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SUMMARY

An approximate theory is developed for predicting the rate of heat
transfer to the stagnation region of blunt bodies in hypersonic flight.
Attention is focused on the case where wall temperature is small compared
to stagnation temperature. The theoretical heat-transfer rate at the
stagnation point of a hemispherical body is found to agree with available
experimental data. The effect of yaw on heat transfer to a cylindrical
stagnation region is treated at some length, and it is predicted that
large yaw should cause sizable reductions in heat-transfer rate.

INTRODUCTION

It has been suggested (see refs. 1 and 2) that blunting or rounding
the leading edges of wings and bodies might substantially alleviate aero-
dynamic heating of these regions in hypersonic flight. There is, of
course, the added advantage that round leading edges are structurally
more practical than sharp leading edges, especially when the problem of
absorbing heat is considered. Another consequence of blunting may be
increased pressure drag. In the case of ballistic vehicles, this conse-
quence is often an advantage (see ref. 1). In the case of glide vehicles,
however, or more generally any vehicles required to operate for sustained
periods in more or less level hypersonic flight, increased drag may be
viewed as a disadvantage.

Now, to be sure, rounding or blunting the nose of a body does not
always increase drag. Indeed, small amounts of blunting may reduce the
drag of a body (see, e.g., refs. 3 and 4). The same, however, cannot be
said for blunting the leading edge of a wing. Even small blunting causes
a sizable increase in drag. It is natural, then, to look for methods of
minimizing this drag penalty, and the possibility of yawing or sweeping
the leading edge comes to mind. Impact pressures should be, according to
simple-sweep theory, decreased in proportion to the cosine squared of the
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angle of sweep; hence, as is intuitively obvious, large sweep should
substantially reduce the drag penalty due to blunting. In view of this
possibility it is important to inquire of the effect of yaw or sweep on
heat transfer to a blunt leading edge.

The purpose of this paper is to investigate theoretically the heat
transfer to the stagnation regions of bodies in hypersonic flight, includ-
ing the effects of yaw, by a simplified method which is suited to take
account of real gas effects such as dissociation. This method, which was
previously given limited distribution, is used along with recent estimates
of transport properties for high temperature air, and the solutions are
compared with some heat transfer results for blunt shapes.

SYMBOLS
A,B,Ci}
DR CE, integration constants
Gyis
Cp specific heat at constant pressure, ft-lb/slug °Rr
h specific enthalpy, ft-1b/slug
k coefficient of thermal conductivity, ft-lb/ft-sec °R
M Mach number, dimensionless
n exponent of temperature in thermal conductivity and viscosity

functions (see egqs. (37) and (38)), dimensionless

Nu Nusselt number based on a length 2R, and stagnation tempera-
ture conditions, dimensionless

o) static pressure, 1b/ft2 (unless otherwise specified)
Bre Prandtl number, dimensionless

a heat flux per unit area, ft-1b/ft2-sec

q(0) heat flux per unit area at zero yaw, ft-1b/ft2-sec
a(A) heat flux per unit area at yaw angle A, ft-lb/ftz—sec

R gas constant, ft—lb/slug Or
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Ry
R

S

Re

r,e,9

radius of curvature of body at the stagnation point, ft

radius of curvature of the shock wave at the stagnation stream-
line, £t

Reynolds number, based on twice the radius of curvature of the
body at the stagnation point, dimensionless

spherical coordinates, feet, degrees, and degrees, respectively
static temperature, °R

temperature of the body, YR
temperature at the interface, x = 0, with body at zero yaw, °R

tempegature at the interface, x = 0, with body at angle of yaw
SR

recovery temperature, 2R

stagnation temperature, °R
stream velocity, ft/sec

veloiity components in the x, y, and z directions, respectively,
ft/sec

velocity components in the x and r directions, respectively,
ft/sec

Cartesian coordinates, ft
cylindrical coordinates, ft
flow deflection angle, deg

f ~- Rb Xb - X
dimensionless coordinate, ———— oOr —m——
Rp Rp

ratio of specific heat at constant pressure to specific heat at
constant volume, dimensionless
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a function of density change across a shock wave,

dimensionless
angle of yaw, deg

density, slugs/cu ft
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(ps/Pw) + 1

(pg/00) = 1’

T
Jf kdT, a function of the coefficient of thermal conductivity
(o}

and of temperature, ft-lb/ft-sec (unless otherwise specified)

acute angle of shock wave relative to stream velocity vector,

deg

coefficient of viscosity, slugs/ft sec

coefficient of viscosity at temperature T, slugs/ft sec

coefficient of viscosity at temperature TO(A), slugs/ft sec

Subscripts

conditions Jjust behind shock wave on the stagnation streamline

conditions at the stagnation point of the body

conditions at the interface between regions 1 and 2 on the stag-

nation streamline (see sketch (b))

conditions in the free stream
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Superscripts

; first derivative with respect to the x coordinate

P second derivative with respect to the x coordinate

THEORY
General Equations in Cartesian Coordinates
The analysis proceeds from the equations of momentum, continuity,

energy, and state for continuum fluid flow. The Xx, y, and z momentum
equations are, respectively,

ou Ju du Sul . % 29 du , Ov , ow
"'a’g“’( o oy TE/T 3ax[“é‘£+$y+$ ]*
v
> [ ax]+
d du  ow
3’[“5—&] (1)

s = ov __B_p__e_é_ ou Bv ow
+p<u R +w82> = 3ay[u —6;+ Bz>]+
Bv
( > ax[ Bx>}+

9 oV , ow
AL Eﬂ =
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v u,  w,  w)_ .2 _23 [ (m, a_wﬂ
p§€+puax+vay+w—>— [u + + +

o v , ow ]
oy \:” >z a—y> &)
The continuity equation is
% , 9 9o o il L )
= aX(Du) + ay(DV) + az(DW) =0 (&)

and the energy equation is

dh dh dh  oh op dp op op
pu-é;+va—y-+w$+¥> + v ot

T \ot s % oy i dz
Byl D Sl 3N e
AR RS A A W] 2—u> 2_v>
ax<kax>+ay o +az<kaz>+“[ 5 | Al

pa L SAES A 5 | Sy e eaass 5N

ow) L (oS4 9OV ou , 9w ov . 9w\ _ 2(Qu , 9v 4 9w

- 6%) % <§y g 6;> 5 oz 3 8x> i oz * 6?) 3 \dx i dy * az:> }
(5)

while the equation of state is taken in the form

P = P(O;T) (6)
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Derivations of the momentum and energy equations are given in numerous
sources (see, e.g., refs. 5, 6, and 7). Note that the coefficients of
viscosity and thermal conductivity, and the heat capacity have been
treated as variables. It is intended that by so doing a more accurate
solution will be obtained for hypersonic flows with their characteristi-
cally large temperature and pressure gradients.

Let us now consider the particular flows of interest in this paper,
namely, those in the region of a stagnation point.

Model of Flow and Method of Analysis

It is instructive in setting up the model to consider the qualitative
aspects of temperature and velocity variations in the flow along the stag-
nation streamline. Restricting the analysis to steady hypersonic flow,
that is Mysin & >>1, we will assume that the surface temperature is low
compared to the stagnation temperature of the air. This assumption seems
quite reasonable since practical surface materials will probably be
destroyed if surface temperatures are allowed to approach stagnation
temperature. It will be assumed further that the Reynolds number of the
flow is large enough so that heat conduction and viscous shearing in the
shock process is distinct and separate from the corresponding phenomena
occurring in the boundary layer adjacent to the surface of the body.
Accordingly, temperature and velocity should vary along the stagnation
streamline similar to the manner shown in sketch (a).

