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NONUNTFORMITIES IN SHOCK-TUBE FLOW DUE TO
UNSTEADY-BOUNDARY-LAYER ACTION

By Harold Mirels and W. H. Braun

SUMMARY

The boundary layer along the walls of a shock tube induces pressure
and velocity gradients within the core of potential flow. These nonuni-
formities are evaluated herein for shock tubes in which the boundary
layer is thin relative to the tube diameter and is either wholly laminar
or wholly turbulent. The hot gas region between the shock wave and the
contact surface is considered. Both the axial distributions at any in-
stant and the temporal distributions at any axial position within this
region are found. Numerical computations are presented for an air-air
shock tube.

INTRODUCTION

The analysis of reference 1 obtains the flow perturbations, due to
unsteady-boundary-layer action, immediately behind the shock wave in a
shock tube. In this report the method will be extended to find the flow
perturbations in the entire region between the shock wave and the con-
tact surface. These perturbations are of interest when experimental
shock-tube data are analyzed. As in the previous work, the assumptions
are made that the boundary-layer action is equivalent to a one-
dimensional distribution of mass sources and that the expansion wave has
zero thickness. Numerical results are obtained for an air-air shock
tube for which the initial temperature throughout the tube is 520° R,
the wall boundary layer is either wholly laminar or wholly turbulent,
and the shock-tube wall remains at a temperature of 520° R. The spatial
and temporal variations in the hot gas region are presented graphically.

A theoretical study of the perturbations in the hot gas region be-
tween the shock and the contact surface is reported in reference 2. The
limitations of the method of reference 2 are discussed in reference 1.

A comparison of some of the results of reference 2 with those of the
present report is made in the body of this report. It might also be
noted that the method of reference 2 is also applied in reference 3 to
estimate the perturbations in the expansion fan of a shock tube.
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ANATL.YSIS
Perturbations

In the following analysis, familiarity with reference 1 is assumed.
The region between the shock wave and the contact surface is considered.
The perturbation at an arbitrary point in this region (point d(x,t) in
fig. 1) is found by summing the pressure impulses which arrive at that
point from both the left and the right. This summation requires an in-
tegration along all those characteristics influencing point d(x,t). The
characteristic lines considered herein are indicated in figure 1. Ex-
pressions for these characteristic lines are given by the following equa-

tions in terms of &,7. The equations for wugT - £, included therein,

will be useful in later developments in this report. (Symbols are defined

in appendix A.)

Characteristic lines:

\
bd x - &= (ay +uy)(t - 1)
u
1+ M, - ;2 & (1a)
uST—§=(X-§)——l—T-M—Z———+uSt—X
/
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o # (1p)
+ Mz + ag3
ayt + &= (§ - E)
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4 £ - x = (a5 - up)(t - 7) b
u
1 - 4o $ (1e)
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>

Following the method of reference 1, the contribution to the pres-
sure perturbation at point d in region 2 (hot gas) from waves arriving
from the left is

2y . 2y e
B “fePp 1 2P2 1
2,05 d T+ ! Gofes s ad T-1, |, Ve O
b b
Ep
p X®3 _1 Ve At
azd 1 + Mg ; 3
a
£ "o - +
= L4 + CI,, + DIy (2)

The integrand is, in each case, the vertical velocity at the edge of the
boundary layer. Coefficients C and D are, respectively, the reflec-
tion coefficient and the transmission coefficient at the interface between
regions 2 and 3. They are derived in reference 1, appendix C, and equal:

\
_ Tapéps - 1

o SRR
Tzp8p3 + 1

~"

, (3)
D e
Tzp8p3 * 1

/
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The waves arriving at point d from the right contribute a pressure

perturbation
€3 €3
_ 2rgpe 1 2rgby 3
VAN = dé¢ + E dE +
£2,d a,d 1 - M, i Mone ayd 1 + My g e
%
& £
2Py 1 2YsPz 1
EC azd T o Mé Vo d¢ + ED ad 11 MS vz dg
& ° £
b a
€5+ B+ B0 T+ ED.T (4)
dd bd be ab

The reflection coefficient E at the shock is defined in reference 1,
appendix C, as

2P12812 " 2
E = 3 = (5)
Mg

2P 0581 ——= + 1
1212 14 Mg

The contributions to Apz q and Apz g from waves reflected at points
c and ¢ are shown to be negllgible in reference 1.

