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SUMMARY

An investigation was made in the Langley stability tunnel to deter-
mine the effects of leading-edge radius and profile thickness on the
oscillatory lateral stability derivatives for a series of delta wings
with 60° of leading-edge sweep. The wings were oscillated in yaw about
their vertical axes.

The results of this investigation indicated that there were notice-
able decreases in all the derivatives due to increase in leading-edge
radius at angles of attack above approximately 12°. Profile-thickness
effects were found to be small for the yawing-moment derivatives; however,
the data showed that an increase in profile thickness caused appreciable
increases in the combination oscillatory derivatives of rolling moment
with respect to yawing velocity and rolling moment with respect to side-
slip acceleration as well as large decreases in the effective-dihedral
parameter at angles of attack above 8°. The static derivatives of
rolling and yawing moment with respect to sideslip ClB and CnB showed

essentially the same effects of leading-edge radius and profile thickness
as the oscillatory derivatives.

INTRODUCTION

Recent oscillation-in-yaw tests of two delta wings with 60° of
leading-edge sweep but of different airfoil sections (flat plate and NACA
65A00%) have shown significant differences in the magnitudes of the
dynamic lateral stability derivatives at angles of attack above approxi-
mately 12° for the rolling-moment derivatives and above approximately 200°
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for the yawing-moment derivatives (ref. 1). It appears that the differ-
ences in magnitude can be attributed partly to the type and degree of
flow separation present on the wing (refs. 2 and 3) as affected by,
among other variables, the wing leading-edge radius (refs. i, '5, 6, and
7) and profile thickness. The purpose of this paper, therefore, is to
present the results of a systematic investigation of the effects of wing
leading-edge radius and profile thickness on the dynamic lateral stability
derivatives for a 60° delta wing of aspect ratio 2.31 with modified
double-wedge airfoil sections. The model wing was oscillated about a
fixed vertical axis relative to the model and, hence, the model motion
was a combination of yawing and sideslipping. The stability derivatives
measured by this technique are the combination derivatives Cnr ix Cné o
2 2 J J
_— Clé,w’ CnB,w + k Cnf,w’ and CZB,w + k le,w where the symbols
are defined in the following section.

Cy

SYMBOLS

The data are presented in the form of standard coefficients of
forces and moments referred to the stability system of axes with the
origin at the projection on the plane of symmetry of the quarter-chord
point of the mean aerodynamic chord. The positive direction of forces,
moments, and angular displacements are shown in figure 1.

A aspect ratio, be/S

b span, ft

C local wing chord, ft

€ mean aerodynamic chord, ft

Cp' drag coefficient (approximate), Fp'/gs
Cr, 1lift coefficient, FL/qs

Cy rolling-moment coefficient, MX/qsb

G pitching-moment coefficient, My/qsc

Ch yawing-moment coefficient, MZ/qsb

Fp' drag force, 1b (approximate)




NACA TN 4341

¥y, liftifeorcey, b
FY gide*force,’ 1b
k reduced-frequency parameter, ab/2V
My rolling moment, ft-1b
My pitching moment, ft-1b
Mz yawing moment, ft-1b
o] dynamic pressure, pV2/2, lb/sq 155
7 yawing angular velocity
IR
32 of
S wing area, sq ft
t wing thickness, percent c
) free-stream velocity, ft/sec
A7 longitudinal and vertical stability axes, respectively
a angle of attack, deg
B angle of sideslip, radians or deg
B = 3p/or
A angle of sweep of quarter chord, deg
o) mass density of air, slugs/cu ft
T time, sec
s angle of yaw, radians or deg
b-r-g
r amplitude of yaw, radians or deg
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w circular frequency of oscillation, radians/sec
Derivatives:
_ oCL

o "%
oCy
o) = =
‘s~ op
G a(fl
B BBb
2V
Cy
CzT h rb
ol =
(&)
oC,
“1p = oo
d(XR
(5e)
oC
Gy = 0
B op
¢ Xn
ny - :
B a(@
2V
o %y
nr - a I'_b
2V
oC
Cps = —=

All the above derivatives are nondimensionalized in this paper per
radian (l/radian). Leading-edge radius is given in percent local chord.

The symbol w following the subscript of a derivative denotes the
oscillatory derivative.
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APPARATUS AND MODELS

Oscillation and Recording Apparatus

The models were oscillated by the apparatus shown schematically in
figure 2, which consisted of a motor-driven flywheel, connecting rod,
crank arm, and model-support strut.

