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TECENICAL NOTE 4398

ANATYSTS OF THE CREEP BEHAVIOR OF A SQUARE
PIATE LOADED IN EDGE COMPRESSION

By Harvey G. McComb, Jr.
SUMMARY

A theoretical analysis is made of a square simply supported plate
loaded 1n edge compression and subject to creep. The plate 1s assumed
to be made of a material which obeys a nonlinesr creep law. An approxi-
mate solution 1s carried out with the use of a previously published vari-
ational theorem for creep. The theory does not yield a finite collapse
time but does indicaete how lateral deflections and unit shortening due
to creep might be calculated. The results also show that creep can
cause significent redistribution of the middle-surface stresses in a
plate.

INTRODUCTION

At elevated tempersatures, alrcraft structural materials may exhibit
the phenomenon of creep (deformation with time at constant load). The
need for elrcraft to operate in an elevated temperature environment,
therefore, has increased the importance of considering creep in their
structurel design. As a result, interest has been stimulated in the
creep behgvior of such structural components as plates subJected to
in-plane edge loads.

Some experimental and theoretical work has been published on rec-~
tanguler plates subject to creep. In reference 1 results of creep tests
and en empirical method for predicting collapse times are presented for
plates loaded in compression on two opposite edges and with the remaining
edges unloaded and supported in V-groove fixtures. Other approximate
methods for handling plates having verious types of edge support are
suggested in reference 2; however, experimental verification for these
methods is quite limited. '

In reference 3 an analysis based on small-deflection theory is made
of the creep deflection of a simply supported plate composed of a linear
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viscoelastic materisl - that is, a materisl in vwhich the stress and
strain and their appropriate time derivatlves are related in a linear
fashion. Unfortunately, most structural meterials do not exhibit the
properties of linear viscoelasticity. The creep relation is usually
nonlinear; for example, it 1s sometimes expressed by & power relation-
ship between strain rate and stress.

A varietional theorem given in reference U provides & way of over-
coming some of the difficulties caused by the nonlinear creep law. This
theorem facilitates approximate analyses for plates of nonlinear mste-
rials by the direct methods of the calculus of varistions. One such
analysis wutilizing this varistional theorem ls presented in reference 5
for a sandwich plate. A solution is given in the present paper for a
square simply supported solid plate loasded in compression along two
opposlte edges. In this investigation all edges of the plate are
required to remain straight and in the originel plane as the plate
deflects.

SIMBOLS
b wldth or length of square plate
be effective width of . plate
E Young's modulus
e unit shortening of plate
e =-S5
€cr
oy unit shortening at elastic buckling load,
&
o/ 30 - 2
F function of Jo and t (see eq. (10))
£ unit displacement of plate side edges
h thickness of plate
I denotes various integrals defined in equa~

tions (25)

»
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Jdo

U, V,W

Uy

U30:Y13V01eV11o¥11

v

second invarient of stress deviation tensor,
Loy

constant in creep law (see eq. (11))

exponent in creep law (see eq. (11))

total compressive load on plate, positive in
compression

area of a surface
surface where displacement rates are prescribed

surface where stress rates are prescribed
1
stress deviation tensor, 013 --3 ckkaij

surface traction
prescribed surface traction

time

displacements of the middle surface in x-, y-,
and z-dlrections, respectively

displacement vector
erbitrery coefficients in equations (19)

yolume

emplitude coefficient of initlal imperfection
of plate (see eq. (Ak))
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plate coordinates

plete coordinates in tensor notation

shear strasins in xy-, xz-~, and yz-directions,
respectively

Kronecker delta

strain tensor

noncreep portion of strain tensor
creep strain tensor

strains in x-, y-, and z-directions, respectively

dimensionless coordinetes; %?; %g;

Fin
a

respectively
constent in creep law (see eq. (11))
Poisson's ratio
quantity to be veried In a variational theorem

quantity to be varied in Reissner's variatlional
theorem

elastic buckling stress for square plate,

Eéﬁeﬁlfﬁ)
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013 stress tensor

Oxs Oy stress in x- and y-directions, respectively,
positive in tension

0x00> 9105 %01 s 9x11 5 Oxb »0y00s
arbltrary coefficients in equations (20)

%107 9y012 %5117 9yb > Txy11 2 Txyb

Eccren'bk
T time parameter, —_—
3
Ty shear stress in planes parallel to xy-plane
o,%,8 quentities defined in equations (22)

Bar denotes a dimensionless quantity.
Dot denotes differentietion with respect to time.

Repeated letter subscript denotes summation over 1, 2, 3; for
instance, uT; = uTy + usTo + u3T5.

Comme. preceding a subscript denotes partial differentiation with
ol

respect to x with that subscript; for instance, ﬁk,i = K,

ox

ANATYSTS

Statement of Prcoblem

The plate considered in this investigation 1s illustrated in fig-
ure 1. It is a square flat plate compressed in its plene along the two
edges parallel to the y-axis. All edges are assumed to be simply sup-
ported and to remain in the original plane of the plate. The loaded
edges are assumed to be constrained to remein straight and to be free
of tangential stresses; thet is, the plate is loaded by means of a palr
of rigid frictionless loading platens. The unloaded edges also are
assumed to be constrained to remain stralght and free of tangential
stresses and are free to translate in the plane of the plate. The load
application is assumed to be sufficiently rapid so ‘that the creep which



6 NACA ™V 4398

occurs during loading is negligible but sufficlently slow so that dynamic
effects also are negligible. After the total load is applied it is
agsumed to remeln constant with time. The history of the lateral deflec-
tion, unlt shortening, and middle~-surface stresses are desired subsequent
to load application.

