wi th body at zero yaw , OR 

0 , with body at angle of yaw 

Tr recovery temperature, OR 

Tt stagnation temperature , OR 

Uoo stream velOCity, ft / sec 

3 

u,v,w velocity 
ft / sec 

components in the x, y, and z directions , r espectively, 

u,v 

x,y,z 

x,r 

E 

velocity components in the x and r directions , respectively, 
ft/sec 

Cartesian coordinates, ft 

cylindrical coordinates, ft 

flow deflection angl e , deg 

dimensionless coordina te , or 

ratio of spec i fic heat at constant pressure to specific heat at 
constant volume , dimensionless 
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P 

a function of density change across a shock wave) 

dimensionless 

angle of yaw) deg 

density, slugs/cu ft 
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(Ps/poo) + 1 
(ps/Poo) - 1) 

~T kdT) a function of the coefficient of thermal conductivity 
o 

and of temperature) ft - lb/ft - sec (unless otherwise specified) 

acute angle of shock wave relative to stream velocity vector, 
deg 

~ coefficient of viscosity, slugs/ft sec 

~o coefficient of viscosity at temperature TO) slugs/ft sec 

coefficient of viscosity at temperature To(A ) , slugs/ft sec 

Subscripts 

s conditions just behind shock wave on the stagnation streamline 

b conditions at the stagnation point of the body 

o conditions at the interface between regions 1 and 2 on the stag-
nation streamline (see sketch (b) ) 

00 conditions in the free stream 
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Superscripts 

first derivative with respect to the x coordinate 

If second derivative with respect to the x coordinate 

THEORY 

General Equations in Cartesian Coordinates 

The analysis proceeds from the equations of momentum, continuity, 
energy, and state for continuum fluid flow. The x , y, and z momentum 
equations are, respectively, 

2 .2..- (~ dU) + ~ [~CdU + dV)] + 
dX ~ dX dy dy dX 

5 

(1) 

- dP _ ~ ~ [ ~ ( dU + dV + dW) ] + 
dY 3 dy dX dy dZ 

d [ (dV dW)] dZ ~ dZ + dY (2) 
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o G OW ) 0 [COU OW) ] 2 - fl. - + - fl. - + - + 
OZ oz ox oz ox 

.£.. [fl. (ov + OW) ] 
oy \.~z oy 

The continuity eQuation is 

op + ~(pu) + ~y(PV) + ~(pw) 
ot ox u oz o (4) 

and the energy eQuation is 

2 2 

= ~ (k OT) + .£.. Ck OT) + ~ ( k OT) + fl. [2 (o~\ + 2 (OV\ + ox ox oy oy oz oz o;j oy) 

2 (O~\2 + COU + OV)2 + COU + OW)2 + /2Jv + OW)2 _ g COU + ov + OW )2 ] 
\~i) oy ox oz oX \~Z oy 3 ox oy oz 

while the eQuation of state is t aken in the form 

p = p(p,T) ( 6) 
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Derivations of the momentum and energy eQuations are given in numerous 
sources (see, e . g . , r efs . ), 6, and 7) . Note tha t the coefficients of 
viscosity and thermal conductivity, and the hea t capacity have been 
treated as variables . It is intended that by so doing a more accurate 
solution will be obtained for hypersonic flows with their characteristi ­
cally large tempera ture and pressure gradients . 

Let us now consider the particular f lows of interest in this paper, 
namely, those in the region of a stagnation point. 

Model of Flow and Method of Analysis 

It is instructive in setting up the model to consider the qualitative 
aspects of temperature and vel oc i ty variations in the flow along the stag­
nation streamline. Restricting the analys i s t o steady hypersonic flow, 
that is Moosin 5 > > 1 , we will assume that the surface temperature is low 
compared to the stagnation temperature of the air . This assumption seems 
quite reasonable since practical surface materials will probably be 
destroyed if surface temperatures are allowed to approach stagnation 
temperature . It wil l be assumed further that the Reynolds number of the 
flow is large enough so that heat conduction and viscous shearing in the 
shock process is distinct and separate from the corresponding phenomena 
occurring in the boundary layer adjacent to the surface of the body . 
Accordingl y , temperat ure and velocity shoul d vary al ong the stagnation 
streamli ne similar to the manner shown in sketch (a). 

u ----------(I) I 

u . 
S 

I 
I 

Tao --------------~ 
o 

---- --- --- ---

I 
Shock 

wave 

Temperature 

" ..... /velocfty 

-- -- -------- -

Sketch (a) 

I 
Body 

surface 
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There is a n abrupt and large increase in temperature a nd decrea se in 
velocity of the air a s it pa sses through the bow shock . Proceeding from 
the shock in the direction of the body, temperature continues to increase 
slowly whil e the vel ocity decrea ses slowly towards zero . Nea r the surface 
of the body, the a ir tempera ture cease s to i ncrease a nd, in fact, begins 
to falloff steeply i n the direction of the body temperature . The veloc ­
ity of the f l ow must, of course, be close t o zero in this region . 

On the basis of these observations the following simplified model is 
proposed and employed throughout this study of hea t transfer in a stagna­
tion r egion . 

-IS 

Region I 

Stagnation 
streamline 

Detached 
shock wave 

o 

Region 2 

U, I 

Int.rfac. 
betw •• n regions 
I and 2 

Region 1- Incompressibl., non viscous flow 

Region 2- Low-velocity, compressible, viscous flow 

Sketch (b ) 

W stQonation~ 
POjnt~ 

R.~ 

;//~ 

Since Moo is large compared to 1, Ms is substantially l ess t han 1 and 
the detached shock wave is located a relatively short distance ahead of 
the body surface ( i . e . , (xs + xb) /Rb < < 1). The f low bet\-leen the shock 
wave and the body surface is divided i nto two regions . Region 1 is t aken 
as a domain of e ssent ially nonviscous, non-heat - conducting, incompressible 
flow while region 2 is taken a s a domain of very low speed , but compres ­
sible , viscous,and heat - conducting flow . It is anticipated f urther that 
in region 2 the u and v components of velocity will be very small . The 
component of velocity w due to yaw may, of course , t ake on rather large 
values . 

Now it may be demonstrated with e~uations (1) and (2) that 02p/dy2 
be come s relatively independent of x along the stagnation streamline in 
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the limit as the disturbed flow extends only a short distance away from 
the body . Inasmuch as this is the type of flow of interest here, it will 
be assumed t hroughout thi s analysis t hat d~/dy2 is es sentially con­
stant along the stagnation streamline between the shock and the body . 

With these assumptions, the derivative with r e spect to y of the 
y momentum equation yields a differentia l e quat ion that becomes tractable, 
both i n regions 1 and 2, when terms t hat vanish in the neighb orhood of the 
stagnation streamline are dropped . Approximate solut ions to these simpli ­
fied y moment um equations are found for the u velocity a long the s t a g ­
nation streamline in region 1, and for the derivative of this velocity 
along the stagnation streamline in region 2 . The const ants appearing in 
these solutions are determined by matching the boundary conditions a t the 
shock wave and at the surface of the body, a nd by matching f low conditions 
a t the inte r f ace . This procedure f ixe s the locations of the shock wave 
and inter f a ce relative to the body . 

The energy equation is simplified in an analogous manner , and solu­
tions valid in the neighborhood of the stagnation streamline are found 
for regions 1 and 2 . The rate of heat transfe r per uni t area to the 
stagnation region of the body follows from the solut ion to the energy 
equation for region 2 . 

