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TECENICAL NOTE 4399

REIATIVE MOTION IN THE TERMINAL PHASE OF INIERCEPTION CF
A SATELLITE OR A BALLISTIC MISSILE

By Richard A. Hord
SUMMARY

The interception of a satellite or & ballistic missile essentially
outside the earth's atmosphere is considered with emphasis on the ter-
minal phase of the attack vehicle's flight. For the dlscusslon of the
relative motion, a coordinate system is selected which has 1ts origln
at the target and axes slways parallel to lines fixed in an inertial
frame. The resulting vector equation of motion conteins, in addition
to the thrust term, an aspparent gravitational term. Bounds on the magni-
tude of this apparent acceleration of the interceptor are obtained which
permit gaging its lmportance in relation to thrust acceleration in the
terminal phase of lnterception. Since the apparent gravitatlonal accel-
ergtion approaches zero as the interceptor approaches the target, pre-
liminary anslyses of the terminal phase of interception can generally be
carried out by neglecting gravity altogether. Two types of interception
are discussed mathematically and a numerical example is worked out for
each type. The type of interception for which the terminal relatlve
approach speed is small compared with the target's speed is, within the
limits of the present study, found to be feasible. The practicabllity
of head-on interception with mass dispersal prior to impact is more
difficult to assess; in the example consldered, the mass required to be
dispersed is found to be of the order of magnitude of the mass of the
target.

INTRODUCTION

The use of pilotless aircraft in the destructive interception of
an airplane 1s presently a well-developed fleld of englineering both in
theory and in practice. The corresponding literature is extensive and
no attempt need be made to review it here. (See, for example, ref. 1.)

The interception of satellites and ballistic missiles, on the other
hand, remains practically unexplored. This case 1s characterized by
speeds so0 high as to approach escape speed, propulsion and control by
rockets, and a shift of emphasis, particularly in the terminal phase of
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flight, from aerodynamic forces to gravitetlional forces. In addition,
the motion of a satellite or & ballistic missile can be accurately pre-
dicted over large distances from knowledge of its earlier motion.

In thils paper attentlion is centered on the terminal phese of the
interceptor's flight. ZEqually lmportant problems of initial detection,
tracking, launching, inltial guldence and propulsion, and stabilization,
for example, are not considered to an appreciable extent in the present

study.

SYMBOLS
8 position vector of attack vehicle in a coordinate system
with origin at target's center of mass and axes always
parallel to lines fixed Iin an inertisl frame
Af target's frontal ares
b radius of sphere over which dispersed mass is distributed
c navigational correction coefficient
)
F thrust vector
— -
Fp vector sum of perturbing forces at r
- -
FP‘ vector sum of perturbing forces at p
G Newton's universal gravitational constant,
6.670 x 10~ newton-metere/kgz = 3.438 x 10-8 1p-£t2 /slug2
m mass of attack vehlcle
m! mess of target
M mass of earth
m mess which strikes target
i minimum destructive mass
r position vector of attack vehicle in a coordinate system

with origin at earth's center and axes always parallel
to lines fixed in an inertial frame
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t time
U potential function for tlde-generating acceleration, or for
-y
T
vy magnitude of velocity vector da/dt at time %
Vex exit speed of propulsive exhaust gases
Wy, radlal speed of dispersed mass
—
r spparent gravitational acceleration acting on attack vehicle
€ meximum error (maximum distance of center of mass of dispersed

matter from target's flight path at interception)

el angle which velocity vector d§7dt makes with negative of
position vector & at time t1
eap angle between positive directions of vectors a2 and g
eaP angle between positive directions of vectors & and f?
o~ =
oT angle between positive directions of wvectors p and T
E? position vector of target in a coordinate system with origin
at earth's center and axes always parallel to lines fixed
in an inertlal frame :
Py radius of earth, 6,371 km = 3,959 miles
c dimensionless correction constant, c/mvl
Q ‘ longitude in a spherical coordinate system
Subscripts:
1 refers to start of terminal phase of interception
i refers to start of mass dispersal (type II)

2 refers to time at which target is hit
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GENERAL CONSIDERATIONS

