Copy No.

{ &5

RM No. L8F21

NACA RM No. L8F21

DOWNWASH AND DYNAMIC PRESSURE AT THE HORIZONTAL

TAIL OF A SIX-ENGINE PUSHER-PROPELLED AIRPLANE

By
? \»a G. Chester Furlong
Ng e ? q \ LangleyI-lfe‘?f1 ;‘féla?}cii I?fabo ratory
| igley Field, Va.
o JPrI. LIBI! ‘Ap“’
2 Gl FORIh THSTITUTE OF TECHROLGGY

uL:m

OSTIP
/2 /nad.

I o

35&??5&3\3“1(5[" '
<9, mmﬁm Reaganch?
o/ 23 fuie. 53

RPN e elus

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS

WASHINGTON
July 19, 1948

| —RESTRICTED
JUL 27 1948 UNCLASSIFIED






NACA RM No. L8F21

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

b—-

Ay May
Nl ;:Oa

3

By

RESEARCH MEMORANDUM

DOWNWASH AND DYNAMIC PRESSURE AT THE HORIZONTAL

TAIL OF A SIX-ENGINE PUSHER-PROPELLED AIRPLANE

APR 27 1954 *‘9

[l X 2

PSTIA recloiem

Y. Reyf. RCAH
Date

By G. Chester Furlong

SUMMARY

Air-stream surveys have been made in the vertical plane of the elevator
hinge line of a powered model of a high-wing, six-englne, heavy, pusher-
propelled bomber. The values of downwash and dynamic-pressure ratio
obtained from the alr-stream surveys are presented in the form of contour
charts.

Average values of downwash and dynamic-pressure ratio obtained from
alr-stream-survey data are compared with effective values obtained from
force and moment data. The comparison was made to investigate means of
employing air-stream surveys to estimate the contribution of the tail to
the stability of the airplane.

The results of the tests indicated that the average values of down-
wash obtained from air-stream surveys were approximately 1° to 2° greater
than the effective values obtained from force and moment data. A concept
that the part of the tail intercepted by the fuselage contributed little,
if any, to the evaluation of the effective values of downwash angle from
force and moment data was used to.obtain an empirical formula by which
average values of downwash angle obtained from alr-stream surveys could
be made to agree satisfactorily with effective values. The average values
of dynamic-pressure ratio obtained by the use of the empirical method did
not agree satisfactorily with the effective values of dynamic-pressure
ratio obtained from force and moment data. The disagreement was attrib-
uted to the accuracy with which effective values of dynamic-pressure ratio
could be obtained from force and moment data.

For all flep conditions (retracted and deflected) the tail passed
into the center of the wake at moderate to high angles of attack. The
nacelle-wing juncture, the fuselage-wing juncture, and the nacelle had a
pronounced effect on the flow at the tall. There was no severe distor-
tion of the slipstream. When the flaps were deflected, the effects of
the upgoing and downgoing blades were not reversed as previously reported
for a tractor airplane.
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INTRODUCTION

Alr-stream surveys made in the region of a horizontal tail are use-
ful, at present, to study the effects of slipstream and fuselage inter-
ference. 1In order to complete the usefulness of air-stream surveys, 1t
should be possible to obtain average values of downwash and dynamic pres-
sure for use in the estimation of the contribution of the tail to the
longitudinal stability of an airplane. The average values obtained from
alr-stream surveys for most normal tail locations, however, do not agree
with effective values determined from force and moment data. These dis-
crepancles probably arise from the inexactness of the method used to
compute the 1ift of a taill that is operating in the field of fuselage
interference and varying dynamic pressure.

Some 1insight into the discrepancies between average and effective
values and the general interference problem was obtained during the wind-
tunnel investigation in the Langley 19-foot pressure tunnel of a

ft-scale powered model of & high-wing, six-engine, heavy, pusher-propelled

bomber. Ailr-stream surveys, obtained to study the air flow behind a pusher-
propelled airplane, were made in the vertical plane of the elevator hinge
line; and these data in conjunction with force and moment data of the
complete model provide a comparison of average values of downwash and
dynamic-pressure ratio obtained from air-stream surveys with effective
values obtained from tail-on and tail-off force and moment data.

