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INTRODUCTION 

It is axiomatic that the science of aerodynamics must be based on 
a good understanding of the atmospheric medium through which vehicles 
are to fly. It is well known that vehicles traveling at high speed 
excite the air to high temperatures) with the result that air properties 
deviate considerably from those of a simple gas which obeys the ideal 
gas law and which has a constant specific heat. For example) figure 1 
shows the major chemical reactions which are produced in the stagnation 
regions of vehicles traveling at high velocity through the atmosphere. 
At about 3,000 feet per second the vibrational energy of air molecules 
begins to become important. Oxygen dissociation begins at 6,000 to 
8,000 feet per second, nitrogen dissociation occurs at velocities in 
excess of 15)000 feet per second, and, finally, ionization of atoms 
becomes of major importance near escape velocity. The dissociation and 
ionization reactions are pressure dependent because each particle yields 
two product particles) and such reactions are inhibited by high pressure. 
Therefore, higher temperature and, consequently, higher velocity are 
required to produce the reactions at sea level than at high altitudes 
where much lower pressures occur. Vibrational energy is excited wher
ever molecules exist at high temperature, and so the domain in which 
vibrational excitation is important continues throughout the regions of 
the dissociation reactions as well. It can be intuitively appreciated 
that these reactions will affect many of the properties of air. Some 
of these properties which will not be considered herein may have impor
tant aerodynamic effects; for example, the electrical conductivity is a 
fundamental parameter in magnetohydrodynamics. The present discussion, 
however, is limited to the thermodynamic and transport properties and 
to the reaction rates for the chemical processes which occur in air. 
The thermodynamic properties include the energy, enthalpy) entropy, 
specific heats, and the speed of sound for air; the transport properties 
to be considered are the viscosity and thermal conductivity; and the 
most important reaction rates are those for the chemical processes indi
cated in figure 1. In the absence of magnetohydrodynamic effects, these 
parameters are the fundamental ones that determine the characteristics 
of air flow. 
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THERMODYNAMIC PROPERTIES OF AIR 

The equilibrium thermodynamic properties of air can be calculated 
to very high temperatures with considerable confidence , since the molec
ular and atomic energy levels on which these calculations are based are 
known very precisely from spectroscopic data (refs . 1 and 2) . Gilmore 
(ref . 3) and later Hilsenrath and Beckett (ref . 4) have prepared accurate 
tables of thermodynamic functions for air . Before discussing the fea
tures of these functions in detail, it will be helpful t o review briefly 
the expressions for energy of atoms and diatomic molecules . Mechanical 
analogies will be used freely in this discussion . These should not be 
taken as exact descriptions of the atomic and molecular systems , of 
course . 

Figure 2(a) shows a ball and spring model for the diatomic molecule 
which is vibrating and r otating at the same time that it is in transla
tional motion . The energy of this molecule is a function of its veloc
ity u, the r otational quantum number J , and the vibrational quantum 
number n, as shown in the f ollowing equation : 

e(u,J,n) 
mu2 h2 

+ J(J + 1) + nhv 
2 21 

where 

m mass of molecule 

h Planck's constant 

I moment of inertia 

v characteristic frequency of molecular bond (the spring) 

At high temperatures, the electrons may also be excited t o quantum states 
above the ground state , but this contribution to total energy is gener
ally rather small and , therefore, is omitted herein for purposes of sim
plification . If one averages this molecular energy over a large number 
of molecules in a sample of gas at a temperature T, the average energy 
per mol is given by t he following equation: 

E ~ ~ RT + RT + RT (~;) ~~ _ y-l 

The translational motion contributes 1 RT, and the rotation contributes 
an average energy which asymptotically2approaches RT. The characteris
t ic temperature Tr at which r otational energy is half excited is of 

-l 



NACA TN 4359 

the order of 50 K, so that, for most practical purposes, air molecules 
in the gas phase are always fully excited in rotation . On the other 
hand, the molecular bond is so stiff that at normal temperatures the 
molecules are essentially rigid rotators. However, as temperature 
increases, the molecular collisions eventually become energetic enough 
t o set the bond into vibration. The vibrational energy is roughly half 
excited at the characteristic temperature hv/k. This temperature is 
rather high, being the order of 3,0000 K. 
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The specific heat at constant density is the derivative of the 
average energy with respect to temperature. This specific heat for 
diatomic molecules is shown graphically in figure 2(a). It is already 
5R/2 at very low temperatures and maintains a relatively constant value 
throughout the range of temperatures encountered at subsonic and low 
supersonic flight speeds. As vibrational energy becomes important at 
higher temperatures, the specific heat approaches 7R/2. 

