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SUMMARY

CE’INTERCEPTION @

MISSILE

The interception of a satellite or a ballistic missile essentially
outside the earth’s atmosphere is considered with emphasis on the ter-
minal phase of the attack vehicle’s flight. For the discussion of the
relative motion, a coordinate system is selected which has its origin
at the target and axes always parallel to lines fixed in an inertial
frame. The resulting vector equation of motion contains, in addition
to the thrust term, an apparent gravitational term. Bounds on the magni-
tude of this apparent acceleration of the interceptor are obtained which
permit gaging its importance in relation to thrust acceleration in the
terminal phase of interceptd.on. Since the apparent gravitational accel-
eration approaches zero as the interceptor appruches the target, pre-
liminary analyses of the terminal phase of interception can generally be
carried out by neglecting gravity altogether. Two types of interception
are discussed mathematically and a numerical example is worked out for
each type. The type of interception for which the terminal relative
approach speed is small compared with the target’s speed is, tithin the
limits of the present study, found to be feasible. The practicability
of head-on interception with mass dispersal prior to impact is more
difficult to assess; in the example considered, the mass required to be
dispersed is found to be of the order of magnitude of the mass of the
target.

INTRODUCTION

The use of pilotless aircraft in the destructive interception of
an airplane is presently a well-developed field of engineering both in
theory and in practice. The corresponding literature is extensive and
no attempt need be made to review it here. (See, for example, ref. 1.)

The interception of satellites and ballistic missiles, on the other
hand, remains practically unexplored. This case is characterized by
speeds so high as to apprcach escape speed, propulsion and control by
rockets, and a shift of emphasis, particularly in the terminal phase of
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flight, from aerodynamic forces to gravitational forces. In addition,
the motion of a satellite or a ballistic missile can be accurately pre-
dicted over large distances from knowledge of its earlier motion.

In this paper attention is centered on the terminal phase of the
interceptor’s fli~t. Equally important problems of initial detection,
tracking, launching, initial guidance and propulsion, and stabilization,
for example, are not considered to an appreciable extent in the present

SYMBOLS

position vector of attack
with origin at target’s
parallel to lines fixed

target*s frontal area

vehicle in a coordinate
center of mass and axes
in an inertial frame

system
always

radius of sphere over which dispersed mass is distributed

navigational colxrectioncoefficient

thrust vector

vector sum of perturbing forces at ?

vector sum of perturbing forces at F

Newton’s universal gravitational constant,

I6.670x 10-11 newton-meter2 kg2 = 3.438x 10-8 lb-ft2/slu&

mass of attack vehicle

mass of target

mass of earth

mass which strikes target

minimum destructive mass

position vector of attack vehicle in a coordinate system—
with origin at
to lines fixed

earth’s center and axes always parallel
in an inertial frame

●

.
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Subscripts:

1

i

2

time

potential function for tide-generating acceleration, or for

?

magnitude of velocity vector d~/dt at time tl

exit speed of propulsive exhaust gases

radial speed of dispersed mss

apparent gravitational acceleration acting on attack vehicle

maximum error (maximum distance of center of mass of dispersed
matter from target’s flight path at interception)

angle which velocity vector d@/dt makes with negative of

position vector Z at tilllet~

angle between positive directions of vectors ~ and r

angle between positive directions of vectors ~and~

angle between positive directions of vectors 7 and !?

position vector of target in a coordinate system with origin
at earth’s center and axes always parallel to lines fixed
in an inertial frame

radius of earth, 6,371 km= 3,~9miles

dimensionless correction

longitude

refers to

refers to

refers to

in a spherical

Iconstant, c mv
1

coordinate system

start of terminal phase

start of mass dispersal

time at which target is

of interception

(type 11)

hit
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GENERAL CONSIDERATIONS

“

The problem of intercepting a satellite vehicle or a ballistic mis-
sile essentially outside the earth’s atmosphere has two features which
alone are sufficient to set it apart from the interception problems
encountered in utilizing a guided missile to destroy a conventional air-

—

craft. These features are:

(1) The predictability of the target’s flight path over large dis-
tances. The accurate measurement of the position and velocity of the
target at some point in time makes possible the computation of its posi-
tion and velocity at future times by the methods of celestial mechanics.