The limits of the integrals in equations (2) and (4) are the end

points of the characteristic line segments (eqs. (1)). They may be
evaluated in terms of the coordinates x,t at point d as follows:

8.4:5}( - (l P M2)8.4t \

= ga = 1+ M5 + a3
K & (6a)
(1 + M)t - =
Ta = MS + ayz Y,
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The vertical velocity at the edge of the boundary layer is ex-
pressed in reference 1, appendixes D and E, as

2 1-n

uo 2
s v, \Pe A
S 2 .
Vo = -L2 % m (reglon 2)
2 s
7 o =2
Us
5 (7)
2 1-n
uz 3
— n3
a4 s .
Vo = L ——— (region 3)
3 3 u a,T + E
3 4
1+ = J
s

The two coefficients L2 and L3 are evaluated in reference 1 for both
wholly laminar and wholly turbulent boundary layers. The indices no
and nz are 1/2 for laminar boundary layers and 1/5 for turbulent
boundary layers.
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The use of equations (6) and (7) leads to the following values of
the integrals in equation (2):

L4 -2 s .3—2 Y ugt
Ec
& o
be - ayd 1 - M, Vo df
23
np 1l-n
-2 2 a 1-n
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1 - + -a—
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Under the assumptions that the boundary layer is wholly laminar or
wholly turbulent (n =Nz = n), the two pressure disturbances become
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The complete pressure and velocity perturbations at point 4 are
obtained from equation (9) according to

- At -
S A e (108)
tu, === (oo} | - 29 ) (10p)
2a) Poas 25 2,d
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Other perturbation quantities, such as temperature and density, can be
found by the methods indicated in appendix B.

The axial distributions of the perturbations Apz a and Auz a at

any instant of time are presented in figures 2 and 3 for several nomlnal
shock numbers. An air-air shock tube with Ty =T, = 520° R and wholly

laminar or wholly turbulent boundary layers is considered. The wall tem-
perature is assumed to remain constant at 520° R at all times. The ratio
of specific heats y and the Prandtl number were taken as 1.4 and 0.70,
respectively. In each case the curve is normalized to the value Apz o

(or Auz O), which is the value of the perturbation immediately behind

the shock wave at the instant of time under consideration. In using the
plots of A@Z d/Apz , for example, the numerical value of Apz o may

be obtained from equatlons (9) and (10a) evaluated at x = ugt. A non-
dimensional plot of Apz " is given in reference 1 for an air-air shock
2

tube and is reproduced here for convenience in figure 4. If an experi-
mental observation of shock attenuation is made, Apz o can be determined
2

directly from the experimental data (see, e.g., appendix B). Then fig-
ure 2 should yield accurate estimates of the axial variation of pressure
between the shock and the contact surface at the fixed instant of time.

If equations (9a) and (9b) are multiplied by (ust/x)l'n, they are
brought into a form which gives the variation, with time, of the pertur-
bations at a fixed axial station x (appendix B). This form is of in-
terest when aerodynamic measurements are made at a fixed station in the
shock tube. Numerical results are presented in figures 5 and 6 (for the
air-air shock tube described in comnection with figs. 2 and 3). The
abscissa is the dimensionless time measured from the passage of the shock
past the fixed station under consideration. The curves terminate at that
time at which the contact surface passes the station. In figures 5 and
6, A@z,o is the pressure perturbation directly behind the shock at the

instant it passed the fixed station being considered. The numerical
value of Ap, , can again be determined by the methods described in
J

appendix B.