Let us see how these thoughts apply in the case of a two- dimensional 
stagnation region . 

Hea t Transfer to a Cylindrical Stagnat ion Region 

Zero yaw . - This probl em has been trea ted for incompre ssib l e f low by 
Howarth (ref . 7) and more recent l y for the compressible flow by Cohen 
and Re shotko (ref . 8) . One reason for re - investigating the matter here 
is to obtain compressibl e f low solutions which can be extended with rela ­
tive ease to the case of a yawed cylinder . I n addition it wa s desired 
to obtain solutions which may be better suite d to a ccount for r eal ga s 
effects , such a s dissocia tion . 

To proceed, then, the stagnation streamlines are t aken to lie in the 
x - z plane . The origin of the coordinate system is a t the interfa ce 
between r egions 1 and 2 , and t he shock-wave and body- surface locations in 
this plane are -xs and xb' respectivel y (see sketch (b )) . For the case 
of zero yaw, the z component of vel ocity and all derivatives with 
respect to z a re, of course, identically zero . 

First a solut ion will be found to t he steady - state y momenturrl 
equation near the stagnation streamline in region 1 . Since the f low is 
a ssumed incompressibl e and nonvi scous in this region , equation (2 ) 



10 NACA TN 4229 

simplifies to 

1 dP - --
P dY 

Differentiating e~uation (7) with respect to y there is obtained 

( 8) 

On the stagnation streamline v is identically zero and, therefore, dV/dX 
is also zero . In a ddition, the continuity e~uation ( e~ . (4)) becomes, for 
incompressible, two- dimensional flow 

dU dV - + -
dX dy 

o 

Using this information with e~uation (8), one obtains 

-u d
2

U + (dU)2 
dX2 dX 

(10) 

Treating d2p/dy2 a s a function of y only, and noting that e~uation (10) 
becomes a total differential e~uation along a line y = constant, yields a 
general solution for velocity along the stagnation streamline 

ex -Cx 
u = Ae + Be (11) 

where the constants A, B, and C are related by 

(12) 

Note that the constants may be real or imaginary, depending on the bound­
ary conditions . 
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Now i t is anticipated that the velocity u will very nearly vanish 
at the interface x = 0 (i . e . , in the sense t hat uo/us < < 1); hence B 
will be approximately -A, and the corresponding approximate solution for 
velocity is l 

u = 2A sinh Cx (13) 

To the same order of approximation, 
the interfa ce , uo", also vanishes . 
deriva tive a t the interfa ce and can 
and (13), thus 

the second deriva tive of vel ocity at 
The product 2AC is just the velocity 
be evaluated from equations (lO) 

2AC qo' " ± j- ~ ::; (14) 

Note t hat the negative root correctly describes the flow in the coordi ­
nate system of sketch (b), since velocity decreases with increa sing x . 

Consider next the steady- state y momentum equation near the sta gna ­
tion streamline in region 2 . In this domain viscous terms must, of course , 
be retained and thus the derivative of equation (2 ) with respect to y 
yields 

pu d
2

v + u op dV + P dV du + pv ·02v + v dp OV + P (ov)2 
dXdy dy dX dX dy dy 2 dy dy dy 

(15) 

Now close to the surface of the body the l eft - hand side of this expres ­
sion is negl igible and the right -hand side simplifies so that the equa ­
tion may be written ( see Appendix A) 

2- (~ d2~) = 
dX \ dX 

(16) 

lIn the limit of zero boundary- layer thickness , this solution is 
exa ctl y the one to which equation (11) reduces . 
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Along the stagnation streamline this equation integrates to 

. ~2 /~ 2 " The constant D is zero Slnce a u oX = Uo = 0 at the interface (x = 0). 
Near the surface of the body , equation (17) can be integrated to obtain 

dU 
~­dX 

,,2 2 
o P X -- -- + ~OUOI 
dy2 2 

In order to sati sfy the boundary condition a t the body surfa ce 

(~;)b = (~~)b = 0, it follows from equations (18) and (14) that 

~ J-p~ 

(18) 

Now p and d2p/d~ can be evaluated at the shock wave since both are 
considered constant throughout region 1. In Appendix B it is demonstrated 
t hat for two -dimensional f low 

( 
d2p) 

P dy2 s 
(20) 

where Rs is the radius of curvature of the shock wave in the stagnation 
region . Substituting equation (20) in equation (19) we obtain 

(21) 

where Reoo is the free -stream Reynolds number ba sed on 2Rb, twice the 
r a dius of curvature of the body at the stagnation point . Note also that 
the effective value of 1, the ratio of specific hea ts, a t the shock wave 
is allowed to vary from the free - stream value . In this way, changes in 
i nternal molecular energy which are manifest at the high temperatures 
encountered in hypersonic flight can be considered . 
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There remains the probl em of solving the energy e~uation. In 
region l J the energy e~uation is s implif i ed by negl ecting al l the viscous 
and hea t - conduction terms . Then, f or the t wo- dimensional problem con ­
sidered her e , e~uation (5) r educes t o 

( 22 ) 

for which the sol ution is 

It can be seen from e~uation (23) t ha t the interface temperature To is 
approximatel y the sta gnation tempera ture Tt , since the vel ocity a t the 
interfa ce nearly vanishes . The stagnation tempera ture is, of course, 
given by the integra l e~uation 

( 24 ) 

where for very high vel ocity flow the l ower l i mit of the integral wil l be 
neglected . 

Next consider the energy e~uation in region 2 . Proceeding in a man­
ner analogous to that used in studying the y momentum e~uation in this 
region , we neglect the terms with the factors u, v, dU/dX, and dV/dy . 
Thus e~uation ( 5) becomes simpl y the heat - conduction e~uation 

~ (k dT) + ~ (k dT) 
dX dX dy dy 

o (25) 

The coefficient of thermal conductivity, k, is considered a known function 
of tempera ture (pre ssure is essentia lly constant) . Thus a new function of 
temperature , ~ , may be defined such that 

T 

~ = I k dT (26) 
o 

Then e~uation (25) may be expressed in terms of the function ~ 

d
2

Tj d
2 

dX2 + d~ = 0 (27) 



NACA TN 4229 

Inasmuch as the body boundary is cylindrical) i t is convenient to use the 
general solution to e quation (27) in terms of t he polar coordinates (f, 9). 
Thus 

00 

1) = A + B ln r + L [ ( Cnf n + ~) cos n9 + ( Enyn + ;~ )sin n9 ] 
n=l 

(28) 

The orlgln of the coordinate system is now t aken as the center of curva ­
ture of the body , and 9 as the acute angl e between t he radius vector f 
and the stagnation streamline . If a surface temperature is as sumed inde ­
pendent of the angle 9 , 2 the solution on the stagnation streamline (8= 0) 
reduces to 

00 

1)=1)b + Bln : b + L 
n=l 

Letting f ::: 1 + € , where € is very small compared to unity, and 
Rb 

expanding equation (29) in a series of ascending powers of €, we obtain 

(30) 

where G is the constant ~ + ~ 2nRbn cn). It is indicated by this 

n=l 
equation that 1) varies essentially linea r ly with € , since €2/ 2 is 
negligible compared to € and terms of higher order in € should be 
very small indeed . 3 Since €::: (xb - x)/Rb < < 1, equation ( 30) can be 
written 

(31) 

2The dependence of surface tempera ture on e should be small in the 
stagnation region . 