At still higher temperatures, the molecular impacts become so 
intense that the bond is often stretched to the breaking point. Fig
ure 2(b) illustrates a collision between two molecules which has just 
resulted in the dissociation of one of the molecules into two atoms. 
Again, if electronic energy is neglected, the energy of each atom is 
its kinetic energy plus one -half the energy stored in the broken bond 
eo/2, as shown in the following equation : 

e(u) = (~r: + ~o 

The average energy for a mol of atoms at a temperature T is 

E = 1 RT + Q 
2 2 

As before, the kinetic energy contributes The constant is 

independent of temperature or velocity and contributes to the average 
energy the heat needed to dissociate 1 mol of the molecules D. The 
ratio D/R is of the order of 50 ,0000 K for oxygen and 100,0000 K for 
nitrogen, so that the dissociation energy term is much larger than the 
average kinetic energy at the temperatures of interest in this study 
(up to about 15,0000 K). The specific heat dE/dT of the atoms, from 

figure 2(b), is about ~ R. The large constant term D/2 does not 

contribute to the derivative, of course . 
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Figure 3 shows the energy and specific heats for molecule-atom mix
tures in equilibrium. In the following equations: 

Energy: 

E (1 - x) ~ + xEa 

Specific heat: 

(1 _ x) dEm + x dEa _ ~ Ox + (Ea)~ 
dT dT ~ oT aT 

Em and Ea are, respectively, the average energy per mol of molecules 

and of atoms, which has just been considered. The mol fraction of 
atoms x is a function of the chemical equilibrium constant K and 
pressure p, which can be calculated precisely (ref. 3), and the mol 
fraction of molecules is 1 - x. In the equation for specific heat, 
the first two terms on the right-hand side are the sum of the specific 
heats for the components of the mixture, whereas the last two terms 
give the contribution due to the change in mol fractions. The deriva
tive ox/oT, which can be expressed as a function of x and the loga
rithmic derivative of the equilibrium constant, possesses a rather sharp 
maximum. The value of dX/dT is small, but the value of Ea is so 
large, because of the dissociation energy, that, where the mol fraction 
derivative is a maximum, the last term in the specific-heat equation is 
overwhelmingly predominant. 

The graph in figure 3 shows the specific heat for air as a function 
of temperature at a pressure of 0.01 atmosphere and illustrates the 
striking effect of the chemical reactions. Near 3,0000 K the specific 
heat has a pronounced maximum due to dissociation of oxygen, and again 
near 5,0000 K the nitrogen dissociation is responsible for another peak. 
The last peak, near 10,0000 K, is due to the reactions for single ioni
zation of nitrogen and oxygen atoms. These two reactions occur together 
in the same range of temperature and a similar set of relations is 
obtained as for the dissociation reactions, except that the ionization 
energy I is larger than the dissociation energy (I/R is of the order 
of 150,0000 K). The effect of pressure is that the maximums become larger 
and more peaked and shift to lower temperatures as pressure decreases. 

It is convenient to relate the chemical reactions in air to the 
compressibility factor Z. This factor is the number of moles of gas 
which arise from a mol of air originally at normal conditions or, 
alternatively, it is the ratio of the molecular weight of normal air 
to the mean molecular weight of the equilibrium gas. It represents the 

-, 
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correction factor to the ideal gas equation of state. Figure 4 shows 
the compressibility factor for air as a function of temperature for 
pressures of 1.0, 0.01, and 0 .0001 atmosphere. 

The important reactions in air are also indicated in figure 4. 
These are: (1) the dissociation of oxygen 

(2) the dissociation of nitrogen 

5 

and (3) the reactions for single ionization of nitrogen and oxygen atoms 

o ~ 0+ + e 

The ionization reactions occur at very nearly the same temperature and 
with nearly the same energy changes so that they may be classed together 
as a single reaction, for purposes of approximation. 

The foregoing reactions are the ones which largely determine the 
equilibrium concentration of the major components of air, and these com
ponents, in turn, establish the thermodynamic properties. At high pres
sures, nitric oxide NO becomes a sizable minor component of air but the 
thermodynamic properties of NO are about the average of those for N2 

and 02, and, since the nitric oxide formation does not change the balance 
between molecules and atoms, it does not greatly influence the thermo
dynamic functions of air. 