Typical results of the present analysis are compared with those of
reference 2 in figure 7. The temporal variation of pressure at a fixed
station in an air-air shock tube is shown therein. The temperatures are
T, =Ty = 520° R; the axial position is 8 feet and the hydraulic diameter

= 1/7. The solid curves are based on equations (9). The dashed
curves are from figure 8 of reference 2. It is seen that, for the range
of Mach numbers considered, the method of reference 2 predicts a greater
increment of the perturbation pressure in the hot gas than does the
present method. For example, consider conditions at the contact surface

982%
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for Ppy = 3.4. The ratio Apz d/Apz o ¢€quals -0.2 by the method of
J J

reference 2 and equals 0.2 by the present method. This represents a
discrepancy of about 40 percent in the perturbation quantity A@z,d/bpz,o.

The limitations of the method of reference 2 are discussed in reference 1.

Weak Shocks

If the same gas is used in regions 1 and 4 (rl = y,) at the same
initial temperature (Tl = T4), and if the boundary layers are wholly
turbulent or wholly laminar (n, = nz), then, for weak shocks (M, = 1,
M, << 1) the pressure and velocity perturbations may be found in terms
of the single parameter Mz.

By using the relation
P2
£—=1+rM2+o(M%)
il

which may be obtained from the ideal shock-tube relations (as given,
e.g., in appendix G of ref. 1), the transmission and reflection coeffi-
cients are found to be

c =X, + o()

p=1-Y-2m, + o(M)

=
Il

0(1Z)

Also,

1+ M, - s Iff—i M, + O(Mg)

L32 = V32 = 8.32 =l+O(Mz)
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By neglecting higher-order terms in M, equations (9a) and (9b) become,

respectively,
1-075,a\1 Ao}
( d.) ( 2 ) e P2,4
Bl g v l-n p
S 2 2 2
2r oLy (13)
1l-n
D
4 ug®t ) r+1 R o % e
| (r + l)Mé ! M, g % 4 ust
(11a)
1-n
l-n n = 1, = s
( d> (a2d> d o 28 1 u t -
uh v 2\1l-n p e Y + 1
s 2 2r Lo (M) 2 D =M

valid for M, < x/u t < 1. (The point x/u,t = M, corresponds to the

contact surface.) Equations (11) follow from equations (9) by neglect-
ing the term containing C 1in equation (93.) and the terms containing E
in equation (9b). The pressure and velocity perturbations in region 2
(egs. (10a) and (b), respectively) are now found to be

1l-n
1l-n b= i
APZ d [. + 1 T X ugt
i3 a) 4 "t - Yy + 1
M‘Z S 1 - 7 M2
(12a)
l-n I ____x__ 1-n
g s Bl )@+Lii _10 _é T+ 1 ) gt
My, ( 5 W T Y23t = ey
i B ) (12v)

)

The limiting forms (12a) and (12b) are shown in figures 8 and 9,
respectively, for three values of M2 The accuracy of the limiting

forms is indicated by comparison with the dashed curves, which were ob-
tained from equations (9) and (10) for M, = 0.2 (Mg = 1.1328). The

corresponding time plots are shown in figures 10 and 11. They are ob-

al
tained as the products of equations (12) and (ugt/x) -

9827%
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DISCUSSION OF RESULTS

The numerical results of the present analysis are presented in
graphic form in figures 2 to 11. The normalized ratios Apz d/A;p2 s
J J

and Au, d/Au2 o are used therein. It should be kept in mind that
J J
A@z,o and Auz)o are negative in all cases so that when these normal-

ized ratios are positive or negative, the numerator is negative or posi-
tive, respectively. The ratios Apo d/ipz B
. 2 2
/ Region 2 and Au, ;/fu are less when variations
2. d1% o
with x at a fixed t are considered than

when variations with t at a fixed x (ex-
cept at x/ust = 1) are considered, since

A@z,o and Auz o are larger for the former

than for the latter (see sketch). The re-
sults for wholly laminar boundary layers ex-
hibit the same trends as those for wholly
turbulent boundary layers, although the individual perturbations are less
for the laminar case (ref. 1). Hence, only the trends of the turbulent
boundary-layer results will be discussed herein.