I et il e el

@ |
i
I
T' -
Temperature
u_ - Velocity
s ]‘ b
-~
T it
0 T — = am r
Shock Body
wave surface

Sketch (a)
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There is an abrupt and large increase in temperature and decrease in
velocity of the air as it passes through the bow shock. Proceeding from
the shock in the direction of the body, temperature continues to increase
slowly while the velocity decreases slowly towards zero. Near the surface
of the body, the air temperature ceases to increase and, in fact, begins
to fall off steeply in the direction of the body temperature. The veloc-
ity of the flow must, of course, be close to zero in this region.

On the basis of these observations the following simplified model is
proposed and employed throughout this study of heat transfer in a stagna-
tion region.

Region | v,y Region 2
A
Stagnation
streamline
Up
i o Vu, X
Detached Interface : /
shock wave between regions Body sutds
| and 2

S S

Region |- Incompressible, nonviscous flow

Region 2— Low-velocity, compressible, viscous flow

Sketch (b)

Since M, is large compared to 1, Mg 1is substantially less than 1 and
the detached shock wave is located a relatively short distance ahead of
the body surface (i.e., (xg + Xp)/Rp < <1). The flow between the shock
wave and the body surface is divided into two regions. Region 1 is taken
as a domain of essentially nonviscous, non-heat-conducting, incompressible
flow while region 2 is taken as a domain of very low speed, but compres-
sible, viscous, and heat-conducting flow. It is anticipated further that
in region 2 the u and v components of velocity will be very small. The
component of velocity w due to yaw may, of course, take on rather large
values.

2
Now it may be demonstrated with equations (1) and (2) that O p/dy>
becomes relatively independent of x along the stagnation streamline in
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the limit as the disturbed flow extends only a short distance away from
the body. Inasmuch as this is the type of flow of interest here, it will
be assumed throughout this analysis that 02p/dy® is essentially con-
stant along the stagnation streamline between the shock and the body.

With these assumptions, the derivative with respect to y of the
y momentum equation yields a differential equation that becomes tractable,
both in regions 1 and 2, when terms that vanish in the neighborhood of the
stagnation streamline are dropped. Approximate solutions to these simpli-
fied y momentum equations are found for the u velocity along the stag-
nation streamline in region 1, and for the derivative of this velocity
along the stagnation streamline in region 2. The constants appearing in
these solutions are determined by matching the boundary conditions at the
shock wave and at the surface of the body, and by matching flow conditions
at the interface. This procedure fixes the locations of the shock wave
and interface relative to the body.

The energy equation is simplified in an analogous manner, and solu-
tions valid in the neighborhood of the stagnation streamline are found
for regions 1 and 2. The rate of heat transfer per unit area to the
stagnation region of the body follows from the solution to the energy
equation for region 2.

Let us see how these thoughts apply in the case of a two-dimensional
stagnation region.

Heat Transfer to a Cylindrical Stagnation Region

Zero yaw.- This problem has been treated for incompressible flow by
Howarth (ref. 7) and more recently for the compressible flow by Cohen
and Reshotko (ref. 8). One reason for re-investigating the matter here
is to obtain compressible flow solutions which can be extended with rela-
tive ease to the case of a yawed cylinder. In addition it was desired
to obtain solutions which may be better suited to account for real gas
effects, such as dissociation.

To proceed, then, the stagnation streamlines are taken to lie in the
x-7z 7plane. The origin of the coordinate system is at the interface
between regions 1 and 2, and the shock-wave and body-surface locations in
this plane are -xg and x,, respectively (see sketch (b)). For the case
of zero yaw, the =z component of velocity and all derivatives with
respect to 2z are, of course, identieally zero.

First a solution will be found to the steady-state y momentum
equation near the stagnation streamline in region 1. Since the flow is
assumed incompressible and nonviscous in this region, equation (2)
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simplifies to

ey AR L S | % (7)
ox oy P Ay
Differentiating equation (7) with respect to y there is obtained
\
d /3 . du dv af>2 By _ 1
2 o/ ov SRR B 8
uay Bx>+5yax+5y +vay2 P (®)

P
oy \

On the stagnation streamline v 1is identically zero and, therefore, Bv/ax
is also zero. In addition, the continuity equation (eq. (4)) becomes, for
incompressible, two-dimensional flow

ik el (9)

Using this information with equation (8), one obtains

(10)

Treating 0%p/dy® as a function of y only, and noting that equation (10)
becomes a total differential equation along a line y = constant, yields a
general solution for velocity along the stagnation streamline

u = AecX + Be_Cx (11)

where the constants A, B, and C are related by

Q/

2
mpe2 =L 22 (12)
P ayZ

Note that the constants may be real or imaginary, depending on the bound-
ary conditions. &
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Now it is anticipated that the velocity u will very nearly vanish
at the interface x = O (i.e., in the senmse that ug/ug << 1); hence B
will be approximately -A, and the corresponding approximate solution for
velocity isl

u = 2A sinh Cx (13)

To the same order of approximation, the second derivative of velocity at
the interface, uy", also vanishes. The product 2AC is just the velocity
derivative at the interface and can be evaluated from equations (10)

and (13), thus

2AC =U.o’ =

I+

2
A % e (14)

Note that the negative root correctly describes the flow in the coordi-
nate system of sketch (b), since velocity decreases with increasing X.

Consider next the steady-state y momentum equation near the stagna-
tion streamline in region 2. In this domain viscous terms must, of course,
be retained and thus the derivative of equation (2) with respect to y
yields

52V+ua—péz+ i}_@_‘_‘_pv'a?__vi_ 5p5V+p é‘i)z

Oxdy Jdy ox : ox Oy 5y2 dy Oy oy

gen i ip 37 [ du av> 52 < du , 3
TS AR R 1L =i bt e D 2! u Vv
SF e | e oy ] T ESF > Byax[ = axﬂ (13)

Now close to the surface of the body the left-hand side of this expres-
sion is negligible and the right-hand side simplifies so that the equa-
tion may be written (see Appendix A)

% < > 38

1In the limit of zero boundary-layer thickness, this solution is
exactly the one to which equation (11) reduces.

pu
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Along the stagnation streamline this equation integrates to

d%u d®p
e (17)
x® oy
2
The constant D 1is zero since O u/dx = u," = 0 at the interface (x = 0).

Near the surface of the body, equation (17) can be integrated to obtain
X
u-—: - —2"2—“’ p-ouO, (18)

In order to satisfy the boundary condition at the body surface
éi) = ég) = 0, it follows from equations (18) and (14) that

2u
X" = —%2‘; (19)

oy?

Now p and B2p/3y2 can be evaluated at the shock wave since both are
considered constant throughout region 1. In Appendix B it is demonstrated
that for two-dimensional flow

Sy i (20)

<p Y _ . P U’
oy /s (7, - VRS

where Rg 1is the radius of curvature of the shock wave in the stagnation
region. Substituting equation (20) in equation (19) we obtain

vi <7s 7 1>1/4 (92 Rs e 2 (21)
Rp - 6 Heo Rp Rem}/z

where Re, is the free-stream Reynolds number based on 2Ry, twice the
radius of curvature of the body at the stagnation point. Note also that
the effective value of 7, the ratio of specific heats, at the shock wave
is allowed to vary from the free-stream value. In this way, changes in
internal molecular energy which are manifest at the high temperatures
encountered in hypersonic flight can be considered.
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There remains the problem of solving the energy equation. In
region 1, the energy equation is simplified by neglecting all the viscous
and heat-conduction terms. Then, for the two-dimensional problem con-
sidered here, equation (5) reduces to

du oT
u—+C,—=0 22
ox P dx (e
for which the solution is
Ty
C.aT = % (23)
p e

It can be seen from equation (23) that the interface temperature Ty e
approximately the stagnation temperature Ti, since the velocity at the
interface nearly vanishes. The stagnation temperature is, of course,
given by the integral equation

Tt 2
jTﬁ CLdT = l'oRgin“—l (24)

oo}

where for very high velocity flow the lower limit of the integral will be
neglected.