The boundary conditions, which are consldered to hold for all time,
can be written in msthemstlcal form as follows:

For constent displacement,

au(:%y) ] BV(::%) , »

w(i%,y) = w(x,ig) =0 | (2)
For zero moment, ' _

f_zi ( 2,y,z)z dz = f:z (x,i—,z)z dz = 0 (3)

For loaded edges,

For zero deflection,

j: :;2 f_ :iox(ﬂ%,y, z)d.y dz = -P (%)

For unloaded edges,

/2 po/
L/:z/zk/j:/qu(x, z,z)dx dz = 0 (5)

For shear stress,

h/2 b h/2 b
L/:h/E TxV(%E,y,é)dz =-u/ih/2 Txy<x5i§’%)dz - ° (6)



NACA TN L4398 T

Variatlonal Theorem

In this analysis the varistional theorem presented in reference 4
is utilized. This theorem differs from the ususl variational theorems
for potentlal energy and complementary energy in that instead of varying
stress and strain the stress rates and strain rates are varied. In this
respect the theorem is similer to those presented in reference 6. Fur-
thermore, in the variational theorem of reference 4, stress rates and
displacement rates can be approximsted independently; in this respect
the theorem is similar to that of Reilssner in reference 7. The theorem
of reference 4 is stated here in general form and subsequently reduced
to & form aeppropriate for the present problem by incorporating strain-
displacement relations and & creep law.

General statement of theorem.- The variational theorem of refer-
ence 4 is stated as follows: If the stresses and strains are known
throughout a body at a given instant of time, then the stress rates
and strain rates existing at that instent are given by &I = O where

. N 1 - . L/ M .
I = L[eijcij + E uk,iuk,Jcij - -E—(Gij + Eeij)UideV -

j;c Ty as - "/;u (ﬁi - Ei)Ti as (7)

In the first term of the volume integral, éij 1s expressed in terms
of displacements and displacement rates. In the third term of the
volume integr%l, eij is expressed In terms of stresses snd stress
rates, and éij is expressed in terms of stresses and time and 1s

independent of stress rate. The varilations are to be carried out only
with respect to time derivatives of quantities.

Strain-displacement relations.- It is assumed that lines which are
originally normal to the middle surface remain normal during the deflec-
tion of the plate. As a consequence, the strain-displacement relations
can /be written as follows:

w1y P
€x=$+§(&) -Z—‘ér' (88')
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ﬂ,r;(a_w)g-zﬁ ()
dy 2\oy ay2
dv , dw dw 3>
2€xy‘ = )'}qr % & -a—x- g'- 2z -g-lg-; (80)
€7 = Vxg = 7yz =0 (Bd-)

Equations (8) are the strain-displacement relations consistent with the
Von Karman equations for large deflections of plates. The time derive-
tives of equations (8) are -

2
_di, owdw QoW
-y (92)
. o, wow_  dw (9b)
€y=$+a—y'§y—-Zgy—2 gb
B, 3, Rk, M dw o, 3% (9¢)
-y & xoy oy = oy
& =9 . =y =0 (9a)

z = 7XZ 7yz

Creep law.- In the formuletion of the vaeriational theorem, 1t is
assumed that the total strain can be separated into an elastic-plastic

part eij and a creep part e;J. Plastic strains are neglected 1n the

present investlgation; thus €4 is given in terms of stress by Hooke's
) ’ i3

law. The functional relation between the creep rate tensor and the
stress tensor and time may be assumed as follows:

é;j = F(Je,t)sij (10)
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vwhere sj3 1s the stress deviation temsor and is related to the stress
tensor by

1
813 = 913 = 3 %P1y

Equation (10) reflects the fact that creep strains asppear to be inde-
pendent of hydrostatic stress. The form of F 1is taken to be

F = Ao kot (11)

where A, n, and k are materiel constants. The symbol dJo repre-
sents the second invariant of the stress devietion tensor and is given

by dJdo = % S13813° The power function of Jo 1s suggested in refer-

ences 8 and 9 where some experimentel support is presented for it. The
power function of time provides an approximate wey to account for primaery
creep.

Equation (10}, of course, applies to three-dimensional creep prob-
lems. A two-dimensionsl form eppliceble to plates can be obtained when

and
013 = Txg = 923 = Tyz = O

and it is written as follows in engineering notation:
\

n
2 2 2
1 n Ox  + - O + 3T _
‘=‘11=":"—%(x = andy xy) (20x - oy)it ™t
n
ot el A (O'x2 + 0’-5,-2 - crxo'y + 5Txy2) =l
o=é -3 = (20y - ox)it®L 0 (12)
n
ot " O- 2 + 2 . O- + 3T 2
3
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In the one-dimensional case the additional stresses Opp = Uy and

Tio = Txy may be set equal to zero, and the following equation results:
2n+l :
G = 28 T pik-l (13)
3 30

Form of theorem appropriate for present problem.- With the use of
the strain-displacement relatlions and the creep law presented in the
previous sections, the variational theorem can be reduced to a form
appropriate for the problem under consideration. When equations (9) are
used, the first term in the volume integral of the equation for I
(eq. (7)) becomes

. . 2, . . 2,
éi,jaij= éu_-}-gw_.a_w._z_a__‘{ .X i+ii_zg1by+
ox Ox ox 32 dy oy oy By2
. . . . 2.
b, o, dwdw, o v p Su)s
ay+8x+axay+axay 2ZBxByTW (14)
Notice that to obtaln equation (14) the fact that T, = Tyx 1s used.

The second term of the volume integrsl in equation (7) ylelds the fol-
lowlng expression when certain terms are neglected to be consistent
with equations (8):

| o

«\2 o \2 « e
L 1, goug = & (g) o + (g) e 2 T gy (15)

The third term of the volume integrel becomes:

1 «t & __];12 .E—E.' l+p,o 2
§€iJ°i.j'2E(°x +cry) oncry+ - Ty (16}

The final term in the volume integral, the creep term, becomes:

Gyirg =5 7(0%) [Box - )i + (o - oy + bty ] (a)
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o1
when equation (10) is utilized to express €13 in terms of stress
end time.

The two surface integrels in the equation for I (eq. (7)) remain
to be considered. Displacement rates are not prescribed anywhere on
the boundaries of the plate. The surface integral over S, therefore,

may be discarded. The other surface integral, the one over Sg, must

be modified to account for the loading condition and the requirement of
straight edges. The correct modificetion is to replace the surface
integral over Sg by the term Peb where P represents the total load

on the plate and e represents the plate unit shortening.