For weak shocks the ratio Apz,d/apz,o varies from 1 at the shock

to nearly zero at the contact surface (figs. 8(b) and 10(b)). Thus,
the pressure near the contact surface remains nearly at the ideal (i.e.,

no-attenuation) value. The ratio Auz d/Au2 5 varies from 1 at the
) J

shock to a substantial negative value at the contact surface (figs. 9(b)
and 11(b)). Thus the velocity perturbation at the contact surface is
positive and the contact surface "speeds up" because of the wall boundary
layer. This is observed experimentally in reference 4.

With increases in shock strength, the value of APz,d/bPz,o at the

contact surface also increases (figs. 2(b) and 5(b)) so that a consider-
able pressure decrement exists at the contact surface. For strong shocks
(Mg = 0(6)) the pressure perturbation at the contact surface is of the

same order of magnitude as that behind the shock so that the pressure is
fairly uniform in region 2. This result is in qualitative agreement with
the unpublished experimental measurements of J. J. Jones of the Langley
laboratory, in which a relatively constant pressure region directly be-
hind the shock is noted. With increase of Mg, the value of A“z,d/Auz,o
at the contact surface ultimately increases to a value of about O for

M, = 6 (figs. 3(b) and 6(b)). Thus for Mg = 6 the contact surface
moves at approximately the ideal value. However, since the shock speed
is lower than ideal, due to attenuation, the speed of the contact surface
relative to the shock is greater than that predicted by ideal shock-tube
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theory. This effect tends to reduce the available test time when ex-
periments are conducted at a fixed station in a shock tube. Moreover,

this results in a substantial variation of velocity in region 2 despite -
the fact that the pressure variation is relatively small.

The previously noted results can be explained on the following
physical grounds. The boundary layer in region 3 generates longitudinal
compression waves while that in region 2 generates expansion waves (ref.
l). The net effect of these waves is to attenuate the shock as described
in reference 1. The shock attenuation defines the perturbations at one
limit (x/ust = 1) of region 2. The variation of fluid properties between

the shock and the contact surface can then be estimated (approx.) by con-
sideration of conditions near the contact surface (x/ugt = up/uy).

For weak shocks the perturbations near the contact surface are
mainly due to the characteristic lines ab and dd (see sketch). The in-
tegration along line ab contributes, at
‘t point d, a compression wave moving in the
+x-direction. The integration along line
dd contributes an expansion wave moving in
the -x-direction. For an air-air shock
tube with small initial pressure ratio,
these pressure waves are approximately of
equal and opposite strength so that the
ressure perturbations cancel each other
%eq. (10a)) while the corresponding veloc-
ity perturbations are additive (eq. (10b)). .
Thus for weak shocks the pressure pertur-
bation is essentially zero at the contact surface while the velocity
perturbation has a substantial positive value. Other perturbation quan-
tities can be readily found by using appendix B.

Region 3 | Region 2

Now, consider the case of an air-air shock tube with a very high
initial pressure ratio so that the shock strength is large. It can be
shown that region 3 (i.e., characteristic line ab) makes only a small

contribution to the pertur-

*t bations at points near the
contact surface. This is
Region 3 / primarily due to the fact
// . that the transmission coeffi-
q Region 2 ,jent D at point b (i.e.,

+ +
= A is the ra-
D Pz,b/APS,b

tio of the wave transmitted

into region 2 to the inci-

dent wave arriving from

region 3) approaches zero i
for the strong-shock case.

982%
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Thus the major contribution to the perturbations is due to characteristic
lines dd and cb. The integrations of Vo along lines dd and cb are very

nearly equal when point d is near the contact surface. However, the con-

tribution of line cb to point d is found by multiplying the integral

along line cb by the reflection coefficient C (i.e., C = Apg b/Apé p 18
) )

the ratio of the reflected to the incident wave, in region 2, at point
b). But C approaches 1 for strong shocks so that the pressure pertur-
bation at point d, due to line cb, is very nearly equal to that due to
line dd. However, since the contribution of line cb is a wave moving

in the +x-direction (due to reflection at point b) while line dd contri-
butes an approximately equal pressure wave moving in the -x-direction,
the pressures are additive, but the resulting velocity perturbation is
nearly zero. As a result the pressure decrement at the contact surface
is of the same order as that behind the shock, but the velocity of the
contact surface remains at essentially the ideal value. (The latter
result could also be deduced by noting that the acoustic impedance ratio
p3a5/p2a2 = rsaz/rza3 is very high so that the contact surface tends to

be a constant-velocity interface and at the pressure imposed by region 2.)