Next consider the energy equation in region 2. Proceeding in a man-
ner analogous to that used in studying the y momentum equation in this
region, we neglect the terms with the factors u, v, du/dx, and Ov/dy.
Thus equation (5) becomes simply the heat-conduction equation

9 (. dr d aT>_
Ox k&>+§rkg i (25)

The coefficient of thermal conductivity, k, is considered a known function
of temperature (pressure is essentially constant). Thus a new function of
temperature, 1, may be defined such that

1L

n=f K =T (26)

o}
Then equation (25) may be expressed in terms of the function 1
n 3% _

o 0 (27)
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Inasmuch as the body b

general solution to equation (27) in terms of the polar coordinates (%, 6).

Thus
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oundary is cylindrical, it is convenient to use the

[0}
= F
n=A+BlnrT +z [(Cnf'n + —_D%>cos no + <Enfn + :%>sin ne}
I3 1%
n=1

The origin of the coor
ture of the body, and
and the stagnation str
pendent of the angle
reduces to

(28)

dinate system is now taken as the center of curva-
6 as the acute angle between the radius vector T

eagline. If a surface temperature is assumed inde-
6, the solution on the stagnation streamline (6= 0)

- 2 R 2n
2 e =1 2B
n=mn,+BIln Rb-+§: CnT [l ?%> } (29)
n=1
Letting gl =1 + €, where € 1is very small compared to unity, and

b
expanding equation (29

) in a series of ascending powers of €, we obtain

n=nb+G<e-i;>+o(es) (30)

(o2}
where G 1is the constant Qa +Z 2anncn>. It is indicated by this

equation that n vari
negligible compared to
very small indeed.® §
written

n=1
es essentially linearly with €, since €2/2 is

€ and terms of higher order in € should be
ince € = (x, - x)/Rp, < <1, equation (30) can be

n =1y - (g -m) ;xg (31)

2The dependence of surface temperature on 6 should be small in the

stagnation region.

3It should be poi
the assumption that 7
streamline.

nted out that this argument hinges implicitly on
is a weak function of 6 near the stagnation
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According to this expression, the rate of heat transfer per unit area to
the stagnation region of the body is

To

S L donieth o k dT (32)
b Xb Xb Tb

The stagnation-line coordinate xy 1is substituted from equation (21),
and the rate of heat transfer becomes

_ { 3 MR M Rb>l/2 Rew ® fTok ar (33)
T80, - 1)] ho B/ Ry g

Ty

A Nusselt number is defined for interface temperature conditions
using a characteristic length equal to twice the radius of curvature of
the body and a temperature potential of (To - T%); thus

2 1
e ) (34)
ko(To i Tb)

Nu = -

or, substituting from equation (33) into (34)

To

/4 12 1/2
et S hr v Re,,
Nu = <—‘1‘> Teo _b> f k 4T (35)
i Yo Rs ko(To 7 Tb) 15

For a relatively cool body in hypersonic flight, it is possible to dis-
regard the lower limit of the integral and the value of body tempera-
ture T, compared to the interface temperature Tg.

Note that the solutions given by equations (33) and (35) can be used
for the case where viscosity, thermal conductivity, and specific heat are
arbitrary functions of temperature. For instance, these functions can be
calculated to include the effects of vibrational and dissociational molec-
ular energy if the extent to which these energy modes are excited is known
throughout the flow. It is also useful to consider the case where the
specific heat is treated as a constant and the viscosity and thermal
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conductivity as proportional to the nth power of temperature. In this

IS
case from equation (24) ( note TQ wlL; %9 > > %)

t ©
To _ (=B)y 2
2- (&) (36)

Noting that

and that

L \Y/2 njez n/2
<r:5 > < o (38)

it is seen that the expression for Nusselt number (eq. (35)) becomes

1/4 1/= e n/2 1/2 i <¢b/T >n+1
n+1 <_—I> (Rs> <—§> (39)

=R )

Nu =

and the rate of heat transfer per unit area to the stagnation region of
the body is, in terms of free-stream conditions,

< m>|: }1/4 >1/2 >_.+1 Re,_ 1 2M°°n+2 ) Tb>n+l
8(7s - Rs 2Cp n+ 1 [ T, :‘

(ko)

These considerations complete the zero-yaw analysis. However, before
undertaking the study of effects of yaw on heat transfer it is appropriate
to make a few remarks. There is the general question of the legitimacy of
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the several assumptions underlying the present treatment of stagnation-
point flows. In order to shed some light on this matter it is undertaken
later in the report to examine the solutions obtained to see whether they
are consistent with these assumptions and with pertinent results obtained
by others. In this regard it is shown that the presumption of a constant
second derivative of pressure normal to the stagnation streamline yields
solutions for the distance between shock wave and body which are quite
close to observed values. Next, it is demonstrated that, as assumed, the
velocity u is negligibly small throughout region 2 under continuum flow
conditions. Then it is shown that the largest of the viscous dissipation
terms neglected in the energy equation for region 2 is indeed small com-
pared to the heat-conduction terms. It is found too that the analysis
predicts an amount of heat convected into region 2 which is the proper
order of magnitude to account for the heat transferred to the body.
Finally, it is shown that under comparable conditions equation (35) of
this8paper predicts essentially the same heat transfer as references 7T
and O.

In view of these results it would seem that the simplified analysis
presented here for stagnation-region flows is, while on the one hand cer-
tainly approximate, on the other hand quite capable of predicting useful
information. Accordingly, we proceed to the study of effects of yaw on
heat transfer.

Yaw.- In this case the x direction is normal to and the =z direc-
tion is parallel to the stagnation line of the body (see plan view,
sketch (c)). Then the 2z component of velocity has a finite value, but
all 2z derivatives are again zero.

Region | Region 2 \
uX
6 7
éﬁiﬁ %"
VY] > Body
A X7 stagnation ~
U R Detached ine
shock wave
Interface
between
regions | and 2
(x =0)
Region |— Incompressible, nonviscous flow

Region 2~ Low velocity, compressible, viscous flow

Sketch (c)
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The y momentum equation in region 1, differentiated with respect
to y, takes the same form as equation (lO) on the stagnation streamline.
Thus the velocity u is again given by the solution

NI % % sinh Cx (41)
& o] ayz

The 2z momentum equation for the stagnation streamline in region 1
becomes, on dropping the negligible terms from equation (31,

o 0 (42)
Ax
which has the solution
w? = 7 RT M_Zsin®) (43)

since the transverse component of velocity is unchanged on passing through
the shock wave.

The energy equation for the stagnation streamline in region 1 reduces
to a form similar to equation (22)

du ow OT
u=—=+w-=—+0Cy==0
bl B (54)
which has the solution
Tt u? + 7, RT M sin®A
2
a1

where again the stagnation temperature Ty is given by equation (24) .
At the interface where the velocity u 1is negligible, the temperature
To(A) is given by the solution to

Ty

RT M_2sin2\

f Gy (46)
2

To(N)
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which, for a constant heat capacity, Cp, is

T (?\)
= <2Cp> M 2cos@A (47)

The differentiated y momentum equation for region 2 takes on the
same form on the stagnation streamline as equation (16). Hence, the
solution is

o B i o
52 W T - Bo(N) [ - 5 S;E (48)
and the body stagnation point coordinate is
2
L ). (49)
%p
P e

Now, however, the second derivative of pressure is a function of the
angle of yaw (see Appendix B),

6 s®
< > Al U 2co A (50)

2
‘g * l)Rs

so the stagnation-point coordinate is given by

xb(7\ < . >1/4 <u o(A) Rs e 2 (51)