<

This means that the interception program can.be primarily predetermined,
the subsequent corrections required in flight being comparatively small.
For that portion of the attack vehicle’s flight path which lies in the
atmosphere, aerodynamic controls can be employed, whereas outside the
atmosphere propulsive reaction devices must be used for control. ..

(2) The target’s extremely high speed. .~cause of this> the choice
of interception program is more critically dependent upon the capabilities
of the components of the interception system concerned with initial detec-
tion, tracking, guidance, propulsion, stabilization, and destruction. In

—

particular, for an interception system requiring a direct hit, the term~-
nal approach speed, relative to the target, must be low enough to permit

k–

the system to overcome its limitations in attack-vehicle maneuverability
and in component accuracy and response time. An important case is the ‘ .
extreme case in which the terminal relative approach speed is small,
that is, when the attack vehicle’s velocity vector closely approximates
the target’s velocity vector immediately prior to the hit. Interception
progrsms with this characteristic will be called type I. On the other
hand, the”target’s extremely high speed can clearly be used to advantage
in destroying it by a head-on attack. In this case the demands placed
upon the interception system probably preclude scoring a direct hit.
However, the timed dispersal of all or a part of the attack vehicle’s

~

mass prior to interception can be utilized toreduce the accuracy require-
ment. A simple and important case is that in-which the center of mass of
the attack vehicle, during and somewhat before dispersal, is in the pro-
jected orbit of the target. At contact, then, the velocities are eqml
in magnitude and oppositely directed. Head-on interception programs of
this nature will be called type II.

The attack vehicle can be launched from the ground or from another
vehicle such as an aircraft, a satellite, or--asatelloid. Flight paths
of ground-launched interceptors of the two types described are shown
schematically in figure 1. The chief differences between the two flight
paths are the following:

&

v
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(1) The terminal portion of type ~ till
of the small relative approach speed. Thus,.
be greater than in the case of type II.

(2) The launching point of type I will,

5

generally be extended because
the time in flight tends to

in general, lie nearer to the
point of initial detection. This suggests, for exsmple, a single location
for the equipment for detection, tracking, launching, and so forth, in the
case of type I.

(3) Because of the difference in flight-path orientation, the earth’s
rotational motion may be usable to better advantage in one case than in
the other.

(4) If considerable variation in point of destruction is allowable,
the time at which the interceptor is launched need not, in general, be
as precise for type 11 as for type I.

(5) If the eccentricity of the target’s elliptical orbit is krge
and if the point of destruction is near the minor axis of the ellipse,
then, depending upon which way the target’s velocity vector is inclined
to the horizontal, the time in flight tends to differ considerably for
the two types.

+ These differences, of course, become less important as the overall
performance of the interception system increases.

EQUATIONS

The eqmtions of motion for the
and, outside the earthfs atmosphere,

OF MOTION

two types are basically the same
may be expressed in vector form as

where ? is the position vectorl of the center of

(1)

mass of the attack
vehicle at time t, G is the universal gravitational constant, M is
the earth’s mass, m is the instantaneous mass (nonincreasingwith time),

~ is the thrust, and ~ is the vector sum of perturbing forces such as
P

those due to the earth’s oblateness and motion around the sun, the moon’s

%n a coordinate system with origin at the earth’s center and axes
always parallel to lines which are at rest with respect to the average

●
positions of the fixed stars, that is, with respect to an inertial frame;
see, for example, ref. 2, ch. 1, or ref. 3, ch. X.

.
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gravitational field, and so forth. Let & denote the position vector—
of the target’s center of mass. Then,

+++
Pr-a=

where ~ is the position vector of the attack
target.