When equations (14} to (17) are substituted into the equation for I
(eq. (7)) and the correct modification of the surface integrel over Sg

is used, the followlng expression appropriate for the problem under
consideration results:

B2 pP/2 pb/2 s sww v | (ot
_f-h/sz/afb/z ok x| axa et 3y

+
%I%’

oW ow 1feo .2 . 1+ 2
R LD I L b el
%FKEUX—UY)&X-I'(Ecy_gx)&y-b&w{-xﬂ dx dy dz - Peb (18)

Method of Solution

A Rayleigh-Ritz type procedure can be used in conjunction with
equation (18) to cbtain an approximste solution to thils problem. Reason-
gble assumptions are made for the stresses, dlsplacements, stress rates,
and displacement rates in the plate. These assumed distributions contain
certain arbitrary parameters and the time rates of change of these arbi-
trary parameters. When the assumed distribubtions are substituted into
the expression for I, integrations over the volume of the plate can be
carried out. Then a system of equatlons ls obtalned by equating to zero
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the variation of the resulting expression for I with respect to varia-
tione in the time rates of change of the arbitrary parameters. These
equations are, in generasl, nonlinear ordinary differential equations of
the first order with time as the independent variable. Numerical methods
are availasble for the solution of such systems when sppropriate initilal
conditions are known.

Derivation of Differentisl Equations

Assumed stress rates and displacement rates.- The boundary condi-
tlons considered in this report are the same as those of reference 10.
Therefore, the displacement functions assumed in reference 10 are used
as a gulde In choosing the displacement-rate and stress-rate distribu-
tions. The middle-surface displacement rates are assumed to be the
time derivatives of the displacements of reference 10:

~

U = -ex + b('l.llo + 'l:lll cos z;bty-)Sin %

- p M . 23'(.'!{ &f

v = fy + b(vOl + V1 cos 15—)sin fgz > (19)
& - b tx Ty

= bw COS — C08 —
1 b b

y,

In choosing appropriate stress-rate distributions, some assumption
mist be made regarding the variation of stress through the thickness of
the plate. As pointed out in reference 4, this variation is not neces-
sarily linear even though the strain variation is assumed linear through
the thickness. Calculations of creep of columms, however, suggest that
in certain cases the nonlinearity of the stress distribution may not
seriously infiuence the lateral deflection and unit shortening. On this
basis, it is assumed that a linear variation of stress rate with z is
a sufficiently accurate first epproximation for plates, and the stress
rates are taken as follows:

\

&x-&xQ0+6x-|_ocos?-t—&swlcps-;ﬁ+&,mcos%ms%yé+&ﬂi—zcosﬂ—:-cos%

&y=&yoo+&ylocos%+&yog_cosi?+&yucos%ws?+&yb2?zcoa’;—xcos—gr (20)

T. = gin — s8in — + T — gin — gin ~=
xy xyll ° " xb 3 > B
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The displacement rates (eqs. (19)) and the stress rates (egs. (20))
satisfy the time derivatives of the boundary conditions given by equa-
tions (1) to (6). It is in these assumptions for the stress rates and
displacement rates that this investigation differs from that of refer-
ence 5. In reference 5 the simplified assumptions are made that the’
stresses are related to the laterasl deflection in the same menner as
that of the elastic buckling of a plate under compression in one direc-
tion. This procedure allows all the unknown coefficients to be written
in terms of wyq, the leteral deflection coefficient. The variastion

of II, then, leads to a single differential equation in w;; Iinstead
of the system of simultaneous differential equations in Wwyy,U10,U17s-
04007 9%10s+ + + Wwhich result from the present analysis.

Variation of I.- When equations (19) and (20) are substituted into
equation (18) and certain of the integrations are carried out, the fol-
lowing expression results:

iy dyy + V.
2

. .. . . . . . ¥y . . =2 . [ .
E = v®h ‘é“xﬂo*‘f"yOO""(‘lD"ﬂO*"Ol"yOl"' °x11+—2E5yu- T:qu)"'rmm(ﬂxoo*'dyoo-

ﬁxlo-éym+5xo1-3301_&ﬂ1+@+*:qu)+ﬁ
2 2 L 2

s 2,52 & 2.8 2
010 - %10 . %0 " %01 Sl t Oyl Tl 1. o, . a2 Sx0”* Guio”  Gon t G
2 + 2 - 'y + 5 E‘Tzoo +:ry°o+ 3 + > +
- 2 . 2 - 2 - 2 - . - - - - - -
11" Gy11” | Ot Gy e .2 910910 | Sx01%01 | Sxil%l  %b%b)
* 12 )+x yoo 2 * 2 * 3 ¥ 12

et ) P e

%msagcosaq+&,¢2§cos;cosn)+f(&,oo+&yloco32£+&’olcos2n+&ﬂlco82;msa\+

&,bzgeoagcosq)+se(1‘-mlsin2gsm2n++m2;mg-mn)]aaa.qa; - Peb (21)

The symbols &, 1, and § represent the dimensionless variebles in
the x-, y-, and z-directions, and the functions ¢, ¥, and € are
given as follows: .

*2
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)
® = EO'XOO - Gyoo + <2leo - Ule) cos 2t + (20}{0]. - o'yo]_)cos 2n +

(Elel - cyll)cos 28 cos 21 + (EGXb cyb)EQ cos £ cos 1

k=t
]

20y00 - 9x00 + (20’le - cxlO) cos 2¢ + (26y01 - crxo]_)cos 2n +

N

(22)

(2°y11 - qxll)cos 2¢ cos 23 + (EGYb UXb)eg cos £ cos 1

8 = Txy1l Sin 2§ sin 29 + Txyb2§ gin & sin 7

/

The conditions which the time derivatives of the coefficients musﬁ
satlsfy are:

o0 _ .oy _ . om _ dm _ oW _ om , _ _o« oIl ot
dBy00 o Oyor MWyyy g  dyoo  dyjo  dygp Ay

| S (23)

When the operstions indiceted in equations (23) are performed,
the following system of 19 ordinary differentlsl equations 1s obtained:

. 2 .
- + ,{T Wllwll - Ixoo= 0 (211'&)
2
. 7 . 0
Mo - @?'wilwll + - Izx0=0 (2kp)
2 c.
T . %01
E. wllwll - IxOl =0 (2}.].(:)
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2 L 0