The problem of intercepting & satellite vehlcle or a bellistic mis-
slle essentially outslde the earth's atmosphere has two features which
alone are sufficient to set it apart from the interception problems
encountered in utilizing a guided missile to destroy a conventional air-
craft. These features are:

(1) The predictability of the target's flight path over large dis-
tances. The accurate measurement of the position and velocity of the
target at some point in time makes possible the computation of its posi-
tion and velocity at future times by the methods of celestial mechanics.
This means that the lnterception program can be primarily predetermined,
the subsequent corrections required in flight being comparatively small.
For that portion of the attack vehicle's flight path which lies in the
atmosphere, serodynamic controls can be employed, whereas outside the
atmosphere propulsive reaction devices must be used for control.

(2) The target's extremely high speed. Because of this, the choice
of interception progrem is more critically dependent upon the capabilities
of the components of the Interception system concerned with initlal detec-
tion, tracking, guidance, propulsion, stabllizetion, and destruction. 1In
partlcular, for an interception system requiring a direct hit, the termil-
nal approach speed, relative to the target, must be low enough to permit
the system to overcome its limitations in attack-vehicle maneuverability
and in camponent accuracy and response time. An importent case is the
extreme case 1n which the terminal relative approech speed is small,
thet 1s, when the attack vehicle's velocity vector closely approximates
the target's velocity vector immediately prior to the hit. Interception
progrems with this characteristic will be called type I. On the other
hand, the target's extremely high speed can clearly be used to advantage
in destroying it by a head-on attack. In this case the demsnds placed
upon the Interceptlion system probably preclude scoring a direct hit.
However, the timed dispersasl of all or a part of the attack vehicle's
mass prlor to interception can be utilized to reduce the accuracy require-
ment. A simple and important case is that in which the center of mass of
the attack vehilcle, during and somewhat before dispersal, is in the pro-
Jected orbit of the target. At contact, then, the velocitles are equal
in magnitude and oppositely directed. Head-on interception programs of
this nature will be called type II. .

The attack vehicle can be launched from the ground or from another
vehicle such as an alrcraft, a satellite, or.a satelloid. Flight patis
of ground-lsunched interceptors of the two types described are shown
schematically in figure 1. The chief differences between the two flight
paths are the following:
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(1) The terminal portion of type I will generally be extended becsuse
of the small relative approach speed. Thus, the time in flight tends %o
be greater than in the case of type II.

(2) The launching point of type I will, in general, lie nearer to the
point of initial detection. This suggests, for example, a single location
for the equipment for detection, tracking, launching, and so forth, in the
case of type I.

(3) Because of the difference in flight-path orientation, the earth's
rotational motion may be usable to better advantage ln one case than in
the other.

(4) If considerable variation in point of destruction is alloweble,
the time at which the interceptor is launched need not, in general, be
as precise for type II as for type I.

(5) If the eccentricity of the target's elliptical orbit is large
and if the point of destruction is near the minor axis of the ellipse,
then, depending upon which way the target's velocity vector is inclined
to the horizontal, the time in flight tends to differ considerably for
the two types.

These differences, of .course, become less important as the overall
performance of the interception system increases.

EQUATIONS OF MOTION

The equations of motion for the two types are basically the same
and, outside the earth's atmosphere, may be expressed in vector form as

P o MPL LPL. Ll
&% - Gr§r+mF+mFP (1)

where r is the position vectorl of the center of mass of the attack
vehicle at time %, G 1is the universal gravitational constant, M 1is
the earth's mass, m is the instentanecus mass (nonincreasing with time),
—

-
F 1is the thrust, and FP is the vector sum of perturbing forces such as

those due to the earth's oblateness and motion around the sun, the moon's

lIn 8 coordinate system wilth origin at the earth's center and axes
always parallel to lines which are at rest with respect to the average
positions of the fixed stars, that 1s, with respect to an Inertial frame;
see, for example, ref. 2, ch. I, or ref. 3, ch. X.
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gravitational field, and so forth. Iet 5’ denote the position vector
of the target's center of mess. Then,
- 2 5
p=r a

(2)

where & 1s the position vector of the attack vehicle relative to the
target.