The present paper contains the alr-stream surveys presented as
contour charts of dynamic-pressure ratio and downwash obtained in the
vertical plane of the elevator hinge line of the pusher-propelled air-
plane. Average and effective values of downwash and dynamic-pressure
ratio are compared. An empirical equation is presented which brings
average values of downwash into agreement with effective values.

SYMBOLS
Cy, 1i1ft coefficient (L/qS)
Cpy pitching-moment coefficien} (M /qST)

C
dCy, My )o
Clq, s8lope of tall 1ift curve =] =-
5 t

o St 1
S ¢
5 it = 1.00
q :
C pitching-moment coefficient contributed by tail
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Cmit effectiveness of stabilizer (écm/ait)
A aspect ratio (b2/8>
aq two-dimensional lift-curve slope (dc%/hﬂb>

qt/q ratio of dynamic pressure at tail to free-stream dynamic pressure

mean aerodynamic chord (M.A.C.), feet

ol

€ angle of downwash, degrees
L 1ift, pounds
M pitching moment, pound-feet
J q dynamic pressure, pounds per sguare foot <épV2>
\
\
\
|
‘

\
|
|
|
|
|
|
|
|
|
|
S surface area, square feet
|
|
|
\
|

propeller, pounds

|
\ c local chord, feet
\
‘ b surface span, feet
1 y spanwige station, feet :
|
‘ 1 tail length, distance from 0.25 M.A.C. of wing to 0.25 M.A.C.
| of tail ;
l Q angle of attack, degrees
|
| \
\ 14 stabilizer incidence with respect to wing root chord, degrees \
| |
| ik Bp flap deflection, degrees |
| |
‘ Ay section angle of attack in two-dimensional flow, degrees |
[ \
| 2y section 1ift coefficient :
\ i |
| R Reynolds number (pVc/u) |
| |
} o} mass density of air, slugs per cubic foot \
\ |
\ o) coefficlent of viscosity of air, slugs per foot-second
\ \
| v velocity of air, feet per second f
T thrust disk-loading cosfficient (i——al f
< . & - 2qD3
|
Qe torque disk-loading coefficient ( Q/2qD3> |
\ \
\
|
|
|
|
\
|

|
|
|
\
|
|
E AD change in airplane drag due to slipstream and inflow effects of
|
|
|
|
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D diameter of propeller, feet

1y propeller thrust, pounds

Q propeller torque, pound-feet

B propeller blade angle measured at 0.75 radius, degrees

2y/b spanwise distance

Subscripts:
o free-gtream
w wing
t tall

iso isolated tail

av average welghted values obtained from air-stream surveys
eff effective values obtained from force and moment data

Primes indicate average values obtained from air-stream surveys using an
effective span.

MODEL, APPARATUS, AND TESTS

Modsel

The design characteristics, pertinent to the present tests, of the

%E-scale powered model of a high-wing, six-engine, heavy, pusher-propelled

bomber are given in table I. A three-view drawing of the model is pre-
gented as figure 1. The model set up for the air-stream surveys in the
Langley 19-foot pressure tunnel is shown as figure 2.

The circular fuselage was equipped with protuberances such as
navigator's dome, mast antennas, sighting-station "blisters," and radar
fairings. The tall radar fairing was constructed as an integral part of the
taill assembly. A drawing of the horizontal tail is presented as figure 3.

The wing contalned midchord slots in the wing outer panels ahead of
the allerons. Six partly submerged nacelles extended from the trailing
edge. The single slotted flaps extended from the fuselage to the out-

board nacelles and were interrupted by both inboard and both center nacelles.
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When the flaps were deflected, the landing gear was extended and the mid-
chord slots were open. The wells for the main wheels were exposed when
the landing gear was extended and were covered with fairings when the gear
was retracted. No fillets were used at the fuselage-wing or the nacelle-
wving Junctures.

The model was equipped with six, three-blade, left-hand, pusher
propellers that were geometrically similar to the Curtiss No. 1129-IC6-24
propeller. Each propeller was driven by a water-cooled, alternating-
current induction motor housed in the wing. The power delivered to the
motors was determined from a calibration involving motor torgque, current,
and rotational speed.

The surface of the model was maintained in a smooth condition.

Survey Apparatus

The air-stream survey rake for the Langley 19-foot pressure tunnel
(fig. 4) was used to obtain dynamic pressures and downwash. The rake
congists of six piltot-static tubes with pitch and yaw orifices (two each)
drilled in the hemispherical tips at 45° to the longltudinal tube axes
and at 90° to each other. The tubes are alined in a vertical plane and
are spaced 3 inches. The pitch (downwash), yaw (sidewash), and dynamic-
pressure orifices had been previously calibrated through a known pitch
and yaw range.

