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By Harold Mirels and W. H. Braun 

SUMMARY 

The boundary layer along the walls of a shock tube induces pressure 
and velocity gradients within the core of potential flow. These nonuni­
formities are evaluated herein for shock tubes in which the boundary 
layer is thin relative to the tube diameter and is either wholly laminar 
or wholly turbulent. The hot gas region between the shock wave and the 
contact surface is considered. Both the axial distributions at any in­
stant and the temporal distributions at any axial position within this 
region are found. Numerical computations are presented for an air-air 
shock tube. 

INTRODUCTION 

The analysis of reference 1 obtains the flow perturbations) due to 
unsteady-boundary-layer action) immediately behind the shock wave in a 
shock tube. In this report the method will be extended to find the flow 
perturbations in the entire region between the shock wave " and the con­
tact surface . These perturbations are of interest when experimental 
shock-tube data are analyzed. As in the previous work) the assumptions 
are made that the boundary-layer action is equivalent to a one­
dimensional distribution of mass sources and that the expansion wave has 
zero thickness. Numerical results are obtained for an air-air shock 
tube for which the initial temperature throughout the tube is 5200 R) 
the wall boundary layer is either wholly laminar or wholly turbulent) 
and the shock-tube wall remains at a temperature of 5200 R. The spatial 
and temporal variations in the hot gas region are presented graphically. 

A theoretical study of the perturbations in the hot gas region be­
tween the shock and the contact surface is reported in reference 2. The 
limitations of the method of reference 2 are discussed in reference 1. 
A comparison of some of the results of reference 2 with those of the 
present report is made in the body of this report. It might also be 
noted that the method of reference 2 is also applied in reference 3 to 
estimate the perturbations in the expansion fan of a shock tube. 
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ANALYSIS 

Perturb at ions 

In the following analysis) familiarity with reference 1 is assumed. 
The region between the shock wave and the contact surface is considered. 
The perturbation at an arbitrary point in this region (point d(x)t) in 
fig. 1) is found by sunnning the pressure impulses which arrive at that 
point from both the left and the right. This summation requires an in­
tegration along all those characteristics influencing point d(x)t). The 
characteristic lines considered herein are indicated in figure 1 . Ex­
pressions for these characteristic lines are given by the following equa­
tions in terms of ~)~. The equations for us~ - ~) included therein) 
will be useful in later developments in this report. (Symbols are defined 
in appendix A.) 

Characteristic lines: 
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Following the method of reference 1, the contribution to the pres­
sure perturbation at point d in region 2 (hot gas) from waves arriving 
from the left is 

The integrand is, in each case, the vertical veloc ity at the edge of the 
boundary layer. Coefficients C and D are, respectively, the reflec­
tion coefficient and the t ransmission coefficient at the interface between 
regions 2 and 3. They are derived in reference 1, appendix C, and equal: 

C 
Y32a23 - 1 

Y 32a23 + 1 
(3) 
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The waves arriving at point d from the right contribute a pressure 
perturbation 

6p~ d = , ds + 

s-
2r 2P 2 1 1 c 

EC -a-
2
-d- 1 - Mz s-

b 

_ r-- + E r:::-+ EC r:.-+ ED r:::-
dd bd bc ab 

The reflection coefficient E at the shock is defined in reference 1, 
appendix C, as 

2P12a12 
~ 

- 1 
+ M2 1 

E 
s (5) = 

~ 
ZP12a12 + 1 

1 + ~ 
+ -The contributions to 6P2 d and 6PZ d from waves reflected at points , , 

c and c are shown to be negligible in reference 1. 