Using equation (2) to replace T in equation (1) leads to

aa

—
12. M>_ 4% Mo, 132
_——F+ = - — +—F
a2 B r3 & dtﬁ'# o °FTm%p (3)

This differential equation is somewhat deceiving. The first two terms

on the right side are both large 1n absolute value, but for a << p (the
most important case), the magnitude of theilr sum 1s comparatively small.
Hence, for calculatlons, it is desirable to replace the entire sum on the
right side of equation (3) by its approximate value derived as follows.

Since, by equation (2),
- -
r=|p+a|

it follows theat

-3/2
rJ = (p2 +25 .8+ a2) (L)
Consequently, for a << p, the approximate expression
- - D= =
r5=p3(1-3029-a) (5)

is obtained by discarding terms of higher order in the serles expansion
of the right side of equation (4). Another approximation which will be
needed is the following. The last term on the right side of equation (3)
represents the vector sum of the perturbing accelerations at the posi-

tion ¥ of the attack vehicle and at time t. For a << P, it will be
sufficiently accurate for present purposes to employ the approxim&tion__

- _ 1 —)'
S (6)

5]

where the primed quantitles refer to the target (position Ev. Since
the exact equation of motion of the target's center of mass is
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25
dp M-, 12
—_—em— )+ = F ' (7)
ate 0 m' P

equations (5), (6), and (7) permit approximating the vector sum on the
right side of equation (3) according to

2= -3 -

ap” M 13 MpP .8
- = — + =F_ = 8
ate 3 i R (8

In view of the order of the approximation in equation (8), the third
term on the left side of equation (3) is adequetely approximated by

;- (9)
2 o>

(Recall eq. (5).) With the aid of the expressions (8) and (9), equa-
tion (3) can be reduced to the espproximate form

2 - -
da 132 M~ p . a2
==F =« =la -3 ———0p (10
at?2 B ¥ ( p2 ) )

Equation (10) i1s, then, the vector equation of relative motion which
applies accurately when the attack vehicle is near the target. Even in
the case of zero thrust, the task of finding the general solution of
equation (10) appears to be extremely difficult if for no other reason
than that p cannot be expressed as a closed-form function of time
when the target's orbit is noncircular.

APPARENT GRAVITATIONAL ACCELERATION

It is of interest to conslider the effect of the gravitational term
in equation (10) for extreme cases:

For case 1,

p.a=>0 (5’ perpendicular to 5’)

2o -
a~a 1 -
= F - =g
at? m p3

That is, the effect of gravity is to tend to reduce the distance a
separating the attack vehicle and the target; moreover, this tendency
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approaches zero as the separation a approaches zero. The analogy to
the linear restoring force in the case of simple harmonic motion may
also be noted. .

For cases 2,

©l

. & = +pa ;fmeﬂmﬁhmswe%me J ;

same direction, opposite sens

In these cases,

and

2
aF 1@, M
dta m p5

That is, the effect of gravity is to tend to increase the distance a
separating the attack vehilcle and the target; this tendency approaches
zero as the separation a approaches zero. -

let f? denote the gravitational acceleration vector in equation (10).
In the general case its magnitude is

oM [ E’ 5?-9
r -'—3'a -3 5 P)

P p
- A2
_GMB,J p.a)
-2 8 1+ 3(——pa (11)
Consequently,
™ a < o, @ a
-555§1“=2p73 (12)

which shows the range of the magnitude of the gravitatlonal ascceleration
in equation (10); moreover, it shows that case 1 and cases 2 are extremes.
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The inequality on the right in expression (12) shows that when the attack
vehicle is within a certain distance, say a,, of the target, the magni-

tude I’ of the gravitational acceleration term in the equation of relative

motion (10) is less than 2@@ﬁ/p2)ao/p. This upper bound on I’ is a

particularly useful check when & simplified analysis is performed wilth the
effect of gravity neglected.