3 I t should be pointed out t hat this argument hinges implicitly on 
the assumption that 1) is a weak function of 8 near the stagnation 
streamline . 
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According to this expression ) the rate of hea t transfer per unit area to 
the stagnation region of the body is 

To I k dT 

Tt 

( 32 ) 

The stagnation- line coordinate xb is substituted from e~uation (21 )) 
and the rate of heat transfer becomes 

J
1

/
4 

( R )1/2 Re 112 

1) ~: R~ ; b 

A Nusselt number is defined for interface temperature conditions 
using a characteristic l ength e~ual to twice the radius of curvature of 
the body and a temperature potential of (To - Tt )j thus 

Nu 

or) substituting from e~uation (33 ) into (34) 

Nu = (Ys 6 )
11 4 ~oo Rb)1/2 __ R_e_oo_

1
_
1_

2 
__ 

1 ~o Rs ko (To - Tt ) 
(35) 

For a relatively cool body in hypersonic f l ight) it is possible to dis ­
regard the lower limit of the integral and the value of body tempera ­
ture Tb compared to the interface temperature To· 

Note that the solutions given by e~uations (33 ) and (35) can be used 
for the case where viscosity) thermal conductivity) and specific heat are 
arbitrary functions of temperature. For instance) these functions can be 
calculated to include the effects of vibrational and dissociational molec ­
ular energy if the extent to which these energy modes are excited is known 
throughout the flow . It is also useful to consider the case where the 
specific heat is treated as a constant and the viscosity and thermal 
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conductivity a s proportional to the nth power of tempera ture . In this 

ca se from equation (24) (note ~~ ~ 1, ~~ > > 1) 

Noting that 

1 

and that 

To 1 k dT 
1'b 

1 

n+l 

(
2C )n/2 
~ M -n 
I. R 00 

00 

it is seen that the expression for Nusselt number (eq . ( 35)) becomes 

Nu ~ C_6_)1/4(Rb)1/2 (~)n/2 Re00

1/2 
n+ 1 IS - 1 Rs looR Moon 

(36) 

and the r a te of heat transfer per unit area to the sta gnation region of 
the body is, in terms of free - stream conditions, 

C[~ (k~oo) [8(783_ 1r
4 

(~~y/2G~:tl Reoo~:~n+2 [1 (:~rl ] 
(40) 

These considerations compl ete the zero- yaw anal ysis . However , before 
undertaking the study of effects of yaw on heat transfer it is appropriate 
to make a few remarks . There is the general question of the l egitimacy of 
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the several assumptions underl ying the present treatment of stagnation­
point f l ows . In order to shed some light on this matter it is undertaken 
later in the report to examine the solutions obtained to see whether they 
are consistent with these assumptions and with pertinent results obtained 
by others . In this regard it is shown that the presumption of a constant 
second derivative of pressure normal to the stagnation streamline yields 
solutions for the distance between shock wave and body which are quite 
close to observed values. Next, it is demonstrated that, as assumed, the 
velocity u is negligibly small throughout region 2 under continuum flow 
conditions . Then it is shown that the largest of the viscous dissipation 
terms neglected in the energy equation for region 2 is indeed small com­
pared to the heat - conduction terms . It is found too that the analysis 
predicts an amount of heat convected into region 2 which is the proper 
order of magnitude to account for the heat transferred to the body . 
Finally, it is shown that under comparable conditions equation (35) of 
this paper predicts essentially the same heat transfer as references 7 
and 8. 

In view of these results it would seem that the simplified analysis 
presented here for stagnation- region flows is, while on the one hand cer ­
tainly approximate, on the other hand quite capable of predicting useful 
information . Accordingly, we proceed to the study of effects of yaw on 
heat transfer . 

Yaw. - In this case the x direction is normal to and the z direc ­
tion is paral.lel to the stagnation l ine of the body (see plan vie,>", 
sket ch (c)). Then the z component of velocity has a finite value, but 
all z derivatives are again zero . 

Region I 

Detached 
shock wave 

Region 2 

regions I and 2 

ex = 0) 

Region /- Incompressible. nonviscous flow 

Region 2 - Low velocity, compressible. viscous "ow 

Sketch (c) 
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The y momentum e~uation in region 1, differentiated with r e spect 
to y, takes the same form as e~uation (10) on the stagnation streamline. 
Thus the velocity u is again given by the solution 

u - 1 J- 1. 02p sinh ex 
c P oy2 

(41) 

The z momentum e~uation for the stagnation streamline in r egion 1 
becomes, on dropping the negligible t erms from e~uation (3), 

which has the solution 

ow 
u ox o (42) 

since the transverse component of velocity is unchanged on pa ssing through 
the shock wave. 

The energy e~uation for the stagnation streamline in region 1 r educes 
to a form similar to e~uation (22) 

which has the solution 

u2 + rooRTooMoo2sin2A 

2 

(44) 

where again the stagnation temperature 
At the inte rface where the velocity u 
To(A) is given by the solution to 

Tt is given by e~uation (24). 
is negligible, the temperature 

(46) 



NAeA TN 4229 19 

which, for a constant heat capacity, Cp ' is 

The differentiated y momentum equation for r egion 2 t akes on the 
same form on the stagnation streamline as equation (16) . Hence , the 
solution is 

and the body stagnation point coordinate is 

Now, however , the second deriva t ive of pressure is a f unction of the 
angl e of yaw ( see Appendix B), 

6 22 2 
P U cos A 

00 co 

so the sta gnation-point coordinate is gi ven by 

( 48) 

( 50) 

( 51 ) 

In region 2, the solut ions to the z 
equation a re considered simul t aneously. 
fies ( to the order of t his analysis ), i n 
streamli ne , to 

moment um equation and the energy 
The z momentum equat ion simpli ­
the region of the sta gnation 

o ( 52 ) 
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Similarly, the energy eQuation near the stagnation streamline in region 2 
may be written (note that dW/ dY is zero by symmetry) 

o 

In order to facilitate the solution of eQuation (52), it is helpful 
to observe that the yawed boundary layer, identified with the w compo­
nent of velocity , resembles the boundary layer on a flat plate . It might 
be anticipated then that, just as in the case of the flat plate, the 
variation of w with x is relatively insensitive to variations of ~ 

with x . In this event eQuation (52) has the approximate form 

o ( 54) 

The solution is t aken in polar coordinates in order to conveniently fit 
the boundary condition that w is identically zero a t the body surface . 
Then following the same arguments used in deriving eQuations (29) and (30), 
one obtains on the stagnation streamline 

w C -n 
nr 

where a gain E = (f /Rb) - 1 < < 1-
are neglected, the z component 
becomes , in terms of x/xb' 

whence 

dW 
dX 

( 55) 

I f second order and higher terms in E 
of velocity on the stagnation streamline 
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If this re sult is substituted for the last t erm in equation (53), 
the ener gy equation be comes 

A solution for equation (58) which sati sfi e s symmetry conditions on the 
stagnation streamline and also the boundary conditions that ~ and ~ are 
const ant along the surf ace of the body is 

00 

ln r + \' 
Rb L 

n=l 

enrn [1 -(~b)2n ] cos ne _ ~ (:~)2 (r2 _ Rb 2) 

( 59) 

where ~ is a mean value of ~ in the sta gnat ion r egion . I f equa ­
t ion (59) is expanded in terms of E, ~ take s the foll owing form on the 
st a gnation s t r eamline 