< h . xb HOyb

—— - — —_—r_ - T =0
2k v 1 12 12E b

.2
pis e =
£+ v - Tyoo = O

2 . Oy
s 10
E-wllw "_—"I'y10=0

. 2 . u&o]_
s X! _
or T g V1111 t -1yor =0
2 . & Rox
T . x 1l 11
-— -~ — - + - T =0
2 V11 T 7g ¥i1¥i1 hE IE y1l
%2 n ., Oyp | MOy
— -t - —I =O
. ok p 11 12E T 1ZE b
i - Zfdg9 + '11) + —E-WjJﬁUJ - L 1t - Tey11
2 8 2E X
2
%2 h . 14+ s
— S, + =B + =0
oy 1t G syt hgp

15

(2ka)

(2ke)

(2kt)

(2kg)

(2kh)

(2h41)

(2k3)

(2kk)

(2k1)

(2km)

(24n)

(2k4o)
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V11 (. %11 | . ‘_’Ll:l_._ . . 9x01 _ %11
- - + T + W £ - — e
—\°x01 > %10 > xyll 11\%x00 > n
. o3 T.
10 11 | Txyll) . L h: . . -
y2 - y)_,_ + o ) + 'g E(be + be - 2Txy;o) =0 (2)+P)

The integrals I in equations (2h) are for various combinations of the
stress perameters and are defined as follows (note that these egs. do
not contain eny rates):

1 1
Ix00=—-—fF°dV Ivoo = —5 Fg av
2 IV 2 IV
Lo =L2 f FO cos 2t dV Iylo=—15 F§ cos 2¢ 4V
Bt v 3x v
Ix0]_=-l—2fF¢cosEndV Iy01=-L2fFic082ndV
31( v 31-; v ( )
25
>
lel=_1_§fr‘o cos 2¢ cos 27 AV I,yll=__lE__fF~ycos 2¢ cos 2q dV .
- YV 3 YV
1 1
I =——fF®2§ cos £ cos n 4V =—-fFf2§ cos £ cos 1 4V
1 _ 1.
Iwu:.;j‘;él?esin‘?gsinmdv ijao—;—z-‘/‘;lﬂegsingsinndv

/

where 4V = d¢ dn df, and the integration is to be performed throughout
the volume of the plate - that is, over ¢ from -1/2 to 1/2 and over ¢
end 1 from -n/2 to wx/2.

The system of equations (egs. (24)) contains all the unknown coef- -
ficients in the stress-rate and displacement-rate distributions. These
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equations conceivably can be solved for all these coefficients. In this
investigation, however, equations (2Wb); (24f), and (2Lh) are not used
since the desired information on leteral deflection, unit shortening,
and stress distribution can be obtained without them.

In order to start the numerical solution, the initial conditions
or the conditions at time zero Jjust subsequent to loading and before
creep has commenced are required. These conditions are discussed briefly
in the next section.

Initial Conditions

Because of the nature of the load-gpplicatlon process assumed in
this investigation, the initial conditions for the creep solution - that
is, the conditions just subsequent to loading and before creep commences -
can be obteined from & solution of the problem in which creep is neglected.
If the applied load is below the elastic buckling load of the plate, it is
necessary to take into account an initial imperfection of the plate in
order to initiate lateral deflection due to creep. If the applied load
is gbove the elastic buckling load, it may be possible to disregard
initial imperfections. In this report, however, an initial imperfection
is assumed to exist in either case.

The initiel conditions are derived in appendix A. The results of
the derivetion are contained in equations (ATn) and (A8) to (A11).

Preparation for Numerical Solution of Equations

Simplification of differential equations.- Certain of equations (24)
are now solved to obtain ﬁll and the stress-rate coefficients in terms

of the stress coefficients. Equations (2hke) and (24g) yield
N

2
. Tr .
9x01 = E(T Vi1¥11 T 21:;01)

> (26)
2 .
Oy10 = E(“I Vi1V T 21ylo)
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From equations (24e) and (2L43)

. En® h . 12F
Ogpy = —— B - Ten + B
® "o cm e T ()
> (27)
- Eﬁe h . 12E
Q. ID et - I + IJ-I
Vo T - Ty b 1L - u2( vb xy)
y,
From equation (241)
CO B . SO (28)
xyb 1+ pl2 b 1L xyb

The initial conditions glve Gy q7 = yll = Txyll at time zero (see
eq. (ATn)), end equation (2hm) states that o047 = cyll = xyll'
Consequently,

Ox11 = Oy11 = Txyll (29)

for all time. When equations (29) are considered, equations (2kd),
(241), and (24k) can be solved to cbtain:

Tayll = 'E<lel + Ly * Ixyll) (30)

Equations (26), (27), (28), and (30) are now used in equation (2ip) to
find ;. The result is:

w11 (Leor * Iyno) + 2 %‘[; ~(To * Ip) - T Tml

2 o Gunq + O o
7 o) x00 x01 y10 cr
Wyq =+ = 5

Qil = (31)

The history of latersl deflection and stress distribution can be
obtained by solving simultaneocusly equations (31), (26), (27), (28),
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and (30). Unit shortening may be obtained by utilizing equation (2ka).
The initial conditions are glven in appendix A. The solution of this.
system requires considerasble numerical calculation since, in general,
the required integrals (eqs. (25)) have to be evaluated numericsally.

For two cases, however, it is feasible to carry out the integrations of
equations (25) analytically; thus the calculation is simplified. These
two cases, represented by n =0 and n =1 in the creep law (see

eq. {11)), are considered in this report. The case of n =0 is equiv-
alent to a material having an exponent of one in the uniaxial power creep
law, that is a linesar viscoelastic material, and is camperable to the
solution in reference 3. The case of n =1 1is equivalent to an expo-
nent of 3 in the uniaxial power creep law and, of course, represents a
nonlinear material.