The expression for the vector f? shows that it lies in the plane of

the two vectors & and p» (The special cases in which f? and & are
collinear are case 1 and cases 2, discussed previously.) Having obtained

the expression (11) for the magnltude of ft it is desirable to have
-—
expressions for the angles ear and € T which I’ makes with a
o)

and Bi respectively. Since
- -
@ -8 _ cos @
pa a

—
where eap is the angle which = makes with p, it follows that

a . f? 3 c0529ap -1
cos 8 _ = = (13)
1l + 3 cos eap
and
5 = 2 cos 0
cos epP IS S 20 (1)
P fl + 3 c0526ap
Equation (13) shows, for example, that f’ is perpendicular to & for
angles 6, = cos-l(tdl/j), that is, 54°4k' and 125°16!'. For both cases,

the value of T' 1s, by equation (1), JEQHM/pa)a/p. The corresponding

angles epF are, by equation.(lh), acute and obtuse, respectively.

These cases, together with cases 1 and 2 described previously, are illus-
trated schematically in figure 2. The acceleration fleld shown in fig-
ure 2 may be thought of as being rigidly attached to the head of the

changing vector 52 the intensity of this attached field varies, of course,
as l/pB, as well as varying directly as the distance a. Even for a tar-

get in a circular orbit, in which case o = ‘Eﬂ = Constant, the accelera-
tion field shown in figure 2 rotates sbout the target in any coordinate
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system whose origin is at the target and whose axes remain parallel to
lines fixed in an inertial frame (cf discussion that follows regarding

proper representstion of a) The preceding theoretical discussion is -

amplified in part by figures 3 to 6. Figures T and 8 have been added
to facilitate numerical estimates. The figures are self-explanstory.

In the application of equation (10) it must be realized that any
coordinate system to which the position vector & may properly be
referred must not only have its origin at the target's center of mass,
but also have 1ts axes always parallel to lines fixed in an inertial
freme. This is necessary in order to be consistent with equations (1),
(2), and (3) and the original definition of the vector ¥ If ¥ had
been referred to a coordinate system fixed in the earth, then terms
corresponding to the centrifugel and Coriolis accelerations would have
entered equation (1) because of the earth's rotation; the subsequent
analysis would have been slightly more complicated. Equetion (10) applies
to the terminal phase of interception; consequently, the more complicated
angalysis 1s clearly undesirable when the tracking and guidance mechanisms
for the terminal phase are totally contalned in the attack vehicle.

The apparent gravitational acceleration P is mathematically identi-
cal wlth a tide-generatling acceleration and with the disturbing effect of
a third body in celestial mechanics. This and some related matters are
discussed in the appendix of this paper.

TERMINAL GUIDANCE -

Guidance in the terminal phase of flight must be based at least upon
the vector & or its variation with time, or both. A method which will
be considered here 1s socmewhat similar to the famllier proportional
navigation course (see fig. 9) and 1s defined by the equation

- 1 =
F = -c H( a) (e > 0) (15)
where c_, 1s the correction coefficient. Equation (15) states that the
thrust F applied 1s to be perpendicular to a, in the direction tending
to reduce the rate at which & 1is turning, and proportional to the
angulaer rate at which & is turning. For this method of interception,

equations (10) and (15) give

a i(a) GM<a,-3 E“5’)=.0 (16)

c
4t¢ mdt\a/ o3 2

NI\)
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as the equation of motion of the attack vehicle relative to the target
in the terminal phase of flight.

If, because of rocket operation, the mass m of the attack vehicle
decreases appreciably during the terminal phase of flight, an additional
equation must be solved simultaneously wlth equation (16). 1Ilet the exit
speed of the propulsive exhaust gases, relative to the attack vehicle,

be denoted by v,; then

.. F (17)

where F is the magnitude of the thrust vector fi The additional
equation required follows from equations (15) and (17); that is,

4 (s
dti\a

This must be solved simultaneously wlth equation (16). If the correction
coefficient ¢ is & function of one or more variables, another equation
expressing this dependence must be included. However, cases in which
both m and c¢ are practically constant are clearly of first importance
and consideration will be restricted to these in the following discussion.

dm ___¢
dt

vex

(18)

SIMPLIFIED ANALYSIS NEGLECTING GRAVITY

As in the case of equation (10), the gravitational term in equa-
tion (16) will generally make it necessary to resort to numerical methods
of integration in precise calculations. Fortunately, however, the gravi-
tatlonal term approaches zero as the attack vehicle approaches the target;
consequently, much can be learned by examining the simpler differential
equation