—

(2)

vehicle relative to the

Using equation (2) to replace ? in equation (1) leads to

“W

h

(3)

This differential equation is scmewhat deceiving. The first two terms
on the right side are both large in absolute value, but for a << p (the
most important case), the magnitude of their sum is comparatively small.
Hence, for calculations, it is desirable to replace the entire sum on the
right side of equation (3) by its approximate value derived as follows.

Since, by equation (2),

it follows that

-3=(P2 +27.
~ -3/2

r ~+ a ) (4)

.

Consequently, for a << p, the approximate eqression

(r-3 = P-3 1

is obtained by discarding terms of
of the right side of eqmtion (4).
needed is the following. The last

- 3P-2$ ● ~
)

(5)

higher order in the series expansion
Another approximation which will be
term on the right side of eqwtion (3)

represents the vector sum of the perturbing accelerations at the posi-

tion ? of the attack vehicle and at time t. For a << p, it will be
sufficiently accurate for present purposes to employ the approximation

(6)

where the primed qusmtities refer to the target (position 7). Since
the exact eqpation of motion of the target’s center of mass is ●

v
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2+
dP_=. E;+$;pl

dt2 P3

equations (5), (6), and (7) permit approximating the
right side of equation (3) according to

d2P X!d+LF=3@f7”=p
-~ r3 nlP ~~

(7)

vector sum on the.

(8)

In view of the order of the approximation in equation (8), the third
term on the left side of eqyation (3) is adeqwtely approximated by

(Recall eq. (5).) With the aid of the expressions (8) and (9], equa-
tion (3) can be reduced to the approximate form

(lo)

w Eqmtion (10) is, then, the vector eqpation of relative motion which
applies accurately when the attack vehicle is near the target. Even in
the case of zero thrust, the task of finding the general solution of
equation (10) appears to be extremely difficult if for no other reason
than that p cannot be expressed as a closed-form function of time
when the target’s orbit is-noncircular.

APP-T GRAVITATIONAL ACCELERATION

It is of interest to consider the effect of the
in equation (10) for extreme cases:

For case 1,

+
P. i?=o ( 2

In this case equation (10) can be written

gravitational

perpendicular to

● That is, the effect of gravity is to tend to reduce the
separating the attack vehicle and the target; moreover,

=

distance a
this tendency
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v
approaches zero as the separation a approaches
the linear restoring force in the case of simple
also be noted.

For cases 2,

70~=*pa

In these cases,

({+ same direction,
a

same direction,

and

-+

Equation (10) then reduces to

f
(

zero. The analogy to
harmonic motion may

mne sense

})
3pposite sense as $

—.

*

Y

That is, the effect of gravity is to tend t~ increase the distance a
separating the attack vehicle and the target; this tendency approaches .

zero as the separation a approaches zero--- —

Let 1? denote the gravitational acceleration vector in eqwtion (10).
In the general case its magnitude is

Consequently,

,= -A-%?! -
(11)

(12)

.

which shows the range of the magnitude of the gravitational acceleration
in equation (10); moreover, it shows that &se 1 and cases 2 are extremes. ‘

.
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The inequality on the right in expression (12) shows that when the attack
vehicle is within a certain distance, say ao, of the target, the magni-

. tude I’ of the gravitational acceleration term in the eqwtion of relative

motion (10) is less than 2(~/p2)a0/ p. This upper bound on 1? is a

particularly useful check when a simplified analysis is performed with the
effect of gravity neglected.

The expression for the vector ~ shows that it lies in the @ane of

the two vectors = and 6’. (The special cases in which ~ and ~ are
collinear are case 1 and cases 2, discussed previously.) Having obtained

the expression (n) for the magnitude of ~, it is+destiable to

expressions for the angles 0 and 6 which 17 makes with
ar pr

and ~, respectively. Since

?.2—=cose
pa ap

where 0~p is the angle which ~ makes with ~, it follows that

+a.? 3 cos%ap - 1
COS8 =—=

ar

“m

COS8 =—=
w “;:*

(13)

(14)

Equation (13) shmsj for ~le, that ~ iS perpendi~ar to ~ for

angles F)ap= cos (w)‘1 * 1 3 , that is, 54°44’ and 125016’. For both cases,

the value of r is, by eq~tion (U.), 6(~/P2)a/P. The corresponding
angles 6m are, by equation (14), acute and obtuse, respectively.