The perturbations at a fixed station x for the case of a strong
shock is discussed further in appendix B. It is noted therein that,
during the time interval between passage of the shock and passage of the
contact surface, Apz,d/APZ,o remains at about 1, Auz,d/Auz,o varies

Lp P AT P
from 1. to O, 228 = 2 varies from O to ;Ly _nggzz;fl_. varies from 1l
P2 P20 i =g “Rgie
T, -1 Al P Ty -1
to 1 , and e ZTE—— varies from O to - —%F———. In interpret-
(3] M a0 1

ing these results, it should be noted that Apz " and Auz o 8are neg-
)

J
ative. Thus, there is only a slight increase in AM, 4, and A@Z,d re-
J

mains essentially constant, during the course of an experiment employing
an air-air shock tube at large pressure ratios.

CONCLUDING REMARKS

The calculations which have been made herein are of use in several
kinds of shock-tube studies. Probably, the most important application
is the prediction of the variation of free-stream conditions at a sta-
tionary model (or instrument) utilizing the hot gas region of a shock
tube. If the shock tube is to be used for the study of boundary-layer
stability or dissociation effects on the development of the boundary
layer behind the shock, then the nonuniformities derived herein are also
of interest.




16 NACA TN 4021

The limitations of the present method are the same as those dis-
cussed in reference 1. The use of a zero-thickness expansion wave is
valid for small pressure ratios but becomes in error for large pressure
ratios. However, for very large pressure ratios the contributions of
region 3 (to conditions in region 2) are negligible due to the acoustic-
impedance mismatch at the contact surface. Hence, it is only for inter-
mediate shock strengths that the use of a zero-thickness expansion wave
is likely to introduce errors. The assumption that the boundary layer
generates only longitudinal waves introduces a steep gradient of the
perturbation quantities directly behind the shock (e.g., fig. 2). (This
is due both to the singular nature of the boundary layer and to the
assumption of one-digensional flow within the potential-flow core.) The

gradient is steeper for the laminar case (when Vo has a-%—order singu-
larity directly behind the shock) than for the turbulent case (where Vo
has a~%-order singularity). If the three-dimensional nature of the flow

is taken into account, the steep gradient behind the shock would be ex-
pected to be somewhat modified. In experimental studies of the relax-
ation effects associated with strong shocks, it may be necessary to dis-
tinguish between the perturbations due to relaxation effects and those
due to the wave system introduced by the wall boundary layer.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, April 12, 1957
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APPENDIX A

SYMBOLS
speed of sound
reflection coefficient at interface, eq. (3)
specific heat at constant volume
transmission coefficient at interface, eq. (3)
hydraulic diameter, ft
reflection coefficient at shock, eq. (5)
eq. (7); ref. 1, appendixes D and E
Mach number of flow relative to wall
Mach number of shock wave relative to wall
eq. (7); ref. 1, appendixes D and E
pressure
temperature, R
time, sec
velocity of shock wave relative to wall
velocity in region 2 relative to wall
vertical velocity at edge of boundary layer
longitudinal distance from diaphragm
ratio of specific heats
perturbation from ideal (no attenuation) shock-tube flow
kinematic viscosity
integration variable representing x

mass density
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T integration variable representing t
a,b’... ) . ‘
g5, points on characteristic lines (fig. 1); point d is an arbitrary r
i A point in region 2
S
Subscripts: &
=% .., Dpoimts In x,t diasgrem (fig. 1); subscript 2,d refers to
D8 arbitrary point in region 2
o condition at shock wave; subscript 2,0 refers to conditions in
region 2 directly behind shock
w wall
1,2,3,4 regions of shock tube (fig. 1)
Superscripts:
+,- associated with waves moving in + or - x-direction,
respectively
Special notation: -
= s = 2] seite ive integer subscripts, not
8,z = 4/as, L32 LS/LZ’ two successi g pts,

separated by a comma, represent a ratio
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APPENDIX B