The compressibility is not influenced by vibrational excitation 
and, therefore, is equal to 1.0 until oxygen dissociation begins. Since 
air contains about 20 percent oxygen, the compressibility approaches 1.2 
when oxygen dissociation is complete. It increases further to a value 
of 2.0 when nitrogen dissociation finishes the conversion of molecules 
into atoms. Single ionization of the atoms doubles the number of gas 
particles again, so that the compressibility approaches 4.0 when these 
reactions are complete. 

The effects of the chemical reactions are most intense where the 
slope of the compressibility is a maximum. The most interesting feature 
of these functions is that the slope of Z is nearly zeTO at the transi
tion from one major reaction to another (fig. 4). This shows that one 
reaction is essentially complete before the next reaction starts, and in 
reference 5, for example, complete independence between the reactions is 

_J 
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assumed in or der to derive analytic solutions for the properties of high
temperatur e a i r . I t is found that these analytic solutions are generally 
within 2 percent of the precise answers obtained by iteration (ref . 4). 
The most t i me - consuming portion of such calculations is finding the com
pressibility factor (or its equivalent, the component mol fractions) . 
I f less accuracy is sufficient , of the order of 10 percent, the compres 
sibility function can be fitted empirically with hyperbolic tangents. 
The approximate formulas for compressibility , energy, enthalpy , and the 
specific heats are as follows: 

Z ~ 2 . 5 + 0 .1 tanh(5~0 - 7) + 0 . 4 tanh(l~OO - 7) + tanh(2;00 - 5 .8) (1) 

where the reduced temperature is 

e = T (1 - ~ log ..E...) 
\ 8 Po 

the reference pressure p is 1 atmosphere, and l og signifies the 
logarithm to the base 10 . 0 The dimensionless energy i s 

For case I, oxygen dissociation only (1 .0 < Z < 1 . 2) : 

For case II , n i trogen dissociat i on only (1.2 < Z < 2 .0): 

: ~ (2 - Z) ~ + 3~00~xp 3~00 - It] + 0 . 20 + 5~00) + 

(2) 

(Z - 1 .2)(3 + 113~00) (3b ) 

For case III , ionization reactions only, up to about 10 percent ioniza
tion (2 .0 < Z < 2 . 2) : 

The enthalpy H is easily found from the relat i on 

(4 ) 
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For cases I and II, the entropy S is approximately given by 

z(~ + lO!!e -k) ~ (2 - Z){~(loge T + 1) - loge b -exp (_ 3~O~ + 

3000 (, 3000 1) -1 1 2 - z} 
-T- ,xP -T- - - oge -Z- + 

and for case III, 

)
4- Z 

14.2 - (4 - Z)loge -Z--- (5b) 

In view of the order of the approximation, an average vibrational fre
~uency has been assumed for both oxygen and nitrogen and in the energy 
functions the particles are treated as though all are in the ground state 
of electronic excitation. Note that the displacement of the compressi
bility function varies as the logarithm of pressure and that the thermo
dynamic properties are all given as functions of compressibility and 
temperature. The electronic excitation has ~een accounted for in the 
entropy functions by adding constant values e~ual to the average of the 
logarithm of the electronic partition function over the temperature range 
of interest. 

For the specific heat, the derivative of compressibility with tem
perature is re~uired. It is given by 

( dZ) ~ 0.0002(1 _ i log k..) lseCh2(.L -7) + 2 sech2(~ - 7) + 
dT P \ 0 Po [500 \1000 

2 sech2(_e - 5.s\l 
2500 )J (6) 

If the correction for taking the partial derivative at constant 
pressure is disregarded, the specific heat at constant density becomes 

For case I: 
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ZCv 
--~ 

R 
(2 - Z)[L + ~ 1500/T ~2] + 3(Z _ 1) + (1 + 59,OOO)dZ 

2 sinh 1500 2 dT 
T 

For case II: 

For case III: 

(
3T \ dZ 
"2 + 167,00°) dT 

The specific heat at constant pressure is 

(To ) 

(8) 

and to the order of these approximations the speed of sound is given by 

(~) 
r = 

~ 
The dimensionless energy is shown in figure 5 as a function of tem

perature for pressures of 0.0001, 0 .01, and 1.0 atmosphere. The results 
given by the approximate formulas compare favorably with more precise 
calculations (refs. 4 and 5). The greatest errors occur in the region 
of the ionization reactions, where a simple empirical form for the com
pressibility function does not seem entirely adequate. Similarly, the 
dimensionless entropy is shown in figure 6, and again the approximate 
formulas compare favorably with the precise calculations until ionization 
temperatures are reached. 