Recording of data was accomplished by means of the equipment
described in the appendix of reference 8. Briefly, the rolling and
yawing moments acting on the model during oscillation were measured by
means of resistance-type strain gages mounted on the oscillating strut
to which the model was attached. The strain-gage signals were modified
by a sine-cosine resolver driven by the oscillating mechanism so that
the output signals were proportional to the in-phase and out-of-phase
moments. These signals were read visually on a highly damped direct-
current meter, and the aerodynamic coefficients were obtained by multi-
plying the meter readings by the appropriate constants.

MODELS

The models tested were the six lightweight 60° delta wings shown
in figures 3 and 4. Four of the wings were 3 percent thick and had
leading-edge radii of O, 0.115, 0.791, and 1.582 percent wing chord.

The two additional wings had leading-edge radii of 0.791 percent wing
chord and were 5 and 8 percent thick. All trailing-edge radii were zero.
The leading and trailing one-third of each wing was beveled as shown in
figure 3. The wing construction was a combination of balsa wood core
covered with laminated fiber glass to a depth of 0.016 inch and rein-
forced with hardwood strips at the mounting point. A balsa canopy
served to streamline the protrusion of the strain-gage balance above the
upper surface of the 3-percent-thick models.

TESTS AND CORRECTIONS

Tests

The static and oscillatory tests were conducted in the 6- by 6-foot
test section of the Langley stability tunnel at a dynamic pressure of
2L.9 pounds per square foot, which corresponds to a Mach number of 0.13
and a Reynolds number based on the wing mean aerodynamic chord of approxi-

mately 1.6 x 10°.
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The static tests made to determine the static longitudinal stability
characteristics of the six model wings utilized the six-component electro-
mechanical balance system. The approximate angle-of-attack range for the
static tests was from -4°to 32° in 4O increments. Additional static
tests utilizing the strain-gage balance used in the oscillation tests
were made to determine the static rolling and yawing moments for angles
of sideslip of 20, 4O, 60, 8°  and 10°.

The oscillatory tests were made at frequencies of 0.5, 1.0, 2.0,
and 3.3 cycles per second, which correspond to values of the reduced-
frequency parameter k of 0.033, 0.066, 0.132, and 0.218. The complete
frequency range was covered for an amplitude Vo of t6°. Amplitudes

of t20 and t10° were used at frequencies of 1.0 and 3.3 cycles per second.
Measurement of the in-phase and out-of-phase rolling and yawing moments
was made in increments of 4°© for an angle-of-attack range of 0° to 320,
Inertia effects were eliminated from the data by subtracting wind-off
measurements from wind-on measurements. The in-phase and out-of-phase
measurements were converted to the derivatives Cnr,w - Cné,w’

2 2 :
CZr,w Clé,w’ CnB,w + k Cnf,w’ and CZB,w + k Cli,w' The relatively
complicated forms result from the combination B and { motion used for
these tests.

Corrections

The static tests made utilizing the electromechanical balances were
corrected for the effects of tunnel jet boundary and tunnel blockage by
the methods of references 9 and 10, respectively. No jet boundary or
blockage corrections were applied to the static or oscillatory data
measured by the strain gage. Turbulence or strut-interference effects
were not taken into account; and although the latter may have been of a
sizable magnitude at the higher angles of attack, it is believed that
the incremental differences at the higher angles would not be affected by
turbulence or strut interference.

RESULTS AND DISCUSSION

Presentation of Results

The results of the investigation are given in figures 5 to 29.
Table I gives information as to the content of each figure. The aero-
dynamic coefficients in figures 5, 6, and 7 are based on static data
obtained from the electromechanical balance system. The remainder of
the data were obtained from strain-gage tests.
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In this paper only the effects of leading-edge radius and profile
thickness are treated. Frequency and amplitude effects have been dis-
cussed in references 1, 3, 8, 11, and 12.

Effects of Leading-Edge Radius

The basic data (figs. 9 to 16) show that the effects of leading-edge
radius on the combination lateral stability derivatives C; - Clé
r,w S

andi € were small at angles of attack below approximately

g e
12° for the rolling-moment derivative and below approximately 16° for the
yawing-moment derivative. At the larger angles of attack, however, an
increase in leading-edge radius generally caused decreases in the magni-
tudes of the derivatives. These differences were not as large as the
decreases noted in reference 1. It appears, therefore, that the differ-
ences in airfoil sections (65AOO§ and flat plate) of reference 1, as well
as leading-edge radius, have a significant effect on the magnitudes of
the oscillatory derivatives.

The decreases in the absolute values of —(Cnr ¥ o Cné w) and
J 5.