These cases, together with cases 1 and 2 described previously, are illus-
trated schematically in figure 2. The acceleration field shown in fig-
ure 2 may be thought of as being rigidly attached to the head of the

changing vector ~; the intensity of this attached field varies, of course)—
as l/p3, as well as varying directly as the distance a. Even for a tar-

get in a circular orbit, in which case P = Hd’=Constant, the accelera-
tion field shown in figure 2 rotates about the target in any coordinate
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‘2
system whose origin is at the target and whose axes remain parallel to
lines fixed in an inertial frame (cf. discussion that follows regarding

)proper representation of i?. The preceding theoretical discussion is .

amplified in part by figures 3 to 6. Figures 7 and 8 have been added
.—

to facilitate numerical estimates. The fi~es are self-explanatory.

In the application of equation (10) it must be realized that any
coordinate system to which the position vector ~ may properly be
referred must not only have its origin at the target’s center of mass,
but also have its axes always parallel to Hnes fixed in an inertial
frame. This “isnecessary in order to be consistent with equations (l),”
(2), and (3) and the original definition of the vector 7?. If ~ had
been referred to a coordinate system fixed in the earth, then terms
corresponding to the centrifugal and Coriolis accelerations would have
entered eqution (1) because of the earth’s rotation; the subsequent
analysis would have been slightly more complicated. Equation (10) applies
to the terminal phase of interception; consequently, the more complicated
analysis is clearly undesirable when the tmcking and guidance mechanisms
for the terminal phase are totally contained in the attack vehicle.

—

The apparent gravitational acceleration- ~ is mathematically identi-
cal with a tide-generating acceleration and with the disturbing effect of
a third body in celestial mechanics. This and some related matters are
discussed in the appendix of this paper.

TERMINAL

Guidance in the terminal phase

GUIDANCE

of flkht
the vector ~ or its variatio~ with thne,-or
be considered here is somewhat stiilar to the
navigation course (see fig. 9) and is defined

?= ()-cdl;
dt a

v

.

must be based at least upon
both. A method which Wild.
familiar proportional
by the equation

(c > o) (15)

where c is the correction coefficient. Equation (15) states that the
thrust ~ applied is to be perpendicular to ~, in the direction tending
to reduce the rate at which E’ is turning, and proportional to the
angular rate at which ~ is turning. For this method of interception,
equations (10) and (15) give

(16)

.

.
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as the equation of motion of the
in the terminal phase of flight.

11

attack vehicle relative to the target

If, because of rocket operation, the mass m of the attack vehicle
decreases appreciably during the terminal phase of flight, an additional
equation must be solved simultaneously with equation (I-6). Let the exit
speed of the propulsive exhaust gases, relative to the attack vehicle,
be denoted by vex; then

dm F—=. —
dt ‘ex

where F is the magnitude of the thrust
equation required follows from equations

vector F’. The additional
(15) and (17]; that is,

101da
%=-~—– dt a

(18)

This must be solved simultaneously with equation (16). If the correction
coefficient c is a function of one or more variables, another eqmtion
expressing this dependence must be included. However, cases in which
both m and c are practically constant are clearly of first importance
and consideration wilJ be restricted to these in the following discussion.

m

SIMFKD?IED ANALYSIS NEGLECTING GRAVITY ‘

As in the case of equation (10), the gravitational term in equa-
tion (1.6)will generally make it necessary to resort to numerical methods
of integration in precise calculations. Fortunately, however, the gravi-
tational term amm-mches zero as the at~* vehicle appr~ches the target;
consequently,
equation

m~~h can be learned by examining the simpler Ci3fferential

which results
once gives

upon setting ~ equal to

(19)

zero. Integrating eqwtion (19)

(20)

where the subscript 1 refers to values at the start of the terminal
● phase of flight. Since the vector on the right of equation (20) remains
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constant in magnitude and direction, and since the vector

has
the

c?+?
iiz

NACA ~4399

.

