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SUMMARY

Lift, drsg, and pitching-mmnent coefficients for two wing-body com-
binations were determined fran tests at a Mach number of 5.0 and angles
of attack up to 9°. The test models consisted of small thin wings mounted
on a body ccmposed of a fineness-ratio-s ogival nose md a fineness-ratio-2
cylindrical afterbody. The wings were symmetrically mounted on the cylin-
drical portion of the body and had triangular amd trapezoidal plsm forms.

The results of these tests are ccmpared with results obtained by a
relatively stiple application of the generalized shock-expansion method

●

in combination with the T‘ method of evaluating the skin-friction drag
coefficients. Good agreement between theory and experiment is obtained

d for the total drag coefficients over the test angle-of-attack range.
Theory and experiment are also found to be in good agreement for the lift
and pitching-mcment coefficients at the lower angles of attack. At the
higher angles of attack, the theoretically determined coefficients are
scmewhat higher than those obtained experimentally.

INTRODUCTION

The generalized shock-expansion method has proven to be a useful tool
in the calculation of flow about airfoi~ and bodies of revolution at high
supersonic Mach numbers (see, e.g., refs. 1 smd 2). Experimental lift,
drag, and pitching-moment coefficients for two wing-body combinations were
obtained in the Ames 10- by 14-inch supersonic wind tunnel at a Mach number
of 5.0 and angles of attack up to 9°. The mcdels consisted of small tri-
~ ad trapezoi~ pl~-formwi~s mounted on an ogive-cylinder.
Both wings were entirely immersed in the flow field generatedby the body.
A comparison of the results of these tests with those obtained by means
of the generalized shock-expansion method is the subject of the present
paper.
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drag coefficient,

lift coefficient,

q#&4 )
lz

lift
q#(dq4)

pitching-mcment coefficient,
moment about vertex

~(d2/4)1

maxim.m diameter of body, in.

maximum length of body, in.

Mach number (ratio of local velocity to local speed of sound)

total pressure, lb/sq in.

dynamic pressure, lb/sq in. —

local resultant velocity, ft/sec r

velocity component normal to plane of wings at the vertex, positive
upward, ft/sec J

mgle of attack, radians unless otherwise specified

semivertex angle of body

upwash angle, radians unless otherwise s~cified

sidemsh angle (i.e., angle of flow inclination in plane of wings
measured with respect to body axis), radians unless otherwise
specified

Subscripts

m free-stresm conditions

f due to skin-friction forces .

P due to pressure forces

s conditions immediately downstream of the shock wave
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A2PARATUS Am TEsTs

The tests were conducted in the Ames l@ by 14-inch supersonic wind
tunnel. A detailed description of the wind tunnel and auxiliary equipment
may be found in reference 3. Aerodynamic forces and moments acting on the
models were measured by means of a three-canponent strain-gage balance.

The test models, shown in figure 1, were constructed of steel and
were composed of thin, simple wedge-shaped wings mounted on a body con-
sisting of a fineness-ratio-3 circular-arc ogival nose and a fineness-
ratio-2 cylindrical afterbody. The wings had triangular and trapezoidal
plan forms and were symmetrically moumted on the body. The root sections
were 3 percent thick in stresmwise planes and were equal in length to the
cylindrical portion of the body. The leading edges of the wings were of
constant thiclmess equal to O.@ inch.

Lift, drag, and pitching-moment coefficients were determined for both
models at a Mach number of 5.0 and at angles of attack to 9°. The free-
streem Reynolds number based on the length of the body was 1.6 million.
Axial forces acting on the body base, as determined by the difference
between measured base pressures and free-stresm static pressures, were
subtracted frcm measured total forces. The data presented, therefore,
do not include body-base drag.

The variation in Mach number frcm the nominal value did not exceed
*0.03 in the region of the test section where the models were located.
The deviation in free-stresm Reynolds nmber did not exceed *30,000.
Errors in singleof attack due to uncertainties in corrections for stresm
angle and for deflection of the model support system were less than *0.2°.

The precision of the experimental force and mcment coefficients was
=ectedby inaccuracies in the force measurements obtained with the
balance system, as well as uncertainties in the determination of free-
stresm dynamic pressures and base pressures. The resulting uimum errors
were estimated to be *0.02 for all three coefficients, CL, ~, and ~.
In general, the experimental results presented herein are in error by less
than these estimates.

APHXCATION OF TEE GENERALIZED SHCXK-EXP~ION METHOD

It was demonstrated in reference 2 that the generalized shock-
expansion method is applicable to bodies of revolution provided that the
similarity parsmeter - is about 1 or greater. It was also shown
that streamlines can be approximated by meridian lines provided that the
angle of attack is small. For the present configurations, the influence
of the wings on the body is considered small and, therefore, neglected.
Thus, flow conditions on the bdy, as well m conditions in the plane of
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the wings, were calculated in the manner discussed in reference 2 for a
free-stresm Mach number of 5.0.