(60) 

The constant J is evaluated by letting Tl be Tlo when E is E O = xb/Rb 
and is given by the relat ion 

(61) 

The r ate of heat transfer per unit area to the sta gnation region of the 
body a t angl e of yaw A is , from equation (60), 

q( A) (62) 

Sub st ituting equations (26) and (61) into this expression and neglect ing 

t e rms of t h e order EO compared t~l~o(~~ obtain~ ~ 

<l.(A} = Xb~A} ~ k dT + "~o) 
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Mul tiplying by and substituting from equation (51) yields 

(64) 

For a constant hea t capa city it follows from equations (23), (43), 
and (47) that 

To (A) 
COS 2 A 

To 

( 65) 

wo2 

2Cpsin2 A 
To 

-

I f , in addition, the thermal conductivity is proportional to the nth 
power of temperature , then 

( 66 ) 

and 

IJ. = ---------
IJ. O(A) 
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Thus e quation (64) becomes 

2q(A)Rb 

(68) 

The r a tio of equation (68) to e quation (39) is the r atio of the r a te 
of heat transfer to the stagnation region of a yawed body to the r a te of 
hea t transfer to the sta gnation r egion of the same body a t zero yaw. This 
r a tio is 

An analogous expression can be obtained for the ratio of Nussel t 
numbers, thus, 

NU(A ) == q (A) (To)n To - Tb 
Nu(O) q(O) Tr Tr - Tb (70) 

where from equation ( 63 ) the recovery tempera ture , Tr , is the solut ion to 

I
To(A) - 2 

flwo k dT == - --
T 2 

r 

(71) 

However, it should be noted that the a ssumptions used in the analysis 
tend to be viola ted when the body temperature approa ches recovery condi ­
tions . Therefore it should not be expected that equation (71) will yield 
accura te values for r ecovery temperature . 
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There remains , of course , the problem of determining ~ . For the 
purposes of this report ~ wil l be taken as the arithmetic average 
between ~O (A ) and ~b ' that is , ~ = [ ~O ( A ) + ~b ]/2 . 4 In this event 
eQuation (69) can be written 

Q(A) 

Q(O) 
= 

(72) 

which i n the ca se of a rel at i vel y cool surface ( i . e . , Tb /TocoS2A < < 1) 
becomes 

Q(A) 

Q( O) 
n+l/ 2 ( 2 n + 1 2 ) = cos A cos A + --2-- Pr sin A 

Heat Transfer to an Axially Symmetric Stagnation Region 

(73) 

The methods used to cal culate the rate of heat transfer to a cylin­
drical stagnation region can also be applied to the stagnation region of 
a spherical body . This analysis is parall el to that for the cylinder at 
zero yaw and thus the x axis i s t a ken as the stagnation streamline and 
the origi n of the coordinate system is pl aced at the interface between 
the assumed incompressible nonviscous region 1 and the viscous, low­
velocity , compressibl e region 2 . For the purpose of obtaining the solu­
tions for velocity in regions 1 and 2 on the stagnation streamline , it 

4Act ually this procedure might better be cons i der ed the first step in 
an itera t i on method where ~ is recalcula ted on the ba sis of t he preced­
i ng calculation of T a s a f unction of x · This refinement is not con­
s i dered war ranted here where only the gr os s effects of yaw for angl es of 
yaw well l ess than 900 are of principal interest . As t he angl e of yaw 
approache s 900

, the analysis a s a whol e tends t o br ea k down due to the 
vi olation of the sever a l as sumptions predi ca ted on the f l ow be ing hyper ­
sonic normal to t he a xi s of the cylinder . 
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is most convenient to consider the momentum and continuity equations in 
cylindrical coordinates ( sketch (d)) . Because of axial symmetry) all 

Region I 

Stagnation 
streamline 

Detached 
shock wave 

o 

Region 2 

u,x 

Interface 
between 
regions I and 2 

Region I - Incompres-sible} nonviscous flow 

Region 2- Low-velocity, compressible, viscous flow 

Sketch (d) 

properties are independent of t he angul ar coordinate and ) accordingly) 
the r direction momentum equation becomes 

( 
dV dV ) p u - + v -
dX dr ~~ -~ :r [~(~~ + ~; + ~ J + 2 ~r G ~;) + 

( 74) 

While the continuity equation is 

d 1 d 
~ (pu) + - 'S:""- (prv) ox r or 

o ( 75) 

In region 1 where t he viscous t erms are considered identicall y zero) 
the r momentum equati on (e q. ( 74)) r educe s to 
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Differentiating e~uation (76) with respect to r and dropping t erms with 
factors v and dV/ dX, which vanish on the stagnation streamline, gives 

dV + u d v 1 d p 
( )

2 2 2 

dr dXdr = - p dr2 

Now the continuity e~uation ( e~ . (75)) expands to 

( 78) 

however, on the axis of symmetry, neglecting terms higher than second 
order in r, 

dV v 
- = -
dr r 

Thus, for incompressible flow, the continuity e~uation on the stagnation 
streamline reduces to 

dU dV 
- +2 -= 0 
dX dr 

Substituting e~uation ( 80) into e~uation (77) yields 

~ (dU)2 _ 
4 dx 

2 
1 d p 
--~ 

P dr 

which, upon differentiating with respect to x, and assuming 
ld~ - --- = constant, becomes 
P dr2 

( 80) 

(81 ) 

(82 ) 

For nonzero val ues of the vel ocity u, this differential e~uation has as 
a sol ution 

( 83) 
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The value of velocity at the interface, uo ' is again considered very 
small. Thus, from equation (81), the first derivative of velocity at the 
interface is, approximately, 

(84) 

As can be seen from the solution for velocity, equation (83), the second 
derivative of velocity is constant . Therefore the second derivative of 
velocity may be evaluated from equation (81) using conditions just behind 
the shock wave, thus, 

( 85) 

Substituting for the values of velocity, velocity derivative, and 
s econd pressure derivative behind the shock wave ( see Appendix B) yields 

U It := 
8(3 - 2/,s) Uoo (86 ) 0 

/' 2 1 R 2 
S - s 

and 

u I 
4 J 2 (/'s - 1) Uoo (87) -0 

/' s + 1 Rs 

Now in region 2, the viscous terms are retained i n equation (74). 
Following t he procedure used in studying two-dimensional flow (see Appen­
dix A), the r momentum equation, differentiated with respect to r, is 
simplified to 

( 2) o iJ. 0 u 

Ox 2 ox2 
(88 ) 

which integr a tes to 
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and, as in the case of the two - dimensional flow, 

~ ou 
-- = -
2 ox 

~2 2 
(J P x 
---- +Ax+B 
or2 2 
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The constants A and B are again determined by matching the first and 
second derivatives of velocity at the interface. Thus 

" A ~ouo 

2 

~ouo' 
(91) 

B 
2 

At the body ou/ ox vanishes, and solving for the coordinate xb from 
equation (90) results in 

0- ) ~ouo" 402p uo' 
xb = + 

2 (02p) 1 + --
or2 11 

~ouo 
or2 

(92) 

In Appendix B it is shown that 

02p 8 P U 2 
00 00 -- = - 2 or2 rs + 1 Rs 

Thus from equations (86), (87), and (93), it can be shown that 

(r - 1)2 J2(r - 1) ~oo Rs 

(3 - 2y)2 ~o Rb 

which is large compared to unity for any reasonably large value of 
Reynolds ~umber (of the order of hundreds or greater). Therefore, if 

j 
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~uantities of the order of unity are neglected in e~uation (92), the 
stagnation point coordinate reduces to 

2iJ.o 

which is identical in form to the relation for body surface coordinate 
in the two-dimensional flow (e~. (19)). 