The limits of the integrals in equations (2) and (4 ) are the end 
points of the characteristic line segments (eqs. (1)). They may be 
evaluated in terms of the coordinates x, t at point d as follows: 

Sa 
a43x - (1 + M2)a4t 

a = 
1 + M3 + a43 

(1 + Mz)t 
x (6a) -
a2 

'r 
1 + M3 + a a 43 
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The vertical velocity at the edge of the boundary layer is ex­
pressed in reference l) appendixes D and E ) as 

l-n2 

(u)- 0n2 
(region 2) 

(region 3) 

(6f) 

(6g) 

The two coefficients L2 and L3 are evaluated in reference 1 f or both 
wholly laminar and wholly turbulent boundary layers. The indices n2 

and n3 are 1/2 for laminar boundary layers and 1/5 for turbulent 

boundary layers " 

------ ---------------------

i 

j 
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The use of equations (6) and (7) leads to the following values of 
the integrals in equation (2): 

(Sa) 

~l + M.zl (Sb) 

1 J'a v d, 
- Mz x 2 

(Sc) 

(Bd) 
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(Be ) 

l - n3 

~ 
l - n3 

- ~ (u t) u t s s 

(Sf) 

x 

~l (Sg) 

Under the assumptions that the boundary layer is wholly laminar or 
wholly turbulent (n2 = n3 = n)) the two pressure disturbances become 
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and 

C -----+-----
1 - ~ 

E [ 1 

1 + ~ 

C +-----

1 - ~ 

l-n 

~l + ~ - ~) ~l 
1 - M_ + --'""2 a2 

9 

e9a) 

(9b) 

The complete pressure and velocity perturbations at point d are 
obtained from equation (9) according to 

+ -
6P2 d == 4:>2 d + 6p2 d , , , (lOa) 

(lOb) 
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Other perturbation quantities) such as temperature and density) can be 
found by the methods indicated in appendix B. 

The axial 

any instant of 
shock number s. 

distr ibutions of the perturbations 6P2 d and 6u2 d at 
) ) 

time are pr esented in figures 2 and 3 for sever al nominal 
An air- air shock tube with Tl = T4 = 5200 R and wholly 

laminar or wholly turbulent boundary layers is considered. The wall tem­
perature is assumed to r emain constant at 5200 R at all times. The r atio 
of specific heats y and the Prandtl number were taken as 1 .4 and 0.70) 
respectivel y . In each case the curve is normalized to the value 6P2 0 

) 

(or 6u2)0)) which is the value of the perturbation immediately behind 
the shock wave at the instant of tDne under consideration . In using the 
plots of 6P2 d/6P2 ) for example) the numerical value of 6P2 may 

) ) 0 )0 
be obtained from equations (9) and (lOa) evaluated at x = ust. A non-
dimensional plot of 6P2 is given in reference 1 for an air-air shock 

)0 

tube and is reproduced her e for convenience in figure 4. If an experi-
mental observation of shock attenuation is made) ~2 can be determined 

)0 

directly from the experimental data (see) e.g.) appendix B). Then fig­
ure 2 should yield accurate estimates of the axial variation of pressure 
between the shock and the contact surface at the fixed instant of time. 

If equations (9a) and (9b) are multiplied by (ust/x)l-n) they are 
brought into a form which gives the variation) with time) of the pertur­
bations at a fixed axial station x (appendix B). This form is of in­
terest when aerodynami-c measurements are made at a fixed station in the 
shock tube. Numerical results are presented in figures 5 and 6 (for the 
air-air shock tube described in connection with figs. 2 and 3) . The 
abscissa is the dimensionless time measured from the passage of the shock 
past the fixed station under consideration. The curves terminate at that 
tDne at which the contact surf ace passes the station. In figures 5 and 
6) 6P2 0 is the pressure perturbation directly behind the shock at the 

) 

instant it passed the fixed station being considered. The numerical 
value of ~2 0 can again be determined by the methods described in 

) 

appendix B. 