As expected, the accuracy of the approximate formulas f or the 
specific heats is not as good as f or energy, since derivatives of com
pressibility are involved. Still, the ratio of the specific heats is 
not greatly different from more precise calculations of the speed-of
sound parameter a2p/ p, as shown in figure 7. The largest deviations 
occur at the transitions between one reaction and the next, where the 
speed-of- sound parameter is a maximum . 

I 
I 

--.-I 
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The foregoing thermodynamic properties of air enable one to solve a 
number of important aerodynamic problems . Where it is desired to use 
analytic expressions in a computing program, the results of reference 5 
may be used, or if computer storage is a problem, the analytic expres 
sions given by equations (1 ) through (9 ) represent a compromise involv
ing some sacrifice in accuracy . However, for many problems it is still 
convenient to use graphical methods of sol ution . The particular graphi 
cal functions which are the most convenient to use depend on the problem 
to be solved . For example , it is expedient to use temperature as the 
independent variable, as in figures 4 through 7, for processes in which 
temperature is constant . This must be done in the initial calculations 
anyway, since the partition functions are functions of temperature only . 
On the other hand, a Mollier type diagram in which enthalpy is plotted 
as a function of entropy is useful for solutions of isentropic flow 
processes. A very complete Mollier diagram is presented by Feldman 
(ref. 6). For solutions of nonisentropic flow processes such as occur 
in shock waves, it has been found convenient to use a graph of the 
dimensionless parameter (p/hp ) as a function of dimensionless enthalpy 
(h/ho ), where ho is the enthalpy at standard conditions. 

The properties of air which have been heated by shock waves are 
particularly important at the present time , because the shock tube is 
being used extensively as an instrument for aerodynamic testing . Romig 
(ref. 7) has outlined a method of solving for temperature, density, and 
pressure following a normal shock wave , and Fel dman (ref . 6 ) presents a 
rather complete set of such solutions including the effects of oblique 
shocks and of shock reflections . Hochstim (ref . 8 ) has worked out a 
number of solutions for a variety of initial conditions . Perhaps one of 
the more usable forms in which such solutions can be presented is to 
graph, as a function of shock-wave Mach number , Ms , the ratio of the 
real gas property to the value of the same property which would occur 
for an ideal gas having a constant y of 1. 4 . The shock-wave Mach num
ber is defined as the speed of the shock wave divided by the speed of 
sound in the undisturbed air . Figures 8 (a ), 8 (b ) , and 8 (c) show, 
respectively, graphs for the pressure, density , and temperature which 
occur following a normal shock wave traveling through air initially at 
2930 K. Subscript 1 refers to the initial conditions and subscript 2 
to the conditions following the normal shock wave . The superscript * 
denotes the ideal gas condition . The solutions are shown for initial 
pressures of 1, 0 .1 , 0 . 01, 0 . 001 , and 0 . 0001 atmosphere. Subscript 3 
will refer to the conditions following the normal reflection of the shock 
wave from the closed end of the shock tube, and the ratio of the real to 
ideal values for pressure, density , and temperature after the reflection 
are shown, respectively, in figures 9 (a ) , 9 (b), and 9(c). Figure 10 
shows the ratio of the speed of the refl ected shock wave, Dr, to the 
speed of a shock reflected in the ideal gas, Ur*. The shock-wave Mach 
number is used as the independent variable in figures 8, 9, and 10 
because the velocity is the easiest property of the shock to measure 
precisely. Also, the Mach number is used , rather than the velocity, 
because in this form it is convenient to use the solutions over a smal l 
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range of initial temperatures. While it is somewhat inconvenient to have 
the properties referenced to their ideal gas values, rather than plotted 
directly, this is more than compensated for by the fact that the gas 
properties can be picked off the graphs ~uite accurately. Note that the 
displacements of the curves are about proportional to the logarithm of the 
initial pressure, Pl' so it is possible to interpolate between the curves 
with reasonable accuracy also. 

Obviously, not all aerodynamic problems can be solved with only the 
thermodynamic properties of air. Therefore we shall turn attention now 
to the e~ually important transport properties. 