29 

Next, in region 1 the viscous dissipation and heat - conduction terms 
are again neglected in the energy e~uation, and terms that vanish by 
reasons of symmetry along the stagnation streamline are dropped. Thus 
the energy e~uation for region 1 takes the same form as e~uation (23) for 
the two-dimensional problem and, since the interface velocity is small, 
the interface temperature To is again approximately the stagnation tem­
perature Tt. 

In region 2, the heat-conduction terms in the energy e~uation pre ­
dominate, and the e~uation reduces to the three - dimensional Laplace 
e~uation in the variable ~ 

o 

In order to fit the boundary conditions on a spherical surface, the 
solution is given in terms of spherical coordinates (r, e, and ~) . The 
general solution which preserves symmetry about the x axis ( i . e ., which 
is independent of ~) is 

~ == A + ~ + ~ (Cnrn + r~~l) Pn(cos e) 

n==l 

where Pn( cos e) is the nth order Legendre polynomial in cos e. I f it 
is re~uired that ~ be a constant, ~b' on the surface of the body, e~ua­
tion (97 ) can be reduced, on the stagnation streamline, to 

( R ) ~ Cnr_n [1 -(R
r
b)2n+ l ] ~b - :b 1 - rb + L 

n::::l 
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t hen expanding in t erms of € 
f - l < < l, r e sults in 

Rb 

00 

where L is L Cn (2n + l) Rb
n. Negl ecting the quadratic term in 

n=l 
€, evaluating ~ at t he i nter f a ce, and t r a nsforming t o t he variabl e x, 
one obtains for equation ( 99 ) on the stagna tion streamline 

(lOO ) 

Then the rate of heat t ransfer t o the stagnation point i s 

( lOl) 

whi ch is ident i cal i n form wit h the zero- yaw solution for the two­
dimensional-f l ow problem (eq. (3l)). Note that in Appendix B the second 
derivative of pressure gi ven by equation (Bl 8 ) is l arger by a factor 
of 4/ 3 than i t is for the corresponding two- dimensional-f l ow case with 
the same shock -wave curva ture ( eq. (Bl7)). Thus Xb given by equa­
t i on (95) i s changed by the factor (3/ 4)l/4 and the r a te of heat trans ­
fer t o an axially symmetr ic region becomes 

k dT (l02) 

while the corresponding expression for Nusselt number i s 

Nu ( 
8 )l/ 4 (~ ~)l/2 

1s - l ~o Rs k (T T) o 0 - b 

Re l/2 
00 (103 ) 
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Examination of Analys is and Assump~iens-

A number of assumptions have been made in the theoretical anal ysis, 
and it is desirable now to show that the sol utions obtained are both 
realistic and consistent with these assumptions . In particular, it will 
be shown that the presumption of a constant second derivative of pressure 
normal to the stagnation streamline yields solutions for the distance 
between shock wave and body which are reasonably close to observed values. 
Secondly, it will be demonstrated that the u velocity throughout 
region 2 is indeed small , as assumed i n the analysis , i f the Reynolds num­
ber is large enough for continuum flow conditions. In addition, it will 
be shown that for region 2 the viscous - dissipation t erms due to the 
u and v component velocity derivatives are small compared to the heat ­
conduction terms in the energy equation, again provided the Reynolds num­
ber is not too small . These findings, then, help to justify the manner 
in which the momentum and energy equations were treated in the analysis . 

Now it is obvious that the assumption of an abrupt transition from 
nonviscous, convective flow to viscous, conductive flow is a substantial 
idealization of the actual flow. 5 It is possible, however, to make a 
gross check on the self - consistency of this model by comparing the amount 
of heat convected across the interface with the amount conducted to the 
body surface . When this is done it is found that from a heat -flow point 
of view, the model is self - consistent ( i . e . , heat convected provides for 
heat conducted). 

As a final point, a comparison will be made bet ween the analysis of 
this paper and the heat - transfer solutions for l ow-velocity f low given by 
Howarth (ref . 7) and Cohen and Reshotko (ref . 8). 

Distance between shock wave and body .- Consider first axially 
symmetric f l ow . The velocity in region 1 was found to be (eq . (83 )) 

U f! 

r 0 2 uo + u o x +"2 x (104 ) u 

5Strictly speaking , this idealized model should be considered simply 
a first approximation to the correct situation . A second approximation 
would be to divide the domain between the body and shock wave into three 
regions rather than two as was done here. 
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Then , the shock-wave coor dinat e must be 

I t ca n be shown f r om the relations in Appendix B a nd equations (84 ) 
and (85) t hat 

us ' 

u ' o 

u " o 

('s + l) Rs 

Substituting the se r el a t ions i nto equat ion (105) yields 

(105) 

(106 ) 

(107 ) 

Note that for ' s = 1. 5, lio" 
linear . For this ca se xs /Rs 

vanishes and the vel ocity profil e becomes 
reduces to ( 's - 1)/4 . 

The actual distance between the body and the shock wave is, of course, 
the sum of Xs and Xb . However, it can be shown f r om equations ( 95) and 
(107 ) that Xb is small compared to Xs for reasonably large Reynolds 
numbers, and xb will therefore be neglected . The ratio xs/Rs calcu­
lated from equation (107) for 's equal 1 .4 is 0 .105 . Measurements of 
xs/Rb taken from spark photographs of high- velocity spheres presented 
by Charters and Thomas (ref . 9) and Dugundji (ref . 10) approach this 
value closely at high Mach numbers ( i . e ., xs/Rb about 0 .11 at Mach num­
ber 4). Heybey (ref . 11 ) has developed a theory which fits the data of 
references 9 and 10 closel y and, for the limit of infinite Mach number, 
predicts xs/Rb about 0 .12 . Thus it is seen that at high Mach numbers, 

the assumption that the second derivative of pressure is constant and 
that the ratio Rb / Rs is near unity yiel ds results which are consistent 
with experimental ly observed distances between the shock wave and a 
spherical body , as well as wi th the theory of Heybey . 
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It is of interest to calculate the shock-wave coordinate for two­
dimensional flow as well . Recall that the solution for velocity in 
region 1 for this case is 

u == 

and thus 

dU 
- = ox 

U O ' 

C 

U I o 

sinh Cx (108) 

cosh ex 

The velocity derivatives at the shock wave and at the interface, given 
in Appendix B, are, respectively, 

u ' s 

U I o 

Then the product CXs is given by 

arc cosh 2 

J6(, - 1) s 

With CXs known and the velocit y a t the shock wave 

Is - 1 
Us 

The shock-wave coordinate becomes 

~ CXs 

J ~ sinh CXs 

(llO) 

(ill) 

(112) 

(113) 
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For a Is of 1.4 , CXs t akes the value 0 . 75 and since the sinh func ­
tion is very nearly linear over this range, rather cl ose bounds on the 
shock-wave coordinate are imposed by 

(114) 

or 

Is - l< l xs l < ~ 
2 Rs J ~ (11 5) 

The exact theoretical solution for xs / Rs at Is = 1 . 4 is 0 . 236 . 
According to the theory then, a shock wave with given radius of curvature 
should be detached from a cylindrical body about twice as far as from a 
sphere , assuming Rs/Rb ~ 1 . 