Typical results of the pr esent analysis are compared with those of 
r eference 2 in figure 7. The tempor al vari ation of pressure at a fixed 
station in an air-air shock tube is shown therein. The temperatures are 
Tl = T4 = 5200 R; the axial position is 8 feet and the hydraulic diameter 

d = 1/7 . The solid curves are based on equations (9). The dashed 
curves are from figure 8 of reference 2. It is seen that, for the range 
of Mach numbers considered) the method of reference 2 predicts a greater 
increment of the perturbation pressure in the hot gas than does the 
present method. For example, consider conditions at the contact surface 
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for P21 = 3.4. The ratio ~P2 d/6p2 0 equals -0.2 by -the method of , , 
reference 2 and equals 0.2 by the present method. This represents a 
discrepancy of about 40 percent in the perturbation quantity ~P2 di~P2 o. , , 
The limitations of' the method of reference 2 are discussed in reference 1. 

Weak Shocks 

If the same gas is used in regions 1 and 4 (Yl = Y4) at the same 
initial temperature (Tl = T4 ), and if the boundary layers are wholly 

turbulent or wholly laminar (n2 = n3 ), then, for weak shocks (Ms z 1, 

~ « 1) the pressure and velocity perturbations may be found in terms 

of the single parameter ~ . 

By using the relation 

1 + Y~ + o(~) 

which may be obtained from the ideal shock- tube r elations (as given, 
e.g., in appendix G of ref. 1) , the transmission and reflection coeffi­
cients are found to be 

C Y; 1 ~ + O(~} 

D 1 - Y ; 1 ~ + O(~) 

E = O(~) 

Also, 

1 + ~ _ ~; = Y : 1 ~ + O(~) 



12 NACA TN 4021 

By neglecting higher-order terms in Mz) equations (9a) and (9b) become) 
respectively) 

(lla) 

(llb) 

valid for Mz < x/us t < 1. (The point x/us t = ~ corresponds to the 
contact surface.) Equations (11) follow from equations (9) by neglect­
ing the term containing C in equation (9a) and the terms containing E 
in equation (9b). The pressure and velocity perturbations in region 2 
(eqs. (lOa) and (b)) respectively) are now found to be 

"(1 + y + 1 Mz _ ~)l-n - ( 1 - ~ '\-1 L 4 ust 1 y ~ 1 ~) 

(12a) 

"'"' ,d , ~,l __ -_r_~_l_Mz_)_( l_+_r_~_l_~ ___ u_:_t_)_l-_n __ ---::--__ ~ll.-__ lr_-~~:....U:_l t_Mz!:L_ 

",",,0 (1 _ r ; 1 ",,)(r ~ 1 "'f" (l2b) 

The limiting forms (12a) and (12b) are shown in figures 8 and 9) 
respectively) for three values of ~. The accuracy of the limiting 

forms is indicated by comparison with the dashed curves) which were ob­
tained from equations (9) and (10) for Mz = 0.2 (Ms = 1.1328). The 
corresponding time plots are shown in figures 10 and ll. They are ob­

tained as the products of equations (12) and (ust/x)l-n. 
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DISCUSSION OF RESULTS 

The numerical results of the present analysis are presented in 
graphic form in figures 2 to 11. The normalized rat ios 6.P2, d/ /Sp2, 0 

and 6.U2,d/6.U2,0 are used therein. It should be kept in mind that 
6.P2 0 and 6.U2 0 are negativ2 in all cases so that when these normal-, , 
ized ratios are positive or negative, the numerator is negative or ~osi­

tive, respectively. The ratios 6P2 d/6P2 0 

;' Region 2 and 6u2 d/6.U2 0 are less when vari~tions' 
1r'f6( ) 2 d with x) at a fixed t are cons idered than 

t .j. ) when variations with t at a fixed x (ex-
-; 6.() cept at x/ust = 1) are considered, since 

I 6()2 2,0 6.P2 ,0 and 6uz,o are larger for the former 
__ -"'<::.-_--'-___ ' 0__ than for the latter (see sketch). The re-

x sults for wholly laminar boundary layers ex-
hibit the same trends as those for wholly 

turbulent boundary layers, although the individual perturbations are less 
for the laminar case (ref. 1). Hence, only the trends of the turbulent 
boundary-layer results will be discussed herein. 