(c > o)

the constant magnitude c/m, the attack vehicle is assured of hitting
target provided

(21)

which is easily seen from the vector diagram (fig. 10) corresponding to
equation (20). Let VI denote the magnitude of the velocity vec-

tor (d~/dt)l and let 61 be the angle which the latter makes with the

negative of the vector ~. Then the inequality (21) is equivalent to

($ ( 2

)(

2
>&-vlcOsel + vlsin61

)

or

(The inequality would be reversed for cos

c C 0, but this does not result in a hit. )

61< 0, corresponding to

This, then, is a sufficient

condition for the attack vehicle to hit the target when gravity can be
neglected and when the method of terminal-phase flight is that described
analytically by equation (15).

The relative motion corresponding to equation (19), o~the equivalent
equation (20), is confined to the plane of the vectors

(1)

(da/dt)l and

Za
1

or, in the trivial case for which these are collinear, the motion

is confined to the line of the unit vector (=/a)l. Since, in accordance

with equation (15), the thrust has zero component along ~, it follows
from analytical mechanics (see, for example, ref. 2, ch. 1, sec. 19, or
ref. 3; ch. V, sec. 1) that the radial component of the acceleration
vanishes; that is,

d2a II
+2

da
a dta

=0
p-

(23)

u

.
.-

Since a~ 0, equation (23) yields the relation
.

.
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(24)

*

.

me equality applies in the trivial case of straight-line motion. Assume
now that relation (22) is satisfied, so that a hit will occur. !l?hen,
rebtion (24) shows that the ~gnitude -da/dt of the radial velocity
is nonincreasing with time. ~is result is used in the followipg analysis
of the variation of thrust magnitude during the terminal phase of flight.

The identity

(d~=lti+ k=
dt a a dt dt a )

and equation (19) yield

The right side
consequently,

$wz+2ti~w3: (25)

of equation (25) is the sum of two perpendictir vectors;

.-*(%+*)l&g’l

Therefore, by using equation (15),

is obtained for the time rate of change of the thrust
Assume, as in the discussion following relation (24),
is satisfied. Then, if the relation

(26)

magnitude F.
that relation (22)

(27)
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is also satisfied, equation (26) shows
not increase during the terminal phase
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2
that-the thrust magnitude F will.
of flight.

r—

Thus, if c/m satisfies the relations (22) and (27), the maximum
thrust required of the attack vehicle in the terminal phase occurs at
the start, and its value F1 is given by

(28)

lf el~ ~“, relations (22) and (27) are satisfiedby c/m = ml where

u~ 2, in which case eq~tion (28) becomes

‘1 ~’12—=
m y I’in‘d (29)

NUMERICAL EXAMPIE FOR TYPE I INTERCEPTION

Consider a type I vehicle for which the terminal phase of flight
starts at a range of ~,000 to 100,000 feet with a relative speed of
500 to 1,000 ft/sec and a heading error el~ 20°. Assume that CI= 2

9

(that is, c/m = 2VJ* The maximum required thrust F

tion (29) is
~ given by equa. .

Fl
—=
m 2 JQQ@ sin 20° = 13.7 ft/sec2

Xmo

If the terminal phase of flight starts at time ‘1 and the target

is hit at time t2, then (approxhately)
.-

al al

‘2 - ‘1
=— =

/da\ V. cos e.
(30)

In the numerical example
possible in the terminal

‘2 -

u J. -L

-ml

just considered, therefore, the mE&imum time
phase is approximately

100coo
‘1 = = 213 sec

500 co’ 20° .
.

w
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time interval a target moving at ~,000 ft/sec will have traveled

(213)(25,000) = 5.33 x 106 ft = 1.OIX

This again is maximum for the numerical example.
h fractional rate at which mass is expelled in
attack vehicle is

1 ~ _F1/m 13.7
=— =

-fiat 1.37X 10-3
‘ex 10000

103 miles

The corresponding msx-
propulsion of the

sec-1
(31)

where the exit speed vex of the propelJ.antgases has been taken as

10,000 ft/sec. Thus, a substantial mass loss may occux in the extreme
case. Finally, relations (12) show that the magnitude I’ of the
apparent gravitational acceleration experienced by the attack vehicle
during the terminal phase lies in the range

o$r~2(32.2) &ft/’sec2

orz

o~r~ 0.3 ft/sec2
.