Dimensionless form of equations.- It is convenient to write the
system of differential equations and initial conditions in dimensionless
form. For example, in equation (31) the numerator and denominstor on
the right-hand side may be divided by eqr, and both sides of the equa-

ABoopoPictEt
tion may be divided by = . The remaining equations of interest
5
mey be nondimensionalized, and the resulting system of differential equa-
tions is:

_ - 1 (= = 1 7T
@=W<Ixol+1y10)+2l:1-u<IXb+IVb) '1+uI’q’b:I (322)
dr — c. to

3(14u)w2+gxoo+l+?x°;gfﬂ9

dr L dr

da. 2 =

¥10 _ 3(1L - w2) . aW 2

ar i3 ar fy10 ()
dT.

xb _ _3(1-p) W __6 = d
ar 2 ar l+p WP =
doxp _ 3(L+p) W 12 (= T. 2
. . e uE(Ix-b + u yb) (32e)
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do.
vo  3(1 + p) dW 12 (= =
= —_ - Ivp + RI b) (321)
ar 2 ar .\ HE
ATey11 — - -
—%— = '(lel + Iy + Ixyll) (32g)
wyqb ABo g2tk
In equations (32), W = —1-2'—, T = —E—-, the dlmensionless stress

n
3
coefficients (represented by the symbols with bars) are the stress coef-

ficlents divided by 0.y, and the dimensionless integrals I are the
2ny k-1
e g, kt
integrels I divided by crh® cz .
5

The initial conditions (eqs. (ATn) and (A8) to (All)) can be written
in dimensionless form as follows:

Tyl = O A
_ _ -
Oy = Oyp = _5(_l§+_u)_(w - Wi) ) > (33)
Ty = - 22w - W)
W8 (1 -F) -] - —B W =0
[3(1 ) YT -
, i J

Numerical methods are available for solving systems such as equations (32).
Two of these methods, the modified Euler method and the Runge-Kutta method,
are described in reference 11, and the latter was used to obtaln the cal-
culated results presented in this peper. The pertinent integrals in
equations (25) have been evaluated for n =0 end n =1 and the results
are presented in appendix B.
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Unit Shortening and Effective Width

One interesting feature of this analysis is the possibility of cal-
culating the history of the unit shortening of the plate. By combining
equations (2ha) and (A7a) and writing in dimensionless form, the following
expression is obtained for @€, the ratio of the unit shortening at & given
value of T to the criticel unit shortening for the plate:

- RN L fOT Teoo a7 (54)

When the lateral deflectlon coefficlents and stress coefficients are
known from the solution of equations (32), the history of € can be
calculated from equation (34).

Closely associated wlith unit shortening 1s the concept of effective
width. An effective width for a plate subject to creep may be defined
analogous to the effective width of a buckled elastic or elastic-plastic
plate. That 1s, the effective width at a given time and unit shortening
1s that width of plate which would support the actusl load on the plate
if the stress were uniform and equasl to the stress obtained from the
creep law abt the given time and at a strain equal to the given unit
shortening. In symbols this definition can be written as:

be _ 9x00
LY

s (35)

where be 1s the effective width of the plate, and G,; 1s the stress

obtained from the creep law at the unit shortening and time associated
with the actual plate. The proper value of 0,3 1in equation (35) cen

be found by substituting the appropriaste values of e and T from equa-
tion (34) into the uniaxisl creep law, which, in dimensionless form, is

= -(Ecz + % Tacfn*l) (36)

Equation (36) has only one real root for TT,;, and this root is negative

no metter what integer value n takes. This root of equation (36),
then, is the required value of Eéz in equation (35) for a given com-

bination of T &and e.
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RESULTS AND DISCUSSION ,

Brief calculetions were made of the lateral deflection history at
the center of the plate as a functlon of the time paremeter T for a
plate composed of a linear viscoelastic material. TFor a plate with a
cubic uniaxial creep law, more extensive calculations were made of his-
tories of lateral deflection, unit shortening, and effective width as
functions of T. These calculations consisted of solving numerically
for the lateral deflection and stresses from equetions (32) and initial
conditions (egs. (33)). For most of the calculations involving a non-
linear materlal, the lateral deflection and stresses were calculated by
using the Runge-Kutta method and an IBM type 650 electronie data proc-
essing machine. Then 1t was possible to celculate unit shortening from
equation (34) and effective width from equations (35) and (36).

In the celculatlons for a nonlinear materisl the applied load was
varied from 0.4 to 1.2 times the elastic buckling load. An initial
imperfection of 0.01 times the plete thickness was assumed for each
value of applied load. In addition, for an applied loasd of 0.8 times
the buckling load, three other initial imperfections were assumed, ranging
from 0.001L to 0.03 times the plate thickness. Some discussion of these
resultes is presented in the succeeding paragraphs.

Lateral Deflection

The results of the leteral deflection celculations are shown in fig-
ures 2 and 3 where lateral deflection at the center of the plate divided
by plate thickness is plotted egeinst the time parameter T. In figure 2
a comparison is made between the results of the present calculations and
the theory of reference 3 for a linear viscoelastlc materisl (n = 0).
These calculations were made for an applied load equal to O.h times the
elastic buckling load and an initial imperfection at the center of the
plete of 0.0l times the plate thickness. The curve labeled 'Present
theory - small-deflection" was calculated with the large-deflection terms
in equations (8) neglected. This result should compare directly with
thet of reference 3 which also is & smasll-déflection esnalysis. The dis-
crepancy can be attributed to the fact that the unlaxial and polysxial
creep laws used 1in reference 3 are competible only for an incompressible
material and, therefore, the application of .the theory of reference 3
to a compressible material is not strictly correct. The results in fig-
ure 2 are typlcal and give a qualitetive indication of the comparison
for other applied loedings and initial imperfections. Finally, figure 2
illustrates the divergence of the small—defiection theory from the large-
deflection theory.
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Results for a plate materisl having a cubic uniaxial creep law
(n = 1) are shown in figure 3. A comparison between small- and large-
deflection theory for the nonlinear meterial is also shown in figure 3.
Various applied loadings and, for one loading, various initisl imperfec-
tions are included in this figure.

Results are plotted up to & lateral deflection of twice the plate
thickness, elthough calculations were carried considersbly beyond this
point in some cases. Beyond a laeteral deflection of twice the plate
thickness, the accuracy of the assumed deflection shape in spproximating
the deflection at the center of the plate becomes questionable.