TRANSPORT PROPERTIES OF AIR 

The transport properties of gases can all be related to the effec
tive size of gas particles during collisions (refs. 9 and 10). The 
smaller the size, the larger is the mean free path between collisions; 
then the transport occurs between regions of the gas having greater 
differences in momentum and energy. Consequently, the coefficients of 
viscosity and thermal conductivity vary inversely with the size of the 
gas particles. Figure 11 shows ~ualitatively the form of the potential 
functions between the particles from which the collision diameters are 
determined. Consider first the potential between inert molecules. At 
long range, the potential has a very shallow minimum which at normal or 
higher temperature is very small compared with the kinetic energy of 
the colliding molecules. This is the portion of the potential associ
ated with the weak Van der Waals forces of attraction. At shorter range, 
the potential rapidly approaches very large positive values and the 
interparticle forces are strongly repulsive. The path of one molecule 
with respect to another during collision is shown for two typical cases 
by the black balls which roll into the potential well, penetrate the 
positive column, and are deflected back into potential-free space. The 
depth of the penetration increases with increasing kinetic energy of the 
relative motion between molecules. 

The effective collision diameter a is roughly the diameter of the 
molecular volume which is not penetrated by the collisions and, on the 
average, it is approximately the diameter where the molecular potential 
equals +kT. The collision cross section is by definition ~cr2. From 
the shape of the potential, it can be seen that the collision diameter 
depends on the energy of the collisions and is, therefore, a function 
of temperature. At high temperatures, however, the extremely steep por
tior. of the potential is penetrated and the collision cross section is 
relatively constant, independent of temperature. Then the molecules 
behave essentially as hard elastic spheres, for which the coefficient 
of viscosity varies as the one-half power of the temperature. The 
Sutherland correction to the coefficient of viscosity accounts reasonably 
well for the effective increase in collision diameter at low temperatures. 
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Where more precise estimates are required, the methods developed by 
Hirschfelder and others (ref. 9) are very useful for calculating the 
transport properties of inert gases. 

The transport properties of air at high temperatures are in doubt 
mainly because of uncertainty about the cross sections for atom-atom 
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and atom-molecule collisions. Two atoms, for example, may approach one 
another along any one of a number of different potentials depending upon 
how the electron spin vectors add up. This multiplicity of potentials 
is indicated by the dashed lines on the atom-atom potential diagram of 
figure 11. The only one of these potentials which is known quantitatively 
at present is the lowest lying potential associated with the lowest total 
electron spin. This is the potential responsible for the vibrational 
energy levels observed in the stable diatomic molecule. The distinctive 
feature of this potential is its negative well which is very deep com
pared with the kinetic energy of collisions at the temperatures of 
interest herein. In fact, the depth of this well is just the dissocia
tion energy of the diatomic molecules. As pointed out previously this 
energy corresponds to temperatures of about 50,0000 K for oxygen and of 
about 100,0000 K for nitrogen . Consider the collisions illustrated by 
the paths of the three black balls rolling into this potential well 
(fig. 11). The atom, which has a kinetic energy much larger than the 
absolute value of the potential field through which it traverses, will 
not be greatly deflected. Now it is the absolute value of the deflec
tion produced by a collision which influences the flux of mass, momentum, 
or energy through the gas; hence, for practical purposes this collision, 
which produced only a small deflection, may be considered a miss. On the 
other hand, an atom which penetrates the volume where the potential 
change is about equal to its kinetic energy will suffer a considerable 
deflection, and such a collision will count. It is not essential that 
the repulsive, positive portion of the potential be penetrated, as in 
the third collision shown on the right in figure 11. In the subsequent 
estimates of the transport properties, it will be assumed that the effec
tive diameter for atom-atom collisions is where the lowest lying poten
tial equals -kT and that the diameter f or atom-molecule collisions is 
the arithmetic average of the atom-atom and the molecule-molecule diam
eters. This latter assumption corresponds to the concept that the col
lision diameter is a measure of the effective range of the electron dis
tribution about the nucleus and that a collision occurs whenever these 
electron distributions overlap. In the case of collisions between ions 
or between electrons, the well- known coulomb potential te2/r may be 
used in a similar way. For collisions between a neutral and a charged 
particle, the potential for the interaction between the charge and the 
induced dipole is used. 