Thus, the maximum value of r is fairly-small in comparison with the

maximum value FJm = 13.7 ft/sec2 and can be neglected in the present
approxhate calculation.

Although the numerical example examined indicates that the applica-
tion of an interception system of type I has attendant difficulties,
considerable latitude exists for the ad~ustment of design
and none of the problems appearscto be extreme in nature.
this type of interception system is considered feasible.

NUMERICALEXAMPIE FOR TYPE II INTERCEPTION

parameters
Consequently,

For interception of type II the relative speed VI is of the order

of 50,~ ft/sec. If u is taken as 2 (as before), equation (29)
sho&-that

very small
.

reasonable values of F1/m imp~ large se&r~tion al ‘and

heading error 01 at the start of the type II terminal phase.

.
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For example, the values al . ‘jOO,OOOft and el = 1° give

F1/m . 175 ft/sec2, r < 1.6 ft/sec2, and t2 - tl = 10 sec (approxi-

mately). If it is assumed further that vex . 10,000 ft/see, the maxi-

mum fractional rate at.which mass is expelled in propulsion becomes

0.0175 see-l.

These numerical.magnitudes serve mainly to indicate that the demands
placed upon the type 11 interception systm are severe. Even for a system
which makes extensive use of ground eqpipment, the probability of a direct
hit in this case a~ears srmil-1.A distance of nearest approach (miss
distance) of the order of 1,000 feet will be assumed to be attainable in
head-on interception. Furthermore, the timed dispersal of all or a part
of the mass of the attack vehicle will be considered as a means of
increasing the probability of a destructive hit to a value which is
effectively unity.

MASS DISPERSAL

‘Tnedispersal of mass can be initiatedby an explosion or some other
means, which in the simplest case amounts to giving an impulse to each
pellet or piece of matter ejected.

— —
s-

For simplicity, assume that at time t the mass m is distributed
uniformly over the surface of a sphere of r@ius .

b = ‘b(t - ‘J (32)

where wb is the radial speed of each piece of matter with respect to

the center of mass (center of sphere) and ti is the time at which dis-
—

persal is initiated. Let t2 denote the the at which the target arrives
—

at a point adjacent to the center of the sphere. At time t2 the average.-.
surface density of mass on the

m— =

hb22

spherets surface

~ [-(t:-%)]2

is

Hence, the mass ms Wch strikes the target is such that

mms22Af—
hb22

.
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where Af is the target’s

destructivemass,-then the
*

frontal srea.

probability of

-%2%d = ~b2
.

17

= % is the mirlimwn
destruction .Tsa maxhnn when

(33)

that is,

Equation (33) has the following obvious and more ~or~nt interpre~tionj
h&rever. ‘%ppose the accuracy of the interception system is such that the
center of mass of the attack vehicle is assuredly within a distance e of
the target’s flight path at time t~. men, if e is substituted for b2

in equation (33), the minimum mass m required to be dispersed is

In

Thus, the dispersal speed wb

adjusted in accordance with

(34)

and time interval t2 - ti are tO be

b2=6 (
=wbt2-

‘i)

If the attack vehicle is

at time ti and if they

instant, the distance at

approaching the target at a relative speed vi

are separated by the distance ai at this

which dispersal

ai=k - ‘h
This distance wi~ normally be held to a
trolled flight of the attack vehicle for

is initiated is approximately

vie
=—
‘b

minimum so as to permit con-
the longest possible time.