\ Useful expressions relating the perturbation quantities in region
2 are derived herein. The perturbations represent the departure from
the ideal conditions that would exist in region 2 if the wall boundary

|
PERTURBATIONS IN REGION 2 \
\ layer were not present. A perfect gas is assumed so that 7y, =17v. \

[{o]
[e0]
(aN]
i Perturbations Directly Behind Shock ’
Under ideal conditions, regions 1 and 2 are related by the normal-
‘ shock relations
‘ Do ZY]_MQ - (Yl - 1) 3\
‘ - Ty + 1 \
’ " al Jt
(@]
‘ ,g Aoe 2 Mg -1 ‘
Yy E; - T, +1 > (Bl)
B 1 71 M
€
o (ry + 1)MZ
i L2 Y1 Mg
Py 2 \
0L (rl - 1M+ 2 5

where M, is the shock Mach number. If the shock is perturbed, con-

ditions directly behind the shock (designated by subscript 2,0) can be
expressed as
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2
Spgto ) Mg i B

P2 oo - (-1 s

s LD b T (ry - 1) 4oy o

My 4Y1M§ L

2 2
Mg o 2riMg - (rp - 1) Mg + 1 4py
L 4y M2 M2 - 1 P2

2
A‘)2,0 _ = (Tl - 1) APZ,O

B2
Ha Po (B2)

N

er[(rl - ang + 2]

AT
2k

2,0 _ APELO
2 P2

pz,o (Equation of state)
2

Asz,o A@z,o _ Apzzo

Cyr Pz P2

(ry - 10 - 1)° 20,

2 2
MS[(Yl - 1)MS + 2] P2

is the entropy perturbation.

Entropy Variation in Region 2

The entropy is constant for a given particle in region 2, the value

depending on the strength of the shock at the instant the particle passed

through it. A particle at x,t in
region 2 passed through the shock

/@ontact surface at XA’tA where

i s QGRS
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The entropy of a particle at x,t is then given by

feg,a (1 - 1) - 1)° P2 o

=
v M'g’[(rl - 1)M2 + 2] \ P2

(B4)
XA’tA

For weak shocks, equation (B4) is of the order of (M.S - 1)3 and the en-

tropy variations are negligible. The entropy perturbations do not in-
teract with the longitudinal pressure waves, to the order of the present
analysis, so that each can be considered separately.

Parametric Form of Perturbation Solutions

For wholly laminar boundary layers (n = 1/2) or wholly turbulent
boundary layers (n = 1/5) throughout the shock tube, the local pertur-
bation of any quantity in region 2 (designated by A( )o 5) cen be ex-
pressed in the forms i

A()2d=f(_x_\
(ust)l'n ust)

\ (B5)

A( )z,d B g( x )
l-n u_t
(x) E
1-n J
x \_ [ust X .
where — = (= fl—=). The form of equation (B5) ean be de-
ust X ust

duced from equations (9). The function f(ﬁ?%) can be interpreted as
S

the variation with x at a fixed time +t while the function g(u—xE) can
S
be interpreted as the variation with t at a fixed x. Both forms are
used in figures 2 to 11. When dealing with perturbations normalized to
conditions directly behind the shock (i.e., A( )5 5/A( )2 o), multipli-
J b

cation by (ust/x)l'n converts a solution for fixed t +to a solution

for fixed x.

< Us

Perturbations at Fixed x for Times 1S < =

X u2

Let subscript 2,0 be considered to represent the perturbation
directly behind the shock at the instant it passes a fixed station x
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and let subscript 2,d represent the
perturbation at the station at a sub-
sequent time. Conditions directly
behind the shock can be found by (a)
experimental determination of AMg

or APz,o/Pz and equation (B2) or

(b) analytical determination of

Ap,, o/pp from equations (9) (or fig.
2

4 for an air-air shock tube) and (B2).
The subsequent perturbations can then
be expressed as indicated in the fol-
lowing section.