All pressure leads were conducted from the air-strea® survey rake
(fig. 4) through the survey strut and from there to a multiple-tube
manometer. The manometer readings were photographically recorded during
the tests.

The mechanism of the survey-strut carriage allowed the rake to
traverse a plane perpendicular to the longitudinal tunnel axis.

Tests

The air-stream-survey tests and the force and moment tests were made
with the density of the atmosphere in the tunnel maintained at approxi-
mately 0.00545 slug per cubic foot and the dynamic pressure maintained at
25 pounds per square foot. These conditions correspond to a Reynolds
number of approximately 2,400,000 based on the M.A.C. of the wing. The
model was tested with the flaps retracted, the flaps deflected 20° (take-
off condition), and the flaps deflected 40° (landing condition).

The power conditions for the model tests simuwlated the full-scale
power conditions given in table II. The model propellers were operated
to obtain exactly the calculated values of thrust coefficient for given
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values of 1ift coefficient (fig. 5) and to approximate the torque coef-
ficients at corresponding thrust coefficients (fig. 6) for the full-scale

airplane. A blade angle of 21° was found to approximate satisfactorily
the desired torque.

The air-stream survey rake was set at 12 spanwise locations for each
angle of attack (as shown in fig. 7) along a line corresponding to the
approximate location of the elevator hinge lins. Two vertical settings
of the reke were made at each spanwise location so that measuremsnts were
spaced 1.5 inches. Because it was not practical to change the longi-
tudinal location of the survey apparatus during the tests, a location was
sslected so that the forward and rearward movement of the elevator hinge

line varied no more than 0.5 inch from the longitudinal plane for the
angles of attack tested.

RESULTS AND DISCUSSION

Reduction of Data

The original air-stream-survey data have been cross-plotted to
obtain contour charts of dynamic-pressure ratio and downwash in the
vertical plane of the elevator hinge line. The tail-off 1lift curves
together with the contour charts are presented in figures 8 to 15.
Table III summarizes the contour charts presented. The Jet-boundary
corrections applied to the data consist of an angle cnange to the down-
wash and a downward displacement to the field of flow. The wing angles

of attack have been corrected for jet-boundary effects and stream-angle
misalinement.

Table IV contains average weighted values of dynamic-pressure ratio
and downwash for all conditions tested. They were obtained by weighting
the local values measured along the hinge line according to the following
equations:

g
BN 1 T
g 1% T
q t q
av b‘b
2
and
b
i
e q
WIS TRE s AT —qﬁect aby, (1)
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Faired values of qt/q and € were used over the part of the span
covered by the fuselage.

The effective values of downwash and dynamic-pressure ratio have
been computed for the same model and power conditions as were the air-
stream surveys. These values are included in table IV. The computations
are based on tail-on and tail-off force and moment data. Representative
force and moment data are presented in figure 16 for 8p = 0° and rated
power. The data presented have been corrected for Jet-boundary effects
and model-support tares. Because isolated-tall tests showed & constant
lift-curve slope through the angle-of-attack range of the tail on the
model, the computations were simplified to

C
(3
1 Jers cmit
o)
and
C
o
Ay, e
mit
which makes

Coff = aw + 1t - at

The value of (Cm_i ) was obtained from tail-on tests at Cp = 0. The
t
o]

assumption that this value corresponds to 33 = 1.00 18 usually Justified
q

within 2 or 3 percent. The computed values of €ofs have been corrected
for Jet-boundary effects.

Air-Stream Surveys

Downwasgh.- The data presented in figure 9 (8, = 0°; propellers

removed) show that the combined effects of the macelle-wing juncture, the
wing-fuselage Juncture, and the nacelle have a pronounced influence on
the downwash that extends over the span of the horizontal tail. The down-
wash is greatest in the vicinity of the fuselage and smallest over the
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area influenced by the nacelle-wing Junctures. The flaps-deflected
conditions, T_ = O, also show the same general tendencies (figs. 12
and 14). i

With power on there is an increase of downwash on the side of the
downgoing propeller blade and a decrease on the side of the upgoing blade.
The increase and decrease of downwash for the pusher-propelled airplane,
as for a tractor-propelled airplane, appear to average out over the tail
span. The values of €., presented in table IV indicate that power has

little effect on the variation of downwash with wing angle of attack.