For weak shocks the ratio /Sp2 d/6P2 0 varies from 1 at the shock , ) 

to nearly zero at the contact surface (figs. 8(b) and lOeb)). Thus , 
the pressure near the contact surface remains nearly at the ideal (i.e., 
no-attenuation) value. The ratio 6.UZ)d/6.UZ,O varies from 1 at the 

shock to a substantial negative value at the contact surface (figs. 9(b) 
and ll(b)). Thus the velocity perturbation at the contact surface is 
positive and the contact surface "speeds up" because of the wall boundary 
layer. This is observed experimentally in reference 4. 

With increases in shock strength, the value of /SpZ,d/6.P2,0 at the 
contact surface also increases (figs. 2(b) and 5(b)) so that a consider­
able pressure decrement exists at the contact surface. For strong shocks 
(MS = 0(6)) the pressure perturbation at the contact surface is of the 
same order of magnitude as that behind the shock so that the pressure is 
fairly uniform in region 2. This result is in qualitative agreement with 
the unpublished experimental measurements of J. J. Jones of the Langley 
laboratory, in which a relatively constant pressure region directly be­
hind the shock is noted. With increase of Ms, the value of 6.UZ d/6uZ 0 , , 
at the contact surface ultimately increases to a value of about 0 for 
MS ~ 6 (figs. 3(b) and 6(b)). Thus for MS ~ 6 the contact surface 
moves at approximately the ideal value. However, since the shock speed 
is lower than ideal, due to attenuation, the speed of the contact surface 
relative to the shock is greater than that predicted by ideal shock-tube 
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theory. This effect tends to reduce the available test time when ex­
periments are conducted at a fixed station in a shock tube. Moreover, 
this results in a substantial variation of velocity in region 2 despite 
the fact that the pressure variation is relatively small. 

The previously noted results can be explained on the following 
physical grounds. The boundary layer in region 3 generates longitudinal 
compression waves while that in region 2 generates expansion waves (ref. 
1). The net effect of these waves is to attenuate the shock as described 
in reference 1. The shock attenuation defines the perturbations at one 
limit (x/ust ~ 1) of region 2. The variation of fluid properties between 

the shock and the contact surface can then be estimated (approx.) by con­
sideration of conditions near the contact surface (x/list ~ u2/us). 

For weak shocks the perturbations near the contact surface are 
mainly due to the characteristic lines ab and dd (see sketch). The in­

t 

Region 3 Region 2 
d 

_____ .....JIII~ ____ -11~ X 

tegration along line ab contributes, at 
point d, a compression wave moving in the 
+x-direction. The integration along line 
dd contributes an expansion wave moving in 
the -x-direction. For an air-air shock 
tube with small initial pressure ratio, 
these pressure waves are approximately of 
equal and opposite strength so that the 
~ressure perturbations cancel each other 
teq. (lOa)) while the corresponding veloc­
ity perturbations are additive (eq. (lOb)). 
Thus for weak shocks the pressure pertur­

bation is essentially zero at the contact surface while the velOCity 
perturbation has a substantial positive value. other perturbation quan­
tities can be readily found by using appendix B. 

Now, consider the case of an air-air shock tube with a very high 
initial pressure ratio so that the shock strength is large. It can be 
shown that region 3 (i.e., characteristic line ab) makes only a small 

t 

Region 3 

contribution to the pertur­
bations at points near the 
contact surface. This is 
primarily due to the fact 
that the transmission coeffi­