) - Clé with increase in leading-edge radius were largest at the
e s S

lowest frequencies and highest angles of attack, where frequency-
dependent derivatives of large magnitude are usually obtained. There
was generally a larger decrease in the damping-in-yaw derivative when
the sharp leading edge was given a small radius (compare leading-edge
radii of zero and 0.115) than when the leading-edge radius was increased
by larger increments from other than zero radius. (See fig. 18.) This
trend was erratic for an angle of attack of 320 at k = 0.033 and 0.066,
and these data are therefore not included in figure 18. The effect of

leading-edge radius on the derivatives CnB + k20n. and
,W T,Wm

0 + RQC 3 varied in proportion to angle of attack, the largest
ZB,w 7’r,a) g

effects occurring at the moderate and higher angles of attack. The
effect of the increase in leading-edge radius was to decrease these
derivatives. The decrease was most pronounced at the higher frequencies
throughout the angle-of-attack range. The static derivatives CnB and
ClB (fig. 17) exhibited the same trends with increase in leading-edge

radius as was shown by the oscillatory derivatives. It should also be
noted that the oscillation data approached the static data as the fre-
quency was reduced. (See fig. 28.) Theoretical values calculated by the
procedures of references 13 and 14 are shown to be in reasonable agree-
ment with experimental values in the low angle-of-attack range.
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Effects of Profile Thickness

The effects of profile thickness on the lateral stability derivatives
were appreciably larger for the rolling-moment derivatives than for the
yawing-moment derivatives and were confined primarily to the higher angles

of attack except for the derivative CnB + kECn, , where the effects
> T,
were more or less proportional to angle of attack (figs. 19 to 26).

The derivative Cnr " Cné o showed essentially no change with
’ )

variation in profile thickness except at the lowest frequencies (k = 0.033
and 0.066) and the highest angles of attack, where maximum damping was
obtained for the 5-percent-thick wing. The derivative Clr o Clé 0

J )

increased quite appreciably with increase in profile thickness at the
higher angles of attack. The increase was greatest at the low frequen-
cies where the derivative had the largest values.

The directional stability derivative Cpg .+ k2Cy; , showed a
) )

definite trend to decrease with increase in profile thickness and the
effective dihedral parameter CIB + k201. showed large and consis¥-
, W T ,0

ent thickness effects for angles of attack above 8°. An increase in
thickness generally decreased the dihedral effect. The static derivatives
CZB and CnB (fig. 27) exhibited the same trends with increase in

thickness as was shown by the corresponding oscillatory derivatives.
Theoretical values are also shown.

Frequency Effects

Figures 28 and 29 show typical frequency effects for delta wings
with leading-edge radii of O and 1.582 percent chord. The high-frequency
values approach the derivatives estimated from the procedures of refer-
ences 13 and 14 which are based on linear-theory concepts, and the low-
frequency values approach the measured static values. The two circum-
stances have been noted by other investigators (for example, ref. 1) and
indicate that for the high-frequency range the changes in flow that are
normally expected do not have sufficient time to develop, but that there
is sufficient time for flow breakdown to occur at the lower frequencies,
and the steady-state condition is approached.
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Reynolds Number Effects

In an evaluation of the data presented herein, the fact that the
results were obtained at a relatively low Reynolds number should be
considered. Other investigations have shown that, at least for static
derivatives, increasing Reynolds number extends the linear range of the
aerodynamic parameters plotted against angle of attack. (See ref. 15,
for example.) These effects have been found to be more pronounced for
airfoils with large leading-edge radii than for airfoils with small
leading-edge radii. Therefore, the same trends would appear likely to
apply to the present investigation, and the results for the larger
leading-edge radii would probably be most affected.

CONCLUSIONS

The results of tests to determine the effects of variation in
leading-edge radius and profile thickness on the lateral stability
derivatives of a 60° delta wing indicate the following conclusions:

1. Noticeable decreases occurred in all the derivatives as a
result of increases in leading-edge radius at angles of attack above
approximately 12°.

2. An increase in profile thickness caused appreciable increases

in C4 = G and large decreases in effective dihedral,
r,w B,w

(Cy + kgcz. |\, at angles of attack above 8°.