Reml/zcosl/zk

In region 2, the solutions to the 2z momentum equation and the energy
equation are considered simultaneously. The 2z momentum equation simpli-
fies (to the order of this analysis), in the region of the stagnation
streamline, to

N
’S‘X')‘“g?; u%’:o (52)
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Similarly, the energy equation near the stagnation streamline in region 2
may be written (note that Ow/dy is zero by symmetry)

S R v \2
2= a2 " ax> =0 (53)

In order to facilitate the solution of equation (52), it is helpful
to observe that the yawed boundary layer, identified with the w compo-
nent of velocity, resembles the boundary layer on a flat plate. It might
be anticipated then that, just as in the case of the flat plate, the
variation of w with x is relatively insensitive to variations of pu
with x. In this event equation (52) has the approximate form

2 2

The solution is taken in polar coordinates in order to conveniently fit
the boundary condition that w is identically zero at the body surface.
Then following the same arguments used in deriving equations (29) and (30),
one obtains on the stagnation streamline

r N n Rp - €2
_ 2 § = = €= 3
w—Blng+ Ot [1- ?> ]_I<e- 2>+O(e) (55)
n=1

where again e=(f/Rb)— 1 <<1l. If second order and higher terms in €
are neglected, the 2z component of velocity on the stagnation streamline
becomes, in terms of x/xb,

W =y < - ﬁ% (56)
whence
oW _ Wg
ax s Xb (57)
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If this result is substituted for the last term in equation (53),
the energy equation becomes

2
éiﬂ Sk éiﬂ + B (ﬁQ =0 (58)
dx2  dy? b

A solution for equation (58) which satisfies symmetry conditions on the
stagnation streamline and also the boundary conditions that 1 and p are
constant along the surface of the body is

i e © = Ry 2n =) A
I L (RO NP e
- (59)

where § 1s a mean value of u in the stagnation region. If equa-
tion (59) is expanded in terms of €, n takes the following form on the
stagnation streamline

] =
n(A) =y + J‘<% - %;) Eetle <% + %§>.+O(€s) (60)

=
2€O

The constant J 1is evaluated by letting 7m be mn, when € 1is eo==xb/Rb
and is given by the relation

Ny = 1 € w2
PO . <1 < E? + =2 (L+eg) + .+ - (61)
€o 2eg?

The rate of heat transfer per unit area to the stagnation region of the
body at angle of yaw A is, from equation (60),

on(A)

ox

a(A) =-

0 =
b Rb 66 b Rb 2602

Substituting equations (26) and (61) into this expression and neglecting
terms of the order €, compared to 1, one obtains

1 TO(-)\) l-J.W 2
a(A) = —cy fTb k4% + —= (63)
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Multiplying by L - and substituting from equation (51) yields .
ko(To - Tb) \

2q(N\)Rp ” < 6 >l/4 Moo R_b e Reml/zcosl/zk
k (T, -T) Vs - Ho(A) Rs ko(Ty - Tp)

T, (N) g
f °kar+ ‘”;02 (6k) |
Tp l

For a constant heat capacity it follows from equations (23), (43),
and (47) that \

SO
To = CcOs<\
$ (65)
\ WO2 -
—{[—g = 2Cp51n A ‘
)

If, in addition, the thermal conductivity is proportional to the nth
power of temperature, then

" To(N) cos2t2y T, Bt
ko(Ty - Tp) L it (n +1)(1 - Ty,/T,) [l i <Tocos2)\> ]

b -
(66)
and
P s v >Pr gin®A TR 0 o cos\ sin®A (67)
2t ol SRRV L L (RN 0. R G L o
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Thus equation (6&) becomes

Re l/Zcosn+l/2?\

. 2¢(MRb 1 < 6 >l/4<Rb\1/2 <20p>n/2 5
kO(TO - Tb) ned L N -1 Rs, 7R an(l % Tb/TO)

r T O\ o
{cos A l:l - W> :l+ (n +l)Prﬂo“7\—) sin®A }
(68)

The ratio of equation (68) to equation (39) is the ratio of the rate
of heat transfer to the stagnation region of a yawed body to the rate of
heat transfer to the stagnation region of the same body at zero yaw. This

ratio is

n+i/2

q(d) _ __cos A {00527\ [1 . <_Th§_>n+l}+(n +1)Pr ” ‘;‘?\) sin27\}
o

alo) "1~ (Tb/To)n+l ToCOS<A

(69)

An analogous expression can be obtained for the ratio of Nusselt
numbers, thus,

mu(n)  a(d) @9 noqo-m
Nu(0) ~ q(0) r> Ty - Tp (70)

where from equation (63) the recovery temperature, Ty, is the solution to

TO(%) S
RS e
fT T B (71)

14

However, it should be noted that the assumptions used in the analysis
tend to be violated when the body temperature approaches recovery condi-
tions. Therefore it should not be expected that equation (71) will yield
accurate values for recovery temperature.
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There remains, of course, the problem of determining u. For the
purposes of this report u will be taken as the arithmetic average
between pg(A) and py,, that is, © = [py(N) + w1/2.* In this event
equation (69) can be written

a(A) n+1/2x T n+1
i n+1{?082% [l B <E_Egt§i> ] !
a(0) 1 - (To/To) L

T n
n;l Pr l:l + <-T-—C%-2—X> :! Sinz?\ } (72)
(o]

which in the case of a relatively cool surface (i.e., Ty /T cos®A < < 1)
becomes

(N)
e cosn+l/2K <?082X o Lo Pr sin2X> (73)

Heat Transfer to an Axially Symmetric Stagnation Region

The methods used to calculate the rate of heat transfer to a cylin-
drical stagnation region can also be applied to the stagnation region of
a spherical body. This analysis is parallel to that for the cylinder at
zero yaw and thus the x axis is taken as the stagnation streamline and
the origin of the coordinate system is placed at the interface between
the assumed incompressible nonviscous region 1 and the viscous, low-
velocity, compressible region 2. For the purpose of obtaining the solu-
tions for velocity in regions 1 and 2 on the stagnation streamline, it

Actually this procedure might better be considered the first step in
an iteration method where p is recalculated on the basis of the preced-
ing calculation of T as a function of x. This refinement is not con-
sidered warranted here where only the gross effects of yaw for angles of
yaw well less than 90 are of principal interest. As the angle of yaw
approaches 90 , the analysis as a whole tends to break down due to the
violation of the several assumptions predicated on the flow being hyper-
sonic normal to the axis of the cylinder.
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is most convenient to consider the momentum and continuity equations in
cylindrical coordinates (sketch (d)). Because of axial symmetry, all

Region | v,r Region 2 /

Stagnation

Stagnation
streamline

o u, X
Detached l;::&iae%e ///
shock wave regions | and 2 ;d/ysu face
Region | — Incompressible, nonviscous flow

Region 2- Low-velocity, compressible, viscous flow
Sketch (d)

properties are independent of the angular coordinate and, accordingly,
the r direction momentum equation becomes

ov ov o ég _2 9 o) [ Bu ov > J < f)
H <F ox Y or > or 3 dr a Ox 5? " e dr or "

p.bv v d ou ., ov
o) =V L S
or r> - ox [H or - 8;)] (74)
While the continuity equation is

g%(pu)+ %'g% (prv) =0 (75)

In region 1 where the viscous terms are considered identically zero,
the r momentum equation (eq. (T4)) reduces to

w Tt Bme)y . Bp 6
8 Bx o, - or > or (7€)
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Differentiating equation (76) with respect to r and dropping terms with
factors v and BV/BX, which vanish on the stagnation streamline, gives

2
v . %y 1 éig

—— -+ — T -

or oxor P or2 (1)
Now the continuity equation (eq. (75)) expands to

p M LB 4 W g (78)

ox T dr

however, on the axis of symmetry, neglecting terms higher than second
order: in: T,

_=% (79)

Thus, for incompressible flow, the continuity equation on the stagnation
streamline reduces to

du v
2 =X =0 80
5x+23r (80)

Substituting equation (80) into equation (77) yields

il au\z uazu__lazp 81
e s )

which, upon differentiating with regpect to x, and assuming
L éiE = constant, becomes
P or?