Region 2 cient D at point b (i. e. , 

-------~~-____________ .. x 

D = 6P~ ~6p; b is the ra-, , 
tio of the wave transmitted 
into region 2 to the inci­
dent wave arriving from 
region 3) approaches zero 
for the strong-shock case. 
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Thus the major contribution to the perturbations is due to characteristic 
lines dd and cb. The integrations of v2 along lines dd and cb are very 

nearly equal when point d is near the contact surface. However, the con­
tribution of line cb to point d is found by multiplying the integral 
along line cb by the reflection coefficient C (i .e., C = 6p~ b/6P2 b is , , 
the ratio of the reflected to the incident wave, in region 2, at point 
b). But C approaches 1 for strong shocks so that the pressure pertur­
bation at point d, due to line cb, is very nearly equal to that due to 
line dd. However, since the contribution of line cb is a wave moving 
in the +x-direction (due to reflection at point b) while line dd contri­
butes an approximately equal pressure wave moving in the -x-direction, 
the pressures are additive, but the resulting velocity perturbation is 
nearly zero. As a result the pressure decrement at the contact surface 
is of the same order as that behind the shock, but the velocity of the 
contact surface remains at essentially the ideal value. (The latter 
result could also be deduced by noting that the acoustic impedance ratio 
P3a3/P2a2 = 13a2/12a3 is very high so that the contact surface tends to 
be a constant-velocity interface and at the pressure imposed by region 2.) 

The perturbations at a fixed station x for the case of a strong 
shock is discussed further in appendix B. It is noted therein that) 
during the time interval between passage of the shock and passage of the 
contact surface, 6P2 d/6p2 a remains at about 1, 6u2 d/6u2 0 varies , , ) , 

6p2 d P2 1 6T2 d P2 
from 1 to 0,' varies from 0 to - , varies from 1 

P2 6P2,0 11' T2 6P2)0 

to 
11 - 1 6M2 d P2 11 - 1 

and ' varies from 0 to In interpret-
Mz 6P2 0 211 , 

ing these results, it should be noted that 6P2 ,0 

ative. Thus) there is only a slight increase in 

mains essentially constant, during the course of 
an air-air shock tube at large pressure ratios. 

CONCLUDllrG REMARKS 

and 6u are neg-2,0 
6M2 d) and 6P2 d re-, , 

an experiment employing 

The calculations which have been made herein are of use in several 
kinds of shock-tube studies. Probably, the most important application 
is the prediction of the variation of free - stream conditions at a sta­
tionary model (or instrument) utilizing the hot gas region of a shock 
tube. If the shock tube is to be used for the study of boundary-layer 
stability or dissociation effects on the development of the boundary 
layer behind the shock, then the nonuniformities derived herein are also 
of interest. 



16 NACA TN 4021 

The limitations of the present method are the same as those dis­
cussed in reference 1. The use of a zero-thickness expansion wave is 
valid for small pressure ratios but becomes in error for large pressure 
ratios. However} for very large pressure ratios the contributions of 
region 3 (to conditions in region 2) are negligible due to the acoustic­
impedance mismatch at the contact surface. Hence) it is only for inter­
mediate shock strengths that the use of a zero-thickness expansion wave 
is likely to introduce errors. The assumption that the boundary layer 
generates only longitudinal waves introduces a steep gradient of the 
perturbation quantities directly behind the shock (e.g.) fig. 2). (This 
is due both to the singular nature of the boundary layer and to the 
assumption of one-dimensional flow within the potential-flow core.) The 

gradient is steeper ;or the laminar case (when v2 has a ~-order singu­

larity directly behind the shock) than for the turbulent case (where v2 

has a ~-order singularity). If the three-dimensional nature of the flow 

is taken into account} the steep gradient behind the shock would be ex­
pected to be somewhat modified. In experimental studies of the relax­
ation effects associated with strong shocks) it may be necessary to dis­
tinguish between the perturbations due to relaxation effects and those 
due to the wave system introduced by the wall boundary layer. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland) Ohio) April 12) 1957 
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APPENDIX A 

