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SUMMARY

A theoretical analysis is made of a square simply supported plate
loaded in edge compression and sub~ect to creep. The plate is assumed
to be made of a material which obeys a nonlinear creep law. An approxi-
mate solution is carried out with the use of a previously published vari-
ational theorem for creep. The theory does not yield a finite collapse
time but does indicate how lateral deflections and unit shortening due
to creep might be calculated. The results also show that creep cam
cause significant redistribution of the middle-surface stresses in a
plate.

INTRODUCTION

At elevated temperatures, aircraft structural materials may exhibit
the phenomenon of creep (deformation with time at constant load). The
need for aircraft to operate in an elevated temperature environment,
therefore, has increased the importance of considering creep in their
structural design. As a result, interest has been stimulated in the
creep behavior of such structural components as plates subjected to
in-plane edge losds.

Some experimental and theoretical work has been published on rec-
tangular plates mibject to creep. In reference 1 results of creep tests
and an empirical method for predicting collapse times sre presented for
plates loaded in compression on two opposite edges and with the remaining
edges unloaded and supported in V-groove fixtures. Other approximate
methods for handling plates having various types of edge support are
suggested in reference 2; however, experimental verification for these
methods is quite limited.

In reference 3 an analysis based on small-deflection theory is made
of the creep deflection of a simply supported plate composed of a linear
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viscoelastic material - that is, a material in which the stress end
strain and their appropriate time derivatives are related in a linear
fashion. Unfortunately, most st,ructwralmaterials do not exhibit the
properties of linear viscoelasticity. The creep relation is usually
nonlinear; for exsmple, it is sometimes expressed by a power relation-
ship between strain rate and stress.

A vs.riationaltheorem given in reference 4 provides a way of over-
coming some of the difficulties caused by the nonlinear creep law. This
theorem facilitates approximate analyses for plates of nonlinear mate-

s.—

rials by the direct methods of the calculus of variations. One such
analysis utilizing this variational theorem is presented in reference ~ 4

for a sandwich plate. A solution is given in the present paper for a
-..

square simply su~orted solid plate loaded in compression along two -
—

opposite edges. In this investigation all edges of the plate sre
—.

required..toremain straight and in the original plane as the plate

b

be

E

e

deflects.

SYMBOLS

width or length

effective width

Young’s modulus

unit shortening

—

of squsre plate

of.plate

z
of plate

eE=—
‘cr

ecr

F

f

h

I

unit shortening at elastic buckling load,

function of J2 smd

unit displacement of

thickness of plate

t (see eq. (10))

plate side edges

denotes various integrals defined in equa-
ti0n8 (25)

.
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J2

k

n

P
a

F=+-
cr

Pcr = acrbh

s

%

s~

Sij

5
l.l,vjw

v

w==’
h

‘I-libw~=—
h

‘hi

3

second invarisnt of stress deviation tensor,

$ Sijsij

constant in creep law (see eq. (U))

exponent in creep law (see eq. (lL))

total compressive load on plate, positive in
compression

area of a surface

surface where displacement rates sre prescribed

surface where stress rates sre prescribed

stress deviation tensorj ~ij -~u 531&iJ

surface traction

prescribed surface traction

time

displacements of the middle surface in x-, y-j
and z-directicms> respectively

displacement vector

srbitrary coefficients in equations (19)

volume

smplitude coefficient of initial hperfection
of plate (see eq. (A4))
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X,y,z

xi

Yxy

%=7

7Xz~xz . —
2

‘cr

plate coordinates

plate coordinates in tensor notation

shear strains in w-, Xz-} and yz-directions,
respectively

ICroneckerdelta

strain tensor

noncreep portion of strain tensor

creep strain tensor

strains in x-, y-, and z-directions, respectively

dimensionless coordinates; y, Z& ;,

respectively

constsnt in creep law (see eq. (11))

Poisson’s ratio

quantity to be varied in a variational theorem

quantity to be vnied in Reissner’s variational
theorem

elastic buckling stress for square plate,

n

*

()~fihp 1
T- 3(1 -L@) .

.
w
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~i~ stress tensor

ffx$ay stress in x- - y-directions, respectively,
positive in tension

‘x00>‘xK)s %1> ‘xl.11 axb>~>

1 arbitrary coefficients in equations (20)

T

Macr%k
the psrameter,

3n

‘w shear stress in planes parallel

@>*>~ quantities defined in equations

to xy-plane

(22)

Bar denotes a dimensionless quantity.