3% (82)

For nonzero values of the velocity wu, this differential equation has as
a solution

1n

u = E%— x2 + u,'x + ug (83)
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The value of velocity at the interface, ugy, is again considered very
small. Thus, from equation (8l), the first derivative of velocity at the

interface is, approximately,

. by sz
u,' = - /-5 - (84)

As can be seen from the solution for velocity, equation (83), the second
derivative of velocity is constant. Therefore the second derivative of
velocity may be evaluated from equation (8l) using conditions just behind
the shock wave, thus,

12 2
Bt Is e 2 g) (85)

Substituting for the values of velocity, velocity derivative, and
second pressure derivative behind the shock wave (see Appendix B) yields

w803 - 25) Uy (86)
O 782 - RSZ
and
hJ2 -1) T
g N2(rg - 1) Uy (87)

Tg bt Rg

Now in region 2, the viscous terms are retained in equation (7&).
Following the procedure used in studying two-dimensional flow (see Appen-
dix A), the r momentum equation, differentiated with respect to r, is

simplified to

2 &?i)-_a_z.lz (88)
dx \2 0x2/  or?

which integrates to

I=

(89)

Il

[}
b
4
>

%
2 ox2
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and, as in the case of the two-dimensional flow,

——=-—— —+Ax + B (90)

The constants A and B are again determined by matching the first and
second derivatives of velocity at the interface. Thus

u n
A = Rolo
2
(91)
e Koo'
2

At the body Ou/dx vanishes, and solving for the coordinate x, from
equation (90) results in

Houo" 1% u.'
Xp = F az' l-fl+——§'—27 (92)
5 P or® Hgug

ore

In Appendix B it is shown that

3°p 8 pll
e =" ) (93)
Vs + 1k RS

Thus from equations (86), (87), and (93), it can be shown that

VO et (- 1FNRG - 1) e Bs o (o)
or? pduo"z (3 - 27)2 Ko Ry

which is large compared to unity for any reasonably large value of .
Reynolds number (of the order of hundreds or greater). Therefore, if
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quantities of the order of unity are neglected in equation (92), the
stagnation point coordinate reduces to

=ilEaia. (95)

which is identical in form to the relation for body surface coordinate
in the two-dimensional flow (eq. (19)).

Next, in region 1 the viscous dissipation and heat-conduction terms
are again neglected in the energy equation, and terms that vanish by
reasons of symmetry along the stagnation streamline are dropped. Thus
the energy equation for region 1 takes the same form as equation (23) for
the two-dimensional problem and, since the interface velocity 1is small,
the interface temperature T is again approximately the stagnation tem-
perature Ty.

@)

In region 2, the heat-conduction terms in the energy equation pre-
dominate, and the equation reduces to the three-dimensional Laplace
equation in the variable 1

ST A i O

+ 0 (96)
Pz~ YT . or%

In order to fit the boundary conditions on a spherical surface, the
solution is given in terms of spherical coordinates (¥, 6, and @). The
general solution which preserves symmetry about the x axis (i.e., which
is independent of @) is

n=A+

] [es]

% D
+ E: (?nfn 3 :ﬁ§%> P,(cos 0) (97)
£
n=1

where Pn(cos 9) is the nth order Legendre polynomial in cos (IS 5L
is required that mn be a constant, M» ON the surface of the body, equa-
tion (97) can be reduced, on the stagnation streamline, to ‘

4 Ee @ b R 2n+1

t -4 - ——— — — T - ——b

n= nb Rp <l f‘> . : : o [l f’) } (98)
n=1
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then expanding in terms of € = ﬁl -1<<1, results in

='r}b+L(e-€2)+... (99)
o]
where L is - gL-+ }; Cn(En + l)Rﬁn- Neglecting the quadratic term in
D
n=1

€, evaluating n at the interface, and transforming to the variable x,
one obtains for equation (99) on the stagnation streamline

X
Rt s Ty (100)

Then the rate of heat transfer to the stagnation point is

A
- (0]
I | Reil T k dT (101)
a b " Xy
b Ty

which is identical in form with the zero-yaw solution for the two-
dimensional-flow problem (eq. (31)). Note that in Appendix B the second
derivative of pressure given by equation (Bl8) is larger by a factor

of h/3 than it is for the corresponding two-dimensional-flow case with
the same shock-wave curvature (eq. (BLl7)). Thus xp given by equa-
tion (95) is changed by the factor (3/1+)l/4 and the rate of heat trans-
fer to an axially symmetric region becomes

1/4 1/a i/2 Lo
B R Re
q = [_l___] <E°_°. _R.b. R f k 4T (102)
2(78 - l) O ~g Rb Tb

while the corresponding expression for Nusselt number is
To

Tt 3/2 fia 1/2
Nu = < > < e f k aT (103)
Fge= Ho Rg k (T <) T,
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Examination of Analysis and Assumptiens-

A number of assumptions have been made in the theoretical analysis,
and it is desirable now to show that the solutions obtained are both
realistic and consistent with these assumptions. In particular, it will
be shown that the presumption of a constant second derivative of pressure
normal to the stagnation streamline yields solutions for the distance
between shock wave and body which are reasonably close to observed values.
Secondly, it will be demonstrated that the u velocity throughout
region 2 is indeed small, as assumed in the analysis, if the Reynolds num-
ber is large enough for continuum flow conditions. In addition, it will
be shown that for region 2 the viscous-dissipation terms due to the
u and v component velocity derivatives are small compared to the heat-
conduction terms in the energy equation, again provided the Reynolds num-
ber is not too small. These findings, then, help to justify the manner
in which the momentum and energy equations were treated in the analysis.

Now it is obvious that the assumption of an abrupt transition from
nonviscous, convective flow to viscous, conductive flow is a substantial
idealization of the actual flow.® It is possible, however, to make a
gross check on the self-consistency of this model by comparing the amount
of heat convected across the interface with the amount conducted to the
body surface. When this is done it is found that from a heat-flow point
of view, the model is self-consistent (i.e., heat convected provides for
heat conducted).

As a final point, a comparison will be made between the analysis of
this paper and the heat-transfer solutions for low-velocity flow given by
Howarth (ref. 7) and Cohen and Reshotko (ref. 8).

Distance between shock wave and body.- Consider first axially
symmetric flow. The velocity in region 1 was found to be (eq. (83))

W o= e Mg pedPl %2 (1ok)

5Strictly speaking, this idealized model should be considered simply
a first approximation to the correct situation. A second approximation
would be to divide the domain between the body and shock wave into three
regions rather than two as was done here.
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Then, the shock-wave coordinate must be

XS = 1" (105)

It can be shown from the relations in Appendix B and equations (84)
and (85) that

: LU, W
ug' = -
(7, + LRy
2 Iy
u' = - /- 4o g o U 2(7g = 1) > (106)
P or (rs + 1)Rg
ok 8(3 = 27) Um
Yo . © y.2 -1 R.2
s s J

Substituting these relations into equation (105) yields

xs (g -1 - V20, - D]

Rs 2(3 - 274) et

Note that for 7g = 1.5, us" vanishes and the velocity profile becomes
linear. For this case xg/Rg reduces to (7S - 1)/k.