2-

da ¢ da

_+_———=O l

2 tEaa (19)
which results upon setting f? equal to zero. Integrating equation (29)

once gilves

= = = =
da ca_[da cfa
EE"'EE‘(E‘) + £ (20)
1 1
where the subscript 1 refers to values at the start of the terminal
phase of flight. Since the vector on the right of equation (20) remains
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constant in magnitude and direction, and since the vector

O

(e > 0)

Ble

has the constant megnitude c/m, the attack vehicle 1s assured of hitting

the terget provided
(QE.)) + Q(E’)
dat 1 m\& /1

which is easily seen from the vector diasgram (fig. 10) corresponding to
equation (20). Iet vy denote the magnitude of the velocity vec-

tor (d§7dt)l and let €; be the angle which the latter mekes with the
negative of the vector &. Then the inequality (21) is equivalent to

(&)

% > (21)

> (& 9 2 in 8 2
(E - Vl cQOs l) + (Vl sin l)
or

c~ 1 V1 . 7 %
ﬁ>§cos 81 (—§<61<§) (22)

(The inequality would be reversed for cos 8; < 0, corresponding to
¢ < 0, but thls does not result in a hit.) This, then, is & sufficient

condition for the attack vehlicle to hit the target when gravity can be
neglected and when the method of terminal-phase flight is that described
analytically by equation (15).

The relative motion corresponding to equation (19), or the equivalent
equation (20), is confined to the plane of the vectors (d57dt)l and

(573)1 or, in the trivial case for which these are collinear, the motion
is confined to the line of the unit vector (E7a)l. Since, in accordance

with equation (15), the thrust has zero component along Ei it follows
from analytical mechanics (see, for example, ref. 2, ch. I, sec. 19, or
ref. 3, ch. V, sec. 1) that the radisl component of the acceleration
vanishes; that is,

2

a al° _
£el -o (23)

— - 8,

Since a 2 0, equation (23) yields the relation
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d%(%) <o (2k)

The equality applies in the triviael case of straight-line motion. Assume
now that relation (22) is satisfied, so that a hit will occur. Then,
relation (24) shows that the magnitude -da/dt of the radiel velocity

is nonincreasing with time. This result is used in the following analysis
of the variation of thrust magnitude during the terminal phase of flight.

The identity

£§?=;ia?_i&€)
dt a a dt a

ct

and equation (19) yield

l

dt

Py

= 2 =
=_§(s+2g)a§€g_;d_aé (25)

The right side of equation (25) is the sum of two perpendicular vectors;
consequently,

1/2
4 leagl_alfar). (o7 /
dt |dt =a dt|\dt =& dat a
&%) (&%)
= A4t a dtc 8
_d-g'_"
dt a
ury
--1fc ; da)]d &
B a<m+ dt)dtal
Therefore, by using equation (15),
(313 lfe da
& =-_2(L + 2 B\p 26
at a(m dt) (26)

is obtained for the time rate of change of the thrust magnitude F.
Assume, as in the discussion following relation (24), that relation (22)
is satisfied. Then, if the relation

c>
=% 2v, cos 8, (27)
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is also satisfied, equation (26) shows that the thrust magnitude F will
not increese durling the terminal phase of flight.

Thus, if c/m satisfies the relations (22) and (27), the maximum
thrust required of the attack vehlcle in the termlnal phase occurs at
the start, and 1ts value F; i1s given by

F_'_J. _c \al lsin ell (28)
m m &,

If 6 < 75°, relations (22) and (27) are satisfied by c/m = ov, where
o 2 2, in which case equation (28) becomes -

2
v
NS E;— sin Gll (29)

NUMERICAL EXAMPIE FOR TYPE I INTERCEPTION

Consider & type I wvehicle for which the terminsel phase of flight
starts at a range of 50,000 to 100,000 feet with & relative speed of - -
500 to 1,000 ft/sec and a heading error 6, S 20°. Assume thet o =2