The applicability of this type of interception is difficult to
assess inasmuch as the minimum destructive mass depends upon the nature
of the target, while the maximum error 6 depends upon the effective-
ness of both the attack vehicle’s control system and the ground equipment.
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NUMERICAL EXAMPLE FOR MASS DISPERSAL

In considering a numerical example it is convenient to rewrite equa-
tion (%) in the form

.%nd &e2m ——
m’ m’ Af

where m’ is the target’s.mass. In view of the high relative speed,

say vi = 50,000ft/see, the ratio ~/m’ w%llbe takenas 10-5.

Assume further that Af = 100 ft2 and that e = 1,000 feet. ~en, for
these values of the parameters,-

m—= ~o-5 6 X 106 = 0.6
ml 102

That is, the mass
of the target.

required to be dispersed is of the order of the mass .-

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

&

Langley Field, Vs., July 23, 1958.
.
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REIA’ITONOF APPARXNT GRAVITATIONAL ACCELERATION

TO TIDE-GENERATING ACCELERATION AND TO

DISTURBING EFFECT OF A THIRD BODY

The apprent gravitational acceleration ~ experienced by the
attack vehicle rehtive to a target moving in the earthts gravitational
field is mathematically identical with the tide-generating acceleration
field produced in the earth’s oceans by the moon’s gravitational field.
Superimposed upon the tidal acceleration field caused by the moon is a
similar but somewhat less intense field due to the sun. Each of these
tide-generating accelerations has the approximate form (cf. eq. (10))

(Al)

where M now refers to We mass of the tide-producing body (moon or sun),
● ~ becomes the position vecJtorof the ocean particle relative to the

*.

center of the earth, and p
-.

now refers to the position vector of the
earth’s center relative to the center of the tide-producing body.

.

The expression
potential (see, for

which iS W~-kUOWll
tion (A2) defines a

(Al) for
example,

3
U=z

in tidal

~ will be derived from the
ref. 4 or ref. ~):

approximate

(A2)

theory. For a given value of p, equa-
potential field about the point whose position vec-

tor is r. ‘Ihus,the independent variables in eqution (A2) are a and
e while P occurs simply as a parameter. The radial variable a and
t%’colatitude Oap represent two of three possible spherical coordi-
nates; the absence of the longitude angle g in eq~tion (A2) attests to
the rotational symnetry of the potential field about the line of F.
Eence, in spherical
by equation (A2),

grad U =

=

coordinates, the gradient of the .potent.ialU is,

(Wltw 1 )m-—
~’ a aeap’ a sin eap ~

(-1-
~ 3 cos%ap, 3 sin ‘8P COSQapj o

).
(43)
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,Thefirst or radial component of grad U in equation (A3) is in the
direction of ~ and can be expressed as

( )
@= 1 - 3 cos%apz

~

The second component, which is in the direction

(A4)

of increasing eao
(see fig. 3), is perpendicular to ~, but can be expressed as the”sun
of a vector in the direction of & and a vector in the direction of ~;
that is,

(A5)

The third component of grad U in equation
rotational symmetry of the potential”field.
and (A5) gives

grad U =

=

Consequently, equations (Al)

[(GMaF—-- 3COS
da

[(
GMa2 ~~a—-.
~3 a P

and (A6) show

l?= -grad U

(A3) vanishes because of the
Adding expressions (A4)

e )]~ap p

mat

(A6)

which was to be proved.

In celestial mechanics, the “disturbing effect of a third body” has
a mathematical form which is identical with that of the ttde-generating
acceleration and the apparent gravitational acceleration of the present
paper (see, for example, ref. 6, pp. 337-342). An example is the sun’s
disturbing effect on the moon’s orbit about the earth. In this case ~
becomes the disturbing acceleration, M now denotes the mass of the
sun, @ becomes the position vector of the moon’s center rektive to
the earth’s center, while 7 becomes the position vector of the earth’s
center relative to the center of the sun.