The results of the calculations of the flow about the body in the
plane of the wings are shown in figures 2 and 3 for angles of attack of
5° and lOo. Figure 2 shows the orientation of the wings with respect to
the shock waves generated by the body. The distributions of the sidewash
angle, Mach number, and total pressure ratio along the respective wing
leading edges are shown in figure 3. It is clear frcm figure 3 that the
sidewash angle, o, is always less than 6°. Thus, the velocity at any span-
wise station associated with the hfachnumber at that station may be taken
parallel to the body axis with but little loss in accuracy for purposes of
calculating pressures. It will be noted in figure 3(c) that the gradient
of the total-pressure ratio is infinite at the surface of the body. This
can be demonstrated from considerations of continuity and configuration
geometry. There remains only the determination of the upwash angle in

.

order to calculate the pressure coefficients and, hence, the forces acting
on the wings. lJowin the application of the shock-expansionmethod along
meridian lines on bodies of revolution, only the magnitude of the resultsmt
velocity is considered to change along the body (see ref. 2). Thus, the
upwash angle is considered constant along the body end its value is that
at the vertex. In the present application, then, the upwash angle at the
leading edge of the root chord (wing-body juncture) was calculated frcm #

the conical flow solution at the vertex (see, e.g., ref. 4), and may be
expressed in the form

v
-w

E =-
V

where w is the crossflow component of velocity at the vertex in the side
meridian plane (i.e., in the plane of the wings), and V is the resultant
velocity at this point. The upwash angle at the tips of the wings can be
calculated for the.cases considered here since the tips lie, for all prac-
tical purposes, immediatel.ybehind the shockwave (see fig. 2). !I!bus,in
this region

where ~ and, hence, V8 are known frmn the solution of the flow gener-

atedby the body (see fig. 3). me local upwash angle can then he deter-
mined if the spanwise variation is assumed to be the Reskin type (see,
e.g., ref. 5). In other words, the upwash singleis assumed to vary in-
versely as the square of the spanwise distance. This variation is shown
plotted in figure 4 for both wings at a = 5° and a = 100. With flow
conditions at the leading edges thus established, the pressure coefficients
on the windward and leeward sides of the wings can be calculated at each
spanwise station. In the present cases, the streamlines on the wings have -

essentially the direction of the free stresm (see ref. 2). The pressure
coefficients downstream of the leading edge sre therefore considered .
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constant at each spemwise
the Mach nmber and total

station, but vary with spamise distance since
pressure vary along the leading edge (see fig. 3).

The lift, pressure drag, and pitching-mmnent coefficients have been
detemined by the integration of the pressure coefficients over the body
and on the wings. Skin-friction drag coefficients were calculated by the
T1 method of Rubesin and Johnson (ref. 6), as modified by Seamer and
Short (ref. 7), with the assumption that leminar flow prevailed over the
entire body and turbulent flow existed over the wings. This assumption
is somewhat arbitrary. It should be mentioned, however, that recent
visual flow studies on a cc.mparableconfiguration under similar conditions
indicated that the flow was essentially of the type assumed for the present
configurations. The skin-friction dreg coefficient was evaluated at
a = @ and was aasumed to be independent of angle of attack. !l?heresults
of the foregoing calculations showing the contribution to the totel forces
of the body and the wings are shown in the following table.

Body J ‘IkrieJlgLiJar wings TrapezoidalWings
CL, CL CDP %f cm CL %p %f % CL %p %* Cmdeg
o 0 0.082 0.015 0 0 0.003 0.025 0 0 0.002 0.026 0
3 .252 .115 .015 -.135 .2J-C .021 .~ -.184 .230 .022 .026 -.186

10 .546 .202 .015 -.284 .432 .079 .025 -.3 81 .476 .086 .026 -.386,

T!heleading-edge drag end drag due to wing thickness are small and were
neglected in the calculations. ~us, CDP presented in the table for the

wings at a = 0° represents only the base dreg which was evaluated on
the assumption that the base-pressure coefficient is equal to 70 percent
of the vacuum-pressure coefficient. The body-base dragwea emitted
throughout. All the coefficients presented in the table are referred to
body-base area.

The calculated
mcment coefficients

end
for

DISCUSSIOIV

experimentally determined lift, drag, end pitching-
the complete configurations at a Mach number of

5.0 are presented in figure 5. The-generalized shock-eqansion method,
employed in combination with the T’ method of evaluating the skin-friction
drag coefficient, yields god agreement with Werimental results for the
total-drag coefficient over the test angle-of-attack range. It should
be noted that the results presented in reference 2 that the shock-expansion
method yields results which are in good agreement with experiment for the
pressure drag on a fineness-ratio-3 ogive at ~ = 5.0. In View of the
good agreement between theory and the experimental results for the total
drag coefficient at a = O (fig. 5(b)},it is indicated that the assumptions
employed regarding the type of boundary-layer flow are adequate for the
present case. The lift and pitching-mcrnentcoefficients are also in good
agreement with experiment at the lower angles of attack. It is clear that
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1

the shock-expansionmethod tends to overestimate these coefficients at
the higher angles of attack. This result is similar to that found for .

bodies of revolution (see, e.g., refs. ,2and_8) and, therefore, is not
surprising. It shouldbe noted from the results presen~d in-references
2 and 8, however, that the accuracy of the method improves with increasing
Mach number.

Ames Aeronautical Laboratory
National Advisory Comnittee

Moffett~ield, Calif.,
for Aeronautics
Sept. 16, 1958
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Figure l.- Details of test mcdels.
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Figure 2.- Calculated shock-wave shapes at angles of attack of 50 and lIW;

~ = 5.0.
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(c) Variation of total pressure.

Calculated flow conditions at the wing leeding edges.
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Figure 4.- Variation of upwash angle along the leading edges of the wings.
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Figure 5.- Comparison of theoretical and
characteristics at

NACA - Langley FielL Va.

experimental force and mcment
& = 5.0.