Magnitude of velocity in region 2 .- The y momentum e~uation in 
region 2 was reduced to 

ou 
\-l ox 

The left side of this e~uation may be approximated by 

presumption that velocity in region 2 is small. Then 
be integrated to 

\-lU = 

(116 ) 

..£.. ( \-lu) with the ox 
e~uation (116) may 

(117) 

Solving for uo ' noting that velocity vanishes at 
from e~uations (14) and (19), one obtains 

xb' and substituting 

(118) 
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It follows that the ratio of interface vel ocity to the vel ocity at the 
shock wave is given by 

8 I 
~o Uo ---- = (119) 

which on substituting the relations given in Appendix B for uo ' and Us 
becomes 

(120) 

It can be seen that for large Reynolds numbers, of the order of 
hundreds or greater, the vel ocity at the i nterface is small compared to 
the velocity at the shock wave. Si nce the velocity in region 2 is every­
where less than at the interface (see eq . (117)), the sol utions obtained 
for velocity are consistent with the assumption that velocity i s small 
throughout region 2 . 

Viscous dissipation in region 2 . - Although the derivative of velocity 
vanishes at the body surface, it increases parabolically ( see eq . (116)) 
to uo ' at the interface. Since viscous dissipation terms due to this 
velocity shear were neglected in solving t he energy equation, it will be 
shown that the maximum value of these terms, which occurs at the interface, 
is small compared to the heat - conduction terms like d2~/dX2 (note that by 
continuity dV/ dY contributes a dissipation term of the same magnitude as 
dU/ dX ). From equation (30) it can be seen that the term d2~/dX2 is 
nearly constant everywhere along the stagnation streamline in region 2 . 
Then the ratio of differential terms in the energy equation is, by 
equations (30) and (118), 

4~o(uo 1)2 

( d2~/dx2\ 
(121) 

I f equation (121) is evaluated for constant heat capacity a nd thermal 
conductivity proportional to the nth power of temperature , there is 
obtained 

18(n + 1) (b~)2 Pr (~~) 

J 
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Substituting for velocity ratio uo/Uoo from e~uations (120 ) and (B4) 
and for the ratio Rb/Xb from e~uation (21), there results 

41-l0 (UO,)2 

(o211/ox2h 
6( ) (l 1)2 ( 6 )3/4 (I-lO':\ 1/2 (Rb)3/ 2 Re - 1/2 

1 n + 1 Pr 1 + 1 1 - 1 \f~) \Rs 00 (123) 

Once again the s~uare root of Reynolds number is the predominant term for 
conditions of continuum flow and thus the viscous dissipation terms in 
the energy e~uation are small compared to the conduction terms in region 2. 

Heat convection across the interface, x = 0 .- Next consider the ratio 

of the heat convected across the interface, puo ~To CpdT, to the heat 
o 

transfer at the stagnation point 
given by e~uation (118) and - l1b' 

of the body, - l1b ' . The value of Uo 
from e~uation (32) yields 

To 
J CpdT 
o 

(124) 

Aga i n evaluating for constant heat capacity and the nth power tempera ­
ture function for thermal conductivity, and noting from e~uations (14) 
and (19) that Uo 'Xb2 reduces to - (2I-lo/p), one obtains 

(125) 

This ratio is the order of unity, and thus the right magnitude of heat 
is convected across the interface to balance the heat conducted to the 
body. The above result also provides a check on the value of xb which 
was obtained by matching uo ' as a boundary condition of the y momen­
tum e~ua tion . 
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Low- velocity heat transfer . - For hypersonic velocities it was found 
that taking shock-wave curvature equal to body curvature on the stagnation 
streamline gave approximately the correct answer for the distance between 
the body and the shock wave, so presumabl y the ratio Rb/Rs shoul d be 

taken near unity when calculating the heat transfer as well . Undoubtedly 
this ratio will be somewhat less than unity for low Mach number supersonic 
flow, and it is of interest to see what the solutions devel oped in this 
paper will predict for this case (even though the assumptions made in the 
analysis are not expected to hold as well for the low- velocity flow con­
ditions ). For this purpose it is convenient to express the body coordinate 
xb in terms of (dV/ dY )o which by continuity equals - U O

f From equa­
tions (9), (14), and (19) 

2flo 
(126 ) 

p (dV/ dY) o 

then sol ving for Nusselt number f r om equations (32 ) and (34) for the case 
of the cool wall (Tb /To < < 1, and n = 1/2) one obt ains 

Nu (127) 

The method of boundary-layer solution for low- veloci ty f low about a cylin­
der given in reference 7, yields for the derivative of velocity component 
normal to the stagnation streamline at the edge of the boundary layer , in 
the notation of this paper, 

Substituting in equation (127 ) results in 

1/2 
Nu = 0 · 92 Res 

(128 ) 

where the small differences between fls and flo are neglected. The con­
stant 0.92 compares f a vorably with t he value 0 . 95 given by Howarth for 
Pr = 0 . 72 . This agreement is especially remarkable in the light of the 
fact that the analysis of reference 7 is for constant thermal properties, 
while variation in t hermal properties is an essential feature of this 
analys is. 
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Cohen and Reshotko (ref . 8) find that the sol ution for a compressible 
boundary layer gives the following relation at the stagnation point of an 
axially symmetric body 

N~y = 0 . 440 J P7 

for the case of a cool wall and a Prandtl number 0 .7 . I f t he radial com­
ponent of velocity v is taken proportional to y, the ordinate can be 
eliminated and e~uation (129 ) r educes to 

Nu 44 
J p(ov/oy) 0 o. 0 Dt 

IJ. 
(130) 

The f actor 0 . 440 given by Cohen and Reshotko compares f a vorably with the 
factor 0 . 47 given in e~uation (127) . 

HEAT- TRANSFER RESULTS FOR BLUNT SHAPES IN HYPERSONIC FLIGHT 

Temperatures in the disturbed flow about vehicles in hypersonic 
flight may be sufficiently large to dissociate air molecules into atoms 
or even to ionize the atoms . At present the chemical reaction rates for 
these processes are not known with certainty . Available experimental 
evidence (ref . 12) indicates that air will be in e~uilibrium throughout 
the sta gnat i on region flow for vehicles in flight a t vel ocities up to 
26 , 000 feet per second, and at altitudes up to about 200,000 feet . At 
much greater altitudes , the atmosphere is so rarefied that the chemical 
reactions will probably be frozen and the air will behave essentially as 
a gas with constant specific heat . These two limiting cases, at least, 
can be treated within the framework of the present analytical results . 
For this purpose it will be convenient to consider the heat - transfer rate 
expr essed in the form of a parameter which is relativel y independent of 
scale size or density . From eQuation (102 ), such a parameter is given 
by 

_ CPs )ll 4(lJ.oo)l/2 LTo 
- - - 1 - k dT 

Poo 1J.0 0 
(131) 

where it has been assumed that the surface temperature is negligible 
compared to To and that the shock-wave curvature eQuals the body 
curvature in the stagnation region . EQuation (131) applies in the 
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spherical casej the rate of heat transfer to a cylindrical stagnation 
region may be smaller by the factor ( 3/4)l/ 4 according to equation (33) . 
Note that the integral may be evaluated with the thermal conductivity 
coefficients taken at constant pressure, since the pressure is relatively 
invariant along a stagnation streamline . The integrals have been calcu­
lated graphically using the data given in reference 13 and the results 
are shown in figure 1 . 