\ B,w e

5. Profile-thickness effects were small for the yawing-moment
derivatives.

4k, The static derivatives CZB and C,., showed essentially the

5
same effects of leading-edge radius and profile thickness as the oscil-
latory derivatives.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., March 14, 1958.
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TABLE I.- INDEX OF FIGURES
L Yaw
Figure Variables a, deg g, deg| t, percent c| L+ E- radius, | gnpyitude, Vo, k
percent c a
eg
6 (chivs o Range 0 8 0, 0.115 o
51 s 7 CL: D ‘m ang 31 5) 0.,{51’ 1.5,82 0
12, 20, 24, 0, 0,115
8 Cy5 Cn 28, .32 Renge 3,5 8 0.7§1, 1-5’82 s ©
Oscillatory I 0, 0.115,
9,140 derivetives LS B 3 0.791, 1.582 +2 0.066, 0.218
dalyy Avl Oscillatory Rangel || a—==== 3 0.0:115) +6 0.033, 0.066,
13, 14, 18| derivatives 0.791, 1.582 - 0.132, 0.218
Oscillatory e 0, 0.115, +
15, 16 Ty Range 3 0.791, 1.582 +10 0.066, 0.218
Oscillatory -
19, 20 e Range | ----- 3, 5, 8 0.791 +2 0.066, 0.218
21, 22, Oscillatory o 0.033, 0.066,
23, 24 derivatives Range =R 3 5 8 0-791 16 0.132, 0.218
Oscillatory @ |  Range | —=—eo-
25, 26 e Range 3, 5, 8 0.791 +10 0.066, 0.218
Comparison of theo-
retical and 0, 0.115,
17 static values Range +2, 16 3 0.791, 1.582 S 0
f C and C
ot Tng g
Comparison of theo-
retical and
27 static yalues Range +2, 6 3, 55 8 0.791 - [0}
PR C and C
A | ip
Comparison of theo-
retical, static 0, 0.033, 0.066,
28 and oscillatory Range | ------ 3 ° 6 0.132, 0.218
derivatives
Comparison of theo-
retical, static | o | ______ 0, 0.033, 0.066,
= and oscillatory SR 3 1.562 16 0.132, 0.218
derivatives
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Figure 1.- System of stability axes. Arrows indicate positive sense of
forces, moments, and angular displacements.
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Figure 2.- Sketch of oscillation-in-yaw equipment.
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(a) Front view. 1-57-955 "

Figure 4.- Photographs of models.
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view.

(b) Plan

Figure 4.- Concluded.
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Figure 5.- Lift coefficient as a function of angle of attack for the )
six 60° delta wings.




NACA TN L4341 19

L. E. radus,
percent ¢ A
O Oy ercent v f
O O b g Bl
& L9 /
A 1582
L.E. radius, % -
1, percent ¢ percent ¢ v / &
KL 5
R 8]» 79/ o o | A /
% Iis
P v
Za
/:;Ig , /
0 B Js{.}_ﬁ_» I == i . /K : §5 /L
. 3 ne /
/{.A
T v .
o D:\_\[X___/{. = F i v v /O
P ped /
5 1{ yai
\QQ 0 i U e /J
o s : /
s
% Yo Qgﬂpj%)/ /U
-
S 2 el e
0 Bl g b
: ! [og
Sl
0 il e

-4 0 = 8 72 16 20  2d 28 T8 98
Angle of aftack, CC, deg

Figure 6.- Drag coefficient as a function of angle of attack for the
six 60° delta wings.
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Figure 10.- Effect of leading-edge radius on the
3_percent-thick 60° delta wing.
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Figure 14.- Effect of leading-edge radius on the
3-percent-thick 60° delta wing.
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Figure 15.- Effect of leading-edge radius on the oscillatory stability derivatives for a
3-percent-thick 60° delta wing. Vg = +10°; k = 0.066.
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Figure 16.- Effect of leading-edge radius on the oscillatory stability derivatives for a
3_percent-thick 60° delta wing.
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Figure 25.- Effect of profile thickness on the oscillatory stability derivatives for a 60° delta
wing with a leading-edge radius of 0.791 percent c. VY, = *10°; k = 0.066.
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Figure 26.- Effect of profile thickness on the oscillatory stability derivatives for a 60° delta

wing with a leading-edge radius of 0.791 percent c. Vg = *10°; k = 0.218.
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Figure 27.- Effect of profile thickness on the static stability derivatives for a 60° delta wing
with a leading-edge radius of 0.791 percent c.
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Figure 28.- Typical oscillatory stability derivatives for the 60° delta
wing. L. E. radius = 0; t = 3 percent c; VY, = +6°. Measured static

values and estimated steady-state values are also shown.
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Figure 29.- Typical oscillatory stability derivatives for a 60° delta
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Measured static values and estimated steady-state values are also
shown.
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