The coefficient of Viscosity, which is based on the preceding 
assumption (ref. 5) , is shown in figure 12 as a function of temperature 
for three pressures: 1.0, 0.01, and 0 . 0001 atmosphere. The ordinate 
is the ratio of the viscosity coefficient to the value given by a 
Sutherland type formula 
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(10) 

(in units of g/cm-sec). The ratio is unity until dissociation of mole
cules becomes appreciable; then the mean free path between molecular 
collisions becomes larger because the collision diameters for the atoms 
are smaller than for the molecules, the momentum exchange takes place 
between more widely separated planes in the gas, and the viscosity 
increases. On the other hand, the collision diameters become very large 
in an ionized gas, and then the reverse effect causes the viscosity to 
drop to very low values. Again, because of the regularity of the func
tions, it is possible to establish an empirical formula which approxi
mates the temperature and pressure effect on viscosity. Such a formula 
is 

1 + 0.023 _T_ 1 + 
1000 

_ T_fl _ ! log _P ) _ 
1000\ 8 Po 

tanh ----~----------~-----
1 1.5 + - log L 

exp ~
~ - 14.5 - 1.5 log ~\ 

-1 1000 po) 

0.9 + 0.1 log 1L 
Po 

8 Po 

x 

(11) 

(log signifies the logarithm to the base 10). The comparison between 
equation (ll) and the viscosity function is shown in figure 12. 

The coefficient of thermal conductivity is shown as a function of 
temperature for pressures of 1.0 and 0.01 atmosphere in figure 13. Again, 
the coefficient is referenced to a coefficient of the Sutherland form: 

ko = 4.76 X 10-6~/2(1 + 1~2 )-1 (12) 

(in units of cal/cm-sec-OK). The calculation of these coefficients is 
based on the method outlined by Hirschiel der (ref . 11) and developed fur
ther by Butler and Brokaw (ref. 12). I n this method , the energy transfer 
through the gas is treated in two independent parts. One part i s the 
energy transferred by collisions as in ordinary thermal conductivity of 
nonreacting gases. The other part i s the energy transferred by diffusion 
of the gas particles and the reactions which occur to reestablish chemi
cal equi librium. This latter part predominates wherever the compressi
bility derivative with respect to temperature becomes a maximum. The 
effect is very much like the effect on the specific heats. In fact, the 
thermal conductivity ratio k/ko is nearly proportional to the specific 
heat just as for inert gases, so that a reasonably good approximation is 
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(13a ) 

The comparison between the thermal conductivity and the approximate spe
cific heat given by equation (8) is indicated in figure 13. Note that 
the symbol k is conventionally used for both Boltzmann's constant and 
thermal conductivity . Wherever kT appears, k signifies Boltzmann's 
constant. 

The relation given by equation (13a) is good only for the dissocia
tion reactions. Where ionization occurs, the thermal conductivity is 
greatly increased because of the high thermal velocity of the lightweight 
electrons. Then the thermal conductivity is approximately given up to 
about 10 percent ionization by 

kk ~ 3(1 + 1 log L.)~ 
o 4 Po 3.5R 

(13b ) 

It is desirable to check the foregoing theoretical calculations and 
approximations with experiment. One of the more striking effects pre
dicted by the theory is the pronounced effect on thermal conductivity of 
gases in which chemical reactions occur. This effect has been observed 
experimentally in dissociating N204 by Coffin and O'Neal at the Lewis 
Flight Propulsion Laboratory (ref . 13). As figure 14 shows , their 
experiments are in very good agreement with the theoretical prediction 
for the equilibrium gas. The results strongly suggest that the basic 
relations established by Hirschfelder (ref. 11) are essentially correct. 
Unfortunately, the thermal dissociation of air cannot be studied at such 
tractable temperatures as in the case of N204 ' However, high-temperature 
air can be produced in the shock tube for short intervals, and figure 15 
shows the correlation between measured and theoretical thermal conduc
tivity in air, which has been obtained at the Ames Aeronautical Laboratory. 
In these experiments , strong shock waves are reflected from the closed 
end of a shock ~ube, and a temperature is measured at the interface 
between the hot stationary air and a quartz glass plug. The temperature 
is deduced by measuring the change in resistance of a thin film of nickel 
evaporated onto the glass . If it is assumed that the air is in equilib
rium and has a constant thermal diffusivity k/cpp, the interface tem
perature rises instantaneously to a constant value which is related to 
the diffusivity of air and of the glass plug (ref. 14). As will be 
pointed out later, the dissociation of air may be rapid enough to jus 
tify the assumption of instantaneous equilibrium. Thermal diffusivity 
will not be constant in the air, of course, but at least the strong 
variations in heat capacity and thermal conductivity will cancel each 
other. In any event , when the experimental data are correlated in this 
manner, they compare reasonably well with the theoretical predictions. 
No consistent data exist yet in the really interesting region where a 
maximum in the coefficient is predicted because of oxygen dissociation. 