The actual distance between the body and the shock wave is, of course,
the sum of xg and xp. However, it can be shown from equations (95) and

(107) that =xp is small compared to xg for reasonably large Reynolds
numbers, and xp will therefore be neglected. The ratio XS/RS calcu-
lated from equation (107) for Ys €qual 1.4 is 0.105. Measurements of
xs/Rb taken from spark photographs of high-velocity spheres presented
by Charters and Thomas (ref. 9) and Dugundji (ref. 10) approach this
value closely at high Mach numbers (i.e., xs/Rb about 0.11 at Mach num-
ber 4). Heybey (ref. 11) has developed a theory which fits the data of
references 9 and 10 closely and, for the limit of infinite Mach number,
predicts Xs/Rb about 0.12. Thus it is seen that at high Mach numbers,

the assumption that the second derivative of pressure is constant and
that the ratio Rb/RS is near unity yields results which are consistent

with experimentally observed distances between the shock wave and a
spherical body, as well as with the theory of Heybey .
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It is of interest to calculate the shock-wave coordinate for two-
= dimensional flow as well. Recall that the solution for velocity in
region 1 for this case is

u = Eg— sinh Cx (108)
and thus

Jou ]

— = uy' cosh Cx (109)

ox

The velocity derivatives at the shock wave and at the interface, given
in Appendix B, are, respectively,

T 20U,
ug' = - ——
(. LR,
f (110)
- v 1P U6 - D
O it = =
P 3y? (v +"L)Ry ]
Then the product Cxg 1is given by
Cxg = arc cosh = b, {111)
N6(7, - 1)
With Cxg known and the velocity at the shock wave
7S -1
ug = ——— U, (112)
7g + 1
The shock-wave coordinate becomes
N (113)

Ry 6  ginh Cxg
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For a Yy of e, Cxg takes the value 0.75 and since the sinh func-
tion is very nearly linear over this range, rather close bounds on the
shock-wave coordinate are imposed by

u u
—j%- < |xg|< —E% (llh)
Ug U.O
or
7S -1 XS 75 -1
<|l=I|< [ —— (115)
2 Rg 6

The exact theoretical solution for xS/RS at 74 = 1.4 is 0.236.
According to the theory then, a shock wave with given radius of curvature
should be detached from a cylindrical body about twice as far as from a
sphere, assuming Rs/Rb sl o

Magnitude of velocity in region 2.- The y momentum equation in
region 2 was reduced to

du d%p x° ; (116)

The left side of this equation may be approximated by §L (pu) with the
be

presumption that velocity in region 2 is small. Then equation (116) may
be integrated to

MU = = —= = + pguy'X + Bglg (117

Solving for u,, noting that velocity vanishes at xj,, and substituting
from equations (14) and (19), one obtains

f 2iagl
2 ' 2 o“o
b = = = U D€ = — - —— 118
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It follows that the ratio of interface velocity to the velocity at the
shock wave is given by

3£>2=-§LL_-*<QR_buL (119)
S 9 PgUg

which on substituting the relations given in Appendix B for u
becomes

1
o and Ug

2
Yo iQ Rb (120)
- l w

It can be seen that for large Reynolds numbers, of the order of
hundreds or greater, the velocity at the interface is small compared to
the velocity at the shock wave. Since the velocity in region 2 is every-
where less than at the interface (see eq. (117)), the solutions obtained
for velocity are consistent with the assumption that velocity is small
throughout region 2.

Viscous dissipation in region 2.- Although the derivative of velocity
vanishes at the body surface, it increases parabolically (see eq. (116))
to up' at the interface. Since viscous dissipation terms due to this

velocity shear were neglected in solving the energy equation, it will be
shown that the maximum value of these terms, which occurs at the interface,
is small compared to the heat-conduction terms like an/ax (note that by
continuity Ov/dy contributes a dissipation term of the same magnitude as
au/éx). From equation (30) it can be seen that the term o2 /Bx is
nearly constant everywhere along the stagnation streamline in region 2.
Then the ratio of differential terms in the energy equation is, by
equations (30) and (118),

bpo(ugt) Mg 02

T -1
(a?n/axz)i s ¢ < fTbo 5 dT) (121)

If equation (121) is evaluated for constant heat capacity and thermal
conductivity proportional to the nth power of temperature, there is

obtained
)+ 1)2 =
__‘;ﬁ(_uo_g)__ = 18(n + 1) (%9> Pr i—ﬁ>
(o n/Bx )'b < “
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Substituting for velocity ratio uy/U, from equations (120) and (BY4)
and for the ratio Rb/xb from equation (21), there results

12 - 1N\2 3/a 1/2 R 3/2 -1/
e L, st 1)Pr<7 > < 6l> <ﬁ_0> R_b> ge, s X2
(3%10/0x%)y, 7+1 7= ) s (123)

Once again the square root of Reynolds number is the predominant term for
conditions of continuum flow and thus the viscous dissipation terms in
the energy equation are small compared to the conduction terms in region 2.

Heat convection across the interface, x = 0.- Next consider the ratio

i1
of the heat convected across the interface, puo\jp © CpdT, to the heat
o
transfer at the stagnation point of the body, -m,'. The value of ug

given by equation (118) and -m,' from equation (32) yields

4 2 fTOc aT
o 2u, 'x 1Y
u b P
- p_C'z f CpdT = - 03 ; (124)
T Yo [k ar
Ty,

Again evaluating for constant heat capacity and the nth power tempera-
ture function for thermal conductivity, and noting from equations (1k4)
and (19) that ug'xp® reduces to -(2ug/p), one obtains

pu i
- Bolle b Pr(n + 1) (125)
' 3

This ratio is the order of unity, and thus the right magnitude of heat
is convected across the interface to balance the heat conducted to the

body. The above result also provides a check on the value of Xy, Wwhich
was obtained by matching uy' as a boundary condition of the y momen-
tum equation.
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Low-velocity heat transfer.- For hypersonic velocities it was found
that taking shock-wave curvature equal to body curvature on the stagnation
streamline gave approximately the correct answer for the distance between
the body and the shock wave, so presumably the ratio Rb/Rs should be

taken near unity when calculating the heat transfer as well. Undoubtedly
this ratio will be somewhat less than unity for low Mach number supersonic
flow, and it is of interest to see what the solutions developed in this
paper will predict for this case (even though the assumptions made in the
analysis are not expected to hold as well for the low-velocity flow con-
ditions). For this purpose it is convenient to express the body coordinate
Xp in terms of (dv/dy), which by continuity equals -ug'. From equa-
tions (9), (14), and (19)

2ITh
R - ¢
Xy /p(av/ay)o (126)

then solving for Nusselt number from equations (32) and (34) for the case
of the cool wall (Ty,/T, < <1, and n = 1/2) one obtains

fo(3v/ 3y),
T =0.47 D, i (127)

The method of boundary-layer solution for low-velocity flow about a cylin-
der given in reference T, yields for the derivative of velocity component
normal to the stagnation streamline at the edge of the boundary layer, in
the notation of this paper,

1S

Nu =

w|n

dv 3.804

dv/  Dp

(128)

Substituting in equation (127) results in

Nu = 0.92 Reg ™' 2

where the small differences between Mg and Ko are neglected. The con-
stant 0.92 compares favorably with the value 0.95 given by Howarth for
Pr = 0.72. This agreement is especially remarkable in the light of the
fact that the analysis of reference 7 is for constant thermal properties,
while variation in thermal properties is an essential feature of this
analysis.
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Cohen and Reshotko (ref. 8) find that the solution for a compressible
boundary layer gives the following relation at the stagnation point of an
axially symmetric body

N;by = 0.440 / % (129)

for the case of a cool wall and a Prandtl number O0.7. If the radial com-
ponent of velocity v 1is taken proportional to y, the ordinate can be
eliminated and equation (129) reduces to

Nu = 0.440 Dy /m (130)
65

The factor 0.440 given by Cohen and Reshotko compares favorably with the
factor 0.47 given in equation (127).