Reference 1 shows that for a twin-engine, tractor-propelled alrplane
the effect of flap deflection was to reverse the effects of the upgoing
and downgoing blades; that 1s, for flaps retracted the downgoing blades
gave the greater downwash, whereas for flaps deflected the upgoing blades
gave the greater downwash. Figures 11(d) and 15(c) indicate that this
reversal did not occur for the pusher-propelled airplane.

Dynamic pressure.- The spanwlse variation of qt/q for the flaps-

retracted propellers-removed condition 1s greatly influenced by the inter-
ference effects of the nacelle-wing Juncture, the wing-fuselage Juncture,
and the nacelle (fig. 9). As the angle of attack is increased, the tail
travels from the upper to the lower edge of the wake.

The values of qt/q in the field influenced by the nacelle-wing

Juncture and the nacelle are greatly increased with power on, as shown
by a comparison of figures 9 to 11. The increase of qt/q becomes

progressively greater with an increase of angle of attack because of a
corresponding increase of T, (fig. 11). The effect of the slipstream

on the wake of the wing-fuselage Juncture appears to be negligible. For
all power conditions, there is a marked variation of qt//q along the

span of the horizontal tail. The data do not, however, indicate a severe
distortion of the slipstream usually associated with a tractor-propelled
airplane (reference 1).

The usual downward shift of the wake center line occurs with the
flaps deflected, and, consequently, the tall enters the center of the
wake at a higher angle of attack than it does with the flaps retracted.
(Compare figs. 10 and 12.) Flap deflection causes a decided reduction
in dynamic pressure and a widening of the wake.

Since the tail acts in a field of flow so predominantly influenced
by the combined interference effects of the nacelle-wing Juncture, the
fuselage-wing jJuncture, and the nacelle, & conditlon of taill buffeting
at moderate angles of attack may occur for any configuration. Tke low
values of qt/q associated with the interference effects indicate a

separation of flow over the wing. These values agree with the results
presented in figure 8. The 1ift curve presented in figure 8 for the
flaps-retracted propellers-removed condition exhibits a break which can
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be attributed to an interference burble either at the nacelle-wing or the
fuselage-wing Junctures or at both. Power tends to reduce thes break.

Average and Effective Values of Downwash and
Dynamic Pressure

Downwash .- The results 8resented in table IV show that the values
of €qy 8T approximately 1° to 2° greater than the values of ceff+ 1n
order to determine the reasons for the differences between effective and
average values of €, a study of the assumptions made in both methods of
calculations must be made.

When computations of € pr are made from force and moment data, the

basic assumption is that the difference between tail-on and tail-off
pitching moments is a measure of the tail 1ift attributable to the
complete tall area (fig. 17(a)). Theoretically, however, the loading is
more closely represented by figure 17(b).

Although pressure-distribution tests were not obtailned for the pres-
ent model, the data of reference 2 for a canard-type airplane (negligible
effects of qt/Q) have indicated the loading of the fuselage induced by

the tail to be considerably less than the theoretical loading (fig. 17(b)) .

In the present case it is therefore not unlikely to suppose that, because
of the extremely thick fuselage boundary layer over the rear of the fuse-
lage, the loading shown in figure 17(c) would be a closer approximation

to the actual loading than that shown in figure 17(b). The effect of a
change 1n stabilizer setting would be felt outboard of the fuselage

(fig. 17(d)). On the basis of the assumed loading (figs. 17(c) and 17(d)),
the effective downwash angles computed from force and moment data would
consequently be approximately the effective downwash angle e€gpr acting
over the span of the tail outboard of the fuselage.