In theoretical analyses of the creep behavior of columns, it has
been the usual practice to define a collapse time as belng that value
of time at which the lateral deflection or lateral-deflection rate becomes
infinite. A columm made of & linear viscoelastic material does not exhibit
such a collapse time but a column made of 8 nonlinear material does. Sim-
ilarly, the resulis of the plate calculations for a linear material 4o not
yleld a collapse time. The lateral deflection curves shown in figure 2
continue to increase with T bubt become infinite only for infinite 7.
The plate calculations for a nonlinesr material do yield a collapse time
if small-deflection theory is used. The curve for small-deflection theory
shown in Pfigure 3% illustrates this situation. This curve approaches
infinity asymptotically as indlcated by the vertical dash-dot line. This
collepse time does not occur, however, until long after the small-
deflection theory has become invalid. The method suggested in refer-
ence 5 also yields a collapse time. The celculations from the present
theory for a nonlinear meterlal and based on large-deflection theory, on
the other hand, do not yleld a finite collapse time. The lateral deflec-
tion in this case increases with time, but infinite deflection does not
occur until infinite time.

_ The results shown in figure 3 for varlous initial imperfections at
P = 0.8 indicate that initisl imperfections mey have a significant
influence on the plate creep deflections. The influence of eapplied load
on creep deflections, however, is considerably more important than that
of initial imperfections. Results similar to these have been reported
in column creep studies (ref. 12).

The curves in figure 3 for various initial imperfections at P =0.8
are very neerly parallel. Thet is, the curves for the larger values
of Wi can be obtained closely (not exactly) by a simple translation to
the left. At a given value of W the slopes of the curves for W
plotted against T for e given value of P appear to be practically
independent of Wj. In the lower part of figure 3 the T scale is

megnified to 1llustrate this situation.
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Unit Shortening and Effective Width

The calculated unit shortening of the plate as a function of T
is presented in figure 4. Note that the T scale is magnified for
clarity in the lower part of this figure. The dashed lines were computed
from the uniaxial creep law which can be written in dimensionless form
as:

g = -(E + %'657) (37)

If the initiael imperfection 1s sufficiently small and the applied load

is less than the elastic buckling loed, the unit shortening curves start

out very nearly identical to the creep law and diverge smoothly from the

creep law. The unit shortening curves become identical to the creep

curves if the Initial imperfection.goes to zero. Thus when T is small,

the creep law can provide a first aepproximation to the unit shortening

as might be expected. For spplied loads higher than the elastic buckling -
load, such en spproximstion msy not be valid as the unit shortening curves '
start out above the creep curves. ) T

A plot of effective width divided by actual width of plate against T
is presented in figure 5. Again, in the lower portion of the figure the T
scale is magnified for clarity. It is seen that creep may cause a signif-
icant decrease in the effective width of a plate.

Stress Distribution

In figure 6 are presented the mliddle-surface stresses-along the
edges of a plate with P = 0.8 and Wi = 0.0L at two values of .
As & result of creep there can be considerasble redistribution of middle
gsurface stress as time increases. Along the edges of the plate which
are subjected to the applied load there is s tendency for the stresses
at the edges to increase and the stress in the center to decreasse. Fur- o
thermore, as creep progresses, significant stresses can arise along the
so-called unloaded edges of the plate provided these edges are constrained
to remain straight. The middle-surface stress distribution in & square
plate undergoing creep, then, resembles that in a buckled elastlic plate.

Collepse Time

As previously mentioned, the learge-~deflection analysis in this report
does not yield a finite collapse time for the plate of a nonlinear msterial. »
It is known from experiment (ref. 1) that plates supported in V-groove Fix- =~
tures do._collapse in finite time when subject to creep. The V-groove '



NACA TN 4398 25

fixtures approximste the simply supported edge condition but do not pro-
vide the straight edge constraint assumed for this analysis. This assump-
tion of straight edges seems to be more realistic than the V-groove sup-
port in espproximeting a portion of sheet lying between stiffeners in
certain multiple bay stiffened panels, for example. Although a plate
which satisfies the edge conditions assumed in this analysis may last
longer than a V-groove supported plate, it does not seem reasonable that
such a plate would never collapse. Thege matters probably cannot be
clarified without further experimental work.

An sctual plate or column, of course, always has finite deflectioms
and strains even after collapse. The usual definition of collapse time
appears reasonsble for a column because calculations show that infinite
deflection rates or strain rates are approached while the theory is still
supposed to be a good approximstion of reality. The results of the pres-
ent investigation indicate that this situation is not valid for plates.
Perhaps some additional considerations are required before a satisfactory
theoretical description of plate creep collapse can be given.

There is a similarity between the results of the present anslysis
and the results of reference 10. In thal Investigatlon an analysis was
made of a plate which was buckled in the elastic range and then compres-
sed into the plastic range. It was found that no maximum load resulted
from the anaelysis. In reference 10 possible changes in buckle pattern
which occur in experiment were not taken into account. ©Such changes
have been ruled out of the present analysis, and this assumption may be
satisfactory for a square plate. Some consideration probsbly should be
given to this phenomenon, however, in the study of the creep of rectanguler
plates with aspect ratios other then unity. Another possible refinement
in the present analysis is the use of an improved stress distribution
through the thickness of the plate. In addition, modificetion of the
creep law or the values of the constants in the creep law msy be required
at large creep strains.

Even though a theory does not yleld quantitatively useful results,
it mey aid in finding parameters which correlate test data. The present
theory suggests that a useful correlation might result from a plot of P
agalnst the time parameter T with the experimental collapse time sub-
stituted in place of t. In such a procedure perhaps 1t could be assumed
that initial imperfections would not be widely different for flat plates
manufactured by similar methods. It 1s interesting to note that T 1is
& simple parameter which includes materilal properties and plate geometry
and can be obtained directly from the creep law without recourse to an
elaborate theory.
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CONCIUDING REMARKS

An analysis has been made of a square plate composed of a meterial
subject to creep. The plate is assumed to have small initisl imperfec-
tions. The material is assumed to follow a generalized power creep law
which accounts for the biaxlial state of stress. Calculations have been
made for a velue of the exponent in the generalized creep law which cor-
responds to an exponent of 3 in the uniaxial power creep law and for -3
linear wviscoelastic plate. : :

L3

Celculations based on small-deflection theory and a nonlinear material
vield a collapse time - that 1s, a finlte time at which the latersl deflec-
tion becomes infinite. The more refined calculations based on large-
deflection plate theory, however, do not yield a finlte collapse time.