---- --- --



14 NACA TN 4359 

To illustrate the manner in which the transport properties enter 
some aerodynamic calculations , consider the heat transfer to the stagna
tion region of a blunt, high-speed vehicle with a cool wall . According 
to reference 15, an approximate expression for this heat transfer is 

qr = (P2 _ 1)1/4(~J..)1/21T2 k d'J: 
~ PJ.. ~2 o 

(14) 

where q is the heat flux per unit area at the stagnation point , r is 
the radius of curvature of the vehicle at this point , and Re is the 
Reynolds number based on the length r and free - stream conditions . These 
free - stream conditions are designated by the subscript 1 and, as before , 
the subscript 2 refers to conditions following the shock wave . At moder
ate altitudes, below 150,000 feet for example , the air in the stagnation 
region is essentially everywhere in equilibrium, as will be pointed out 
later. Thus the equilibrium thermodynamic properties of air may be used 
to evaluate the density P2 and the temperature T2 • The viscosity ~2 

and the thermal conductivity k for air in equilibrium are functions of 
temperature uniquely detelwined by the pressure P2 ' and they are given 
approximately by equations (11) and (13a) , respectivelyo Thus the evalua
tion of the heat- transfer parameter , given by equation (14), is relatively 
straightforward and this parameter is given as a function of velocity in 
figure 16. The effect of the changes in ambient conditions with altitude 
is rather small and has not been shown . Figure 16 also shows that there 
is satisfactory agreement between the theoretical sol ution and the experi 
mental results reported by Rose and Riddell (ref . 16). This solution also 
agrees with the fairly rigorous deductions of otagnation- point heat trans 
fer devel oped by Fay and Riddell (ref . 17)0 The approximate expression 
(eq . (14 )) is useful here because the role of the transport properties is 
easy to visualize in view of the simple form of the functional relation
ships invol ved . 

When one considers the flow processes which occur in high- speed 
flight at very high altitudes, or in regions of highly expanded f l ow , 
the equilibrium thermodynamic and transport properties may not be suf 
ficient to determine the flow uniquely . At the very low densities which 
occur in these cases , the time required for the approach to equilibrium 
may be comparable to the time needed for a sample of air to pass through 
a disturbed region of the flow field . Then the chemical reaction rates 
become another set of independent parameters on which the flow depends . 
These are discussed in the following section. 

CHEMICAL REACTION RATES 

Before discussing the finite reaction rates , simple flows are com
pared for the two limiting cases: (1) The reaction is frozen and (2) 
the reaction is in equilibrium. 

_ _ J 
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The effects of chemical reactions on the equilibrium conditions 
following a normal shock may be seen from figure 8. In order to compare 
three of the state variables simultaneously, the density, pressure, and 
temperature effects are shown together in figure 17 for flight at 160,000 
feet altitude. If the reactions were infinitely slow, air would behave 
as an ideal gas. This condition is designated as frozen flow, and it 
corresponds to the reference value of unity in figure 17. However, the 
reaction rates are finite and, as the f low approaches equilibrium, the 
temperature is greatly reduced because thermal energy is soaked up in 
exciting vibrations and in breaking chemical bonds . The pressure is not 
greatly influenced by the reactions, and the drop in temperature is 
compensated by a large increase in density . 

Reference 18 gives an analysis for flow that maintains chemical 
equilibrium while expanding around a corner , and a numerical example is 
gi ven in figure 18 for air which is initially at 6,1400 K and 1.2 atmos
pheres. The effect of the reaction in this case is to increase the tem
perature over the nonreacting value because the recombining gas now gives 
up the energy that is contained in dissociation and vibration. Thus the 
gas cools much more slowly during the expansion than a nonreacting gas. 
From figure 18 it is seen that, during the Prandtl-Meyer expansion, it is 
the density which is relatively little affected by the reactions and that 
it is the pressure which adjusts with the temperature change this time. 
This is in marked constrast to the effects of reactions on the shock 
compression. 

Now the reaction rates depend on the number of molecular collisions 
per unit time, and these collisions are more frequent the higher the 
density and the higher the temperature. At the high densities which 
occur in low altitude flight, the rates are very rapid and air flows 
are essentially in complete equilibrium. On the other hand, at very 
high altitudes where densities are very low, the reaction rates are so 
slow that flow may be essentially frozen. At intermediate altitudes, 
it is necessary to consider the reaction rate, from which can be derived 
the characteristic time in which the gas decays to chemical equilibrium. 
In a flowing gas, the quantity of interest is a characteristic length 
obtained by multiplying the time by the flow speed . This characteristic 
length is used for example in calculations of one-dimensional flows in 
references 19 and 20. 