There are two basic assumptions made when air-stream-survey values

of €, are obtained by equation ()% First, the downwash measured on

each side of the fuselage is assumed to extend across the fuselage; and,
second, the distribution of 1ift on the tail is assumed to be proportional
to the local chords of the tall. When weighted according to the tail
chord over the area intercepted by the fuselage, the rather large values
of € 1in the vicinity of the fuselage therefore have a predominant
influence on the value of ¢€gy. A comparison between values of ¢4y

obtained when weighted according to the chord distribution and when
weighted according to an isolated-tail carry-over 1lift distribution
showed negligible differences. The assumed loading for the 1ift of the
taill outboard of the fuselage plus the 1ift of the fuselage induced by
the tail (fig. 17(c)) indicates that, although the chord distribution
gatisfactorily represents the 1ift distribution outboard of the fuse-
lage, 1t does not represent the 1ift distribution over the fuselage. As
a result, the air-stream-survey data were integrated only over the tail
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span outboard of the fuselage (fig. 17(b)). Approximately one-half of

the original discrepancy (table IV) between €gy and egpp remained

and indicated that the loading over the center part of the tail was even
less than that shown in figure 17(c).

An empirical formula is introduced by which an effective span for
integrating air-stream-survey data can be obtained. This formula has
been based on the assumption that a change in CL between isolated-

25
tail tests and complete-model tests may be assumed to be an effective
change in aspect ratio. Thus

- = , 2)
(b )ore = bt (CL ) (
o}
A iso x e b
t (CLa> 57-3a, ~ At) 57.3ag
t/eft
The air-stream-survey data of the present paper were integrated over each
i ik (bt of £ by
semispan from : to = and the resulting values of e’

are presented in table IV. Very close agreement was obtained between
gy and egpp-

The reliability of using equation (2) has not been established by
gsufficient test application. Tnasmuch as a knowledge of the values

of (C and (C is required, the method for determining
(La'b)eff ( La't) iso a 4

values of €,y' from air-stream-survey data is limited to tests for

which complete model and isolated tail data are also available. Use
of equation (2) has indicated, however, that force and moment data
neglect the rather large effects attributed to the fuselage when
values of € _pp are computed. The effect of the fuselage should

therefore be accounted for when air-stream surveys are used to
obtaln €g4,.

Air-stream-survey data and force and moment date were obtained in
the Langley 19-foot pressure tunnel for a four-engine, photorsconnais-
sance, tractor-propelled airplane which had the horizontal tail located

above the fuselage on the vertical tail. The values of ¢€,, were within

experimental accuracy of values of eopp- The computed value of (bt> =
e

was approximately equal to by and, hence, showed that equation (2) was
satisfactory for an extreme condition.
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Dynemic pressure.- A discussion gimilar to that presented herein on
downwash can be used to show that force and moment data also determine an
effective dynamic-pressure ratio (qt/q)eff over the tail span effec-

tively outboard of the fuselage.

The discrepancies between (qt/q)av and (qt/q)eff were only
slightly reduced, however, when values of (qt/q)av' were obtained

(table IV). It is quite possible that the remaining disagreement is due,
in a large part, to the accuracy with which (qt/q)eff can be obtainsd
from force and moment date. Since rather small values of Aip are used

to obtain Cmi , the balance system must provide very accurate measure-
t

ments of Cp. For the present tests, the low dynamic pressure and the

gengitivity of the balance system combine to give an estimated accuracy
of (Qt/Q)eff of approximately 6 percent. The main result indicated by

these data 1s that force and moment data do not provide a means far
accurately determining (qt/q)erf 1f the forces and moments are
obtained at low speeds and are measured by a typical tunnel balance
gystem.

CONCLUDING REMARKS

The results of air-stream surveys and comparison of average and
effective values of downwash and dynamic pressure at the tall of a high-
wing, six-engine, powered, pusher-propelled model indicated:

1. The average values of downwash obtained from air-stream surveys
were approximately 1% %5, 0% greater than the effective values obtained
from force and moment data. A concept that the part of the tail inter-
cepted by the fuselage contributed little, if any, to the evaluation of
the effective values of downwash angle from force and moment data was used
to obtain an empirical formula by which average values of downwash angle
obtained from air-stream surveys could be made to agree satisfactorily
with effective values.

2. The average values of dynamic-pressure ratio obtained by the use
of the empirical method did not agree satisfactorily with the effective
values of dynamic-pressure ratio obtained from force and moment data. This
disagreement was attributed to the accuracy with which sffective values
of dynamic-pressure ratio could be obtained from force and moment data.

3. For all flap conditions (retracted and deflected) the tail
passed into the center of the wake at moderate to high angles of attack.

4. The nacelle-wing Juncture (no fillet), ths fuselage-wing jJuncture
(no fillet), and ths nacelle had a pronounced effect on the flow at the
tail.
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5. The severe distortion of the slipstream usually assoclated with
a tractor-propelled airplane did not occur.