Dot denotes differentiation with respect to time.

instsmce,

Comtns.

respect to

Repeat~d.lett~rasubs@pt d~n?tes summation over 1, 2, 3; for
~iTi = uIT1 + u2T2 + U3T3.

preceding a stiscript denotes partisl differentiation with
ai~

x with that subscript; for instance>
.
~k,i = —m

?bc~

ANALYSIS

Statement of Problem

The plate considered in this investigation
me 1. It is a square flat plate compressed in

is illustrated in fig-
its plane along the two

edges parallel to the y-axis. All edges are assumed to be simply sup-
ported snd to remain in the original.plane of the plate. The loaded
edges are assumed to be constrained to remain straight and to be free
of tangential stresses; that is, the plate is loaded by means of a pair
of rigid frictionless loading platens. The unloaded edges also are
assumed to be constrained to remain straight and free of tangential

4 stresses and me free to translate in the plane of the plate. The load
application is assumed to be sufficiently rapid so ‘thatthe creep which

‘9
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occurs during loading is negligible
effects also are negligible. After
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but sufficiently slow so that dynsmic
the total.load is ap@ied it is

assuned to remain constant with time. The history of the lateral deflec-
tion, unit shortening, and middle-surface stresses are desired subsequent
to losd application.

The boundary conditions, which sxe considered to hold for all time,
can be written in mathematical.form as follows: ,

For constant displacement,

( )al *:,y

For zero deflection,

For zero moment,

W(+g,y) .W(’,*:)..O

For loaded edges,

~;&”’@Y,$@ dz = -,

For shear stress,

Jy%(%+=-J;.x+++=o

(2)

(3)

(4)

(5)

.

.

.
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Variational Theorem

In this analysis the variational theorem presented in reference 4
is utilized. This theorem differs from the usual variational theorems
for potential energy and complementary energy in that instead of vsrying
stress and strain the stress rates and strain rates are varied. In this
respect the theorem is similar to those presented in reference 6. Fur-
thermore, in the variational theorem of reference 4, stress rates and
displacanent rates can be approximated independently; in this respect
the theorem is similar to that of Reissner in reference 7. The theorem
of reference 4 is stated here in general form and stisequently reduced
to a form appropriate for the present problemby incorporating strain-
displacement relations and a creep law.

General statement of theorem.- The variational theorem of refer-
ence is stated as follows: If the stresses and strains are lmown
throughout a body at a given instant of time, then the stress rates
and strain rates existing at that instant are given by b~ = O where

(7)

In the first term of the volume integral., gf~ is expressed in terms

of displacements and displacement rates. ti the third term of the
volume integr$, <i is expressed in terms of stresses and stress

rates, and &ij is expressed in terms of stresses and time and is

independent of stress rate. The variations are to be carried out only
with respect to time derivatives of quantities.

Strain-displacement relations.- It is assumed that lines which are
originally normal to the middle surface remain normal during the deflec-
tion of the plate. As a consequence, the strain-displacementrelations
canlbe written as follows:

2

()

au law a2w
Gx=—+—— -z—

ax 2Zhc
ax2

(8a)
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(8b)

.i?L3+&+&?L2z&2% ‘7-J ay ax axay (8c)

E.z = 7X2 .yyz=o (8d)
Equations (8) are the strain-displacementrelations consistent with the
Von Karman equations for large deflections of plates. The time deriva-
tives of equations (8) are

—

.

.
;Z = ?’~z.;w=o

.—

(9C)
.-

b

(9d)

Creep law.- In the formulation of the variational theorem, it is
assumed that the total strain ~ be separated into an elastic-plastic
part ~~~ and a creep part eij. Plastic strains are neglected in the

present investigation; thus, ~~j is given in terms of stress by Hooke’s

law. The functional relation between the creep rate tensor and the
stress tensor and time may be assumed as follows:

. If

~ij ()=F J2,t Sij (lo)
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where Bi.J 18

tensor by

9

the stress deviation tensor and is related to the stress

Sij = cr~j-$ %Pij

Equation (10) reflects the fact that creep strains appear tobe inde-
pendent of hydrostatic stress. The form of F is taken to be

F= XJ2%tk-1 (11)

where A, n, and k are material.”constants. The symbol J2 repre-

sents the second invariant of the stress deviation tensor and is given

by J2 = ~ S1jS~j. The power function of J2 is suggested in refer-
.

ences 8 and 9 where some eqeri.mental support is presented for it. The
power function of time provides an approximate way to account for primary
creep.