Test results show that plates supported in V-groove fixtures do collapse
in finite time. The assumptions underlying the present theory, however,
seem to be more realistic than V-groove supports for certaln types of
plates which might be encountered in practice. Thus, the theory indicates
the possibility that certain practical plates mey carry a given load sig-
nificantly longer than gecmetrically similar V-groove supported plates.

It 1s found that although Initial imperfections have a significant
influence on creep deflections, applied loed. has a much stronger influ-
ence. Creep in a plate can cause considergble redistribution of the
middle-surface stresses. Along the loaded edges of the plate the stresses
tend to increase at the ends and decrease in the center. In additiom,
significent stresses can grow elong the unloaded edges provided these
edges remaln straight. Finally, as creep progresses, the effective width
of the plate is reduced. ' )

Langley Aeronautical ILeboratory,
Nationel Advisory Committee for Aeronsuties,
Lengley Field, Va., July 23, 1958.
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APPENDIX A

DERIVATION OF INITIAL CONDITIONS

In this appendix the initiasl conditions for the creep solution are
derived. These conditions define the state of stress and strain in the
plate just subsequent to the load application but prior to the beginning
of creep. Thus, it is an elastic solution with no creep which is sought
here.

Reissner's Principle

An approximate elastic solution can be obtained by the use of
Reissner's variational theorem. (See ref. 7.) The form of the theorem
sppropriate for the present problem can be stated as follows: The state
of stress and displacement which exists in the plate is determined by .
the variational equation B8Ilg = O where

2 2
h/2 Ab/2 Ab/2 2 - 2 S
TR = J[‘ JF Su, Lfow) _ l(——l - I L ox +
-h/2J -p/2d p/2 dx 2\ 2\dx axz ax2
2 S 2 2 a2
i-[—.:l;ﬁ _E—i _Zaw-l-z wio'y-l- i+i+iy_
oy 2\oy 2\oy / aya aya dy ox ox oy
Owy Owy 3% 32"1 1
-a?- g‘ - cZ = ay + 2% ﬁ TW - E[ﬁxz + Uya - 2H0x0y +

(A1)

2(1 + p)Txye] dx dy dz - Peb

In equation (A1),

A Rayleigh-Ritz procedure is used to obtain a solution.

Wy represents the initlal imperfection in the plate.

Spatial

distributions, which contein arbitrary coefficients, are assumed for the
displacements and stresses in the plate.
into the equation for IR, and the variaetion of IIg is equated to zero.

These expressions are substituted
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This procedure ls the same as equating to zero the partial derivatives
of ITp with respect to each unknown coefficlent. There results a system

of simultaneous linear algebralc equations which determine the unknowns.

Assumed Displacements and Stresses

The displacement and stress distributions are taken as follows:

~

u = -ex + b(%lo + uyy cos a%z)sin g%f

N

(A2)

_ 2nx 2ny
v=1>%y + b(?01 + vy, cO8 fg—)sin o

194 I
w o= bwll cos X cos L
b b
/
2nx A
Oy = 000 + 910 cos-b—+ %01 cosa%y-+ Oy11 cos%cos%y—+ be%cos-’;—xcosgbz

= 2nx 2ny 2rx 2ty 2z | wx
Oy = Oyo0 + Oy 08 ==+ Ty + =X =J = x xy
v 10 cos N 1 CO8B N Oy11 cO8 ™ cos o + Oy cos 5 cos > )4 (A3)

- . 2mnx 2ny 2z nx
Ty = Txyli 8in 5 sin.T * Tyb 3 sin > sin %Z : J

These distributions are the same as equations (19) and (20) except the
dots are omitted. Here, of course, the assumption of a linear variation
. of stresses in the z-direction is consistent with elastic material
behayior.  The initial imperfection is asgsumed to be in the same shape
as”the lateral deflection in equations (A2), that is:

Wi = bwyyy cos TX cos W (Ak)
b b
Algebraic Equatlons for Coefficlents

When equations (A2), (A3), and (Ak) are substituted into equation (AL)
for IIg and the indicated integrations performed, there is obtained:
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2 C. - a
.. o %10 ~ %10

a. - 0. + C. T.
x0L 0. x11 y1l xyll
2 - )_l_ -+ 5 + 1 O'Xloulo + GyOlvOl +

O - U5 + O -V U4 + Vv o
x11%11 v11Vil 11 11 %2 h
> - > Tx:vll> + ok g(“'ll - Wlli) (Uxb +

2 2 2 2
%10 * %10 | %01 * %01

1
Oyp - ETXYb) - EE(%&xF + G'yoo2 +

+ +
2 2
Og112 + 0312 Oy + Gy Oe100v10 + Tx0] O
x11 y1ll xb Oyb y x10%10 x01°y0L
+ + = 9%00%00 * +
L 12 E 2
O,110. 05,0
X1 yll Xb"ybl 1+ 2 2\
5 + 2 ) = <3Txyll + Tyyb Peb (A5)
The conditions which the unknown coefficients must satisfy are:
30,00 990 0,7 0047 d0,, Bcryoo aoylo
_ Jllg _ Jllg _ ollg _ oIy _ ollg _ dllg
ol olf belig oIl oI ol
=B _ "R _“R_“R _ %R R _ o (46)

Swjg  du;p OF vy dvyy  dwyy
After the operations indiceted in equations (A6) are performed, some
algebraic manipulation leads to the followlng 19 equations:

2 G.
- + %—(Wlle - W’lliE) - X;)O =0 (A?E.)




30

2 HO.
22 10 _
w10 - .1_6.<W112 - wllia) + N S 0
2 G.
bs 2 2) x01 _
=—(w - W - =0
l6( 11 111 oR - .

1t 112( 2 2) -
Loy, - Elw -w
> 11 3 11 111

2

2 hr o\ L
§EVg<f11 111)

1
(@]

NACA TN 4398

(ATp)
(ATc)
(A7)
(ATe)
(AT£)
(ATg)
(ATh)
(AT1)
(A73)

(ATK)

=0 (A7)

()

(ATn)
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Solution of Algebraic Equations

Not all of equations (A7) are required to optain the information
needed in this investigation. The procedure is to solve for the stréss
coefficients in terms of wy; and Wwyq4 and then to substitute these

expressions into equation (A71). Thus, there is obtained an equation
from which wy; at time zero can be calculated.