6. When the flaps were deflected, the effects of the upgoing and
downgoing blades were not reversed as previously reported for a tractor
airplane.

Langley Memorial Aeronautical Laboratory
National Advisory Committee for Aeronautics
Langley Field, Va.
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TABLE I

DESIGN CHARACTERISTICS OF A SIX-ENGINE,

PUSHER -PROPELLED, POWERED MODEL

Wing

Root chord

Section . R,

CHOFd, dn.. ¢ ¢ o o ¢ v s o o &

Angle of incidence, deg . . . . .
Tip chord (theoretical)

Section . . . SR

Chord, in.. . . . S0 0 o0 g ot

Angle of incidence deg S0 G oo OGO .
Area, sq ft v SRR T ey
Span, Inee ¢ ¢ ¢ o o o 6 o o 0 o s 0 0 e 0 s e
Agpect ratio . 50 G U DG
Mean aerodynamic chord (M A C ),in o8 W K eas
Spanwise location of M.\A.C., in. . . . . . . .
Sweepback

Leading edge, deg€ . « « « « « « + « s + + o+

Trailing edge, deg O SRR
Taper ratio . . . o ala &
Dihedral (from wing root chord plane) deg « « o o
Washout (aerodynamic), deg . . « « « o o o« « & « &

Flaps

Chord, In. . . «. ¢« « ¢« « « « &
Deflections, deg . . . . . . .
Area, sq in.

Between outboard and center nacelles . . . .

Between center and inboard nacelles . . . . .

Between inboard nacelle and fuselage . . . .
Span, in.

Between outboard and center nacelles . « o o &«
Between center and inboard nacelles . . s

Between inboard nacelle and fuselage . . . .
Fugelage
Length, £t . . . . G U G 0.0 0 &0 0D 0 C

Maximum diameter, in N B E o
Maximum frontal area gqg In. . . o . o',

13

. NACA 63(420)-ko2

w1 28 52

el Il 3
NACA 63(420)-517

) PTSR

g WL AR 16 ol L
000 1) s il 2&.35
o TR . 197.1k
e e e L

6 20.05
PRI S
MR 1.

s (3 TR

: : 4

i )k e e
i 2
2 1%y ot Wl
.. 0, 20, and %0
PR R -~
o e el ST
BRI %

o Wbk e s el dBNSHE
S -

R

RN Aot SN 11
PRI P e
. 90.1h4
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TABLE I - Concluded
DESIGN CHARACTERISTICS OF A SIX-ENGINE,

PUSHER -PROPELLED, POWERED MODEL - Concluded

Horizontal tail
Root chord
Section .
Cheord dn. " . .
Tip chord (theoretlcal)
Section . T
Cherd ;o dn. . . 56 ©
Total area (projected) sq £t
Span, in. A
Aspect ratio . . 6 6 ¢
Mean aerodynamic chord in.
Taper ratio : 5 4 o o oo o
Tail length (% chord of wing M.A.C. to ﬁ chord of
tall WA g, 1n. . .. . . .
Dihedral, deg 5
Sweepback (elevator hinge line) deg :
Elevator area (total), sq ft .

plane, in.

Vertical distance of elevator hinge line below wing root chord

Vertical tail
Root chord

Sectlon .

Chord, in.
Tip chord

Section .

Chord,- in. B
Total ares (1nclud1ng dorsal) gq) £t
Span, in. S S N R I M e
Aspect ratlo
Taper ratio

NACA 0015
AR

NACA 0015
- 5.79
o L O
62.91
5 55
12.58
- 3

62.00

0
e ®)
< 2.32

0.033

NACA 0015
23.21

NACA 0012
. 8.43
s 2
v . 25,85
3 s LS
WS

Tail length (ﬁ chord, of wing M.A.C. to rudder hinge line),in. 68.11

Rudder (area), sq ft .