HEAT-TRANSFER RESULTS FOR BLUNT SHAPES IN HYPERSONIC FLIGHT

Temperatures in the disturbed flow about vehicles in hypersonic
flight may be sufficiently large to dissociate air molecules into atoms
or even to ionize the atoms. At present the chemical reaction rates for
these processes are not known with certainty. Available experimental
evidence (ref. 12) indicates that air will be in equilibrium throughout
the stagnation region flow for vehicles in flight at velocities up to
26,000 feet per second, and at altitudes up to about 200,000 feet. At
much greater altitudes, the atmosphere is so rarefied that the chemical
reactions will probably be frozen and the air will behave essentially as
a gas with constant specific heat. These two limiting cases, at least,
can be treated within the framework of the present analytical results.
For this purpose it will be convenient to consider the heat-transfer rate
expressed in the form of a parameter which is relatively independent of
scale size or density. From equation (102), such a parameter is given
by

qR o /4, iyl T
LR iR i> <}2 \/N Ol am (131)
NRew/2 P Mo, o

where it has been assumed that the surface temperature is negligible
compared to To and that the shock-wave curvature equals the body

curvature in the stagnation region. Equation (131) applies in the
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spherical case; the rate of heat transfer to a cylindrical stagnation
region may be smaller by the factor (3/4)/4% according to equation (33).
Note that the integral may be evaluated with the thermal conductivity
coefficients taken at constant pressure, since the pressure is relatively
invariant along a stagnation streamline. The integrals have been calcu-
lated graphically using the data given in reference 13 and the results
are shown in figure 1.

For the case where chemical reactions are frozen, all translational,
rotational, and vibrational modes of energy are considered fully excited,
Cp/R is taken a constant at 9/2, and the coefficients of viscosity and
thermal conductivity are taken proportional to the half power of tempera-
ture. The heat-transfer parameter given by equation (131) for these con-
ditions is shown in figure 2 for flight wvelocities from 5,000 to 30,000
feet per second.

For the case of chemical equilibrium, Feldman (ref. 14) has calculated
the densities and stagnation temperatures which occur behind shock waves,
and reference 13 gives values for the coefficients of viscosity and thermal
conductivity. The chemical reactions, which keep the flow in equilibrium,
cause the thermal conductivity to be much larger than in the frozen flow,
but this effect is compensated for by the large decrease in stagnation
temperature due to the strong heat sinks created by the reactions. Inci-
dentally Kuo (ref. 15) finds similar compensation for the case of heat
transmitted through the boundary layer along a flat plate. Because of
the compensating effects, it is not immediately apparent whether the
integral in equation (131) will be increased or decreased by the dissocia-
tion and ionization reactions. In all the cases calculated it is found
that the integral is slightly greater under equilibrium conditions. In
addition, both of the other factors in equation (131) are increased slightly
by the chemical reactions leading to equilibrium. The density ratio across
a normal shock may increase more than a factor of 2 (see ref. 14), but the
heat-transfer rate varies only as the fourth root of this ratio and is not
strongly influenced. Reference 13 finds that the coefficient of viscosity
is increased somewhat at equilibrium, but this also is compensated by the
decrease in stagnation temperature. The resulting ratio Hw/uo is
increased slightly, but again the effect on heat transfer is weakened by
the square-root dependence on this factor. The total result of increases
in all factors is that the parameter quRe“fl/z is the order of 30 per-
cent greater for stagnation region flow in equilibrium than for such flow
in which the chemical reactions are frozen. The difference is indicated
by the two curves in figure 2.

The heat transfer calculated for the equilibrium flow is in satis-
factory agreement with the experimental results reported by Rose and
Riddell (ref. 16) as indicated in figure 2. It may be noted that there
is a few percent change in the heat-transfer parameter due to different
ambient temperature and pressure conditions which occur at different
altitudes, but in view of the order of the approximations inherent in the
theory and of the *20-percent variation in experimental results, the
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change is not significant enough to be shown in figure 2. The theoretical
results for equilibrium flow also agree with numerical integrations of 4
more complete boundary-layer equations, including chemical reaction terms,

which have been made by Fay and Riddell (ref. 17). Thus it is concluded

that the approximate theory presented in this report retains the essential
relationships which influence stagnation-region heat transfer.

In view of the foregoing results, it seems reasonable that the present
theory would also yield approximately correct values for the effects of
yaw. Figure 3 shows the product of the secant of the yaw angle and the
ratio of the stagnation-region heat flux at yaw to the flux at zero yaw,
for the case where the wall temperature is negligible compared to the
stagnation temperature. This quantity, g(A)/q(0)cos A, equals the ratio
of the heat flux per unit of span normal to the stream velocity, to the
same heat flux at zero yaw. The ratio of the heat flux per unit area is
just q(A)/a(0), of course. The frozen flow case was calculated from
equation (73) where the Prandtl number was taken equal to 0.75, and this
result is independent of velocity. The equilibrium flow heat transfer
was calculated for flight at 26,000 feet per second at 100,000 and 150,000
feet altitude from the relation

(\) 1/4
S L " fTo(?\)k 1o, Fo(0)UZsin2n ’
q(?\) ki P [ U-o(O) J o I
q(0)cos A p5(0) Ho(AJCOS A
2 - fTO(O)k aT :
o o

(132)

vhich is derived from equations (33) and (64). At small angles of yaw,
the effect of yaw is to reduce heat flux slightly more in the chemically
frozen flow than in the two equilibrium flow cases shown. This is due
primarily to particular variations in the integral of thermal conductivity
with stagnation temperature in the equilibrium flow (fig. 1) and is not
necessarily typical. At larger angles of yaw, the reduction in heat
transfer is about the same in either case. As shown in figure 3, the
stagnation-region heat flux per unit span is reduced approximately by the
factor (cos x)l/z at large angles of yaw up to 700. The corresponding
heat flux per unit area is reduced by about the factor (cos x)s/g.

The effect of wall temperature on the reduction in heat flux caused
by yaw is shown in figure 4. The heat-transfer rates are graphed for
wall temperature to stagnation temperature ratios of 0.2, 0.1, 0.05, 0.02,
0.01, and O for flow in which the Prandtl number is equal to 0.75 and the
dissociation reactions are frozen in a state of no dissociation (note
that vibrational energy may be excited, however, without appreciable
influence on the ratio, g(A)/q(0)). At high yaw angles, the viscous 9
crossflow is the predominant factor contributing to the stagnation-region
heat transfer. The principal effect of high wall temperature is to main-
tain sizable air temperature, and therefore sizable viscosity and viscous -
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dissipation (see eq. (58)) throughout the crossflow boundary layer.

As a consequence, the stagnation-region heat flux per unit span does not
decrease monotonically with increasing yaw angle, but goes through minima
as shown in figure 4. As the wall temperature is reduced, the viscosity
near the body gradually becomes negligible compared to the viscosity near
the edge of the boundary layer (i.e., at the interface x = 0). The
results are not strongly influenced until the wall temperature is depressed
to the order of 0.1 the stagnation temperature. Then as wall temperature
is further decreased, the heat flux rapidly approaches the limiting value
given by equation (73). Because of strong compensating effects, similar
to those which occur in the cold-wall case at zero yaw, it is likely that
the effect of wall temperature on heat transfer to yawed shapes in equi-
librium flow will be quite similar to that shown in figure L.