The entropy perturbatidn may be written in the form

t u 8
Ugsie
2 2 e e
Nsp g P (rp - 1)(M5 - 1) = ug

oy Pz0 M(ry-1ME+2]\ | _
u
S

(B6)

which is obtained from equations (B4), (B5), and (B3) by noting

Sl
ust EE n

’ XA’#A__(EA) _ X Ug
Apz,o 5:d u,
u

== S o (B7a)
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Aq P Lo P Au D Au.
id P2 _‘P2q P2 (BB z) 2,d G

@ fp2o P2 Lz o Uz App o) Bup o

= - 2
where = d = :
Mé uz/az and qp p2u2/2 The ratios Apz,d/ZPz,o and
Auz’d/Auz,o are found from equations (9) and (10) or from figures such

Au P
as 5 and 6. The ratio ——249 :

97 APZ,O

can be found from equation (B2).

It is of interest to investigate the nature of the perturbations

(Tl - l)Mg

for very strong shocks. Assuming Mg >> 1 and S T >> 1, equa-
tions (B2) show

gieo P2 Moo D2 l8g o iPn zl\
uz Mpo Tz Mg Sy Mg
g (B8)
g0 P2 Ao Py
oo~ W 2,0 °
B2 P2,0 2 P2,0 J

which defines the perturbations directly behind the shock. The subse-
quent time variation of the perturbation can then be estimated by con-
ust o,
S S

sidering conditions at the contact surface, = For an air-air

u,”
7
shock tube and My = O(6), figures 5 and 6 indicate that at the contact

surface

(B9)

APz,o

J

Equations (B9) probably are applicable for other driver gases provided
M, is sufficiently large (in order to make p3a3/pza2 large) so that

region 3 has only a small effect on region 2. (See section titled
Discussion of Results.) By use of equations (B9), the other perturba-

tions at the contact surface are

Loz ¢ P2 Y1 4434 B gy, M e

- ~ —— = 1 (B10)
170 B3 71-1 Tz &z, v1-1 M 2y,
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Thus, during the time interval between passage of the shock and passage

A3 .4 Mg .4

~ ‘— remains at about 1, -A—-—L— varies from 1

¥2,0 ATy g P2 ©7°

varies from O to 1fyy, —=—— »—— varies from 1 to
1 T, Apz’o

it AM P ¥ =L
el da L5 : varies from O to - ——l-———.
71 Mo Ap2,O ary

these results, recall that Apz o and Au, , are negative. It is seen
J )

of the contact surface,

In interpreting

that there is only a slight increase in AM2 g during the course of an
experiment. 2

Perturbations at Time t for x in Range — < =5 < g

} When the variations with
/ x at a fixed time t are con-
sidered, subscript 2,0 repre-
/ 2 4 sents conditions directly be-
t AN hind the shock at a fixed time
/ under consideration. The per-
turbation equations have the
same form as in the previous

J/ - section except for Asz’d/cv,

Us _X  which is now written
o u.t
U.s S
. 1-n
X 2
2 f— - —
Qszlg Do _ (Yl = l)(Mg - 1) ugt  ug (B11)
°v P20 Mg[(rl - 1)M§ +2]\ ;"
u

1-n
u
(Apz,o) 5 =n Xt - —E
Xpotp (_g.\) ugt U
S L u
p2,0 1 - 2
Ug

This modification is in agreement with the discussion associated with
equation (B5), which indicates that a solution for a fixed x can be
converted to a solution for a fixed t by multiplying the former by

1-n
e :
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Figure 11. - Time variation of velocity perturbations (at fixed station) behind weak waves (eg. 12(b)).
Yl = Y4 = 1.4,' Tl = T4.
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Figure 11. - Concluded. Time variation of velocity perturbations (at fixed station) behind weak waves S
(9]

(eq. 12(b)). T1=7,=141 =T,