(that is, c/m = l)' The maximum required thrust Fl given by equa~

tion (29) is
T 2
-+ = 2 1000° gin 20° = 13.7 £t sec2
m 50000 2T /

If the terminal phase of flight starts at time tl and the target
is hit at time t,, then (approximately)

a a

ty -ty = —k— = 1 - (30)
__dﬁ vlcos 1
at/,

In the numerical example Jjust considered, therefore, the maximum time
possible in the terminal phase 1s approximately

100000

-t __________75
500 cos 20

= 213 sgec

2 1"
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In this time interval a target moving at 25,000 ft/sec will have traveled

(213) (25,000) = 5.33 x 10® £t = 1.01 x 10> miles

This again is meximum for the numerical example. The corresponding max-
imum fractional rate at which mass is expelled in propulsion of the
attack vehicle is

= Fl/m _ 13.7

= = 1. -5 gec~t
= 10500 1.37 X 1077 sec (31)

-1
m

&g

where the exit speed Vex

10,000 ft/sec. Thus, a substantial mass loss may occur in the extreme
case. Finally, relations (12) show that the magnitude T of the
apparent gravitational acceleration experienced by the attack vehicle
during the terminal phase lies in the range

of the propellant gases has been taken as

o<r<2(32.2 £t sec
(3)000/

or
0< T < 0.3 ft/sec?

Thus, the maximm value of I’ 1s fairly small in comparison with the

maximum value FL/m = 13,7 ft/se02 and can be neglected in the present
approximate calculation.

Although the numerical example examined indicates that the applica-
tion of an interception system of type I has attendant difficulties,
considersble lstitude exists for the adjustment of design parameters
and none of the problems appears® to be extreme in nature. Consequently,
this type of interception system is consldered feasible.

NUMERICAL EXAMPIE FOR TYPE IT INTERCEPTION

For interception of type II the relative speed Al is of the order

of 50,000 ft/sec. If o is taken as 2 (as before), equation (29)
shows that reasonable values of Fl/m imply large separation a; and

very small heasding error Bl at the start of the type IT terminal phase.
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For example, the values &y = 500,000 £t and 6 = 1° give
Fi/m = 175 ft/sec?, I < 1.6 ft/sec?, and ty - t1 = 10 sec (approxi-

metely). If it is assumed further that vgy = 10,000 ft/sec, the maxi-
mum fractional rate at which mass is expelled in propulsion becomes
0.0175 sec~l.

These numerlcal magnltudes serve meinly to indicate that the demands
placed upon the type II interceptlon system are severe. Even for a system
which makes extensive use of ground equipment, the probablility of a direct
hit in this case appears small. A distance of nearest approach (miss
distence) of the order of 1,000 feet will b& assumed to be attainable in
head~on interception. Furthermore, the timed dispersal of all or a part
of the mass of the attack vehicle will be consldered as a means of
increasing the probabllity of a destructive hit to a value which i1s
effectively unity. ' '

MASS DISPERSAL

The dlspersal of mass can be initiated by an explosion or some other
means, which 1n the simplest case amounts to giving an impulse to each
pellet or plece of matter ejected. R

For simplicity, assume that at time t the mass m is distributed
uniformly over the surfece of & sphere of radius

b= wy(t - tg) (32)

where wy 1is the radial speed of each piece of matter with respect to
the center of mass (center of sphere) and . ti is the time at which dis-
persal is initiated. Let t2 denote the time at which the target arrives

at a polnt adjacent to the center of the sppgre. At time +t, the average
surface density of mass on the sphere's surface is

m__ . m .
lmb22 lm[wb(tz - ti)]z

Hence, the mass mg which strikes the target is such that
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where Ap is the target's frontal area. If myy; is the minimum
destructive mass, then the probability of destruction 1s a maximm when

g = f{% - ()

that is,

A
= f m
b2_ —

on Mg

Equation (33) has the following obvious and more important interpretation,
however. Suppose the accuracy of the interception system is such that the
center of mass of the attack wvehicle is assuredly within a distance ¢ of
the target's flight path at time t,. Then, if e 1s substituted for b,

in equation (33), the minimum mass m required to be dispersed is

2
m = myy 52 (34)

Thus, the dispersal speed W), &and time interval t2 - t; are to be
adjusted in accordance with

by =€ = wb(t2 - ti)

If the attack vehicle is approaching the target at a relative speed vy
at time +; and if they are separated by the distance a; at this
instant, the distance at which dispersal is initiated ls approximetely

Vi€

b
This distance will normally be held to & minimum so as to permit con-
trolled flight of the attack vehicle for the longest possible time.