Equation (10), of course, applies to three-dimensional creep prob-
lems. A two-dimensional form applicable to plates can be obtained when

and

and it is written as follows in engineering notation:

(
n

.11 .11
A UX2 + # - ax% + 3T~2

% =Ex=—
3

(2UX - C@ktk-1
3n

1

( 2
)
n

.1? .11 - Uxay + 3TW2

?22”%’$ “X2+% sn
(2W - CrX)ldk-l

}

(u)

.11 .11
2E~2 = 7W .; )

n
~x2 +

%2 - ax% + 3TW2
(2Tw)ktk-1

3n I
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In the one-dimensional case

T12 = Tw may be set equal

● V1
ex
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the additional stresses az G ay and

to zero, and the following equation results:

(13)

Form of theorem appropriate for present problem.- With the use of
the strain-displacementrelations and the creep law presented in the
previous sections, the variational theorem cm-be reduced to a form
appropriate for the problem under consideration. When equations (9) are
used, the first term in the volume integral of the equation for H
(eq. (7)) becomes

Notice that to obtain equation (14) the fact that

The second term of the volume integral in equation
lowing expression when certain terms are neglected

(14)

‘m = ‘w ‘s ‘cd”
(l’) yields the fol-
to be consistent

-
with ;quaiions (8):

[) ()
.2.2

~ fik,ifik,jaij
.l&

. .

Zax
1

“x+ $ “Y+2Z$’XY

The third term of the volume integrel becomes:

(15)

(16)$‘~J&iJ‘k(f’ ‘:)-: ‘X’Y+WXY2 ~
The final term in the volume integral.,the creep term, becomes:

●11 ●

( )[
=~F J2,t (2ax - ~)~ + (2% -~ijaij 3 1ax)3Y+6Tw-+~(17)

4

—

.

—

.
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, 11

when equation (10) is utilized to ~ress EU in terms of stress

snd time.

The two surface integrals in the eq~tion for II (eq. (7)) remain
to be considered. Displacement rates me not prescribed anyWhere on
the boundaries of the plate. The surface integral over ~, therefore,
maybe discarded. The other surface integral, the one over Su, must
be modifiedto account for the loading condition and the requirement of
straight edges. The correct mo~~ication is to replace the surface
integral over Sa by the term Peb where P represents the total load

on the plate and e represents the plate unit shortening.

When equations (14) to (17) are substituted into
(eq. (7)) and the correct modification of the surface

is used, the fo~owfng expression appropriate for the
consideration results:

(a&i+a++awa++aar——— .
&axaxaya Kay

awa+ )p%;’——-
axax ax2

)-2z&+q+

the equation for
integral over

problem under

I-I

+

q%- .Y)ix+(2%- ax)ay+6Tw+wdxdydz -,,, (,,,

1}
J

Method of Solution

ARayleigh-Ritz type procedure canbe used in conjunction with
equation (18) to obtain an approximate solution to this problem. Reason-
able assumptions are made for the stresses, displacements, stress rates,
and displacement rates in the plate. These assumed distributions contain
certain =bitrsry parameters and the time rates of change of these arbi-
trary parameters. When the assumed distributions are mbstituted into
the expression for 11,integrations over the volume of the plate canbe
carried out. Then a system of equations is obtainedby equating to zero
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the variation of the resulting expression for II with respect to varia-
tions in the time rates of change of the arbitrary parameters. These
equatio~.are, in general, nonlinear ordinary differential equations of
the first order with time as the independent.variable. Numerical methods
are available for the solution of such systems when appropriate initial
conditions are known.

Derivation of Differential Equations
●

Assumed stress rates and displacement rates.- The boundaxy condi-
tions considered in this report are the ssme as those of reference 10.
Therefore, the displacement functions assumed in reference 10 are used

%.

as a guide in choosing the displacement-rate and stress-rate distribu-
tions. The middle-surface displacement rate-sme assumed to be the
time derivatives of the displacements of reference 10:

Ycx
+=

fly
birU COS — COS ~

b

(19)

In choosing appropriate stress-rate distributions, some assumption
must be msde regsrding the variation of stress through the thickness of
the plate. As pointed out in reference 4, this variation is not neces-
sarily linear even though the strain variation is assumed linear through
the thiclmess. Calculations of creep of columns, however, suggest that
in certain cases the nonlinearity of the stress distribution may not
seriously influence the lateral.deflection and unit shortening. on this
basis, it is assumed that a linear variation of stress rate with z is
a sufficiently accurate first approximation for plates, and the stress
rates me taken as follows:
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The displacement rates (eqs. (19)) and the stress rates (eqs. (20))
satisfy the time derivatives of the boundary conditions given by equa-
tions (~) to (6). It is in these assumptions for the stress rates and
displacement rates that this investigation differs from that of refer-
ence 5. In reference 5 the simplified assumptions are made that the”
stresses are related to the lateral deflection in the same manner as
that of the elastic buckling of a plate under compression in one direc-
tion. This procedure allows all the unknown coefficients to be written
in terms of Wll, the lateral deflection coefficient. The vsriation

of IT,then, leads to a single differential equation in Wll instead

of the system of simultaneous differential equations in wll~ulo~ull~. . ●>
>

am,afio,. . . which result from the present ansllysis.