For the case where chemical reactions are frozen, all translational, 
rotational, and vibrational modes of energy are considered fully excited, 
Cp/R is taken a constant at 9/2, and the coefficients of viscosity and 
thermal conductivity are taken proportional to the half power of tempera­
ture . The heat - transfer parameter given by equation (l3l ) for these con­
ditions is shown in figure 2 for flight velocities from 5 , 000 to 30,000 
feet per second . 

For the case of chemical equilibrium , Feldman (ref . 14) has calculated 
the densities and stagnation temperatures which occur behind shock waves, 
and reference 13 gives values for the coefficients of viscosity and thermal 
conductivity . The chemical reactions, which keep the flow in equilibrium, 
cause the thermal conductivity to be much larger than in the frozen flow, 
but this effect is compensated for by the large decrease in stagnation 
temperature due to the strong heat sinks created by the reactions . Inci ­
dentally Kuo (ref . 15) finds similar compensation for the case of heat 
transmitted through the boundary layer along a f l at plate . Because of 
the compensating effects, it is not immediately apparent whether the 
integral in equation (131 ) will be increased or decreased by the dissocia­
tion and ionization reactions . In all the cases calculated it is found 
that the integral is slightly greater under equilibrium conditions . In 
addition, both of the other factors in equation (131) are increased slightly 
by the chemical reactions leading to equilibrium . The density ratio across 
a normal shock may increase more than a factor of 2 (see ref . 14) , but the 
heat - transfer rate varies only as the fourth root of this ratio and is not 
strongly influenced . Reference 13 finds that the coefficient of viscosity 
is increased somewhat at equilibrium , but this also is compensated by the 
decrease in stagnation temperature . The resulting ratio ~/~o is 
increased slightly , but again the effect on heat transfer is weakened by 
the square - root dependence on this factor . The total result of increases 
in all factors is that the parameter qRbReoo- l / 2 is the order of 30 per ­
cent greater for stagnation region flow in equilibrium than for such flow 
in which the chemical reactions are frozen . The difference is indicated 
by the two curves in figure 2 . 

The heat transfer calculated for the equilibrium flow is in satis ­
factory agreement with the experimental results reported by Rose and 
Riddell (ref. 16) as indicated in figure 2 . It may be noted that there 
is a few percent change in the heat- transfer parameter due to different 
ambient temperature and pressure conditions which occur at different 
altitudes, but in view of the order of the approximations inherent in the 
theory and of the ±20-percent variation in experimental results, the 
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change is not significant enough to be shown in figure 2 . The theoretical 
results for. e~uilibrium flow also agree with numerical integrations of 
more complete boundary- layer e~uations, including chemical reaction terms, 
which have been made by Fay and Riddell (ref. 17) . Thus it is concluded 
that the approximate theory presented in this report retains the essential 
relationships which influence stagnation-region heat transfer. 

In view of the foregoing results, it seems reasonable that the present 
theory would also yield approximately correct values for the effects of 
yaw. Figure 3 shows the product of the secant of the yaw angle and the 
ratio of the stagnation- region heat flux at yaw to the flux at zero yaw, 
for the case where the wall temperature is negligible compared to the 
stagnation temperature. This ~uantity, ~(A)/~(O)cos A, e~uals the ratio 
of the heat flux per unit of span normal to the stream velocity, to the 
same heat flux at zer o yaw. The ratio of the heat flux per unit area is 
just ~(A)/~( O ), of course . The frozen f l ow case was calculated from 
e~uation (73) where the Prandtl number was taken e~ual to 0.75 , and this 
result is independent of velocity. The e~uilibrium flow heat transfer 
was calculated for fl ight at 26 ,000 feet per second at 100 ,000 and 150 ,000 
feet altitude from the relation 

ps~O ) 
- 1 

(132) 

which is derived from e~uations (33) and (64). At small angles of yaw, 
the effect of yaw is to reduce heat flux slightly more in the chemically 
frozen flow than in the two e~uilibrium flow cases shown . This is due 
primarily t o particular variations in the integral of thermal conductivity 
with stagnation temperature in the e~uilibrium flow (fig. 1) and is not 
necessarily typical. At larger angles of yaw, the reduction in heat 
transfer is about the same in either case . As shown in figure 3, the 
stagnation- region heat flux per unit span is reduced approximately by the 
factor ( cos A)1/2 at large angles of yaw up to 700

• The corresponding 
heat flux per unit area is reduced by about the factor (cos A)3/2 . 

The effect of wall temperature on the reduction in heat flux caused 
by yaw is shown in figure 4. The heat-transfer rates are graphed for 
wall temperature to stagnation temperature ratios of 0.2, 0.1, 0. 05 , 0.02, 
0 .01 , and 0 for flow in which the Prandtl number is e~ual to 0.75 and the 
dissociation reactions are frozen in a state of no dissociation (note 
that vibrational energy may be excited, however, without appreciable 
influence on the ratiO, ~(A)/~(O)). At high yaw angles, the viscous 
crossflow is the predominant factor contributing to the stagnation- region 
heat transfer . The principal effect of high wall temperature is to main­
tain sizable air temperature, and therefore sizable viscosity and viscous 
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dissipation ( see eq . (58 )) throughout the crossflow boundary layer . 
As a consequence, the stagnation- region heat flux per unit span does not 
decrease monotonically with increasing yaw angle , but goes through minima 
as shown in figure 4. As the wall temperature is reduced, the viscosity 
near ~he body gradually becomes negligible compared to the viscosity near 
the edge of the boundary layer (i . e . , at the interface x = 0 ) . The 
results are not strongly influenced until the wall temperature is depressed 
to the order of 0 . 1 the stagnation temperature . Then as wall temperature 
is further decreased, the heat flux rapidly approaches the limiting value 
given by equation (73) . Because of strong compensating effects, similar 
to those which occur in the cold-wall case at zer o yaw, it is likely that 
the effect of wall temperature on heat transfer t o yawed shapes in eqUi ­
librium flow will be quite similar to that shown in figure 4. 

CONCLUDING REMARKS 

The theory for heat flux to the stagnation region of blunt axially 
symmetric shapes in hypersonic flight , which is developed in this report, 
is found to agree favorably with other theoretical results and with avail ­
able experimental evidence . I t is concluded that this theory, though 
approximate, preserves the essential functional relationships which influ­
ence stagnation- region heat transfer . A similar analysis is made for the 
heat flux to a cylindrical stagnation region at angle of yaw . It is 
deduced that wing sweepback should reduce the heat flux per unit area at 
the leading edge approximately by the factor (cos A)3/ 2, if the wall tem­
pera ture is held relatively cool . This will reduce the cooling required 
to alleviate hot spots and the thermal - stress concentrations induced by 
heating in the stagnation region at very high- speed flight . The total 
stagnation-region cooling required for a given wing span will also be 
reduced in this case, since the heat flux per unit span decreases approxi ­
mat ely as (cos A)1/2. 