The applicability of this type of interception is difficult to
assess inasmuch as the minimum destructive mass depends upon the nature
of the target, while the maximmm error € depends upon the effective-
ness of both the attack vehiecle's control system and the ground eguipment.
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NUMERICAL EXAMPIE FOR MASS DISPERSAL

In considering a numerical example 1t is convenient to rewrite equa-
tion (34) in the form

m _ Und 2ne®
m nm' Af

where m' 1is the target's. mass. In view of the high relastive speed,
say vi = 50,000 ft/sec, the ratio mmd/m' will be taken as 10'5.

Assume further that Ap = 100 £t2 and that e = 1,000 feet. Then, for
these values of the peremeters, :

o o107 X100 %06 = 0.6
10

Thet is, the mass required to be dispersed is of the order of the mass
of the target.

Langley Aeronautlcal Iaboratory,
National Advisory Committee for Aeronautics,
langley Field, Va., July 23, 1958.
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APPENDIX

REIATION OF APPARENT GRAVITATIONAL ACCELERATION
TO TIDE-GENERATING ACCELERATION AND TO

DISTURBING EFFECT OF A THIRD BODY

The epparent gravitetionsal acceleration g experienced by the
attack vehicle relative to a target moving in the earth's gravitational
field is mathematlically identical with the tide-generating acceleration
fleld produced in the earth's oceans by the moon's gravitational field.
Superimposed upon the tidal acceleration field caused by the moon is a
similar but somewhat less intense fleld due to the sun. Each of these
tide-generating accelerations has the approximate form (cf. eg. (10))

- - — -
= =_%%l:§ _ 3(3 X g)g} (a1)

where M now refers to the mess of the tide-producing body (moon or sun),

& becomes the position vector of the ocean particle relatlve to the =
center of the earth, and p now refers to the position vector of the
earth's center relative to the center of the tide-producing body.

-3
The expression (Al) for I’ will be derived from the approximste
potential (see, for example, ref. 4 or ref. 5):

U= > 8_2(1-_ - cos%e ) (a2)

which 1s well-known in tidal theory. For a given value of p, equa-

tion (A2) defines a potential field sbout the point whose position vec-
tor is P Thus, the independent variables in equation (A2) are a and
eap while p occurs simply as a parameter. The radial varisble a and
the colatitude 6,4 ap represent two of three possible spherical coordi-
nates; the absence of the longitude angle ¢ in equation (A2) attests to
the rotational symmetry of the potential field about the line of @,
Hence, in spherical coordinates, the gradient of the potentlal U is,

by equation (A2),

gradU:(égi aU i a_U
da’ & 38,," a sin 8g, OP

= 945'2(1 -3 cos29ap, 3 sin 8,5 cos 8, O) (A3)
o .
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The first or radial component of grad U in equation (A3) is in the
direction of & and can be expressed as

%‘i(l -3 cosaeap)g _ (Ak)

The second component, which is in the direction of increasing 8.

(see fig. 3), is perpendicular to a, but can be expressed as the sum
of a vector in the direction of & and a vector in the direction of P}

that is,
-?;i [(3 cosge'ap)g)- (3 cos eap)g’] (A5)

The third component of grad U in equation (A3) vanishes because of the
rotational symmetry of the potential field. Adding expressions (Al4)

and (AS) gives
grad U = §%§|— - (5 cos 6 ) l

-opff -7 2F] o

Consequently, equations (Al) and (A6) show that

-
I' = =gred U
which was to be proved.

In celestial mechanics, the "disturbing effect of a third body" has
a mathemstical form which 1s identicel with thet of the tide-generating
accelerastion and the apparent gravitational acceleration of the present
paper (see, for example, ref. 6, pp. 337-342). An example is the sun' s,
disturbing effect on the moon's orbit about the earth. In thls case r
becomes the dilsturbing acceleration, M now denotes the mass of the
sun, & becomes the position vector of the moon's center relative to
the earth's center, while p becomes the position vector of the earth's
center reletive to the center of the sun.