SYMBOLS 

a speed of sound 

C reflection coefficient at interface, eg. (3) 

specific heat at constant volume 

D transmission coefficient at interface, eg. (3) 

d hydraulic diameter, ft 

E reflection coefficient at shock, eg. (5) 

eg. (7); ref. 1, appendixes D and E 

M Mach number of flow relative to wall 

Mach number of shock wave relative to wall 

eg. (7); ref. 1, appendixes D and E 

p pressure 

T temperature, C>:R 

t time, sec 

ve l ocity of shock wave relative t o wall 

vel oc i ty in region 2 relative to wall 

v vertical velocity at edge of boundary layer 

x longitudinal distance from diaphragm 

y ratio of specific heats 

perturbation from ideal (no attenuation) shock-tube flow 

v kinematic viscosity 

integrat i on variable representing x 

p mass dens ity 
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integration variable representing t 

pOints on characteristic lines (fig. 1); point d is an arbitrary 
point in region 2 

Subscripts: 

o 

w 

1)2)3,4 

points in x)t diagram (fig. 1); subscript 2,d refers to 
arbitrary point in region 2 

condition at shock wave; subscript 2)0 refers to conditions in 
region 2 directly behind shock 

wall 

regions of shock tube (fig. 1) 

Superscripts: 

+,- associated with waves moving in + or - x-direction, 
respectively 

Special notation: 

two successive integer subscripts, not 

separated by a comma, represent a ratio 

J 
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APPENDIX B 

PERTURBATIONS IN REGION 2 

Useful expressions relating the perturbation quantities in region 
2 are derived herein, The per turbations represent the departure from 
the ideal conditions that would exist in region 2 if the wall boundary 
layer were not pr esent, A perfect gas is assumed so that '2 = '1' 

Perturbations Directly Behind Shock 

Under ideal conditions) regions 1 and 2 are related by the normal­
shock relations 

u2 2 ~ - 1 
-

'1 + 1 ~ 
(Bl) al 

Pz ('1 + l)~ 
Pl ('1 - l)~ + 2 

where Ms is the shock Mach number. If the shock is perturbed) con­

ditions directly behind the shock (designated by subscript 2)0) can be 
expressed as 



20 

4Y1M~ ~ 
2rl~ - (Yl - 1) ~ 

6p20 
--,'- (Equation of state) 

P2 

(Yl - l)(~ - 1)2 6P2,o 

M;[(Yl - l)M~ + 2] P2 

where 68 2 0 is the entropy perturbation. , 

Entropy Variation in Region 2 

NACA TN 4021 

(B2) 

The entropy is constant for a given particle in region 2, the value 
depending on the strength of the shock at the instant the particle passed 

t 
through it. A particle at x, t in 
region 2 passed through the shock 

/Contact surface at xA' tA where 

/ 
/ 

/ 

/ 
/ 

/ 

x,t 

hock 

____ ~~------------~x 

x
A 

1 
-= x 

tA 
t-

ust u2 
---x Us 

u2 
1 -

Us 
(B3) 

x u2 
-
ust Us 

1 
u2 
Us 

I . I 
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The entropy of a particle at x,t is then given by 

l::.s2d z 
c v 

(Yl - l)(~ - 1)2 (t:,P2,0' 
M2[(y _ 1)M2 + 2] \P2 ) 

s 1 s ~,tA 

21 

(B4) 

For weak shocks, equation (B4) is of the order of eM - 1)3 and the en-s 
tropy variations are negligible. The entropy perturbations do not in­
teract with the longitudinal pressure waves, to the order of the present 
analysis, so that ~ach can be considered separately. 

Parametric Form of Perturbation Solutions 

For wholly laminar boundary layers Cn = 1/2) or wholly turbulent 
boundary layers Cn ::: 1/5) throughout the shock tube, the local pertur­
bation of any quantity in region 2 (deSignated by t:,( )2 d) can be ex-
pressed in the forms ' 

where j~) = (us t)l-n f(~) The form of equation (B5) Clan be de-
t::.\us t - x Us t . 

duced from equations (9). The function f(u:t) can be interpreted as 

the variation with x at a fixed time t while the function g(u; t) can 

be interpreted as the variation with t at a fixed x. Both forms are 
used in figures 2 to 11. When dealing with perturbations normalized to 
conditions directly behind the shock (i.e., t:,( )2 d/6 ( )2 0)' multipli-, , 
cation by (ust/x)l-n converts a solution for fixed t to a solution 
for fixed x. 