Variation of H.- When equations (19) and (20) are substituted into
equation (18) and certain of the integrations are carried out, the fol-
lowing ~ression results:

{(

.

‘“”)+$Qk(&<--

Un++u.

I-b% ‘~+;~+~;~~o+~~ +
~u .

~~+~~n. ~

J J

The syoibols ~, q, and ~ represent
the x-, y-, snd z-directions, and the
given as follows:

the dimensionless variables in
functions @, ~, and e are

.

.



2crxw - ayoo + (2UX1O - %10) ‘Os 2~ + pkol -

When the
the following

operations indicated in equations (23) are performed,
system of 19 ordinsry differential

(23) “

equations is obtained:

(24a)

= o (2hb)



(24d)

(24e)

(24f)

(24g)

(24h)

(24i)

(24z)

(24M)

(24n)

(240)

.
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(

.
VII . 6X11

)(
m + +Wll ‘Xol ~xll +

— ffxol.— +~lo - /2 +%l%oc)+y-—
2 2 4

~ylo

)(

flyll+%yll +LE; “
- 2+W) ‘ 0

(24p)
2 4 2 6b xb+ayb

.

The integrals I in equations (24) are for various cotiinations of the
stress parameters and are defined as follows (note that these eqs. do G—

(25)

/

where dV = d~ dq d(, and the integration is to be performed throughout
the volume of the plate - that is, over ~ from -1/2 to l/2 and over 6

and TI from -fl/2 to 3-c/2.

The system of equations (eqs. (24)) contains all theunknown coef-
ficients in the stress-rate and displacement-rate distributions. These —

u

.
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u

.

.
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equations conceivably can be solved for all these coefficients. In this
investigation, however, equations (24b); (24f), and (24h) are not used
since the desired information on lateral.deflection, unit shortening,
and stress distribution can be obtained without them.

In order to start the numerical solution, the initial conditions
or the conditions at time zero @st subsequent to loading and before
creep has commenced are required.
in the next section.

Iilitial

Because of the nature of the

These conditions are discussed briefly

Conditions

load-application process assumed in
this investigation, the initial conditions for the creep solution - that
is, the conditions just subsequent to loading and before creep cmmnences -
can be obtained from a solution of the problem in which creep is neglected.
If the applied load is below the elastic buckling load of the plate, it is
necessary to take into account an initial imperfection of the plate in
order to initiate lateral deflection due to creep. If the a~lied load
is above the elastic buckling load, it may be possible to disregard
initial imperfections. In this report, however, an initial imperfection
is assumed to exist in either case.

The initial conditions sre derived in appendix A. The results of
the derivation are contained in equations (A7n) and (A8) to (All).

Preparation for Numerical Solution of Equations

Simplification of differential equations.- Certainof equations (24)
are now solved to obtain *11 and the stress-rate coefficients in terms

of the stress coefficients. Equations (24c) and (24g) yield

(26)
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From equations (24-e)and (24j)

}

From equation (242)

E

(

fi2h.
+* = -— —–wlll+~2b

)

+ 61@

The initial conditions give %11 = ayll = Txyll at time zero

eq. (A7n)), and equation (24ru)states that 6XU =

Consequently,

Cfil = cy~ = -rwll

for all time. When equations (29) are considered,
(24i), snd (24k) can be solved to obtain:

iyll ‘

Equations (26), (27), (28),
find *ll. The result is:

u

( )-E % + %11 + Lyll

6@ = +Wlp

equations (24d),

snd (30) are now used in equation (24P)

( )+q+ixb+%)-i+%’]qJ- %01 + W.
Wll =

312 2 ~ “xOO , %1 + “Y1O , “m
T ‘II =_ 2E Y

(27)

(28)

(see

(29)

(30)

to

(31)

The history of
obtained by solving

lateral deflection snd stress distribution can be
simu~taneous~ equations (31), (26), (27), (28),

A

*

.
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and (30). Unit shortening
The initial conditions are

maybe obtained by utilizing equation (2ha).
given in appendix A. The solution of this.

system requires considerable numerical calculation since, in general,
the required integrals (eqs. (25)) have to be evaluated numerically.
For two cases, however, it is feasible to carry out the integrations of
equations (25) analytically; thus the calculation is simplified. These
two cases, representedby n = O and n = 1 in the creep law (see
eq. (11)), are considered in this report. The case of n = O is equiv-
alent to a material.having an exponent of one in the unisxial power creep
law, that is a linear viscoelastic material, and is comparable to the
solution in reference 3. The case of n = 1 is equivalent to an expo-
nent of 3 in the unisxial power creep law smd, of course, represents a
nonlinear material.