5 ALoils

Propellers
Number . : 6
Number of blades per propeller . . 3
Dlameter, ££ . . . . s e e R l 36
L R e B A S e Curtiss 1129 -IC6-24
(left hand)



TABLE

IX

SIMULATED FULL-SCALE POWER CONDITIONS

Brake Airplane Engine Propeller
Power horsepower |gross weighti Altitude gpeed Ge:: speed
(per emgine)|  (1b) (£8) | (rpm) | T8Y | (rpm)
100-percent
rated power 2500 265,000 Sea level 2550 | 0.29 725
T5-percent
rated power 1875 265,000 10,000 2100 .29 609
50-percent
rated power 1250 265,000 Sea level 2100 .29 609
Zero thrust,
'I'c = 0 Low 175,000 to |Sea level to Low [.29 and Low
350,000 maximm .50
altitude

Tcdg@T ‘ON Wd VOVN

i
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TABLE III
CONTOUR CHARTS OF DOWRWASH AND

DYRAMIC -PRESSURE RATIOS

Fi 51' Power Slots ne %
e W
o (deg) gear (deg)
9 0 Propellers removed Closed off 0.2, 5k, 7,
1138, 160
lO O Tc = O "dO“ Off 002, 30“, 7.7’
11.9, 16.1
11 0 Rated power =~~~ off 0.2, 3.4, 7.8,
12.0, 16.2
12 20 Te = 0 Open On 0.5, b.7, 9.0,
130"
13 20 0.75 rated power --do-~ On 0.5; &.8, 9.1,
13.4
1k ko Te =0 ~-do-- On 0.7, 5.0, 9.2,
1355
15 %) 0.50 rated power ~-do~= On 0.3 5.0é 9.3,
11830
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Figure 1.- Three-view drawing of the -1—-sca1e model; left-hand propeller rotation. (All
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dimensions are in inches.)
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NACA RM No. L8F21

(a) Front view.

scale powered model mounted in Langley 19-foot pressure tunnel.
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Figure 2.- The ;
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(a) Close up of rake head.

,3/8" D

Il%/r——Pitch orifice Static orifice
. 2

5 hs\"< -
43

& 4

6" -

Yaw orifice-

Impsct orifice

(b) Sketch of tube head.

Figure 4.- Air-stream survey rake for Langley 19-foot pressure tunnel.
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Figure 6.~ Variation of thrust disk-loading coefficient with torque
disk-loading coefficient for the full-scale constant-speed propeller

and the -1——sca1e—model constant-pitch propeller.

14
operation.

Single-propeller



9 .
i i
= 3
=TT E m
ﬁ%n“ﬁn’. {
= . O g 5
| S o
Sy el 1]\ 5my N rAg w
3 @ ’; o 4 @ Y 2
_ I Q g
3 @5V 0 :
N
\ 9 y = s
e G S g =
O Nt < 8 o 5 9
2 S Q S
NN 2
& & S O n 3
/O s Sl 0 m
D
D/ de b o
oY SR
e e ) o &
= < <
W/WAOV/ | am £
NS AM g £
” B p iR s 43
S—r—— |l|4 (llm HE T =
‘ ) 1 —oo0q W@@@@@@ Qw 5 =
O 3 _ |1 a
m ﬁ 3 ™ © @@&.T@@@e@@ m <
SN ) | ;-
/W % mw @@@@Mee@eeees ,m_m
— | 3
m f_w @@@9%@@@@@@& A.m
|
] AN “__
o S 6 $@@e__%@@@e@®e '
= m m “J:W ____ _M.V..
i 3 O Og-Q e@@emm@@eeaee mo
< 3 S i
2 Q QRO \p =
= - 2 =



30 NACA RM No. L8F21

26
A
24 8¢ = 40%; 0.50 rated power — )/
i
22 -
8 = 40°; T, = 0 @ ﬁ/af —~ 207; 0.75 rated power
20 %‘58/ 1
A o, .
| 1 P o oo
6 77 AT TS o s
f//gj /Z /,3%0
14 l j : /<$ pd
P LA o= me=o
12 ' '

w - £
1O /f?/

\G}%\\ Toih
e
-

ﬂ NACA

-4 0 4 & /12 16 20 24
Xy

Figure 8,- Tail-off lift curves for various flap deflections and
power conditions.
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Figure 12.- Downwash angles and dynamic-pressure ratios in the vertical plane of the elevator
hinge line. View looking upstream. 5f = 209; s 0; R = 2,440,000,
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Figure 13.- Downwash angles and dynamic-pressure ratios in the vertical plane of the elevator
hinge line. View looking upstream. & £ = 20°; 75-percent rated power; R = 2,440,000.
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hinge line. View looking upstream. Gf = 409; 50-percent rated power; R~ 2,440,000.
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