Perturbations at Fixed x for Times 

Let subscript 2,0 be considered to represent the perturbation 
directly behind the shock at the instant it passes a fixed station x 
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ust 
- x 

Us 
-u2 

1 

/ 

x 
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and let subscript 2)d represent the 
perturbation at the station at a sub­
sequent time. Conditions directly 
behind the shock can be found by (a) 
experimental determiuation of ~ 

or 6P2)O/P2 and equation (B2) or 
(b) analytical determination of 
6P2 o/P2 from equations (9) (or fig. 

) 

4 for an air-air shock tube) and (B2). 
The subsequent perturbations can then 
be expressed as indicated in the fol­
lowing section. 

The entropy perturbation may be written in the form 

(B6) 

which is obtained from equations (B4)) (B5)) and (B3) by noting 

Other perturbations of interest are 

(B7a) 

(B7b) 

(B7c) 

~ I 
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(B7d) 

where M2 == ~/a2 and 
6uZ aJ 6uZ 0 are f01.Uld , , 

The rat ios 4>2 di 1:::ip2 0 and , , 
(9) and (10) or from figures such 

as 5 and 6. The ratio 

q2 == P2u~/2. 
from equations 
6u2 0 P2 , 

can be found from equation (BZ). 

It is of interest to investigate the nature of the perturbations 

• .2 ('1 - 1)~ 
for very strong shocks. Assuming lVls »1 and 2 » 1, equa-

tions (B2) show 

61.12 0 P2 
2 ' 

Uz 6Pz 0 , 
(BS) 

which defines the perturbations directly behind the shock. The subse­
quent time variation of the perturbation can then be estimated by con­

ust Us 
sidering conditions at the contact surface, --- = -- For an air-air x Uz 
shock tube and Ms '" 0(6), figures 5 and 6 indicate that at the contact 
surface 

6uZd 
0 z '" 6u 2,0 

1:::ip2d 
(B9) 

z "" 1 
6P20 , 

Equations (B9) probably are applicable for other driver gases provided 
~ is sufficiently large (in order to make P3a3iP2a2 large) so that 
region 3 has only a small effect on region 2. (See section titled 
Discussion of Results.) By use of equations (B9), the other perturba­
tions at the contact surface are 
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Thus, during the time interval between passage of the shock and passage 

~2d ~2d 
of the contact surface,!:y' ' remains at about l,!:y') varies from 1 

/\~ P Pz 0 Am Uz 0 
L..JtJ2 d 2 ' LllZ d Pz ) 

to 0) )!:y. varies from 0 to 1/,1 ) T'!:y' varies from 1 to 
P2 P2,0 Z PZ,o 

'1 - 1 6M2 d P2 11 - 1 
and) varies from 0 to In :interpret:ing 

'1 ~ ~PZ,o Zrl 
these results) recall that ~PZ 0 and ~2 0 are negative . It is seen 

) ) 

that there is only a slight increase in 6Mz) d during the course of an 
experiment. 

Perturbations at Time t 

/ 

t 
/ 2 d , 

which follows from 

for x in Range 

When the variations with 
x at a fixed time t are con­
sidered) subscript 2,0 repre ­
sents conditions directly be­
h:ind the shock at a fixed time 
under consideration. The per­
turbation equations have the 
same form as in the previous 
section except for ~2 d/cv, 

) 

which is now written 

(Bll) 

This modification is :in agreement with the discussion associated with 
equation CBS), which indicates that a solution for a fixed x can be 
converted to a solution for a fixed t by multiplying the former by 

I 

__ J 
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(b) Turbulent boundary layer. 

Figure 5 . - Concluded . Time variation of pressure perturbation at fixed station x 
in region 2. Air-air shock tube, Tl C T4 C Tw C 5200 R. 
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Figure 11. - Time variation of velocity perturbations (at fixed station) behind weak waves (eq. 12(b)). 
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