Dimensionless form of equations.- It is convenient to write the
system of differential.equations and initial conditions in dimensionless
form. For example, in equation (31) the numerator and denominator on
the right-hand side may be dividedby ecr, and both sides of the equa-

AEU(ar2%tk-1
tion may be dividedby The remaining equations of interest

3n “
may be nondimensionalized, and the resulting system of differential equa-
tions is:

d~xol 3(1 - U2) w 3- 27x01—=
dT 4 dT

(32c)

(32e)

.

.
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coefficients (represented
ficients dividedby Ucr,

integrals I dividedby

The initial
in dimensionless

by the symbo~s with bars) are the stress coef- ●

and the dimensionless integrals ~ are the

‘c@%r~ktk-l

3n “

conditions (eqs.
form as follows:

(A7n) and (A8) to (All)) cam be written

I@ =o

=01 = ~ylo ‘
3,1 ; A(W2 - W,2)

- XL_L!a(w- w~)‘xyb = 2

(33)

/

Numerical methods are available for solving systems such as equations (32).
Two of these methods, the modified Ner method aad the Runge-Kutta method,
are described in reference 11, and the latter was used to obtain the cal-
culated results presented in this paper. me pertinent integrals in
equations (25) have been evaluated for n =.0 snd n = 1 and the results =
are pr~sented in appendix B. —

.

.
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Unit Shortening and Effective Width

One interesting feature of this analysis is the possibility of cal-
culating the history of the unit shortening of the plate. By ccmhining
equations (24a) and (A7a) and writing in dimensionless form, the following
expression is obtained for 3, the ratio of the unit shortening at a given
value of T to the critical unit shortening”for the plate:

(34)

When the latersl deflection coefficients and stress coefficients are
known from the solution of equations (32), the history of F can be
calculated from equation (34).

Closely associated with unit shortening is the concept of effective
width. An effective width for a plate subject to creep maybe defined
analogous to the effective width of a buckled elastic or elastic-plastic
plate. That is, the effective width at a given time and unit shortening
is that width of plate which would support the actual load on the plate
if the stress were uniform and equal to the
creep law at the given time and at a strain
shortening. In syuibolsthis definition can

be FXoo
—=
b— ~c2

stress obtained from the
equal to the given unit
be written as:

(35)

where be is the effective width of the plate, and ~c2 is the stress

obtained from the creep law at the unit smartening and time associated
with the actual plate. The proper value of ECz in equation (35) can

be foundby substituting the appropriate values of ~ and T

tion (34) into the unisxial creep law, which, in

(

F=-— Ucz i-~ T6CZ

)

a+l

3

dimensionlesss
from equa-
form, is

(36)

Equation (36) has only one real

no matter what integer value n
then, is the required value of

bination of T and ~.

root for ticz,and this root is negative

takes. ~s root of equation (36),
GCz in equation (35) for a given com-
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RESULTS AND DISCUSSION I

Brief calculations were made of the lateral deflection history at
the center of the plate as a function of the time parsmeter T for a
plate composed of a linear viscoelastic material.. For a plate with a
cubic uniaxial creep law, more extensive calculations were made of his-
tories of lateral deflection, unit shortening, and effective width as
functions of T. These calculations consisted of solving numerically
for the lateral deflection and stresses from equations (32) and initial
conditions (eqs. (33)). For most of the calculations involving a non-
linear material,the lateral deflection and stresses were ca.lculatedby
using the Runge-Kutta methd and an IBM type &O electronic data proc-
essing machine. Then it was possible to calculate unit shortening from
equation (&) and effective width from equations (35) and (36).

.

—

In the calculations for a nonlinear material the applied load Was
varied from 0.4 to 1.2 times the elastic buckling load. An initial
imperfection of 0.01 times the plate thickness was assumed for each
value of applied load. In-addition, for an applied load of 0.8 tties
the buckling load, three other initial imperfectionswere assumed, ran@g
from 0.001 to 0.03 times the plate thickness. Some discussion of these
results is presented in the succeeding paragraphs.