From equetions (ATc) and (ATg):
_ExP( 2 2 8
001 = %y10 = —8-( 117 - W11 (48)

The simuiltaneous solution of equations (ATe) and (ATj) ylelds:

E:t2h

( 11 - “111) (49)

From equation (ATk) the following 1s obtained:

___En® n
Txyb = T BT+ Ay b\l " Wlli) (A10)

When equations (A8), (A9), and (ALO) are substituted into equation (AT1)
and use is made of the fact that oypg = - ':;h (eq. (ATm)), the result

can be written as follows:

3+w 8 ()21-5)-w 2 -—g—(l—l)zw = 0 (A11)
e TR | al EEECIIE Y e

where P is the ratio of the epplied load to the elastic buckling load.
The positive real root of equation (All), which can be obtalned by trial
and error, gives the initial condition for wy; - that is, the value

of Wwqy immediately subsequent to the loaed application. The initial

conditions for the stress coefficients can then be calculated from equa-
tions (A8), (A9), and (A10).
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APPENDIX B

RESULTS OF EVALUATION OF INTEGRALS .

REQUIRED FOR CALCULATIONS

In order to perform the celculations for this report the integrals I
in equation (%2) and equation (3%) must be evaluated for the proper values
of n, the exponent in equation (11) for the function F. The results
are as follows: ’

For n =0 (linear viscoelastic materisl)

Oy01
3

TxoL

10 .

" c<?I

Ty10 =

- = xyll
Ixia

(]

H
<)
‘_I
It

I
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For n =1 (cubic uniaxisl creep law)

- 1f= - 2 - 2 = 2). 1= - \2 - 2

Ixoo = 3| %00 {EUxoo + g(EGxOl + 0y10 ) + Ek"xb - ay'b) + Oy +
— 2 1ol - \2 - 5] o1l — .2
2T}qu J} - 8 l:(o‘xb - O'y'b) - Wb] + 8 kdxb - O'y:b) +

2 __ 2| Txyui[- 2 — _

Uxb - 2Txy:0 J + g [Uxb + Tm + 2’1'x_y:b(20'x-b - Q. 'b)] +
— 2(9 _
Txyll (19: Uxoo))

N N .2 - 2

Ixo1 = 33x01 3\Txo0” + ino + x?pl + %[?xb - be) + Typ? +

33
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Tl = 2 =2
= 1l 0x00~ , 9x01 0v10 1i/= = \2 , - 2
Iylo = 3 ay-lo 3( > + L + m ) + -é-[(cxb - be) + O'yb +

2050 -3 » 5a® ] - 22l - 99" -

6
] crxOl

o }
£
P

"
W =

%:\l

Oypy =~ O 2+E 2 _gr .2l _335..35 .
(5w = T o~ = 2Typ” | = £ 9x009%01%10

-\I

(2%0 * en” + T+ ) + Ty 3(136)}

= 1 ool _— 2 _ o] Fole 2 - 2
s - - B2l - 30)” ] B -5 -

2‘1’;.;31;2] : 2 [(be - be) - waﬂ + _’leﬂ@cylo + bez -

- 2\ _
Txyo ) * TW113<13;) + 2 °x00°x01°y10}
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_1 2 9 2 2
be—g _8— %00 +°x01 + 2. OO“TxOl"'E(xb + Oy -

T Oxhy =
- = xyb xb = %b
OxbOyp + ) —<°y10 - 29%00%10 - %01 % 10)

= 2
[Ux'b (O'XOO + O'xOl) + 20. Oon:I Jqlfél (5% - be)

v
o

—_ 20 -0 = 2
=1 b x'b— 2 - = T
be _.3.. _8__ "ylo +i<xb + Gybz - Uxb“yb +%b) +

b~ % 20. + 2+ 2% T, 000
5 xOO Oy01~ *+ 2001900 - 2000%10 = 9010 10) +

T. 11 /— - - - "I'
xyT(“lebe - UxOOT}Wb) 7 6 (3_ b - °'xb)

_ Ty O
=2 (23 -7 )"Wb x0 , X-Yllu 2
11 Q. + O + +
Ly b ~ Iyb 18 16 %00° + Tyo le

- 2 _ 2 - _ —
%‘-(G’x‘b + Uy'b - Ux'bo'y:b + 9Txy'b2)] + Txy 3(176)

= Tyol= 2.= 2. .= 2 o
I = X [20 + O + o - 2 + - —M
xyb = 5 |=%%00 %01 ¥10 %00%%0L + %000 >

3(— 2 — 2 _ _ - 2 T - - —
E(Uxb *t Oyp = OxpTyp t 2TTxyp )] + :i:ll ,}xOO (Ecxb - be) +

TJWQ(EXOO - Sxo1 - Eylo)] + ?}qulz('iz— ?xyb)
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Figure 1.- Plate geometry and coordinate system considered in analysis.
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Figure 2.- Comparison of histories of lateral deflection at center of
plate calculated by three theories for a linear viscoelastic mate~
rial. P = 0.4%; W; = 0.01; n = 0; u = 0.3.



NACA TN 4398

2.0
-8 8 | | T F-ba
Large-deflection theory | l
001 ——— Small-deflection theory [ i
003| /ol [ i | w=001,

% I
/
w Lo /

/ / //

\

05 / //,
_—,"1/

20 30 40 50 60 70

L2 .o / K 3 /6 -0.8
o

ol P 003 _W=0.001

/
i

W :/ . //// '//
VA

) ! 2

Figure 3.- History of lateral deflection at the center of a squeare
plate made of & nonlinear materiel. n =1; p = 0.3.
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NACA TN 4398 L1

8 6 T «0.4
} .00l -
2003 \_oi W; =0,01
.0l \ Il ey
08 <03
be
- I
0.6
04 1 1 L 1 i L L 1
"o 10 20 30 40 50 60 70 80
T
12 \.0 N 8 \}\‘\8\‘}\4\@
b .03
(]
)

0.6

0.8 : o] T
ol ol — 1003 W;=0,00!
L l\
1

0.4
(o]

o
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