CONCLUDING REMARKS

The theory for heat flux to the stagnation region of blunt axially
symmetric shapes in hypersonic flight, which is developed in this report,
is found to agree favorably with other theoretical results and with avail-
able experimental evidence. It is concluded that this theory, though
approximate, preserves the essential functional relationships which influ-
ence stagnation-region heat transfer. A similar analysis is made for the
heat flux to a cylindrical stagnation region at angle of yaw. It is
deduced that wing sweepback should reduce the heat flux per unit area at
the leading edge approximately by the factor (cos A)3/2, if the wall tem-
Perature is held relatively cool. This will reduce the cooling required
to alleviate hot spots and the thermal-stress concentrations induced by
heating in the stagnation region at very high-speed flight. The total
stagnation-region cooling required for a given wing span will also be
reduced in this case, since the heat flux per unit span decreases approxi-
mately as (cos A)1/2,

Ames Aeronautical Laboratory
National Advisory Committee for Aeronautics
Moffett Field, Calif., May 2, 1955
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APPENDIX A
SIMPLIFICATION OF THE y MOMENTUM EQUATION IN REGION 2

The steady-state, two-dimensional y momentum equation (see eq. (2)),
differentiated with respect to y, yields

pu +U——+ p——+ pV —= +

32y 3 dv . dv du v, L, a_v>2
Oxdy Jdy Ox ox oy dy* By By By

P 2 3 [ <g 8v>] - < 5v> S du
S af L .St ay o 2t (2 ) 19 Ly
R S TR G T R [“ S Bx) } (a1)

Now on the stagnation streamline the velocity v is identically zero
and therefore all x derivatives of v are zero. Also, all odd order
y derivatives of functions like density p, viscosity u, pressure p,
and velocity wu vanish since, by symmetry, these functions are even.

In addition, it is assumed that near the stagnation streamline the veloc-
ity u 1s so small throughout region 2 that terms with this factor may
be neglected. With this assumption an additional useful relation can be
deduced from the continuity equation

e e L )

Eliminating the terms with factors u, v, or Jp/dy from equation (A2)
there results, as for incompressible flow,

du = Jv
—_—t - =0 A
it (a3)

Note that all derivatives of the sum Ju/dx + Ov/dy are also zero in the
regions where equation (A3) will hold.

Applying the above considerations simplifies equation (Al) to

2 2 2
pgz>=_a_g_+25_< > [ 8_u+a_v>] (ak)
9y. oy dy? ayax dy ox
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Now it will be assumed, as is usual, that the viscous flow in the region
of the stagnation point of a blunt body is similar to viscous flow at
the stagnation point of a body with infinite radius of curvature insofar
as the velocity derivatives are concerned (i.e., the principle effect of
the body curvature is to determine the magnitude of the pressure deriva-
tives). Accordingly, d3v/dy® and 02%u/dy® will be supposed to vanish
in the stagnation region. Then expansion of the second member of the
right side of equation (Ak4) yields

2(52”'6—\]_‘.2?.&&4_“.6_32)
-a-;zay éyayz ays

in which the only term retained is 2(62u/8y2)(8v/6y). Similar expansion
of the last member of equation (A4) gives

Fp (Au . dv), % +8_2_1>+a_p._ a5 azv>+M u a%)

oxdy \Oy T dy \Oxdy  ox2 ox \dy2  dxdy. dy-dx  dydx-

Note that from equation (A3), 3%u/dy®dx is equivalent to -(33v/dy®) and
will therefore be neglected. The terms retained in this equation, then,
are (Ou/dx)(3%v/dxdy) + n(d33v/dydx®). These terms can be combined into

- = < —= ). Equation (A4) thus is reduced to

o) 8%1> d%p %u dv <§i>2
Ao e e e —_— A
T e Dse L~ PASE (45)

The derivative Ov/dy vanishes at the surface of the body, so that in
the immediate region of the stagnation point, equation (A5) takes on the
approximate from

d %y = 0%p
(5 Bic e Tt

This expression will be taken to hold near the stagnation streamline
throughout region 2.
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APPENDIX B
BOUNDARY VELOCITIES AND PRESSURE DERIVATIVES

For hypersonic Mach numbers, the density ratio across an oblique
shock wave is

Pg 7 + 1

(B1)
Pl g L
then the pressure just downstream of the shock is
2p_U_2cos3c
Pg = O (BQ)

Lot i

where o 1is the acute angle between the shock wave and the normal to the
free-stream velocity vector (see ref. 18). It can also be shown that the
v component of velocity just downstream of the shock is

Vg = 7 Uosin o cos @ (B3)

7g t+

while the u component on the stagnation streamline is

73'1
sl el Um
Vo AL

(BY4)

In evaluating the derivatives, consider a shock wave with radius of
curvature Rg. Let s Dbe the dlstance along this profile measured from
the stagnation streamline and x(s) and y(s) be the equations for the
shock-wave coordinates. Then

av Bv dax E éz dy

BS)
ds T s ds Oy ds (

while

dp » 3P ax ay , @ &x pdy (26)
Bxay ds dS Bx ds?® By ds@
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In terms of the radius of curvature Rg, the differential equations for
. x(s) and y(s) are

1
dx = RS<# - cos a=
Rs
f (BT)
ds
dy = RsSin ‘rs'

and at the stagnation streamline (ds = 0) the following conditions hold

(B8)

il
(@]

dzx l;
b ds2 Rg

Then, at the stagnation streamline, equations (B5) and (B6) become

af) - & (B9)

R T
By‘s

and

9\ _ &% 1 (%
02/ as®  Rg <x> ()

Now by continuity and equations (B3) and (B9)

§‘.1.> o 5_") TR S (B11)
9%/ %/s (74 + 1)Rg
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for two-dimensional flow. For axially symmetric flow the corresponding
relation is

Ly
N e (m2)
X/s T/s (7 + 1L)IRg

According to equation (B2) the first right-hand term of equation (BlO) is

)+ =2
dap o PoVoo (Bl3)

2 2
ds (Rt R-

Rs

equation (eq.(l» which for the nonviscous incompressible flow region on
the stagnation streamline reduces to

while the next term, o | gg) y is evaluated using the x momentum
X
s

op du
-—:_pu—-
dx dx (B1k4)

According to equations (Bll) and (Bl2), equation (Bl4) becomes

SO U

ox (7S + 1)2 Ry (Bl5)

and

?2 = )'"(75 - 1) psUcr:'2 (B16)
x (rg + 1) * Rg

for the two-dimensional and the axially symmetric flow cases, respectively.
Then the corresponding second partial derivatives of pressure are

Fp - 6()e- L)gel, 2

2
oy (7, + 1)°Rs®

(B17)
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and

., ol ziianF
ot & 2
or (75 + 1)2RS

(B18)

Note that 74 can have values somewhat different than 1.4 if vibra-
tional and dissociational energies are excited at the shock wave. The
results of this appendix are consistent if 7s 1s defined by equation (Bl)
from the ratio of densities across the shock wave. When additional energy
modes are excited at the shock wave, this effective value of 7 1is not
exactly the ratio of specific heats.

It can be seen that for the cagse of a yawed two-dimensional body, the
same relations hold as for the body at zero yaw except that the velocity
U, 1is replaced by the normal component of veloeity, Ugcos A. Thus the
yawed two-dimensional body has a second derivative of pressure

2 2
3?p 8 6(2s & l)pSU°2° css A (B19)

dy® & NS

In the above relations the radius of curvature of the shock wave Rg
is yet undetermined. In the limit of infinite free-stream Mach number,
the ratio of shock wave to body curvature, Rs/Rb, might be expected to
approach unity as an upper bound. On the other hand, a value of Rs/Rb
consistent with incompressible boundary-layer solutions may be a reason-
able lower bound. In this regard Howarth (ref. 7) reports that for two-
dimensional flow

dv _ 2Ug
iy R_b (B20)

which, according to equations (B4) and (Bll), corresponds to a ratio

R
ehi- R e (B21)
Rp s - 1

Sibulkin (ref. 19), using a similar analysis finds that

AL (B22)

ay_ERb
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for axially symmetric flow. This corresponds to the ratio

<o [N PG S (B23)
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Figure 1.- Integral of thermal conductivity as a function of temperature.
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Figure 3.- Effect of yaw on heat-transfer rates to the stagnation region
of a blunt cylindrical shape with a cool wall.
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