—

Lateral Deflection

The results of the lateral deflection calculations are shown in fig- .
ures 2 and 3 where latersl deflection at the center of the plate divided
by plate thickness is plotted against the time parameter T. In figure 2
a comparison is made between the results of the present calculations and .

the theory of reference 3 for a linear viscoelastic material.(n = O).
These calculations were made for an appliedload equal to 0.4 times the
elastic buckling load and an initial imperfection at the center of the
plate of 0.01 times the plate thictiess. The curve labeled “Present
theory - small-deflection”was calculated with the large-deflection terms
in equations (8) neglected. This result should compare directly with
that of’reference 3 which also is a small-deflectionanalysis. The dis-
crepancy can be attributed to the fact that the unisxial and pol.yaxial
creep laws used in reference 3 sre compatible only for an incompressible
material and, therefore, the application of.the theory of reference 3
to a compressiblematerial is not strictly correct. The results in fig-
ure 2.are typical-and give a qualitative indication of the comparison
for other applied loadings and initial imperfections. Finally, figure 2
illustrates the divergence of the small-de~ection theory from the lsrge-
deflection theory.

+

.
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Results for a plate material having a cubic unisxial creep law
(n = 1) are shown in figure 3. A comparison between small- and large-
deflection theory for the nonlinesr material is also shown in figure 3.
Various applied load~s and, for one loading, various initial imperfec-
tions are included in this figure.

Results are plotted up to a lateral deflection of twice the plate
thickness, although calculations were carried consider~ly beyond this
point in some cases. Beyond a lateral deflection of twice the plate.
thickness, the accuracy of the assumed deflection shape in approximating
the deflection at the center of the plate becomes questionable.

.
In theoretical analyses of the creep behavior of columns, it has

been the usual.practice to define a collapse time as being that value
of time at which the lateral deflection or lateral-deflection rate becomes
infinite. A column made of a linesr viscoelastic materisl does not exhibit
such a collapse time but a column made of a nonlinear msterisl does. Sim-
ilarly, the results of the plate calculations for a linear material do not
yield a collapse time. The lateral deflection curves shown in figure 2
continue to increase with T but become infinite only for infinite T.

The plate calculations for a nonlinear material do yield a collapse the
if small-deflection theory is used. The curve for small-deflection theory
shown in figure 3 illustrates this situation. This curve approaches
infinity asymptotically as indicated by the vertical dash-dot line. This
collapse time does not occur, however, until long after the small-
deflection theory has become invalid. The method suggested in refer-
ence 5 also yields a collapse time. The calculations from the present

. theory for a nonlinear material and based on large-deflection theory, on
the other hand, do not yield a finite collapse time. The lateral deflec-
tion in this case increases with time, but infinite deflection does not.
occur until infinite time.

The results shown in fig.ue 3 for various initial hperfections at
~ = 0.8 indicate that initial imperfections ~ have a significant
influence on the plate creep deflections. The influence of applied load
on creep deflections, however, is considerably more important than that
of initial.imperfections. Results similsr to these have been reported
in column creep studies (ref. 12).

The curves in figure 3 for various init~d imperfections at ~ = 0.8
are very nearly parallel. That is, the curves for the larger values
of Wi can be obtained closely (not ~actly) by a simple translation to
the left. At a given value of W the slopes of the curves for W
plotted against ‘T for
independent of Wi. In

. magnifiedto illustrate

a given value of ~ appear to be practically
the lower pert of figure 3 the T scsle is

this situation.
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Unit Shortening and Effective Width

flAC!ATN b3g8

The calculated unit shortening of the plate as a function of T

is presented in figure 4. Note that the T scale is magnified for
clarity in the lower part of this figure. The dashed lines were &omputed
from the uniaxial creep law which can be written in dimensionless form
as:

() 2 ‘3TZ=-F+-a
3

(37)

If the initial.imperfection is sufficiently small and the applied load
is less than the elastic buckling losd, the wit shortening curves start
out very nearly identical to the creep law and diverge smoothly from the
creep law. The unit shortening curves become identical to the creep
curves if the initial hrperfection.goesto zero. Thus when T is small,

the creep law csm provide a first approximation to the unit shortening
as might be expected. For applied loads higher than the elastic in.d.sling
load, such an approximation may not be valid--asthe unit shortening curves
start out above the creep curves.

A plot of effective width divided by actual width of plate against T
is presented in figure 5. Again, in the lower portion of the figure the T

scale is magnified for clsrity. It is seen that creep may cause a signif-
icant decrease in the effective width of a plate.

Stress Distribution

Zn figure 6 are pr~sented the middle-surface stresses-alongthe
edges of a plate tith P = 0.8 snd Wi = 0.01 at two values of T.

As a result of creep there canbe considerable redistribution of middle
surface stress as time increases. Along the edges of the plate which
are subjected to the applied load there is a tendency for the stresses
at the edges to increase and the stress in the center to decrease. Fur-
thermore, as creep progresses, significant stresses can arise along the
so-called unloaded edges of the plate provided these edges are constrained
to remain straight. The middle-surface stress distribution in a square
plate undergoing creep, then, rese?iblesthat in a buckled elastic plate.

Collapse The .._

—

.