Figure 19 shows the le"gths required to reach vibrational equilib
rium in the flow downstream of a normal shock wave at various altitudes 
and velocities. Relaxaticn effects are important where this length com
pares in magnitude with a length such as the shock-detachment distance. 
At low velocities, where low temperatures occur, the reactions have a 
trivial effect, as inaicated by the shaded portion of the figure. It 
is seen that, for a wide range of speeds and altitudes, the vibrations 
may be regarded as being in equilibrium. At altitudes below 150,000 feet, 
the finite length ge~erally needs to be considered only for vehicles 
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moving slower than 10 , 000 feet per second . At 240,000 feet, the vibra
tional relaxation will be important at the stagnation region for vehicles 
traveling less than 25 , 000 feet per second . The calculations for these 
curves are based on Blackman ' s experimental values for vibrational relaxa
tion (ref . 21 ). These agree fairly well with the theory of Schwartz and 
Herzfeld (ref . 22) and the calculations are probably correct within a 
factor of 5, at least . In contrast , the existing knowledge of dissocia
tion rates is extremely uncertain . The theoretical calculations require 
some severe mathematical approximations (ref . 23 ), and experiments have 
been made only recently which fix the reaction rates within several orders 
of magnitude (refs . 24, 25, and 26) . Despite the value of these recent 
data, the state of knowl edge is still far from satisfactory , as is illus
trated in figure 20 . This figure shows the three-body recombination 
rate as a function of temperature for the recombination of oxygen and 
nitrogen atoms and for the recombination of atoms in air . The third body 
M in the col lision serves to carry away the excess energy released by 
the recombination so that the newly formed molecule can be stable . The 
fact that the results do not agree more closely is only partly due to 
experimental uncertainties , since there also exists some question of how 
to translate the observed relaxation times into reaction rates . In view 
of these uncertainties, the theory developed by Wigner (ref . 23) has been 
used to calculate the characteristic reaction lengths in dissociating 
flow . In applying this theory it has been assumed that the third body in 
the recombination reaction i s a hard elastic sphere and that the potential 
between atoms i s the same one used earlier to evaluate the transport 
properties . The same expression is used for the recombination rate of 
both the oxygen and nitrogen atoms . 

Figure 21 shows the results for the flow lengths required to reach 
oxygen dissociation equilibrium downstream of a normal shock . The same 
functional relations occur as for vibrat i ons j that is, relaxation becomes 
increasingly important at higher altitudes and lower velocities . For 
nitrogen dissociation, all curves in figure 16 1vould be shifted to the 
left so that the curve for a velocity of 10,000 feet per second for 
nitrogen roughly coincides with the curve for a velocity of 15,000 feet 
per second for oxygenj it would fall in the "reaction negligible" region . 
(See fig . 1.) Similarly, the curve of 15,000 feet per second for nitro
gen shifts roughly to the curve of 20,000 feet per second for oxygen. 

Above an alitutde of 250,000 feet , the typical vehicl e enters slip 
flow and, as the altitude increases further, the shock wave eventually 
disappears . Under these conditions , molecular impact on surfaces is a 
more important phenomenon than those associated with the continuum air
flow properties . Thus , in any case, the relaxation effects need to be 
considered only over a finite range of velocity and altitude . 
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CONCLUDING REMARKS 

It has been found that a fairly sati sfactory state of scientific 
knowledge exists with respect to the e~uilibrium thermodynamic properties 
of air, that the knowledge of the transport properties leaves something 
to be deSired , and that the state of theory and experiment on chemical 
reaction rates is ~uite inade~uate . For example, e~uilibrium thermo
dynamic properties can be calculated very precisely by iteration methods , 
to the order of 1/2 percent or betterj closed- form analytic solutions for 
these properties are accurate to the order of 2 to 5 percent j and approxi 
mate semiempirical formulas are available for rough engineering estimates 
which are good to the order of 10 to 20 percent . For transport properties , 
good theoretical methods for calculating collision cross sections are not 
yet available j the approximations used have an uncertainty of the order 
of 50 percent, but the order of magnitude and the functional relationships 
which have been estimated for these properties are probably correct . 
Vibrational relaxation rates are approximately known , but the di ssocia
tion rates are still uncertain by several orders of magnitude . However , 
much effort is being focused on these problems , and it is reasonable to 
anticipate that ade~uate solut i ons f or aerodynamic purposes will soon be 
forthcoming . 

Ames Aeronautical Laboratory 
National Advisory Commi ttee for Aeronautics 

Moffett Field , Calif ., Mar. 19 , 1958 
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