Ames Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Moffett Field, Calif . , May 2 , 1955 
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APPENDIX A 

SIMPLI FI CATI ON OF THE Y MOMENTUM EQUATION IN REGION 2 

The steady- state, two- dimensional y momentum eQuation (see eQ. (2)), 
differentiated with respect to y, yields 

d
2

V d p dv dV em d
2

V dp dv Cd )2 pu -- + u - - + p - - + pv __ + v - - + p "'yV 
dXdy dy dX dX dy dy2 dy dy 0 

= - ~) - } :; [" ~~ + ~~) ] + 2 a~ G ~;) + a;:x [0(; + ~J ] (Al) 

Now on the stagnation streamline t he velocity v is identica lly zero 
and therefore all x derivatives of v are zero. Also, all odd order 
y derivatives of functions l ike density p, viscosity ~,pressure p, 
and velocity u vanish since, by symmetry, these functions are even . 
In addition, it is assumed that nea r the stagnation streamline the veloc ­
ity u is so small throughout region 2 that terms with t his fac t or may 
be neglected . With this assumption an additional useful relation can be 
deduced from the continuity eQuation 

(A2) 

Eliminating the terms with factors u, v , or dp/dy from eQuation (A2) 
there results, as for incompressible flow, 

dU dv 
- + - = 0 (A 3) 
dx dy 

Note that all derivatives of the sum dU/ dX + dV/ dy are also zero in the 
regions where eQuation (A3) will hold. 

Applying the above considerations simplifies eQuat ion (Al) to 

(A4) 
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Now it will be assumed, as is usual , that the viscous flow in the region 
of the stagnation point of a blunt body is similar to viscous flow at 
the stagnation point of a body with infinite radius of curvature insofar 
as the velocity derivatives are concerned ( i.e., the principle effect of 
the body curvature is to determine the magnitude of the pressure deriva­
tives). Accordingly, d3V/dy2 and d~/d~ will be supposed to vanish 
in the stagnation region . Then expansion of the second member of the 
right side of e~uation (A4) yields 

in which the only term retained is 2(d2~/dy2) ( dV/dY) . Simil ar expansion 
of the last member of e~uation (A4) gives 

Note that from e~uation (A3) , d3u/d~dX is e~uivalent to - (d3 V/dy3) and 
will therefor e be negl ected . The terms retained in this e~uation, then, 
are (d~/dX)(d2V/dxdy) + ~(d3V/dydX2) . These terms can be combined into 

- ~ (~ d~). E~uation (A4) thus is reduced to 
dX \: dX 

(AS) 

The derivative dV/dy vanishes at the surface of the body, so that in 
the immediate region of the stagnation point, e~uation (AS) takes on the 
approximate from 

This expression will be taken to hold near the stagnation streamline 
throughout region 2. 

(A6) 

l 

I 
~ 
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APPENDIX B 

BOUNDARY VELOCITIES AND PRESSURE DERIVATIVES 

For hypersonic Mach numbers, the density ratio across an oblique 
shock wave is 

(Bl) 

then the pressure just downstream of the shock is 

Ps = ( B2) 

where cr is the acute angle between the shock wave and the normal to the 
free - stream velocity vector ( see ref . 18) . It can also be shown that the 
v component of velocity just downstream of the shock is 

2 
1 

Ux,s in cr cos cr 
ls + 

(B3) 

while the u component on the stagnation streamline is 

(B4) 

In evaluating the derivatives, consider a shock wave with radius of 
curvature Rs ' Let s be the distance along this profile measured from 
the stagnation streamline and x (s) and y(s) be the equations for the 
shock-wave coordinates . Then 

while 

dv 

ds 

ov dx ov dy 
--+ ox ds oy ds 

2 " 2 op d x op d y 
+---+---ox ds2 oy ds2 

(B5) 

(B6) 
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In terms of the radius of curvature Rs , t he differ ential eQuations for 
x ( s} and y ( s) are 

ds 
dy = Rssin Rs 

(B7) 

and at the stagnation streamline (ds o) the following conditions hol d 

dy 
1 -= 

ds 

dx 
0 

ds 

d2 y 
-= 0 
ds2 

d2 x 1 -=-
ds2 Rs 

Then, at the stagnation streamline, eQuations (B5) and (B6 ) become 

(~i) 
s 

and 

dv 
= ds 

Now by continuity and eQuations (B3) and (B9) 

(dU) (dV) 2Uoo 

dX s = - dy s = - ( 's + l)R
s 

(B8) 

(B10) 

(Bll) 
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for two- dimensional flow . For axial ly symmetric flow the corresponding 
relation is 

4u 
00 (B12) 

According to equation (B2) the first right - hand term of equation (B10) is 

d~ 
-- = - (B13) 

while the next term, - ~ COp) , is evaluated using the x momentum 
Rs dX s 

equation (eq. (1)) which for the nonviscous incompressible flow region on 
the stagnation streamline reduces to 

According to equations 

and 

dP - = -
dX 

dU 
pu -

dX 

(Bll ) and (B12) , equation 

Op= 2 ()'s - 1 ) 2 
Ps Uoo 

dX ()'s + 1) 2 Rs 

Op 4 ()'s ... 1 ) 2 
PsUoo - = 

dX ()'s + 1)2 Rs 

(B14) 

(B14) becomes 

(B15) 

(B16) 

for the two- dimensional and the axially symmetric flow cases, respectively. 
Then the corresponding second partial derivatives of pressure are 

(B17) 
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and 

8(-ys - 1)ps Uoo
2 

(IS + 1)~s2 

47 

(B18 ) 

Note that IS can have values somewhat different than 1 . 4 if vibra ­
tional and dissociational energies are excited at the shock wave . The 
results of this appendix are consistent if IS is defined by equation (Bl ) 
from the ratio of densities across the shock wave. When additional energy 
modes are excited at the shock wave, this effective value of IS is not 
exactly the rat io of specific heats . 

It can be seen that for the case of a yawed two -dimensional body, t he 
same relations hold as for the body at zero yaw except that t he vel ocity 
Uoo is r eplaced by the normal component of velocity, Uoocos A. Thus the 
yawed two- dimens i onal body has a second derivative of pressure 

o~ 6(/S - 1)psUoo
2

cos
2 A 

oy2 = - ( I s + 1) 2I\, 2 (B19 ) 

In the above rel ations the radius of curvature of t he shock wave Rs 
is yet undetermined. In the l imit of infinite free - stream Mach number, 
the ratio of shock wave to body curvature, Rs/Rb, might be expected t o 
approach unity as an upper bound . On the other hand, a value of Rs/Rb 
consistent with incompress i ble boundary-layer solutions may be a reason­
able lower bound . In this r egard Howarth (ref . 7) reports that for two­
dimensional flow 

ov 
oy 

(B20) 

which, according to equations (B4) and (Bll), corresponds to a ratio 

Rs 1 
- = --=--
Rb Is - 1 

Sibulkin (ref. 1 9 ), using a similar analysis finds that 

ov 
oy 

3Us 
= --

2Rb 

(B21) 

(B22) 
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for axially symmetric flow . This corresponds to the ratio 

(B23) 

I 

~ 
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Figure 1 .- Integral of thermal conductivity as a function of temperature . 
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Figure 2 .- Heat - transfer rate to the stagnation region of a blunt] axially 
symmetric shape in hypersonic flight . 
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---- Chemical reactions frozen, eq . (73) 
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Figure 3.- Effect of yaw on heat - transfer rates to the stagnation region 
of a blunt cylindrical shape with a cool wall . 



54 NACA TN 4229 

1.3 Ratio of wall temperature to 
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Figure 4.- Influence of wall temperature on the reduction in stagnation 
region heat flux due to yaw; chemical reactions frozen . 
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