.

.

●

�

As previously mentioned, the large-deflection analysis in this report
does not yield a finite collapse time for t~e plate of a nonlinear material.. -
It is known from experiment (ref. 1) that plates supported in V-groove Tix- ““ =
tures do.collapse in finite t- when s~ject to creep. The V-grouve

.
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fixtures approximate the simply supported edge condition but do not pro-
vide the straight edge constraint assumed for this analysis. This assump-
tion of straight edges seems to be more realistic thsm the V-groove sup-
port in approximating a portion of sheet lying between stiffeners in
certain multiple bay stiffened panels, for exsmple. Although a plate
which satisfies the edge conditions assumed in this analysis may last
longer than a V-groove supported plate, it does not seem reasowble that
such a plate would never collapse. These matters probably cannot be
clarified without further experimental work.

An actual plate or column, of course, always has finite deflections
and strains even after collapse. The usual definition of collapse time
appears reasonable for a column because calculations show that infinite
deflection rates or strain rates are approached while the theory is still.
supposed to be a good approximation of reality. T&results of the pres-
ent investigation indicate that this situation is not valid for plates.
Perhaps some additional considerations are required before a satisfactory
theoretical description of plate creep collapse canbe given.

There is a similarity between the results of the present analysis
and the results of reference 10. b that investigation an analysis was
made of a plate which was buckled in the elastic rsmge and then compres-
sed into the plastic range. It was found that no maximum load,resulted
from the analysis. In reference 10 possible chsmges in buckle pattern
which occur in experiment were not taken into account. Such changes
have been ruled out of the present analysis, and this assumption maybe
satisfactory for a square plate. Some consideration probably shouldbe
given to this phenomenon, however, in the study of the creep of rectangular
plates with aspect ratios other than unity. Another possible refinement
in the present analysis is the use of an 5mproved stress distribution
through the thichess of the plate. In addition, modification of the
creep law or the values of the constants in the creep law may be required
at large creep strains.

Even though a theory does not yield quantitatively useful results,
it may aid in finding parameters which correlate test data. The present
theory suggests that a useful correlation might result from a plot of ~
against’the time parsmeter T with the experimental collapse time sub-
stituted in place of t. In such aprooedure perhaps it could be assumed
that initial imperfections would not be widely different for flat plates
manufactured by similar methods. It is interesting to IIOte that T is

a simple parameter which includes material properties and plate geometry
and csm be obtained directly from the creep law without recourse to an
elaborate theory.
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CONCLUDING REMARKS

An analysis has been made of a square plate composed of a material
subject to creep. The plate is assumed to have small initial hnperfec-
tions. The material is assumed to follow a genersllizedpower creep law
which accounts for the biaxial state of stress. Calculations have been
made for a value of the exponent in the generalized creep law which cor-
responds to an exponent of 3 in the uniaxial power creep law and for a

.

linear viscoelastic plate.
.

8 —

Calculations based on small-deflectiontheory end a nonlinear material -
yield a collapse time - that is, a finite time at which the lateral deflec-
tion becomes infinite. The more refined csl~tiationsbased on lsrge-
deflection plate theory, however, do not yield a finite collapse the.
Test results show that plates su~orted in V-groove fixtures do collapse
in finite time. The assumptions underlying the present theory, however,
seem to be more realistic than V-groove supports for certain types of

.-

plates which might be encountered in practice. Thus, the theory indicates
the possibility that certain practical plates may carry a given load sig-
nificantly longer thsm geometrically similar V-groove supported plates.

.—
.-,

It is found that slthough initial imperfections have a significant
influence on creep deflections, applied load.has afich Stronger influ-
ence. Creep in a plate can cause considerable redistribution of the
middle-surface stresses. Along the loaded edges of the plate the stresses
tend to increase at the ends and decrease in the center. In addition,
significemt stresses can grow along the unloaded edges provided these
edges remain straight. Finally, as creep progresses, the effective width
of the plate is reduced.

w

Langley Aeronautical Laboratory,
I?ationalAdvisory Committee for Aeronautics,

Langley Field, Vs., July 23, 1958.