Thus, equation (Al) represents a first approximation for an accelera-
tion in each of the three cases discussed, that is, terminal motion in
interception, tides, and lunsr motion. In each application the ratio a/p
is sufficiently small for the first spproximation to be useful.
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For a given value of the distance a, equation (A1) shows that the
magnitude of the acceleration T is mainly determined by the value of

the quantity GM/LB, which will be termed the "disturbance parameter."

In & given situation, such as the motion of a satellite about the moon,
the disturbing effect of the earth can be compared with that of the sun
by comparing values of the disturbance parameter for the two cases. This
comparison shows that the disturbing effect of the earth on a satellite
of the moon is nearly two hundred times as great as the disturbing effect
of the sun on the satellite's motion relative to the moon. (This is in
marked contrest to the @/p2 values for the two cases; the sun's
attraction at the moon's position is more than twice the earth's. How-
ever, each attracting body accelerates not only the moon's satellite

but also the moon itself; as a result, the disturbance parameter, which
is a measure of the net acceleration of the satellite, varlies inversely
as the cube, rather than the square, of the separating distance p.)
Therefore, successlvely better spproximations for the motion of a satel-
lite relative to the moon would include (in this order): (1) the moon's
gravitational field, (2) the disturbing effect of the earth, and (3) the
disturbing effect of the sun.

Values of the disturbance parameter are gilven in table I to facili-
tate the comparison of disturbing effects within each of five cases. In
the flrst case, with which the present paper is concerned, the three
velues of the disturbence parameter show that the disturbing effects due
to moon and sun are both negligible compared with that of the earth. The
second (or earth-satellite) case is similar to the third (tidal) case;
the values of the disturbance parameter here reflect the well-known fact
that the moon's effect on the tides is somewhat greater than the sun's.
The fourth case has already been dilscussed, while the fifth is roughly
analogous to the first case listed.
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TABLE I.- VAIUES OF THE DISTURBANCE PARAMETER

' . Approximete
Disturbed In motion | Disturbing digtzﬁzzn DiStur:‘;’::,e
body near ( body ) b be pamra? 3
mass M and P,
@ @ ? sec=2
miles
Attack Satellite of Earth >h x 103 <1.5 X 106
vehicle earth Moon ~2.4 x 10° | =8.6 x 10-1*
Sun ~9.3 x 107 | ~3.9 x 10~}
Satellite of Earth Moon 2.4 x 10° | 8.6 x 10-*
earth Sun 9.3 x 107 | 3.9 x 10-1%
Ocesn Earth Moon 2.h x 105 | 8.6 x 10-1#
particle Sun 9.3 x 107 | 3.9 x 10-1%
Satellite of Moon < Earth 2.k x 10° | 7.0 x 10712
moon Sun 9.3 x 107 | 3.9 x 10~1%
Attack Satellite of Moon >1.08 x 109_| <9.3 x 10~T
vehicle moon Earth 2.4 x 10° | ~7.0 x 10712
Sun ~9.3 x 107 | ~3.9 x 10~1%
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Figure 1.- Schematic diagrem showing flight paths of two types of interceptor for the case of
launching fram the ground.
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r Nurbers beside vectors indicate
relative magnitudes
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Figure 2.~ Apparent gravitational acceleration I experienced by attack
vehicle at small distance a from target. (Acceleration field is

rotat:'sonally' symmetric ebout line’ of '5’ end varies in intensity as
a/p?. '
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Figure 3.- Schematic relations of angles to positive directions of vec-
tors. For sltuations arising herein eap + epr = ear when Bap is

acute, and 6, + O . = 360° - @ when 6, is obtuse.
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magnlitude to distance from target for vaerlous values of eap' (See

eq. (11).)
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@ Rockst—applied acceleration, - % a‘% g.,
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Direction of applied acceleration for
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Figure 9.- Schemetic comparison of direction of epplied acceleration in
present case (eq. (15)) with that in the case of a proportional
navigation course.
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