Thus, equation (Al) represents a first approximation for an accelera-
tion in each of the three cases discussed, that is, terminal motion in
interception, tides, and lunar motion. In each a~lication the ratio a/p
is sufficiently small for the first approximation to be useful.

*

b
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For a given value of the distance a, equation (Al) shows that the
magnitude of the acceleration ~ is mainly determined by the value of

Ithe quantity GM P3, which will be termed the “disturbance parameter.”
In a given situation, such as the motion of a satellite about the moon,
the disturbing effect of the earth can be compared with that of the sun
by comparing values of the disturbance parsneter for the two cases. This
comparison shows that the disturbing effect of the earth on a satellite
of the moon is nearly two hundred times as great as the disturbing effect
of the sun on the satellite’s motion relative to the moon. (This is in
marked contrast to the @l/P2 va~~s for the tio ~ses; the s~’s
attraction at the moon’s position is more than twice the earthis. How-
ever, each attracting body accelerates not only the moon’s satellite
but also the moon itself’;as a result, the disturb=ce paramter, which
is a measure of the net acceleration of the sate~ite, varies inversely
as the cube, rather than the square, of the separating distance P.)
Therefore, successively better approximations for the motion of a satel-
lite relative to the moon would include (in this order): (1) the moon’s
gravitational field, (2] the disturbing effect of the earth, and (3) the
disturbing effect of the sun.

Values of the disturbance parameter are given in table I to facili-
tate the comparison of disturbing effects within each of five cases. In
the first case, with which the present paper is concerned, the three

“ values of the disturbance parameter show that the disturbing effects due
to moon and sun are both negligible compared with that of the earth. The
second (or earth-satellite) case is similar to the third (tidal) case;

.
the values of the disturbance parameter here reflect the well-lnmwn fact
that the moon’s effect on the tides is sanewhat greater than the sun’s.
The fourth case has already been discussed, while the fifth is roughly
analogous to the first case listed.
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TABLE I.- VKCUES OF TEE DISTURRANa PARMETER

.
23

@ @ CD @ B
Approxtite

Disturbed In motion Disturbing distance Disturbance

bcdy near body p between parameter,

(-” @ @and@, GM/P3 ,

miles
see-z

Attack Satellite of Earth >4 x 103 cl. ~ x 10-6

vehicle earth Moon =2.4X 10 =8.6 X 10-14

=9.3X 107 =3.9 x 10-14

Satellite of Earth Moon 2.4x 105 8.6 X 10-14
esrth sun 9.3 x 107 3.9 x 10-14

Ocean “ Earth Moon 2.4 X 105 8.6 X 10-14
particle

sun 9.3 x 107 3.9x 10-14

Satellite of Moon -- Earth 2.4 X ld 7.OX 1o-1-’2
moon

sun 9.3 x 107 3.9 x 10-14

Attack Satellite of Moon >1.08 X 103. <9.3 X1O-7
vehicle moon

Earth *.4X @ =7.0 x 10-~
sun +.3 x 107 =3.9 x 10-14

I
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Figure 1.- Schematic Ma&ram showing flight paths of two types of interceptor for the case of
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. Iniioate

a = Conetant

2

r Iine of @
r

- Earth!seurface

Figure 2.- Apparent gravitational acceleration ~ experienced by attack
vehicle at small distance a frcxhtarget. (Acceleration field is

rotationally symmetric about line”of P and varies in intensity as
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/

\

Attack mhicle
/

k
/

“P-Y
/

Target

/x Earthls uurface

Figure 3.- Sche~tic relations of angles to positive directions of vec-
tors. For situations arising herein eap + Opr = Oar when ‘ap is

acute, and 0ap + ‘pr
= 360° - ew when- Oap is obtuse.
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Figure 4.- Dimensionless relation of apparent gravitational-acceleration
magnitude to distance from target for various values of 19ap. (See

eq. (n).)
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Figure 9.- Schematic comparison
present case (eq. (15)) with
navigation course.
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that in the case of a proportional
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Figure 10.- Vector diagrsm
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corresponding to equation (E13).
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