.
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APPENDIX A

DERIVATION OF INITIAL CONDITIONS

In this appendix the initial
derived. These conditions define
plate just subsequent to the load
of creep. Thus, it is an elastic
here.

conditions for the creep solution are
the state of stress and strain in the
application but prior to the beginning
solution with no creep which is sought

Reissner’s Frinciple

An a~roximate elastic solution canbe obtainedby the use of
Reissner!s variational theorem. (See ref. 7.) The form of the theorem
appropriate for the present problem can be stated as follows: The state
of stress and displacement which exists in the nlate is determined bv.
the variational e&ation ~~R = O where -

ihq aq
~z a2w + Zz ~2wL—— -

hay hay ) [1 ax2 + ~y2
axayr~-z

- 2wcfxcfy+

112(1 + ~)Tw2 dxdydz-Peb

In equation (Al), Wi represents

A Rayleigh-Ritz procedure is

(Al)

the initial imperfection in the plate.

used to obtain a soltiion. *atial
distributions, which contain arbitrary coefficients, are assume~ for the
displacements and stresses in the plate. These expressions are substituted
into the equation for ~R} and the variation of ~R is equated to ZerO.
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This procedure is the ssme as equating to ze~o the
of ~R with respect to each unknown coefficient.

NACATN 4398

prtial derivatives
There results a system

of simultaneous linear algebraic equations which determine the unknowqs.

Assumed Displacements snd Stresses

The displacement and stress distributions are taken as follows:
\

( )2W sin%u= -ex+bulo+u~cos —
b

V=fy+ (b ’01 + ’11 Cos

Cos ~ C!os y

(A2)

These distributions are the same as equations (19) and (20) except the
dots are omitted. Here, of course, the assumption of a linear variation
of stresses in the .z-directionis consistent with elastic materisl
behayior. The initial imperfection is assumed to be in the same shape
as-the lateral deflection in equations (A2), that is:

Algebraic Equations for

(A4)mCos —
b

Coefficients

are substituted into equationWhen equations (A2), (A3), and (A4)
for fiR and the indicated integrations performed, there is obtained:

.

.

●

(Al)
.

.
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~2

[

-Uxme

Uxol - %1

2

+

axllull
2 T@.) ‘:% -W1.XX.+

+ ayllvll - ’11 + ‘U

2

- 2TWb
)(

CX102 + a ~02
ayb - & u~z 2+ c~() + +

2 2

UQ12 + uy~ 2 ~xb2 + ~b2

)(

~xlouylo + ~xol~yol+
4

+ ~ aaouw +
12 2

The conditions

~R

aa~

which the @own

After the operations indicated in equations (A6) sre performed, some
algebraic manipulation leads to the following 19 equations:

+

+

(A5)

(A6)

(A~a)
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(A7b)

(A7C)

(A7d)

*

(A7e)

(A7f)

(A7g)

(A7h)
.

(A7i) .

(A7~)

(A7@

( =Xol ) (,‘1O lh+* +--a
)6b xb+ayb-2TX@ =0

(A7Z)
Wll axoo + ~

hba~ = -p ‘(Am)
.

= ado = ayol ‘ axll = ‘Yll ‘ ‘Wll = 0
(A7n)

am .
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Solution of Algebraic Equations

Not all of equations (A7) sre required to obtain the information
needed in this investigation. The procedure is to solve for the stress
coefficients in terms of Wll and Wlu and then to substitute these

expressions into equation (A72). Thus, there is obtained an equation
from which Wu at time zero can be calculated.

From equations (A7c) and (A7g):

Efi2

( )%1 = ~lo = ~ %2 - Wi2

The simul.t~eous solution of equations (A7e] and (A7J) yields:

(A8)

(A9)

From equation (A~) the follcnchg is obtained:

Efi2
‘xyb = -

-(m : ‘u - ‘hi)
(Ale)

When equations (A8), (A9), and (AIO) are stistituted into equation (A7Z)

and use is made of the fact that ~ = - ~ (eq. (A7m)), the res~t

can be written as follows:

where ~ is the ratio of the applied load to the elastic buckling load.
The positive real root of equation (All), which”canbe obtainedby trial
and error, gives the initial.condition for Wll - that is~ the value

of Wll inunediatelystisequent to the load application. The initial

conditions for the stress coefficients can then be calculated from equa-
tions (A8), (A9), and (AIO).
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APPENDIX B

RESULTS OF EVALUATION OF INTEGRAZS

REQUIRED FOR CALC!ULKTIONS

In order to perform the calculations for this report the integrals ?
in equation (32) and equation (34) must be evaluated for the proper values .

of n, the exponent in equation (11) for the function F. The results
are as follows: .

For n = O (linear viscoelastic material)

% = 2%’;3“
%yll7..11 = ~

—
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()215–
7 — Crfil
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,.4} -*[,X, -.,.)2 +’bq -*[.* -Gmy+

7-2]‘W%’2-’=.2)+7-’2(=”1) .
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—

-(Iqll –
‘ylO=yb8 - ‘m’=b) + %(%
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Figure 4.- History of unit shortening of square plate made of a non-
linear material. n=l; V= O.3.
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Figure 5.- History of effective width of square plate made of a non-
linear material. n = 1; p = 0.3.
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